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Abstract:

In this report we describe a novel technique that accelerates learning processes through a
dynamic adaptation of the error surface. The algorithm, here name ARON (Adaptive region of
Nonlinearity), implements a generalization of the basic McCulloch-Pitts type of neuron which
gives to each unit the ability to automatically adapt its operational region according to the
requirements of the problem. The changes on the error surface facilitates the progress of the
optimization criterion on its search for a minimum. ARON can be used in addition to and bring
benefits to alarge class of other optimization schemes.

Key words: Supervised Learning; Learning Accelerating; Neuron model

1. INTRODUCTION

The discovery of efficient learning techniques that allow a network to infer structure directly
from data and to build complex representations of the underlying environment, is a major goal
of connectionist research. The complexity of the problem imposes severe: restrictions on its
analysis, understanding, and solution. Because of this, despite the intense effort, the search for
new, more reliable, better scaled, and faster algorithms continue to be pursued.

Supervised learning in layered neural networks is posed as a nonlinear optimization problem,
where the goal is to minimize an error cost function defined over a set of paired input-output
vectors. Optimization techniques are used to modify the connection strengths (weights) so as
to represent important features of the task domain. The results of learning can be viewed as a
numerical solution to the problem. Iterative methods of optimization consisting of two
alternating subcyclesis generally used. In the first, from a current point, a search direction is
computed, and in the second the objective function is minimized along the chosen direction.
This processisrepeated until some termination criterion is satisfied.

The Back-Propagation algorithm, introduced by Rumelhart, Hinton, and Williams, [Rum86],
among others, is a generalization of the least squares procedure to networks with layers of
hidden units between the input and output units. It is based on the generalized deltarule that is
itself an extension of the Widrow-Hoff rulefor perceptions [Wid60]. The central idea of Back-
Propagation is that the derivatives of the cost function with respect to the weights can be
computed efficiently by starting with the output layer and propagating backwards, and
recursively, through the previous layers. For each input-output pair, a forward-backward
cycle is performed. On theforward pass, the activation of each unit is computed, starting & the
input units. On the backward pass, starting at the output units, the error measures are computed
and backpropagated through the previous layers.

Gradient Descent techniques predominate in connectionism, and steepest descent is by far the
most popular method. The algorithm is simple and robust, but is notorious for its slow rate of
convergence whenever the objective function is ill conditioned. The complexity of the error
surface, as evidenced by flat regions and local minima, imposes severe restrictions on the rate
of convergence, stability, and consistency of these agorithms.



2. ACCELERATING TECHNIQUES

The major reasonsfor the Steepest Descent ow rate of convergencerelate to the magnitude of
the components of the gradient vector, the direction of the gradient vector, the saturation
region, and the step size or learning rate parameter.

The magnitude of the components of the gradient vector may be too smail, yielding a minor
reduction in the error measure, or too large, yielding overshooting and oscillation problems.
The former occurs whenever the error surfaceis flat along a particular weight dimension so
that, the weight adjustment is very small and many steps may be required to achieve a
significant reduction in error. The later occurs whenever the error surface is highly curved
along a particular dimension so that, the corresponding weight is adjusted by alarge amount,
possibly overshooting the minimumof the error surface along that weight dimension.

Thedirection of the gradient in general does not point directly towards the global minimum,
which by itself may aggravate the learning problems. From alinear viewpoint it is known that
the en-or function is quadratic in the weights, and thus possesses a unique minimum. The
orientation and shape of the error surface is determined by auto-correlation matrix R of the
ifnﬁut vector, which in this case equals the Hessian, and isderived from the cost function as
ollows:

Em)=E{y"(n) - wTmx(m)?), )
where
E(m)=E{y"(my*(m)) - wT(m)p - pTw(n) + wTm)Rw(n), ()
p= E{x(n)y*(n)}, 3)
R= E{x(n)xT(n)}, G
and
E{.) represents the expected value function.

R can be written in terms of its elgenvaluesand eigenvectors,

R=QAQ1, &)
where
A isadiagonal mamx of eigenvalues
Q is the matrix of correspondingeigenvectors.

The shape of the error surface is defined by the eigenvalues of R. The surface decreases most

rapidly in the direction of the eigenvector vector corresponding to the largest eigenvalue (Amax)
and most slowly in the direction of the eigenvector corresponding to the smallest eigenvalue



(Amin)- Theratio ( M) defines a measure of eigenvalue spread, which :rangesfrom one to

min
infinity. When the eigenval ues spread equals one, contours of equal error are circular and the
negative of the gradient points toward the minimum. When the spread is larger than one,
contoursof equal error areelliptical, and the negativeof the gradient may not point toward the
minimum (fig.1).

An ill-conditioned surface is characterized geometrically by narrow valleys with elliptical
contours of high eccentricity, which translatesinto a wide disparity in the magnitude of the
eigenvalues. When nonlinearities are present, the error surface gets more complicated, the
Hessian matrix, as observed by Jacobs[Jac88], is no longer constant, and the valleys become
curved and may take varying shapes in different regions, thus exacerbating the effects of ill
conditioning.

Saturation of the sguashing function may create false flat regions and also be a source of ill
conditioning. The closer a unit operates to its saturation region, the smaller the weight
adjustment. Thisis because the derivative of the nonlinearity approaches zero, which reduces
close to zero the backpropagated error and consequently nullifiesthe weight adjustment. The
derivative of the sigmoid function, for example, is given by

0;(1-0p (6)

where oj is the output activation of the unit j. This derivative goes to zero as the unit's output
approaches 0 or 1, resulting in just a tiny fraction of the error being passed back to incoming
weights and to unitsin previouslayers. Such a unit may theoretically recover, but it may takea
very long time, or never recover due to computational round off and truncation problems. To
address this problem, some heuristics are suggested in the literature: to use an error measure
that goes toinfinity as the derivative goes to zero [Fra87]; to add a constant bias, say .1, to the
derivative before using it to scale the error [Fah88], or to employ a rescaling factor to
compensate for the reduction in magnitude of the derivative across different layers of the
network[Rig91].
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Figure 1 - Error surface contours

Thelearning rate is commonly taken as aconstant; thiscan also Sow the rate of convergence,
since afixedlearning rate may not be appropriatefor al portionsof the error surface. The axis

corresponding to the itk eigenvector haslength proportional to 1/A;, so the component of the



gradient issmallerin thedirection of the eigenvector corresponding to A.x (minoraxisof the

elipsefig. 1) than in the direction of the eigenvector corresponding to A, (major axis). Thus,
alearning rate that yields moderate steps along the major axis may result in large steps along
the minor axis, and oscillations across the minimum for that weight dimension may occur. Vice
versa, alearning rate that is appropriatefor the minor axis may result in small stepsaong the
major axis, with a correspondingly small reduction in the objectivefunction. In practice thisis
very likely to happen, since the learning rate is usually set small enough so that overshooting
and oscillation are avoided.

Many techniques have been proposed to speed up Back-Propagation: the addition of a
momentum term to the generalized delta rule [Rum86]; the adoption of aternative cost
functions [Kru91, Sol88], dynamic adaptation of the learning rate[Jac88,Kes58,Sar70]; and
rescaling methods[Rig91).

The compensatory rescaling proposed by Rigleris based on thefact that the derivativeof the
sigmoid imposes a multiplicativereduction factor on the magnitudeof the weight adjustments.
This factor startsin the range [0, .25] a the output layer and decreases for each successive
hidden layer. The compensatory scale factors are constant for each layer, and are based on the
assurmption that the expected value of the derivative is uniformly distributed in the interval
(0,1]. Problems with this approach are that theidealis restricted to sigmoidal-typed squashing
functions, the uniform distribution is unlikely to be valid, and values larger than one may
frequently occur, reinforcing all gradient magnitudes and, as a consequence, causing more
oscillation.

Adaptive learning rates are based on the sign or direction of consecutive changes of a weight,

i.e. Awj(k) and Awi(k-1). Kesten {Kes58] proposes that if they are oppositein sign, then the
weight value is oscillating around its minimum and hence, the learning :ratefor that weight
should decrease. Saridis [Sar70] extends this notion to both increase (if same sign) and
decrease (if of opposite sign) learning rates. Sutton and Barto [Sut81] present variationson this
idea. Jacobs {Jac88] introduces two algorithms, the Delta-Deltaand the Delta-bar-Delta learning
rules, that are minor modifications of the basic delta rule, namely the introduction of an
adaptive adjustment to thelearning rate.

In Delta-Delta, the weight adjustment is governed by

Aw(ns1)= -€(n) awio , 7
and
0E OE

AE(n)=y @)

ow(n) Ow(n-1)

This formulation has drawbacks as pointed out by Jacobs himself. Dependling on the value of

"Y', the learning rates can become excessively large or small, and even negative. It amost does
not help in flat regions (low gradient values), and may increase oscillationin regions with high
curvature. To avoid such problems Jacobs suggests the Delta-bar-Deltarule, which has alinear
increasing factor, a recursive decreasing factor, and alower bound to prevent negative values.




k if &(-1)om) >0

AE(M)= < _og(n) if 8(n-1)o(n) <0 &)
0 otherwise
where
__OE
o(n)= W)’ (10
S(n)= (1-8)o(n) + 68(n-1). (11)

As suggested by Rumelhart at al [Rum86] to speed up convergence without leading to
oscillation, momentum isan extension of the generalizeddeltarule given by

%)
ow(n)

Aw(n+1)= -1 + HAW(n). (12)

Momentum is considered useful in those cases where the error surface contains long ravines
characterized by sharp lateral curvatureand an amost flat floor. The sharp curvature tends to
cause divergent oscillations along the ravine, which can be mitigated by resmcting the weight
adjustments to be very small, but this also slows down the convergence rate. Momentum
provides a significant improvement to the standard generalized deltarule since it filters out the
high frequency oscillations allowing larger step sizes to be used. However, limitations exist
and momentum may generate more problems than it solves, depending on the degree of the

curvature and the momentum factor L.
Equation 12 can be unfolded and rewritten as
k-1
Aw(k+1)= MGy + PkAw(0) N Y oy, (13)
i=1
Which, by assuming u < 1 and Aw(0)=0, reduces to
k-1
Aw(k+1)= -NOK _nz;ﬂck_j . (14)
j=1

For a dlightly sloping floor, with almost equal derivativesover severa points in a sequence,
equation 14 reduces to

Aw(k+1)= -1 -— G , (15)
1

which shows a lower bound equal to the standard steepest descent learning rate 1 and no
upper bound. On sharp ravines momentum may end up with asign that is opposite to the sign



of the current derivative, and thus, causing weight adjustment in the wrong direction, as can be
seen asfollows:

Aw(k+1)= -1( Gy + li o). (16)
o

3. The Shape of the Error Surface

L east square learning procedures have a simple geometricinterpretation. The error surfaceis
constructed over a multi-dimensional space that has an axisfor each weight and one extraaxis
for the error measure. For each combination of weights, the network will have a certain error
which can be represented by the height of a point in weight space.

Networkswith linear units and no hidden layers always have bowl-shaped error surfaces. The
horizontal cross-sections are ellipses and the vertical cross-sections are parabolas. If thereisa
minimum it is unigue and global, and it is guaranteed to be found by any gradient descent
method (fig. 2). The error surfaceisin fact the sum of a number of parabolic troughs one for
each training pattern. If the output units have a monotonic nonlinearity, then each trough is
deformed but no new minimacan be created in any trough because the monotonic function
cannot change the sign of the gradient . However, when different troughs are added together, it
ispossible to create local minima. With hidden units, the error surfacemay contain many local
minima, and it is possible for gradient descent to become trapped in any of them. Local minima
and dow convergence are the mgjor problemsfor any gradient descent method (fig. 3).

Within large neural networks, with many nonlinear units, local minimaare easily formed and
the tour for any learning procedure becomes a very complex task. Successful minimization
depends on the starting point as well as on the learning procedure's ability to handle with
plateaus, to avoid oscillation in the ravines, and to avoid getting stucked in local minima. The
rate of' convergence tends to sow down and the desired accuracy is no longer guaranteed.

4. THE ADAPTIVE REGION OF NONLINEARITY SCHEME

ARON (Adaptive Region of Nonlinearity)is nove in the sensethat it provides|earning speed
ups through a dynamic adaptation of the error surface. It is based on a generalization of the
basic McCulloch-Pitts type of neuron, it adaptively adjuststhe error surface in order to facilitate
the progress of a descent algorithm in its search for the global or a good local minimum, and it
can applied to many existing learning schemes.

McCulloch-Pitts type of processing units [McC43] are the most widely used node structure in
neural networks. It basically consistsof a monotonically increasing nonlinear function applied
to alinear combinationof theinputs (fig 4).

;t:z »@——»y

Figure4 - McCulloch-Pitts Processing Unit Mode




McCulloch-Pits units are defined as

y= fEwixi). a7

A more general model can be constructed by introducing independent gain parameters which
may provide a greater degree of freedom and discriminatory power to each node. This modd ,
expr

y=BfO awixy), (18)

is schematized in figure 5. The global gains aand B help the node activation to adapt faster
and more easily than when every single weight is handled on an individual basis. A
compromise among B, a, and the weights must be found automatically by the learning
procedure in order to adjust the node to its best role in the network context..and thus reducing
theoutput error.

X4

™
| a f |3 »y
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Figure 5 - Processing Unit - General Model

Roughly, it can be claimed that the preceding weights should be able to perform therole of the

parameter a, and that the succeeding weights should be able to do the job of B. To an
asymptotic behavior this may happen, but for practical purposes and for learning speed up

performances it seemsintuitive that both parameters (aand ) may provide special help.

Sperduti [Spe92] developed a model in which the parameter B is taken equal to one. He claims
that this model not only facilitates fast convergence but also automatically tunes the network

structure to the requirements of the problem. In fact, adeals with the slope, or gain ratio, of

the nonlinearity (fig 6). Vauesof aclose to zero kill the unit. and very large values turn it into
a hard limiter. Sperduti's model is given by

y= O awixy). (19)

The model proposed here follows similar reasoning but adopts a more effective strategy. The
objective is to adapt the error surface's shape on the fly by allowing each individual node to



adjust its degree of nonlinearity according to the requirementsof the problem. The method is
based on aminor resmction imposed to the most general formulation in order to get the desired
effect:;. It is accomplished by restricting the squashing function to be the hyperbolic tangent

and coupling B with a.. Thisresultsin the following function:

y= 1 tanh(Y otwix;). (20)
a X

1

This formulation allows each unit to change its degree of nonlinearity, i.e. its region of
operation (fig.7), without changing its gain or transfer function characteristic. Small valuesof
o have the property to linearize the node, while large values the property to kill the node.
Basically the same two results achieved by Sperduti with the advantage that here the network
ransfer function characteristics are preserved.

-0.5¢+ 4

-1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 6 - Sperduti's Nonlinear Function for different valuesof a:
0.01, .5, 1, and 1.5 from the bottom to the top

(8]

2 15 1 05 0 0.5 ] 15

Figure7 - ARON's Nonlinear Function for different valuesof a:
15,1, .5, and 0.01 from the bottom to the top



5 - ARON Properties

» Thefirst property provided by thisformulation isto dynamically change the shape of theerror
surface. In fact it can vary from one extreme when all unitsarelinear to the other extreme when

all units are highly nonlinear. It will be seen in section 6, network dynamics. that allowinga to
adapt during the optimization process changes the error surface in a way that seems to
accelerate learning and better avoid local minima. However, it isimportant: to emphasi ze that
the study conducted here focuses exclusively on speed gains and not on asymptotic behavior,
which would require deeper analysis and smulations.

» The second major property of ARON relates to the fact that it does not change the original
gain, or transfer function, of each node (figs. 7), a property that is not shared by Sperduti's
formulation (fig. 6).

* ARON does not penalize the error backproEagatlon (fig. 8), which remains constant or even
increases as new points are introduced into the operational reglon of the unit. The derivatives
with respect to the weights are given by

aWJ‘k

9Ye_ (1-(tanh(2awikxi)j2> @1

1

that is of the same form as the conventional model, in which a equals one. However,

Sperduti's formulation includes an extra gain (figs. 9) that can act as areducer when a<1 and
ispassed backward through the entire network asfollows:

a%%: 0x; (1-(tanh(2awikxi)j2) (22)

i

» Another ARON property relatesto its capability to linearizeas well as to remove units, which
can be seen as a natural way to automatic tune and minimize the structure of the network.
Using a Taylor series expansion it can be shown that the unit behaves linearly for sufficiently

small valuesof a and approaches zero for large enough values asfollows:

y=§(2aW1kXi - lg(z aw xx;)3 + %(zawikxi) 315(201me1) + . ) (23)
i i

1

hence
lim
020 = Tk (24
lim y: 25)

Ql->c0

e
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« Finally, since ARON is only related to the structure of each node, it can be used with any
existing learning procedure without restriction. In fact, experiments showed that ARON
enhanced the accuracy and speed of dl the proceduresevaluated.

ARON, by adjusting the operational region of each node, dynamically changes the error
surface's shape. Eventually such changesfacilitatethe progressaof the learning procedureand a
better local minimum is found. Figure 10 shows the 3-parity problem error surface for

different values of a. A reduction in the complexity of the surface is easily observed as the
parameter @ approaches zero for the output unit case or increases for the hidden units.

: Ry
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Figure 8 - ARON Function derivativefor a= 1.5, 1, and .5 from the bottom to the top
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Figure9 - Sperduti Function derivativefor a=0.5, 1, and 1.5 from the bottom to the top

6- NETWORK DYNAMICS

The dynamicsof the weightsremain identical to the conventional model, differingonly on the
presenceof the parameter a on the computation o the output of each unit. With respect to the




dynarnics of the parameter o, several different approaches were evaluated. It was found that
the best alternative, by far, was to leaveit self-adaptive. A gradient descent update formula, as
defined in equation 26 and developed in the appendix, was chosen because it provides
smoother and smaller changesin the parameter space. The dynamicsis then given by

Aa.L = - “E—L BFSF- cp.LyF L=0..m (26)
1 a 1 1 [ S}
where
* 0
vy F8); L= 0
8.L=ﬁ 27)
! L1 L1 ], o L-1 _
Zﬁk W f(Si ); L=1 ... m
k
.
( (y;-y?); L= 0
L
Q. =< (28)

1 L-1 L-1
E o w_ L=1. m
k ki
k

This formula was applied together with the basic gradient, gradient with momentum,
Quickprop [Fah88], and Cubicprop [Cra93] schemesfor the evolution of the weights. It was
empirically observed that the learning ratefor o has to be less than or equal to the learning rate
for tht: weights. The larger the total number of weights or hidden units, the smaller the ratio

between the aand w learning rates should be.

Several different initial values for o« were med; close to zero, .5, 1, and. random. The best

behavior was obtained when all o's started at 1. A lower bound of .01 was set in order to
prevent negative gains. Figures 11 to 13 show the dynamically evolution of the error surface
shape as the learning progresses in a network with a single hidden layer (3 units) and asingle
unit in. the output layer. Figure 11 shows the accuracy curve for the first 20 epochs, figure 12

shows the evolution of the adaptive parameter o (dotted line for the output unit and other lines
for the hidden units), and figure 13 shows a sequence of changesin the error surface shape.




Each 3-dimensional graph in figure 13 is generated with values of a's and weights (W)
corresponding to the considered time instant. The current set of weightsislinearly combined
with two other sets corresponding to two previous solutions of the problem (W, and Wy). As

can be seen in the formulas, the set W corresponds to the coordinates (A=1, B=1). This
combination gives:

W= AW + (1-0)W, 15<A< 1.5 29)
W= BWy + (1-B)Wp -15<B< LS. (30)

A pheriomenon that we call avalanche wasfound to be responsiblefor theinstability observed
on the 9-to-13 time slots. This phenomenon was found characteristic for binary problems,
where the desired outputs present a sharp dichotomy [0,1] or {-1,1]. The output unit causes
this phenomenon by trying to reduce the error in afaster way through the reduction of itsvalue

of &, i.e. linearizing its gain. Suddenly, during an epoch computation, the estimated output for
anumber of patterns extrapolates the binary thresholds, for example [1, -1], then the gradient

vector for the output unit parameter a changes direction, and the unit inverts its tendency
reinforcing its nonlinearity. This oscillation is propagated to the previouslayers and the entire
network oscillates. This avalanche forces a larger adjustment on the weights and the local
minimum iseventually avoided. However, the oscillation may last longer or even may not end

depencling on theratio between thelearning ratesfor the weightsand a.
7. EMPIRICAL RESULTS

As observed by Fahlman [Fah88], there is not yet a widely accepted methodology for
measuring and comparing the speed of various connectionist learning algorithms. Some
researchers defend their ideas based only on theoretical analysis, and others run few
benchrnarks to support their claims. Parameter settings and criteria for learning success are
other sources of noisein this scenario.

Here the benchmark is realized on the XOR / Parity Problems and for the sake of uniformity,
all results are reported in terms of normalized root mean squared error (Nrmse ). This criterion
works well for real problems and seems to be more demanding than other criteriafor those
binary problems. The Nrmse criterion, as stated in equation 31, provides a measure that is
independent on the range and on the length of the training set and therefore provides a more
convenient basisfor comparison. The Nrmse is given by

(y*-y)?
Nrmse= Y N__ 3D
o(y*)

where, c(y*) denotes the standard deviation of y* (desired output). Observe that, by this
criterion, if the mean of y* is used as an estimate of y*, i.e y= mean (y*), then the Nrmse
equals one.

Xor / Parity problems consist of a number of binary inputs, anumber of hidden units, and one
output unit. The objective is to identify the parity : odd if the number of bits"1" in the input
vector s odd, and even otherwise. The experiments reported here consist on the evaluation of

the speed up provided by the use of the adaptive parameter & in combination to the pure



gradient, the Quickprop, and the Cubicprop learning algorithms. The notation used is as

follows:
G
Ga
QP
QPq
Cub
Cubg
ag
std
median
Hmean
No conv

avg we

worst

aNmmse

1(1
w

a) The XOR problem

pure gradient descent procedure

gradient with ARON parameter (a)

Quickprop basic procedure

Quickprop with ARON

Cubicprop basic procedure

Cubicprop with ARON

average nr. of epochs used to convergeto the desired accuracy
standard deviation on the number of epochs

median of the number of epochs

harmonic mean of the number of epochs

number of timesthe algorithmdid not converge

average number of epochsdisregarding no convergence cases
best run

worst run disregarding no convergence cases

average of the accuracy normalized error

ARON gain parameter

momentum factor

maximum growth factor

learning ratefor a's
learning rate for w's (weights)

A hundred of distinct starting points were used to compute the overall performance of the
Gradient, Quickprop, and Cubicprop algorithms aone and with the addition of the ARON
parameter (&) .Ascan be seen in table 1, ARON provided aremarkable improvement for the

ure gradient procedure. The average number of epochs required to converge to an accuracy of
e-03 was reduced to less than one third, and one order of magnitude of reduction was
achieved in the mgority of the runnings. The cubicfitting worked better than the quadratic, and

the contribution of a wasless significant for the Quickprop algorithm, although it provided an
speed up greater than 2 in the mgority of the runnings.



b) Three Parity Problem

Similar experiment to the XOR was conducted for the 3-Parity case. The algorithms were
bounded to perform 500 epochs or to stop whenever the accuracy of 1e-03 was reached, and
the statistics were computed over 50 distinct starting points. Three parity with three hidden
units showed to a simpler problem than XOR with two hidden units.

The statistics in table 2 were computed based on a 3-hidden / 1-output unit network. A fixed
learning rate of 1 was set for the weights and o (gradient descent procedure), arate of .5 for
both parameters (Quickprop and Cubicprop cases), a maximum growth of 1.75 (Quickprop),
and a momentum factor of .9 (Cubicprop). Gradient with o reached the desired accuracy in

86% of the cases, and the best run, with only 18 epochs, was done by Cubicprop. Figure 14
shows the error evolution for one specific starting point, comparing ARON against to the basic
steepest descent and the Quicprop for the 3-Parity case.

(a)

0.8 :': : __ basic steepest descent
" : 3 . steepest desceat with ARON
i
06 3¢
o HE
] N :
E 04 )
Z
0.2}
00 100 200 300 400 500
epochs
(b)
1 —
08} ) — basic Quickprop Algorithm
\ . Quickprop with ARON
06 -
o
P
E o4
Z
o2l
00 50 100 150 200 250
epochs

Figure 14 - Steepest Descent and Quickprop Algorithms performance with the addition of the
ARON parameter on a 3-Parity problem, (a) steepest descent and (b) Quickprop (the instability
observed in both graphsis due to the avalanche probl emgJ

14
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Table 1- XOR Problem - statisticsover 100 distinct starting points (G - pure gradient descent,
Gq - gradient with adaptive &, QP - basic Quickprop, QP,, - Quickprop with adaptivea, Cub -
basic Cubicprop, Cub, - Cubicprop with adaptive a) - 2 hidden units, 1 output unit, 500

epochs upper limit
G Gq QP QPy Cub Cubg
avg 500 136.46 163.67 151.70 124.85 126.24
std - 171.60 184.95 202.33 160.84 166.06
median 500 55 67 32 65 55
Hmean 500 64.60 77.15 39.19 50.88 | 54.98
_Noconv | 100 18 23 24 15 16
avewc 500 56.65 63.20 41.71 58.64 55.04
test 500 39 40 20 17 20
worst 500 111 93 346 130 249
aNrmse .1260 1125 .1425 .1391 .0937__| .1002

Table 2 Three Parity Problem - statisticsover 50 distinct starting points(G - pure gradient
descent, G, - gradient with adaptive a, QP - basic Quickprop, QPy, - Quickprop with adaptive

a, Cub - basic Cubicprop, Cub, - Cubicprop with adaptivea) - 3 hidden units, 1 output unit,
500 epochs upper limit

G Ga QP QP Cub Cubg

ave 500 24356 | 6334 | 4568 | 5006 | 4920

td ] 15119 | 2172 | 2176 | 2331 18.62
median 500 202 60 38 44 48

Hmean 500 151.04 | 5983 3852 | 4087 *| 42.25
No conv 50 7 0 0 0 0

aviy we 500 20181 | 6334 | 4568 | 5006 | 49.20
best 500 48 43 21 8 |21
worst 500 460 197 111 98 96

_aNmmse_ | 0278 0011 0009 | 0009 0009_| 0009

Tables 3 through 6 present some analysis on the effect of the learning rate ratio (lw/la),

momerntum factor ratio (i/lg), ahd the maximum growth ratio (@/1y). All cases led to the same
conclusion in which small values of 1, leads to a more consistent behavior. These results
reinforce the avalanche problem described earlier in this chapter and also the intuitive
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expectationin which the error surface has to be only smoothly adjustedin order to facilitate the

progressof the weights.

Table 3 - Three Parity Problem, theeffectsdf learning rate for the weightsand for the
parameter a - statisticsover 20 distinct starting pointsfor a Gradient descent learning

procedure with adaptive parameter a ( averaged Nrmsefor different combinations of learning
ratefor the weightsand for the parameter &, epoch upper limit of 200)

ly \ 1o 25 .5 75 1.0 1.5 1.75
3 8.44e-2 7.84e-2 7.55e-2 7.98e-2 8.51e-2 1.51e-1
5 2.23e-2 2.43e-2 2.72e-2 5.12e-2 9.96e-2 1.67e-1
1.0 1.33e-3 3.10e-3 1.01e-2 1.11e-3 8.26e-2 1.47e-1
1.5 7.18e-4 1.12¢-3 4.25e-2 4.19¢-2 4.20e-2 4.21e-2
2.0 1.57¢-4 1.70e-4 42le-2 4.21e-2 4.14e-2 4.16e-2

Table 4 - ThreeParity Problem, theeffectsof momentum factor and learning ratefor the
parameter a - statisticsover 20 distinct starting pointsfor a Gradient descent learning
procedure with adaptive parameter a ( averaged Nrmsefor different combinationsof

momentum and for the parameter @, learning rate for the weights set to 1.0, epoch upper limit

of 200)

L\ g 25 .5 75 1.0 1.5 1.75
3 103e-3 | 977e-4 | 420e2 | 1.86e3 | 8.39e2 | 9.23e-2
5 9.17e-4 | 9.73e-d | 7.55e-4 | 421e2 | 124e-1 | 8.3le-2
0.7 120e-3 | 1283 | 837e2 | 8382 | 1.34e-1 | 2.23-1

Table 5 - Three Parity Problem, the effectsof learning rate for the weights and for the

parameter a - statisticsover 20 distinct starting pointsfor a Quickprop procedure with adaptive

parameter a ( averaged Nrmsefor different combinationsof learning rate for the weightsand
for the parameter a, epoch upper limit of 200)

Iw \ lg .25 S 1.5 1.75
3 9.10e-4 6.84e-4 5.53e-4 1.45¢e-3
.5 7.74e-5 4.51e-3 1.69¢-2 1.08e-2
0.7 3.55e-5 7.82e-5 3.32e-2 3.32e-2
1.0 3.31e-2 3.31e-2 4.18e-2 3.79¢-2
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Table 6 - Three Parity Problem , the effects of maximum growth and learning ratefor the
parameter & - statisticsover 20 distinct starting points for a Quickprop procedure with adaptive
parameter a( averaged Nrmse for different combinationsof maximum growth and learning
rate for the parameter a, learning ratefor the weights set to 1.0, epoch upper limit of 200)

© \ lg .25 .5 1.5 1.75
.3 9.10e-4 6.84e-4 5.53e-4 1.45¢-3
.5 7.74e-5 4.51e-3 1.69e-2 1.08e-2
0.7 3.55e-5 7.82e-5 3.32e-2 3.32¢-2
1.0 3.31e-2 3.31e-2 4.18e-2 3.7%e-2

c¢) Four Parity Problem

In the four parity problem, the statistics were computed based on a5-hidden / 1-output unit

network. A fixed learning rate of 1 was set for the weights and & (gradient descent procedure),
arate of .5 for both parameters (Quickprop and Cubicprop cases), a maximum growth was set

to 1.75 (Quickprop), and a momentum factor of .9 (Cubicprop).Gradient with a performed
again much better than the pure gradient procedure reaching the desired accuracy in 62% o the
cases, and the best run, with only 75 epochs, was done by Cubicprop.

Table 7 Four Parity Problem - statisticsover 50 distinct starting points (G - pure gradient
descent, G, - gradient with adaptivea, QP - basic Quickprop, QP4 - Quickprop with adaptive

a, Cub - basic Cubicprop, Cub, - Cubicprop with adaptive &) - 5 hidden units, 1 output unit,
800 epochs upper limit

_ G Ga, QP QP, Cub Cuby
avg 900 572.96 | 327.46 | 46076 443 _ | 431
std : 21594 | 26122 | 30087 | 287.91°| 32542
median 800 637 193 201 272 256
Hroean 800 | 477.64 | 21131 | 27045 | 28374 | 2019
Noconv || 50 19 10 21 19 21
avzwe || 800 433.81 | 209.32 | 21510 | 22423 | 164.97
best | 800 171 128 102 86 75
_worst | 800 746 660 | 521 | 389 486
aNmse | .1275 0894 0703 | .1221 1609_ | .1627 |




Table 8 - Four Parity Problem, effects of learning rate for the parameter &and for the weights-

statisticsfor a Quickprop procedure with adaptive parameter & ( same starting conditionsfor
all runnings, epoch upper limit of 500)

Lto\w 1.0 1.25 1.5 1.75 2.0
0.00 152 171 146 219 154
0.15 138 242 132 500 137
0.30 193 133 104 500 128
0.50 130 500 300 500 121
0.75 500 500 500 136 212
1.00 500 500 500 500 318
1.50 - - 500 500 500
2.00 - - - - 500

8 - CONCLUSIONS

ARON is a novel approach that opens a new vein on the search for effective accelerating
techniques. The adaptation of the error surface may help the progress of the evolution of the
weights and accelerate the learning process. The resultsobtained are very promising and some
possible extensions such as, relaxing the restriction between the gains aand B, and using
different learning rates according to layers, may beconsidered for future analysis.
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Appendix
ARON dynamics:
dE
Ad=-€ —
do

where

a) Output layer (o)




hence

b) hidden layer (k)

hence
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Figure 2 - Error Surface Shape, () linear transfer function and (b) nonlinear
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Figure 3 - Error Surface Shape for different values of the parameter Q,
(@) o= 1, ap=1; (b) o= 1, ah= 10; (c) &u=10, op=1; and (d) ax=0.1, ap=1
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Nrmse

number of epochs

Figure 11 - Nrmse evolution for a3Parity problem (3 hidden units, 1 output unit, 1= 1 and
la= 1), x axisrepresentstime-step and y axiserror vaue

Figure 12 - Evolution of the parameters a (¢, dotted curve, ay's other curves), x axis
represents time-step and y axis represents valuesof a

Evotion dme instant: 1

error {unction

Figure 13 - Error Surface Shape Changing as afunction of a(W¢, current set of weights,
corresponds to coordinates (1,1), a's values correspond to those in figure 12)
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Figure13 - Continued
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