
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

11-1-1993

Accelerated Learning Through a Dynamic
Adaptation of the Error Surface
Antonio G. Thome
Purdue University School of Electrical Engineering

Manoel F. Tenorio
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Thome, Antonio G. and Tenorio, Manoel F., "Accelerated Learning Through a Dynamic Adaptation of the Error Surface" (1993). ECE
Technical Reports. Paper 247.
http://docs.lib.purdue.edu/ecetr/247

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F247&utm_medium=PDF&utm_campaign=PDFCoverPages

TR-EE 93-39
NOVEMBER 1993

Accelerated Learning Through a Dynamic
Adaptation of the Error Surface

Antonio G. Thome
and

Manoel F. Tenorio

School of Electrical Engineering
Purdue University

West Lafayette, IN 47907-1285

Accelerated Learning Through a Dynamic Adaptation of the :Error Surface

Antonio G. Thome and Manoel F. Tenorio
Parallel Processing Laboratory

School of Electrical Engineering
Purdue University
West Lafayette, IN

Abstract:
In this report we describe a novel technique that accelerates learning pirocesses through a
dynamic adaptation of the error surface. The algorithm, here name ARON (Adaptive region of
Nonlinearity), implements a generalization of the basic McCulloch-Pitts type of neuron which
gives 1.0 each unit the ability to automatically adapt its operational regialn according to the
requirements of the problem. The changes on the error surface facilitates the progress of the
0ptimi:zation criterion on its search for a minimum. ARON can be used in addition to and bring
benefits to a large class of other optimization schemes.

Key words: Supervised Learning; Learning Accelerating; Neuron model

1. INTRODUCTION

The discovery of efficient learning techniques that allow a network to infer structure directly
from data and to build complex representations of the underlying environment, is a major goal
of coninectionist research. The complexity of the problem imposes severe: restrictions on its
analysis, understanding, and solution. Because of this, despite the intense effort, the search for
new, more reliable, better scaled, and faster algorithms continue to be pursu~~d.

Supervised learning in layered neural networks is posed as a nonlinear opt:~mization problem,
where the goal is to minimize an error cost function defined over a set of paired input-output
vectors. Optimization techniques are used to modify the connection strengths (weights) so as
to represent important features of the task domain. The results of learning can be viewed as a
numer.ca1 solution to the problem. Iterative methods of optimization consisting of two
alternating subcycles is generally used. In the first, from a current point, a search direction is
computed, and in the second the objective function is minimized along the chosen direction.
This process is repeated until some termination criterion is satisfied.

The Back-Propagation algorithm, introduced by Rumelhart, Hinton, and ~ ~ i i l i a r n s , [Rum86],
among others, is a generalization of the least squares procedure to networks with layers of
hidden units between the input and output units. It is based on the generaliz~ed delta rule that is
itself an extension of the Widrow-Hoff rule for perceptions Wid601. The central idea of Back-
Propagation is that the derivatives of the cost function with respect to the weights can be
computed efficiently by starting with the output layer and propagating backwards, and
recursively, through the previous layers. For each input-output pair, a forward-backward
cycle is performed. On the forward pass, the activation of each unit is computed, starting at the
input units. On the backward pass, starting at the output units, the error measures are computed
and backpropagated through the previous layers.

Gradient Descent techniques predominate in connectionism, and steepest descent is by far the
most popular method. The algorithm is simple and robust, but is notorious for its slow rate of
convergence whenever the objective function is ill conditioned. The complexity of the error
surface, as evidenced by flat regions and local minima, imposes severe restrictions on the rate
of convergence, stability, and consistency of these algorithms.

2. ACCELERATING TECHNIQUES

The major reasons for the Steepest Descent slow rate of convergence relate to the magnitude of
the components of the gradient vector, the direction of the gradient vector, the saturation
region, and the step size or learning rate parameter.

The magnitude of the components of the gradient vector may be too small, yielding a minor
reduction in the error measure, or too large, yielding overshooting and oscillation problems.
The former occurs whenever the error surface is flat along a particular weight dimension so
that, the weight adjustment is very small and many steps may be required to achieve a
significant reduction in error. The later occurs whenever the error surface is highly curved
along a particular dimension so that, the corresponding weight is adjusted by a large amount,
possibly overshooting the minimum of the error surface along that weight djmension.

The direction of the gradient in general does not point directly towards the global minimum,
which by itself may aggravate the learning problems. From a linear viewpclint it is known that
the en-or function is quadratic in the weights, and thus possesses a unique minimum. The
orientation and shape of the error surface is determined by auto-correlatilon matrix R of the
input vector, which in this case equals the Hessian, and is derived from tlhe cost function as
follows:

where

and

E(.) represents the expected value function.

R can be written in terms of its eigenvalues and eigenvectors,

where

A is a diagonal mamx of eigenvalues

Q is the matrix of corresponding eigenvectors.

The shape of the error surface is defined by the eigenvalues of R. The surface decreases most
rapidly in the direction of the eigenvector vector corresponding to the largest eigenvalue (ha)
and most slowly in the direction of the eigenvector corresponding to the smallest eigenvalue

~ m a x (hmin). The ratio (-) defines a measure of eigenvalue spread, which :ranges from one to
hmin

infinity. When the eigenvalues spread equals one, contours of equal error ;are circular and the
negative of the gradient points toward the minimum. When the spread is larger than one,
contours of equal error are elliptical, and the negative of the gradient may not point toward the
minimum (fig. 1).

An ill-conditioned surface is characterized geometrically by narrow va1:leys with elliptical
contours of high eccentricity, which translates into a wide disparity in thle magnitude of the
eigenvalues. When nonlinearities are present, the error surface gets more complicated, the
Hessia.n matrix, as observed by Jacobs [Jac88], is no longer constant, and ithe valleys become
curvecl and may take varying shapes in different regions, thus exacerbating the effects of ill
condit:ioning.

Saturation of the squashing function may create false flat regions and also be a source of ill
conditioning. The closer a unit operates to its saturation region, the smaller the weight
adjustment. This is because the derivative of the nonlinearity approaches zero, which reduces
close to zero the backpropagated error and consequently nullifies the weight adjustment. The
deriva1:ive of the sigmoid function, for example, is given by

where o. is the output activation of the unit j. This derivative goes to zero as the unit's output
h appr0a.c es 0 or 1, resulting in just a tiny fraction of the error being passed back to incoming

weights and to units in previous layers. Such a unit may theoretically recover, but it may take a
very long time, or never recover due to computational round off and truncation problems. To
address this problem, some heuristics are suggested in the literature: to us'e an error measure
that games to infinity as the derivative goes to zero [Fra87]; to add a constant bias, say . l , to the
deriva.tive before using it to scale the error [Fah88], or to employ a rescaling factor to
compensate for the reduction in magnitude of the derivative across different layers of the
netwosk[Rig9 11.

Figure 1 - Error surface contours

The learning rate is commonly taken as a constant; this can also slow the rate of convergence,
since a fixed learning rate may not be appropriate for all portions of the error surface. The axis
corresponding to the i a eigenvector has length proportional to lhi, so the component of the

gradicnt is smaller in the direction of the eigenvector corresponding to &, (minor axis of the
ellipse fig. 1) than in the direction of the eigenvector corresponding to k,, (major axis). Thus,
a leaning rate that yields moderate steps along the major axis may result in large steps along
the minor axis, and oscillations across the minimum for that weight dimension may occur. Vice
versa, a learning rate that is appropriate for the minor axis may result in small steps along the
majol- axis, with a correspondingly small reduction in the objective function. In practice this is
very :.ikely to happen, since the learning rate is usually set small enough so that overshooting
and oscillation are avoided.

Many techniques have been proposed to speed up Back-Propagation: the addition of a
momczntum term to the generalized delta rule [Rum86]; the adoption of alternative cost
functions [Kru9 1, So1881, dynamic adaptation of the learning rate[Jac88 ,Kes58,Sar70]; and
rescaling methods [Rig9 11.

The compensatory rescaling proposed by Rigler is based on the fact that ihe derivative of the
sigmcbid imposes a multiplicative reduction factor on the magnitude of the weight adjustments.
This factor starts in the range [O, .25] at the output layer and decreases for each successive
hidden layer. The compensatory scale factors are constant for each layer, and are based on the
assuniption that the expected value of the derivative is uniformly dismbluted in the interval
[O,].]. Problems with this approach are that the idea is restricted to sigmoidal-type of squashing
functjons, the uniform distribution is unlikely to be valid, and values lruger than one may
frequently occur, reinforcing all gradient magnitudes and, as a consequence, causing more
oscillation.

Adaptive learning rates are based on the sign or direction of consecutive changes of a weight,
i.e. AWi(k) and Awi(k-1). Kesten [Kes58] proposes that if they are oppos-ite in sign, then the
weigh.t value is oscillating around its minimum and hence, the learning :rate for that weight
should decrease. Saridis [Sar70] extends this notion to both increase (if same sign) and
decrease (if of opposite sign) learning rates. Sutton and Barto [Sut8 11 present variations on this
idea. Jacobs [Jac88] introduces two algorithms, the Delta-Delta and the Delt,a-bar-Delta learning
rules, that are minor modifications of the basic delta rule, namely the introduction of an
adaptive adjustment to the learning rate.

In Delta-Delta, the weight adjustment is governed by

and

This f{mnulation has drawbacks as pointed out by Jacobs himself. Dependling on the value of
"y", thle learning rates can become excessively large or small, and even negative. It almost does
not help in flat reqons (low gradient values), and may increase oscillation in regions with high
curvature. To avoid such problems Jacobs suggests the Delta-bar-Delta rule, which has a linear
increasing factor, a recursive decreasing factor, and a lower bound to prevent negative values:

where

if d (n - l) o (n) > 0
if &(n-l)o(n) < 0

otherwise

As suggested by Rumelhart at a1 [Rum861 to speed up convergence without leading to
oscillation, momentum is an extension of the generalized delta rule given by

Momentum is considered useful in those cases where the error surface coiltains long ravines
characterized by sharp lateral curvature and an almost flat floor. The sharp curvature tends to
cause divergent oscillations along the ravine, which can be mitigated by resmcting the weight
adjust~nents to be very small, but this also slows down the convergence rate. Momentum
provides a significant improvement to the standard generalized delta rule sixlce it filters out the
high frequency oscillations allowing larger step sizes to be used. However, limitations exist
and momentum may generate more problems than it solves, depending on the degree of the
curvature and the momentum factor y.

Equation 12 can be unfolded and rewritten as
k- 1

Aw(k+l)= -qok + pkAw(0) -q&'CJk-j ,
j= 1

Which, by assuming y < 1 and Aw(O)=O, reduces to
k- 1

A ~ (k + l) = -7Ok - q ~ p J G k - j .
j=1

For a slightly sloping floor, with almost equal derivatives over several points in a sequence,
equation 14 reduces to

which shows a lower bound equal to the standard steepest descent learning rate q and no
upper bound. On sharp ravines momentum may end up with a sign that is o,pposite to the sign

of the current derivative, and thus, causing weight adjustment in the wrong direction, as can be
seen as follows:

3. The Shape of the Error Surface

Least square learning procedures have a simple geometric interpretation. The error surface is
constlucted over a multi-dimensional space that has an axis for each weighd and one extra axis
for the error measure. For each combination of weights, the network will have a certain error
which can be represented by the height of a point in weight space.

Networks with linear units and no hidden layers always have bowl-shaped error surfaces. The
horizontal cross-sections are ellipses and the vertical cross-sections are parabolas. If there is a
minin~um it is unique and global, and it is guaranteed to be found by any gradient descent
method (fig. 2). The error surface is in fact the sum of a number of parabolic troughs one for
each training pattern. If the output units have a monotonic nonlinearity, then each trough is
defonned but no new minima can be created in any trough because the no no tonic function
cannot change the sign of the gradient . However, when different troughs are added together, it
is pos:jible to create local minima. With hidden units, the error surface may contain many local
minirr~a, and it is possible for gradient descent to become trapped in any of rhem. Local minima
and slow convergence are the major problems for any gradient descent method (fig. 3).

Within large neural networks, with many nonlinear units, local minima are easily formed and
the tour for any learning procedure becomes a very complex task. Succe:ssful minimization
depends on the starting point as well as on the learning procedure's ability to handle with
plateaus, to avoid oscillation in the ravines, and to avoid getting stucked in local minima. The
rate of' convergence tends to slow down and the desired accuracy is no longer guaranteed.

4. THIS ADAPTIVE REGION OF NONLINEARITY SCHEME

AROPJ (Adaptive Region of Nonlinearity) is novel in the sense that it provides learning speed
ups through a dynamic adaptation of the error surface. It is based on a generalization of the
basic IvlcCulloch-Pitts type of neuron, it adaptively adjusts the error surface in order to facilitate
the progress of a descent algorithm in its search for the global or a good local minimum, and it
can applied to many existing learning schemes.

McCulloch-Pitts type of processing units [McC43] are the most widely use:d node structure in
neural networks. It basically consists of a monotonically increasing nonlinear function applied
to a linear combination of the inputs (fig 4).

Figure 4 - McCulloch-Pitts Processing Unit Model

McCulloch-Pits units are defined as

A more general model can be constructed by introducing independent gain parameters which
may provide a greater degee of freedom and discriminatory power to each node. This model ,
expressed by

is schematized in figure 5. The global gains a and P help the node activation to adapt faster
and more easily than when every single weight is handled on an individual basis. A
compromise among p, a , and the weights must be found automatical1.y by the learning
procedure in order to adjust the node to its best role in the network context.. and thus reducing
the output error.

Figure 5 - Processing Unit - General Model

Roughlly, it can be claimed that the preceding weights should be able to perf'om the role of the
parameter a , and that the succeeding weights should be able to do th~e job of P. To an
asymp~:otic behavior this may happen, but for practical purposes and for learning speed up
perfomnances it seems intuitive that both parameters (a and P) may provide special help.

Sperduti [Spe92] developed a model in which the parameter P is taken equal to one. He claims
that this model not only facilitates fast convergence but also automatically tunes the network
structu-re to the requirements of the problem. In fact, a deals with the slope, or gain ratio, of
the non.linearity (fig 6). Values of a close to zero kill the unit. and very large values turn it into
a hard limiter. Sperduti's model is given by

The model proposed here follows similar reasoning but adopts a more effective strategy. The
objective is to adapt the error surface's shape on the fly by allowing each individual node to

adjust its degree of nonlinearity according to the requirements of the problem. The method is
based on a minor resmction imposed to the most general formulation in ordler to get the desired
effect:;. It is accomplished by restricting the squashing function to be the hyperbolic tangent
and coupling P with a. This results in the following function:

This formulation allows each unit to change its degree of nonlinearity, i.e. its region of
operation (fig.7), without changing its gain or transfer function characterist:ic. Small values of
a have the property to linearize the node, while large values the propen:y to kill the node.
Basica.lly the same two results achieved by Sperduti with the advantage that here the network
transfe:r function characteristics are preserved.

Figure 6 - Sperduti's Nonlinear Function for different values of a:
0.01, .5, 1, and 1.5 from the bottom to the top

Figure 7 - ARON's Nonlinear Function for different values of a :
1.5, 1, .5, and 0.01 from the bottom to the top

5 - ARON Properties

The first property provided by this formulation is to dynamically change the shape of the error
surface. In fact it can vary from one extreme when all units are linear to the other extreme when
all units are highly nonlinear. It will be seen in section 6, network dynamics.. that allowing a to
adapt during the optimization process changes the error surface in a vvay that seems to
accelerate learning and better avoid local minima. However, it is important: to emphasize that
the stuldy conducted here focuses exclusively on speed gains and not on asymptotic behavior,
which would require deeper analysis and simulations.

The second major property of ARON relates to the fact that it does not change the original
gain, or transfer function, of each node (figs. 7), a property that is not shared by Sperduti's
formulation (fig. 6).

ARON does not penalize the error backpropagation (fig. 8), which remainis constant or even
increases as new points are introduced into the operational region of the unit. The derivatives
with respect to the weights are given by

that is of the same form as the conventional model, in which a equals one. However,

Sperduti's formulation includes an extra gain (figs. 9) that can act as a reducer when a<l and
is passed backward through the entire network as follows:

Another ARON property relates to its capability to linearize as well as to remove units, which
can be seen as a natural way to automatic tune and minimize the structure of the network.
Using a Taylor series expansion it can be shown that the unit behaves linea~rly for sufficiently
small values of a and approaches zero for large enough values as follows:

hence

lim y
= Cwikxi, a->o

lim y
= 0. a->m

Finally, since ARON is only related to the structure of each node, it car] be used with any
existing learning procedure without restriction. In fact, experiments showed that ARON
enhanced the accuracy and speed of all the procedures evaluated.

ARON, by adjusting the operational region of each node, dynamically changes the error
surface's shape. Eventually such changes facilitate the progress of the learning procedure and a
better local minimum is found. Figure 10 shows the 3-parity problem error surface for
different values of a. A reduction in the complexity of the surface is easily observed as the

parameter a approaches zero for the output unit case or increases for the hidden units.

Figure 8 - ARON Function derivative for a = 1.5, 1, and .5 from the bottom to the top

Figure 9 - Sperduti Function derivative for a = 0.5, 1, and 1.5 from the bottom to the top

6 - NElWORK DYNAMICS

The dynamics of the weights remain identical to the conventional model, differing only on the
presence of the parameter a on the computation of the output of each unit. \With respect to the

dynamics of the parameter a, several different approaches were evaluated. It was found that
the best alternative, by far, was to leave it self-adaptive. A gradient descen~t update formula, as
defined in equation 26 and developed in the appendix, was chosen because it provides
smoo1:her and smaller changes in the parameter space. The dynamics is then given by

where

This formula was applied together with the basic gradient, gradient with momentum,
Quickprop [Fah88], and Cubicprop [Crag31 schemes for the evolution of the weights. It was
empin.cally observed that the learning rate for a has to be less than or equal to the learning rate
for tht: weights. The larger the total number of weights or hidden units, the smaller the ratio
between the a and w learning rates should be.

Several different initial values for a were med; close to zero, .5, 1, and. random. The best

behavior was obtained when all a ' s started at 1. A lower bound of .O1 was set in order to
prevent negative gains. Figures 11 to 13 show the dynamically evolution of the error surface
shape as the learning proqesses in a network with a single hidden layer (3 units) and a single
unit in. the output layer. Figure 11 shows the accuracy curve for the first 210 epochs, figure 12
shows the evolution of the adaptive parameter a (dotted line for the output unit and other lines
for the: hidden units), and figure 13 shows a sequence of changes in the error surface shape.

Each 3-dimensional graph in figure 13 is generated with values of a ' s and weights (W,)
correslsonding to the considered time instant. The current set of weights is linearly combined
with tGo other sets corresponding to two previous solutions of the problerrl (W, and Wb). As
can be: seen in the formulas, the set W, corresponds to the coordinates (h=l , P=l). This
combillation gives:

A pheriomenon that we call avalanche was found to be responsible for the instability observed
on the 9-to-13 time slots. This phenomenon was found characteristic for binary problems,
where the desired outputs present a sharp dichotomy [0,1] or [-1,1]. The output unit causes
this phenomenon by trying to reduce the error in a faster way through the reduction of its value
of a, i.e. linearizing its gain. Suddenly, during an epoch computation, the e:stimated output for
a number of patterns extrapolates the binary thresholds, for example [I, - 11, then the gradient
vector for the output unit parameter a changes direction, and the unit inverts its tendency
reinforcing its nonlinearity. This oscillation is propagated to the previous laiyers and the entire
network oscillates. This avalanche forces a larger adjustment on the weights and the local
minimlum is eventually avoided. However, the oscillation may last longer 01- even may not end
depending on the ratio between the learning rates for the weights and a.

7. EMPIRTCAL RESULTS

As observed by Fahlman [Fah88], there is not yet a widely accepted methodology for
measu~ring and comparing the speed of various connectionist learning algorithms. Some
researchers defend their ideas based only on theoretical analysis, and others run few
benchrnarks to support their claims. Parameter settings and criteria for learning success are
other sources of noise in this scenario.

Here the benchmark is realized on the XOR / Parity Problems and for the sake of uniformity,
all results are reported in terms of normalized root mean squared error (Nmlse). This criterion
works well for real problems and seems to be more demanding than other criteria for those
binary problems. The Nrmse criterion, as stated in equation 3 1, provides a measure that is
indepe:ndent on the range and on the length of the training set and therefore provides a more
convenient basis for comparison. The Nrmse is given by

where, o(y*) denotes the standard deviation of y* (desired output). Observe that, by this
criterion, if the mean of y* is used as an estimate of y*, i.e y= mean (y*), then the Nrmse
equals one.

Xor / Parity problems consist of a number of binary inputs, a number of hidden units, and one
output unit. The objective is to identify the parity : odd if the number of bits "1" in the input
vector -!s odd, and even otherwise. The experiments reported here consist on the evaluation of
the speed up provided by the use of the adaptive parameter a in combillation to the pure

gradient, the Quickprop, and the Cubicprop learning algorithms. The notation used is as
follows:

G pure gradient descent procedure

Ga gradient with ARON parameter (a)

Qp Quickprop basic procedure

QPa Quickprop with ARON

Cub Cu bicprop basic procedure

Cuba Cubicprop with ARON

avg average nr. of epochs used to converge to the desired accuracy

std standard deviation on the number of epochs

median median of the number of epochs

Hmean harmonic mean of the number of epochs

No conv number of times the algorithm did not convei-ge

avg wc average number of epochs disregarding no convergence cases

best best run

worst worst run disregarding no convergence cases

aNrmse average of the accuracy normalized enor

a ARON gain parameter

P momentum factor

?.is maximum growth factor

la learning rate for a's
1, learning rate for w's (weights)

a) The: XOR problem

A hurtdred of distinct starting points were used to compute the overall performance of the
Gradient, Quickprop, and Cubicprop algorithms alone and with the addition of the ARON
parameter (a). As can be seen in table 1, ARON provided a remarkable improvement for the
pure gradient procedure. The average number of epochs required to converge to an accuracy of
le-03 was reduced to less than one third, and one order of magnitude of reduction was
achieved in the majority of the runnings. The cubic fitting worked better than the quadratic, and
the contribution of a was less significant for the Quickprop algorithm, although it provided an
speed up greater than 2 in the majority of the runnings.

b) Threx Parity Problem

Similar experiment to the XOR was conducted for the 3-Parity case. The algorithms were
bounded to perform 500 epochs or to stop whenever the accuracy of le-03 was reached, and
the statistics were computed over 50 distinct starting points. Three parity with three hidden
units showed to a simpler problem than XOR with two hidden units.

The statistics in table 2 were computed based on a 3-hidden / 1-output unit network. A fixed
learning rate of 1 was set for the weights and ar (gradient descent procedure), a rate of .5 for
both parameters (Quickprop and Cubicprop cases), a maximum growth of 1.75 (Quickprop),
and a momentum factor of .9 (Cubicprop). Gradient with ar reached the desired accuracy in
86% of the cases, and the best run, with only 18 epochs, was done by Cubicprop. Figure 14
shows the e m r evolution for one specific starting point, comparing ARON against to the basic
steepest descent and the Quicprop for the 3-Parity case.

- b . r i c ~ d e s c c n t

. . ~ t d u c m t w i t b ARON

Z

epochs

- basic Quidrprop Algorih

.. Quickprop with ARON

epochs

F i w : 14 - Steepest Descent and Quickprop Algorithms performance with the addition of the
ARON parameter on a 3-Parity problem, (a) steepest descent and (b) Quickprop (the instability

observed in both graphs is due to the avalanche problem)

Table 1 - XOR Problem - statistics over 100 distinct starting points (G - pure gradient descent,
Ga - gradient with adaptive a, QP - basic Quickprop, QPa - Quickprop wid1 adaptive a , Cub -

basic Cubicprop, Cub, - Cubicprop with adaptive a) - 2 hidden units, 1 output unit, 500
epochs upper limit

I mdian 1 1 500 1 55 1 67 1 32 1 65 -. 1 55 1
IYneani1 . 500 I 64.60 1 77.15 i 39.19 1 50.88 I 54.98 I
I -- Noconv11 100 1 18 1 23 1 24 1 15 -1 -. 16 1
I avewc 11 500 1 56.65 / 63.20 1 41.71 / 58.64 / 55.04 1
I test 1 500 1 39 1 40 1 20 1 17 1 20 1
I worst 1 1 500 1 111 1 93 1 346 1 130 1 249 1

-.

I<F[1 .-- .I260 1 .I125 1 -1425 1 .I391 1 .0937 -. 1 .I002 1
Table 2 Three Parity Problem - statistics over 50 distinct starting points (C; - pure gradient

descent, Ga - gradient with adaptive a, QP - basic Quickprop, QP, - Quickprop with adaptive

a, Cub - basic Cubicprop, Cub, - Cubicprop with adaptive a) - 3 hidden units, 1 output unit,
500 epochs upper limit

I avgwc 1 1 500 1 201.81 63.34 1 45.68 (50.06 -. 49.20 /
I best (/ 500) 48 (43 I 21 (18 1 21 1
I worst 11 500 1 460 / 197 111 1 98 -1 96 1
I .--- *rmse 11 .0278 1 .ooll 1 .ooo9 1 .ooo9 1 .ooo9 -. 1 .ooo9 I

Tables 3 through 6 present some analysis on the effect of the learning rate ratio (l,/la),
momer!,tum factor ratio (p~l,), and the maximum growth ratio (all,). All ca:ses led to the same
conc1u:jion in which small values of 1, leads to a more consistent behavior. These results
reinforce the avalanche problem described earlier in this chapter and also the intuitive

expectation in which the error surface has to be only smoothly adjusted in order to facilitate the
progress of the weights.

Table 3 - Three Parity Problem, the effects of learning rate for the weights and for the
parameter a - statistics over 20 distinct starting points for a Gradient descent learning

procedure with adaptive parameter a (averaged Nrmse for different combin~ations of learning

rate for the weights and for the parameter a, epoch upper limit of 200)

Table 4 - Three Parity Problem, the effects of momentum factor and learning rate for the
parameter a - statistics over 20 distinct starting points for a Gradient descent learning
procedure with adaptive parameter a (averaged Nrmse for different combinations of

momerltum and for the parameter a, learning rate for the weights set to 1.0, epoch upper limit
of 200)

Table 5 - Three Parity Problem, the effects of learning rate for the weights and for the
parameter a - statistics over 20 distinct starting points for a Quickprop proceclme with adaptive
parameter a (averaged Nrmse for different combinations of learning rate for the weights and

for the parameter a, epoch upper limit of 200)

Taible 6 - Three Parity Problem , the effects of maximum growth and leaning rate for the
parameter a - statistics over 20 distinct starting points for a Quickprop proctdure with adaptive

parameter a (averaged Nrmse for different combinations of maximum growth and learning
rate: for the parameter a , learning rate for the weights set to 1.0, epoch upper limit of 200)

C) Four Parity Problem

In the four parity problem, the statistics were computed based on a 5-hidden / 1-output unit
network. A fixed learning rate of 1 was set for the weights and a (gradient descent procedure),
a rate of .5 for both parameters (Quickprop and Cubicprop cases), a maximum growth was set
to 1.75 (Quickprop), and a momentum factor of .9 (Cubicprop). Gradient with a performed
again much better than the pure gradient procedure reaching the desired accuracy in 62% of the
cases, and the best run, with only 75 epochs, was done by Cubicprop.

Table 7 Four Parity Problem - statistics over 50 distinct starting points (Ci - pure gradient
descent, G , - gradient with adaptive a , QP - basic Quickprop, QP, - Quiclqprop with adaptive
a , Cub - basic Cubicprop, Cub, - Cubicprop with adaptive a) - 5 hidden units, 1 output unit,

800 epochs upper limit

I --. I) . G ~a 1 QP I Q P ~ I cub -- I cub, --

jaVg(1 goo 1 572.96 1 327.46 I 460.76 1 443 - 1 431

1-itd 11 . - 1 215.94 1 261.22 1 300.87) 287.91 -. ' 1 325.42

I median 11 800 637 1 193 / 291 I 272 1 256

I Noconv11 50 1 19 1 10 21 1 19 1 21
i i i

-.
1 I I I I

1 av,y wc / / 800 1 433.81 1 209.32 1 215.10 1 224.23 164.97

I -- best 1 1 800 / 171 1 128 1 102 1 86-1 75

I worst (/ 800 1 746 I 660 1 521 1 389 (486 --
I .--- aNrmse 11 .I275 I .0894 1 .0703 (,1221 I .1609-1 -- .I627

Table 8 - Four Parity Problem, effects of learning rate for the parameter a anti for the weights -

statistics for a Quickprop procedure with adaptive parameter a (same starting conditions for
all runnings, epoch upper limit of 500)

8 - CONCLUSIONS

ARON is a novel approach that opens a new vein on the search for effective accelerating
techniques. The adaptation of the error surface may help the progress of the evolution of the
weights and accelerate the learning process. The results obtained are very promising and some
possible extensions such as, relaxing the restriction between the gains a and P, and using
different learning rates according to layers, may be considered for future analysis.

References

[Rig9 11

[Rum 8 611

Codringt, C., Thome, A. and Tenorio, M.,"Playing with third oder local
approximation", to be submitted to 1994 IEEE NNIFuzzy conference.
Fahlman, S. E., 1988, "An empirical study of learning spe:ed in back-
propagation networks, TR, CMU-CS-88- 162.
Franzini, M.A., 1987, "Speech Recognition with backpropagation.
Proceedings of Nineth Annual Conference of IEEE Engineering in
Medicine and Biology Society.
Jacobs, R. A., 1988, "Increased rates of convergence through learning
rate adaptation", Neural Networks, vol 1, pp. 295-307.
Kesten, H., 1958, "Accelerated stochastic approximation", Annals of
Mathematical Statistics, 29, pp. 41-59.
Kruschke, J. K., 1991, "Benefits of gain: speed learning a~nd minimal
layers in backpropagation learning", IEEE Transactions on Systems, Man,
and Cybernetics, vol 21, no. 1, pp. 273-280.
McCuloch, W. S. and Pitts, W., 1943, "A logical calculus of the ideas
immanent in nervous activity", Bulletin of Mathematical Biophysics, vol
5, pp. 115-133.
Rigler, A. K., 1991, "Rescaling of variables in back propagation
learning", Neural Networks, vol4, pp. 225-229.
Rumelhart, D. E., Hinton, G. E., and Williams R. J., 1986, "learning
internal representations by error propagation", PDP: Explorations in the
Microstructure of Cognition, MIT Press.

[Sar70] Saridis, G. N., 1970, "Learning applied to successive approximation
algorithms, IEEE Transactions on Systems, Man, and Cybe:metics, vol
ssc-6, no. 2, pp. 97-103.

[Sol881 Solla, S. A., 1988, "Accelerated learning in layered neural networks",
Complex Systems 2, pp. 625-640.

[Spe92] Sperduti, A. and Starita, A., 1992, " Speed up learning and network
optimization with extended back propagation", TR, Dep. of Computer
Science, Corso Italia, Pisa, Italy.

[Sut8 11 Sutton, R. S. and Barto, A. G., 1981, "Toward a moder:n theory of
adaptive networks: Expectation and prediction", Psych. Rev., vol 88, pp.
135-170.

[Wid601 Widrow, B. and Hoff, M. E., 1960, "Adaptive switching ci:rcuitsU, IRE
WESCON Conv., record 4, pp. 96-104.

Appendix

ARON dynamics:

where

1
yo= - tanh So

a0

1 1 1
yi = , tanh Si

a i

a) Output layer (a0)

hence

b) hidden layer (ah)

a~ a~ as0 --
a,:

--
ash- I aye as0 ay: ash I

hence
*

h Y; -yo A(ai)= -
h (1-tanh2(S0)) v(((l-tanh2(S~))S! 1 - j)

ai

Figure 2 - Error Surface Shape, (a) linear transfer function and (b) nonlinear

Figure 3 - Error Surface Shape for different values of the parameter a,
(a) a,= 1, ah=l; (b) a,= 1, a h = 10; (c) %=lo, ah=l; and (d) a,=(). 1, a h = l

number of ewchs

Figure 11 - N r m e evolution for a 3-Parity problem (3 hidden units, 1 output unit, I,= 1 and
la= I), x axis represents time-step and y axis error value

Figure 12 - Evolution of the parameters a (& dotted curve, ah's other curves), x axis

represents time-step and y axis represents values of a

Figure 13 - Error Surface Shape Changing as a function of a (W,, current set of weights,

corresponds to coordinates (1, I), a 's values correspond to those in fi,pre 12)

Figure 13 - Continued

	Purdue University
	Purdue e-Pubs
	11-1-1993

	Accelerated Learning Through a Dynamic Adaptation of the Error Surface
	Antonio G. Thome
	Manoel F. Tenorio

