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ABSTRACT 

A new algorithm for ray tracing generalized cylinders whose axis is an arbit:rary three dimen- 

sional space curve and whose cross-sectional contour can be varied accortding to a general 

sweeping rule is presented. The only restriction placed on the class of generalized cylinders 

that can be ray-traced is that the sweeping rule of the generalized cylinder must be invert- 

ible. This algorithm handles a broader class of generalized cylinders than ainy other reported 

ray tracer. It has been integrated into a general geometric modeling systenn that can render 

objects utilizing visible light as well as simulated X-rays. 

Generalized cylinders are often used in modeling systems because they cornpactly represent 

objects. Many commonly occurring objects including snakes, horses, airplanes, flower vases, 

and organ,s of the human abdomen such as the stomach and liver can be described naturally 

and conveniently in terms of one or more generalized cylinder primitives. :By extending the 

class of generalized cylinders that can be conveniently modeled, the presented algorithm 

enhances .the utility of modeling systems based on generalized cylinders. X-ray images of 

the internal bone structure of a knee joint, and a visible light image of a fan blade assembly 

are presented. 

Index Terms : computer-generated images; generalized cylinder; ray tracing; simulated X-ray 

images; radiograph; 



I INTRODUCTION 

Ray tracing is a well known technique that is widely used for generation of realistic images 

[I,  2, 31. Using this technique, the visibility of surfaces is determined by tracing imaginary 

light rays from a viewer's eye to the objects in a scene. A similar tech-nique, X-ray ray 

tracing, for generation of X-ray images is also described in this paper. A rnajor issue in ray 

tracing is object representation. Accurate representation of objects by geometric models is 

a pre-requisite for realistic image generation. 

Generalized cylinders [4] are a class of primitive objects that can be used as general shape 

descriptors for many objects [5]. A generalized cylinder is a volumetric solid generated by 

sweeping an arbitrarily shaped closed cross section along an arbitrary three-dimensional 

space curve (axis) (See Figure 1). The Frenet frame [6, 71 offers a natural method of 

orienting the cross section relative to the axis. The cross section may be varied (deformed) 

as it is swept along the axis. This deformation function is usually called the sweeping rule. 

The expressiveness and compactness of generalized cylinders make them a good choice as 

primitives for object representation. This class of flexible parametric shapes is capable of 

modeling many different types of objects. Simple descriptions for many natural shapes exist. 

Complex shapes can be conveniently described by segmentation into a number of simpler 

generalized cylinders, each with no abrupt change in size or shape of the cross section, or in 

the axis direction. Objects represented by generalized cylinders are also easily modifiable. 

Examples of objects that have been represented by generalized cylinders in other research 

work include animals [8, 91, organs [lo, 111 and various man-made objects [12, 13, 141. 

Some research on ray tracing restricted classes of generalized cylinders has bseen reported. An 

algorithm for visible light ray tracing of generalized cylinders with const ant cross-sectional 

contour is described in [15]. The work was later extended to include scaling of the contour 

curve in two orthogonal directions [16]. Visible light ray tracing of generalized cylinders with 

a varying cross-sectional curve along a straight axis has also been investigated [14, 171. 

In this paper, we describe a method for ray tracing generalized cylindelrs whose axis is 



Figure 1: Notations used to describe a generalized cylinder. 



an arbitrary 3D space curve and whose sweeping rule is invertible. A geometric modeling 

system has been implemented that can ray trace both visible light and X-ray images. To our 

knowledge, ray tracing of such a broad class of generalized cylinders has nolt been attempted 

before. Some example images generated by our geometric modeling system are shown in 

section IV. The example images give a glimpse of the wide class of objects whose realistic 

visible 1ig:ht and X-ray images can be generated. 

I1 RAY TRACING GENERALIZED CYLINDERS 

The ray tiracing problem can be stated as follows: 

Given a scene description, an eye position and an image plane, find the 2D 

image that is observed when the scene is viewed from the eye position. 

An equivalent statement for the X-ray ray tracer reads: 

Given a scene description, an X-ray source and an image plane, find the 2D 

X-ray image that is formed on the image plane. 

The imagt: plane may be thought of as a rectangular grid of the desired resolution. A ray is 

cast from the eye (source) to a grid location on the image plane (see Figure 2). Intersection 

points between the ray and objects in the scene are found and used to compute the value 

for the grid location. The image is fully rendered when the value of each grid location on 

the image plane has been determined. It is therefore evident that at the "heartn of every 

ray tracer., there are routines for computation of intersection points between a ray and each 

allowable :primitive object in the scene. In the following subsections, we describe the details 

of how intersection points between a ray and a generalized cylinder can be computed. We 

also describe how the resultant image can then be generated from the computed intersection 

points. 



Figure 2: Basic principles behind a ray tracer. 
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A Formal Definition of a R a y  a n d  a Generalized-Cylinder 

The problem we want to solve is to find the intersection points between a ray, r(w) = p+wd, 

and a generalized cylinder. A generalized cylinder can be described by a 3D axis curve, 

a(.) = (a!,(u), ay(u), a,(u)) where u; < u < uf and a closed 2D contour curve, c(u, v) = 

( ~ ( u ,  v), Q(U, v)) = S(CS(V), U) where v; < v < vf and s is the sweeping rule that specifies 

how a pxrticular cross-sectional contour, cs(v), changes along the axis of the generalized 

cylinder. 'The axis curve is assumed to be regularly parametrized, i.e. al(u)l # 0, u E [u;, uf]. 

The shape of the contour at each point along the axis is given by c(u, v). Eor the orientation 

of the contour, the Frenet frame [6, 71 is used. The Frenet frame depends only on the local 

shape of the trajectory. It is independent of the axis parametrization and of the coordinate 

system in which it is defined. These qualities make the Frenet frame an ideal choice as a 

local coordinate system for each point along the axis. The Frenet frame consists of three 

orthogonal unit vectors: 

t an~gent vector: 

binormal vector: b(u) = 
$(u) x al'(u) - lal[uj x at'[uji 

It (u) x aU(u)J a1 u x a" u 

normal vector: a'(u)12a"(u) - (a'(.) - a" u a u 
r i ( ~ )  = b(u) x i (u )  = J 1 a' (u) 1 (al(u) x a"' We u 

i (u )  is normal to the plane of the contour. B(u) and b(u) define the directions of the first 

and second coordinate axis in the contour plane. The t b  plane is called the: rectifying plane, 

the n b  plane is called the normal plane and the n t  plane is called the osculating plane. 

Note however that the Frenet frame is not defined at points where al(u) is linearly dependent 

on aU(u), i.e. where the curvature, n(u), is zero. This is not a major problem since for a 

space curve, n(u) is typically not equal to zero. The following fact has been proven in [18]: 

If ~ ( u )  I) on the interval of definition, then a(u) is a straight line segment on that interval, 

and conversely, for a straight line, n(u) 0. 

Hence n(u) = 0 occurs only at points of inflection along the axis of the generalized cylinder 



or when the axis of the generalized cylinder is linear. The implementation issues for these 

special cases are described in the next section. 

Using the definitions of the axis curve, the contour curve and the Frenet fritme, the equation 

for the surface of the generalized cylinder (see Figure 1) is given by: 

B Overview of Ray-Generalized-Cylinder Intersection A1gorith:m 

The basic idea behind the Ray-Generalized-Cylinder (Ray-GC) intersection algorithm is to 

reduce thle 3D intersection problem into a 2D intersection problem. This idea has been 

applied to solve for the intersection between a ray and restricted classes of generalized cylin- 

ders, namely generalized cylinders with constant cross-sectional contour [15] and straight axis 

generalized cylinders [17]. A direct extension of the idea to profiled generalized cylinders 

(i.e. generalized cylinders with cross-sectional contour which can be scaled :in two orthogonal 

directions) has been reported [16]. In this paper, we describe the missing link that allows 

elegant computation of the intersection between a ray and a generalized cylinder with full 

generality except the restriction that the sweeping rule of the generalized cylinder must be 

invertible. This extension significantly widens the class of generalized cyliilders that can be 

rendered. 

The reduction in dimensionality of the Ray-GC intersection problem can be achieved by 

first consisdering the intersection of the ray with each normal plane along the axis of the 

generalized cylinder. The computed intersection points all lie on the 2D plane spanned 

by B(u) and b(u) (normal plane). These intersection points collectively form a 2D curve, 

p(u). By definition, the contour curve of the generalized cylinder lies on Ithe normal plane 

too. Themfore, for a fixed normal plane (e.g. plane spanned by 8(uj)  and b(uj)), if the ray 

intersects the surface of the generalized cylinder, the point p(uj) will lie on tihe contour curve 

c(uj, v). No intersection of the ray with the generalized cylinder occurs (for the particular 

normal pl'ane) if the point p(uj) does not lie on the contour curve c(uj, v). Hence, the 



intersection of a ray with a generalized cylinder can be computed by finding the intersection 

points of the curve p(u) with the contour curve c(u, v). However, since tihe contour curve 

c(u, v) varies as the parameter u is changed, the problem is still inherently 3D and the 

intersection points cannot be easily determined (see Figure 3). 

In this paper, we describe an elegant solution for finding the intersection ploints between the 

curve p(u) and the contour curve c(u, v) when the deformation function (sweeping rule) of 

the contour curve is invertible. In this case, instead of finding the intersection points directly, 

the inverse sweeping rule is first applied to the curve p(u) to give anothe:r 2D curve 4(u). 

The intersection of the curve +(u) with the specified cross-sectional contour curve cs(v) is 

equivalent, to the intersection of the curve p(u) with the cross-sectional cont,our curve c(u, v). 

Since both 4 (u )  and cs(v) lie on the normal plane, the 3D problem has been reduced to a 

2D problem and the intersection points can be computed relatively easily (see Figure 4). In 

the next three subsections, we describe in detail how the intersection points are computed. 

C Intersection of a ray  with  each normal  plane along t h e  axis 

The equation of a ray, r(w), in the local coordinate system determined by the Frenet frame, 

i(u),  ii(u) and b(u) is: 

The point of intersection between the ray, r(w), and the normal plane, U(u)  (spanned by 

h(u) and 6(u)  and passing through a(u)), can be found using the following equation: 



Figure 3: Intersection of the curve p(u)  with the contour curves c(u,v) for deformed object 
shown in Figure 8. The contour curves have u values varying from 0.5 tlo 3.0 (in steps of 
0.625) from the outermost curve to the innermost one. 



Figure 4: Intersection of the curve +(u) with the specified contour curve c ; ~ ( v )  for deformed 
object shalwn in Figure 8. 



Substituting i (u )  = and simplifying, we get: 

Therefore, 

provided iat(u) d # 0. 

The case of at(u) d = 0 corresponds to the case where the ray is parallel to the contour 

plane. This is treated as a special case and the implementation details can be found in the 

next secti'on. 

For normid cases, the value of w is substituted into rl(w,u) to give p(u) which is the pro- 

jection of the ray onto the normal planes along the axis. 

D Applly inverse sweeping rule  to  p(u) 

The intensection of p(u) with c(u,v) corresponds to the intersection of the ray with the 

generalized cylinder. However, as discussed in section II(B), the intersection points can 

be found much more readily by first transforming p(u) by the inverse sweeping rule and 

then intersecting the resulting curve 4(u)  with the specified cross-sectional curve cs(v), 

i.e. deformation of a ray rather than the object [19]. The inverse relationship between 

the specified cross-section and c(u, v) is given by cs(v) = s;,,(c(u, v) ,  u!). Applying the 

inverse sweeping rule to p(u), we get +(u) = s;,,(p(u)). The intersection of 4(u)  with cs(v) 

corresponds to the intersection of the ray with the generalized cylinder. 



E Subclivision algorithm for solving intersection points between 4(u) and cs(v) 

Solving for the intersection points between the curves 4(u)  and cs(v) is not (a straight forward 

problem since the curves, in particular +(u), may be complex. A similar problem has been 

discussed in [15, 201. We follow the basic approach of [20] in our work.. This approach 

avoids the problem in [15] of finding multiple intersection points when only one exists [21]. 

Points with horizontal or vertical tangents and points of inflection along ,the curve have to 

be computed. Due to the complexity of the curves, it is generally difficult to solve for such 

points anidytically. Numerical techniques of sampling are used instead. 

An out line of the subdivision algorithm follows: 

First, the curves +(u) and cs(v) are split at inflection points and points with horizontal 

or vertical tangents (see Figure 5). This results in curve segments whose maximum and 

minimum coordinate values occur at the end-points. Hence, the entire curve segment is 

bounded within the box defined by the end-points of the curve segment. If such a curve 

segment is further subdivided, the subdivided curve segments are also bounded by their 

respective end-points boxes. A proof of this property can be found in [20]. 

After splitting the curves, the curve-intersect routine is called on all possible combinations of 

a curve segment from 4(u)  and a curve segment from cs(v). The following is a pseudo-code 

algorithm of the curve-intersect routine: 

procedure curve-intersect (curvel ,curve2:curveseg) 

if overlap(curvel ,curve2) 
if linear(curvel) 

if linear(curve2) 
line-intersect ion(curvel ,curve2); 

else 
curve-divide(curve2,curve21 ,curve22); 
curve-intersect (curvel,curvezl); 
curve-intersect (curvel,curvez2); 

else 
if linear(curve2) 

curve-divide(curvel,curvell,curvelz); 



0 Horizontal or Vertical Tangent point 

0 Point of Inflection 

End point 

Figure 5: Subdivision of a curve. 



curve-intersect (curvell,curve2); 
curve-intersect (curve12,curve2); 

else 
curve-divide(curvel,curvell,curve12); 
curve-divide(curvez,curve21 ,curvez2); 
curve-intersect (czlrvell,curve2); 
curve-intersect(curvel~,curve2); 
curve-intersect(curvel,curve21); 
curve-intersect(curvel,curve22); 

Note: 

overlap(curvel,curve2) detects whether the two curve segments have spatially overlapping 

bounding boxes. 

linear(mrve) is a function that tests the linearity of a curve segment. Since each curve 

segment has the property that the maximum and minimum coordinate va~lues occur at the 

end-points and there is no inflection point along any curve segment, a good test for the 

linearity of a segment is to find the perpendicular distance between the point of intersection 

of the tangent lines at the end-points and the chord joining the end-points of the segment 

(see Figure 6). Since the curve segment must lie between the triangle define by the two 

tangent lines and the chord, if the perpendicular distance found is less than 6, the curve 

segment its said to satisfy the linearity test. 

If the x and y coordinates are separately considered and the deviation of e:ach coordinate is 

less than E, then the maximum deviation of the curve segment from the chord is less than 

f i e .  Therefore, without loss of generality, let us consider the x coordinate. The following 

paragraph derives the formula for calculating the deviation: 

Let A = (uO, x(u0)) and B = (ul, x(ul)) be the end-points of the curve segment and X = 
(u*, x*) be the point where the two tangent lines at uo and ul intersect. 

The equation of the lines XA and XB are: 



Figure 6: Testing for linearity of a curve segment. 



Solving, we get 

The equation of the chord is: 

Therefore, the perpendicular distance of (u*, x*) from the chord [22] is given by: 

line-inte~rsection(curve~,curve~) detects whether the two almost linear curve segments in- 

tersect. If so, it returns the parameter values of the intersection point. Otherwise, it returns 

nil. 

curve-di~vide(curve,curvel,curve2) subdivides curve at the midpoint of the range of pa- 

rameter values of curve into curvel and curvez. 

The curve-intersect routine returns the parameter values for the intersection points (if any). 

Using equation 1, the actual 3D coordinates of the intersection points can be computed. 

F E n d  planes 

So far, we have discussed the computation of the intersection points of a ray with the surface 

of a generalized cylinder. If the ray also intersects one of the end planes of the generalized 

cylinder, $(u;) or +(uf)  will lie within the specified closed cross-sectional contour curve, 

cs(v). If so, the point of intersection can be computed by finding the intersection of the ray 

with the iippropriate end plane. This ray-plane intersection can be easily computed using 

standard techniques [23]. 



G Normal  calculation (for visible light shading) 

To generate visible light images, it is necessary to know how to shade surfaces based on the 

position, orientation and characteristics of the surfaces and the light sources illuminating 

them. Most illumination models require the computation of the surface normal at the point 

under consideration. In our geometric modeling system, Phong's illumination model [23] (see 

Figure 7) is used. It should be noted that other lighting models can be easily incorporated 

into the system but they are not discussed here since illumination is not the main focus of 

this paper. Phong's illumination model is as follows: 

where 

K, = ambient-reflection component of object 

Kd = difluse-reflection component of object 

K, = specular-reflection component of object 

n = specular-reflection exponent of object 

N = surface normal at intersection point 

= direction to  the light source 

E = direction to  the eye 

H = 11E @ Lll. 

@ denote:; vector addition. Ka, Kd, K,,n,L and E are specified as input to the geometric 

modeling system and Ka + Kd + K, 5 1. H and N have to be computed. The computation 

of H is straight forward. The surface normal, N, of a point on the surface of a generalized 

cylinder can be computed as follows: 



Figure 7: Phong's Illumination model. 



where 

and 

Using the parameter values (u, v) of the first (closest to eye) intersection point of the ray 

with the object, the value of N can be computed. If the intersection point lies on one of 

the end planes, N is instead given by -i(ui) or i(ut).  For the visible light ray tracer, the 

computed value of I is the value recorded in the grid location (hit by r,ay) on the image 

plane. 

H Dist,ance calculation (for X-ray intensity) 

To generake X-ray images, it is necessary to know the intensity of the X-ray that reaches 

the image plane. Beer's law for absorption of photons by radiodense materials is used to 

compute the amount of attenuation of the X-ray by the objects in the scene [24]: 

N = Noe-px 

where 

N = number of transmitted photons 

No = number of incident photons 

p = linear attentuation coefficient (object density) 

x = object thickness. 

Object densities are specified as input to the geometric modeling system. Object thickness 

is given b,y the distance that a ray passes through an object. It is comput.ed by finding the 

intersection points of the ray with all objects along its path and then obtaining the distances 

between the intersection points in sequence. The distance between successive points can 

be easily (computed by the Euclidean distance. The number of photons reaching the image 



plane is recorded as the value for the pixel location. The following is a simple example that 

illustrates the computat ion: 

The line denotes a ray passing through objects of various densities. Let densi ty j j  denote the 

density associated with the segment between point i and point j and distancejj denote the 

distance between point i and point j .  For regions where objects overlap, such as between 

points 2 a~nd 3, the density used can be the sum of the densities of the overlapping objects 

or the density of either one of the overlapping objects. More discussions o:n how objects are 

combined can be found in section III(D). 

Assuming that No = 1, we have 

N~ = ~ ~ ~ - d e n s i t y ~ ~  xdistanceol 

N~ = N~ e-density12 xdistancelz 

If point 7 is a point on the image plane, then the X-ray ray tracer records N7 as the value 

of the grid location on the image plane. 

I Conti-ast Stretching of Images 

The visiblle light and X-ray images that are obtained (using the algorithm described above) 

contain vitlues between 0 and 1. An additional step of contrast stretching [25] is necessary 

for visualization of these images. The images are linearly stretched so that the minimum 



and maximum values are mapped to the full color space. For 8-bit greyscale images, the 

minimum value is mapped to 0 and the maximum value is mapped to 255. For color images, 

the imager is independently scaled by the appropriate red, green and blue amounts to give 

the red, green and blue images. The minimum and maximum values of' all 3 images are 

then used to compute the contrast stretch mapping. The same mapping is applied to the 

red, green1 and blue images to ensure color correctness. Since the mapping is single-valued 

and monatonically increasing, the order of gray levels is preserved and no :intensity artifacts 

are created in the processed image. This processed image is the output image from the ray 

tracer. 

I11 IMPLEMENTATION ISSUES 

In this section, we discuss implementation details for the special cases .mentioned in the 

previous section. In addition, we discuss some important pointers for efficient implementation 

and some assumptions that can be made to simplify the implementation. It should be noted 

that these assumptions are not essential, i.e. the theoretical discussion in the previous section 

holds even in the absence of these simplying assumptions. 

A The Sweeping Rule 

A problem that we encounter while implementing the generalized cylinder ray tracer is the 

computation of the inverse sweeping rule. Automatic computation of lthe inverse of an 

arbitrary function is, in general, not possible. If however, the sweeping ru.le is restricted to 

the class of linear functions, the inverse sweeping rule can be computed easily. In this case, 

the contoilr of the generalized cylinder can be defined as: 



The inverse relationship between the initial cross-section and c(u, v) is then given by: 

where S(u) = 

Since S is a 3x3 matrix, S-' can be computed easily. +(u) can then be obtained from p(u) 

by applyiing the inverse sweeping rule as follows: 

To avoid computation of the inverse sweeping rule, we provide an alternative implementation 

which requests the specification of both the sweeping rule and its inverse as input. This 

approach removes the linearity constraint placed on the sweeping rule and allows ray tracing 

of a greatser class of generalized cylinders. 

- - 
al(u) b l ( ~ )  0 

a,(u) bz(u) 0 

a3(u) b3(u) 1 - - 

B The Frenet Frame 

is the linear sweeping function. 

In section II(A), it was mentioned that the Frenet frame is not defined at points where the 

curvature, n(u), is zero. Such cases have to be given special consideration:: 

Linear axis: The Frenet frames along a linear axis is given by interpolation of the Frenet 

fram'es at both ends of the axis. If the Frenet frames at the ends of the axis are undefined, 

a unit vector orthogonal to the direction of the axis is chosen as b(u). t (u) and i ( u )  

have their usual definitions. The interpolation of Frenet frames between the two ends of 

the liinear axis ensures that the local coordinate system that is defineld varies smoothly 

along the axis. 

Points of inflection along the axis: If the axis is any arbitrary 3D space curve, the gen- 

eralized cylinder may not have a smoothly varying surface at points of inflection along 



the axis. It has been proven that in order to have a smoothly varying local coordinate 

syste:m, the axis has to be analytic [26]. For our implementation, the axis is not re- 

stricted to be analytic, so the surface of the generalized cylinder may not be smoothly 

varying. Since the Frenet frame is undefined at points of inflection, a neighboring Frenet 

frame along the axis is used instead. 

C R a y  Parallel  t o  Contour  P lane  

As noted earlier, when the ray is parallel to the contour plane, i.e. a'(u) - d = 0, it is not 

possible to find an intersection point between the ray and the contour plane. Such points have 

to be remloved from consideration. This deletion process is done before the curves are split at 

points of inflection and points with vertical and horizontal tangents. If a'(u) . ( p  - a(u)) = 0 

also holds true, then the ray lies in the plane of the contour and the intersection points can 

be found 'by intersecting the ray with the contour. Otherwise, the ray does; not intersect the 

contour plane with this parameter value and no additional processing is required. 

D Representat ion of Complex Solids 

It is not enough to be able to ray trace a single generalized cylinder. The Constructive Solid 

Geometry (CSG) method [2, 21, 271 is a mechanism by which voulme dlefining primitives 

can be assembled into more complex shapes. Primitive objects can be combined using 

the Boolean set operators Union, Difference and Intersection. In order to deal with X-ray 

imaging of objects, besides knowing whether a point is in or out of the combined solid, it is 

also necessary to know the density associated with the point. When two obljects overlap, the 

density of the overlapping region can be taken as the sum of the densities of the objects or 

as the density of either one of the objects. To handle these possibilities, two extra boolean 

operators, Overlap and Replace-by, have been defined for the X-ray ray tracer. Table 1 

defines th'e operations. 



Left Object 

Right Object 
- 

Union 

Intersect 

Difference 

Overlap 

Replace-by 

Line style represents the density of the segment. 

Density of left object: -----------------. 

Density of right object: 
Density of left object + Density of right object: - ~ - m - m - ~ m ~ = ~ = ~ = m a  

Table 1: CSG operations for the X-ray ray tracer. 



E Efficiency issues 

To improve the efficiency of the ray tracing algorithm, computations that remain unchanged 

for each ray are computed once and stored for later use. An example is the subdivision 

of the initial cross-sectional contour which remains the same even though different rays are 

cast through the scene. Another pre-processing step that is performed is the estimation of 

regions where ray-object intersections may occur. Ray tracing is only performed on these 

regions 01' the image. Region estimation is done by projecting the 3D bounding volume 

of the generalized cylinder onto the image plane. Also, since the ray tracing algorithm is 

computationally intensive, z-buffer routines have been implemented to generate fast but 

coarse images for model review before actually rendering the model using our ray tracing 

technique. 

N EXAMPLE IMAGES 

We have presented an algorithm to ray trace generalized cylinders. Besides generalized 

cylinders, our geometric modeling system can also allow spheres, quadrics (ellipsoids, ellip- 

tic cylinders, double cones etc.) and truncated quadrics (quadrics with alssociated cutting 

planes) as primitives. These primitives can be combined using the CSG operations as de- 

scribed in the previous section. Our system has the flexibility and versatility to model a wide 

class of o'bjects which previously had to be approximated by a large colllection of simpler 

primitives [28] or were impossible to be accurately ray-traced. With our system, the user 

can exercise creativity, artistic and sculpturing talents to create all kinds of 3D shapes and 

images. To give some ideas about the capabilities of our system, three example images will 

be presented. 

A A Deformed Object 

Figure 8 shows an object that is modeled with a single generalized cylinder. The axis of the 

generalized cylinder is a 3D space curve and the cross section varies smoothly from a "star" 



to a circle and then to a square with rounded corners (see Figure 3). Thils figure shows the 

generality of the class of generalized cylinders that can be handled by our system. Our only 

restrictiorl is that the sweeping rule of the generalized cylinder must be invertible. 

B A R o t a r y  Fan 

Figure 9 shows a fan with 3 blades. The blades are transformed (rotate'd and translated) 

versions of one another. Hence, the model of the fan is easily built once the model of a blade 

is defined. Each blade is modeled as a generalized cylinder with a cross-section that twists 

along the axis. Since twist (rotation) can be modeled as a linear function, the sweeping rule 

is linear and the inverse sweeping rule can be automatically computed. 'The center of the 

fan is modeled by a truncated ellipsoid. 

This example shows the applicability of our system to computer-aided design. Objects which 

can be decomposed into primitives can be rendered realistically. Since we have full control 

over the imaging process, it is possible to change the position of the source and generate a 

stereo pair of images so the designer can see his design in 3D. 

C A Knee Jo in t  

Figure 10 is a simulated X-ray image of a knee joint. A total of 6 primitives are used. The 

femur (upper bone) is represented by a generalized cylinder with subtractilon of an ellipsoid. 

A single generalized cylinder is used to represent the tibia (lower main bone). The fibula 

(lower small bone) is represented by a generalized cylinder with an ellipsoitl representing the 

head of the fibula. The patella (knee-cap) is represented by an ellipsoid. 

Many hurnan organs can likewise be represented by a small number of generalized cylinders. 

With the ,generalized cylinder X-ray ray tracer, realistic X-ray images of human anatomy can 

be generated. These images, although not perfectly accurate, are of sufficient accuracy to 

be used as an inexpensive and convenient source of images for the evaluation of new medical 

display technology [29] and for the initial teaching & training of radiologists. 



Figure 8: On the left is a wireframe image of a deformed object with no e:nd-planes and on 
the right is the ray-traced image of the same deformed object with end-pltanes. 

Figure 9: The left shows a wireframe image of a single blade and the right shows a ray-traced 
image of a rotary fan consisting of 3 blades. 



Figure 10: Simulated X-ray images of a knee joint from two views. 



In the training of radiologists, the ability to view in different directions is an important aid 

to understanding the structure of the object. For example, in Figure 10(a), the knee cap 

(patella) cannot be easily seen. If however, the object is rotated by 90 degrees (Figure 10(b)), 

the knee-cap can be clearly seen. Using computer generated images, subtle (abnormalities can 

be added by the instructor to test if the trainee can locate and identify the abnormalities. 

Also, by ]modeling human anatomical structures using geometric models., a wide range of 

images corresponding to people of different height, weight and age can be generated for 

training purposes. The evaluation of medical display technology requires many images of 

known stake (i.e. abnormal/normal). These images can be easily generated using the X-ray 

ray tracer. 

V CONCLUSION 

We have :presented an algorithm for ray tracing generalized cylinders. The algorithm has 

been implemented in our geometric modeling system. Our examples show that the number 

and types of objects that can be ray traced is virtually limitless. The ability to ray trace gen- 

eralized cylinders opens many new, useful and exciting applications for ray tracing, examples 

include CAD/CAM, medical education and training and the entertainment industry. 
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