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Abstract 

In the enhancement/thresholding method of edge detection, the gradient values of pixels 
exceeding a certain threshold are designated as edge pixels. However, selecting a threshold 
has commonly been performed through ad hoc measures. This paper describes a method for 
automatically selecting a threshold using a 5-parameter model. The model is based on the 
weighted sum of two gamma density functions corresponding to edge and ncln-edge pixels. A 
variety of statistical and fitting methods for finding the model parameters were evaluated by 
comparing their computed thresholds to perceptual thresholds determined by subjects for 
16 different images. The performance of the model was also analyzed under different noise 
levels. 

Index Terms: Automatic thresholding, edge detection, gradient, Sobel operator, statistical 
classification. 



I Introduction 

The goal of most object recognition systems is to identify the major features of an image 

and match them against given models of known objects. Shape is commonly used for iden- 

tification since it is one of the most distinguishing characteristics of an object. The shape 

of an object is generally considered to be a high level property that can be computed from 

a hierarchy of various lower order structures. At  the lowest level, edgels or edge pixels rep- 

resent the edges in the image that are grouped into line segments and then into various 

curves, lines, rectangles, etc. Making accurate decisions about edgels at the lowest level will 

facilitate more rapid and better performance at higher levels of the system. Consequently, 

the edge detection process is of fundamental importance in object recognition. This paper 

describes a model-based method for accurately and automatically determining a threshold 

that separates edge pixels from non-edge pixels in intensity images. 

Edges are defined as sharp intensity changes over a small area of an image. Since this general 

definition does not lend itself to a specific mathematical formula, many edge detection algo- 

rithms have been used. Edge detectors fall into three major classes: edge fitting operators, 

zero crossings of second derivative operators, and enhancement /thresholdiing operators [I]. 

The first category attempts to orient a mathematical model to the edge using a best-fit ap- 

proximation. The second method attempts to find the inflection points of the edge that are 

the zero crossings of the second derivative operator, by definition. This paper focuses on the 

third category of the enhancement/thresholding methods since they are the most common 

in practice [2, 31. 

Enhancement/thresholding methods apply differential or gradient-based operators to an im- 

age. The operator is typically a 3 x 3 or 5 x 5 matrix which is convolved with. the image. The 

Sobel or Prewitt methods use two operators which measure the local differences in contrast 

in the horizontal and vertical directions and combine the results into gradient units. Areas 

of high contrast have a high gradient value; areas of low contrast, a low value. 

A threshold of the gradient values must be used to classify each pixel of an image as either 



an edge or a non-edge pixel. Consequently, even in this class of operators, the presence of 

an edge is still imprecise. Many differential operators have been studied i.n depth, yet the 

determination of a threshold is still very difficult since it may depend upon. the application, 

the source of the image, and the subjective perception of the viewer. 

Our approach to identify the threshold dividing edge and non-edge pixels is based upon a 

statistical model of the gradient values. By creating a histogram of the gradient values, we 

can fit a statistical density function to both the edge pixel values and non-edge pixel values. 

Once the densities have been found, the problem of finding the threshold is equivalent to a 

statistical classification problem. This paper analyzes the effectiveness of several approaches 

in finding the density functions and the corresponding threshold. 

Studies in the evaluation of different edge detectors have contributed indirectly to work in 

automatic threshold determination. In [I, 4, 51, several edge characteristics were identified 

for comparing edge operators: 

1. the number of correctly identified edge points 

2. the number of incorrectly identified edge points (false positives) 

3. the number of missed edge points (false negatives) 

4. the number of multiple detections for a single edge, which is related to edge thickness 

5. the distance between the identified edge and the true edge 

6. edge continuity 

After applying different operators to test images, the above characteristicis were quanti t a- 

tively assessed and combined into a weighted error sum, allowing for comparison. In order 

to compare the operators' performance, a threshold had to be selected. Venlratesh and Kitch 

[:I.] used a least-failure-measure (lmf) threshold which minimized their error vector. While 

qualitative measurement of an error sum has desirable characteristics, it is not clear that 

the minimization of the error sum will, in fact, lead to an accurate determination of the 

threshold. McLean and Jernigan [6] selected thresholds according to the "visual quality 

of the resulting edge map, not according to any objective measure of the actual operator 

performance". Most of the work in edge evaluation has focused on synthetic images with 



known edges or compared the results of the operators against themselves, rather than against 

an absolute standard, or a model-based criteria [5]. As a result, these methods cannot be 

used to select an edge threshold, but serve to validate our use of both synthetic images and 

subjective thresholds to evaluate the performance of the edge thresholding. 

Previous work in gradient threshold selection includes the work of Haddon [7] and Zuniga 

and Haralick [8]. After forming an estimate of the noise within the image, Haddon derived 

a probability density of the edge strength from which he could select a threshold. With an 

accurate measure of the noise, a global threshold could be selected to be independent of the 

strength and number of edge pixels in the image. However, the approach assumes uniform 

noise and only one image demonstrates its performance. 

Zuniga and Haralkick [8] approached threshold selection as a Bayesian decision problem 

involving two densities. Rather than fit densities to the edge and non-edge pixels, they 

derived two conditional densities based on the gradient histogram by usin.g a facet model 

in conjunction with a hypothesis test of the gradient values. For synthetic images, they 

computed thresholds as a function of the noise that were better than subjective decisions, 

although no real images were tested. 

In Section 11, we survey automatic classification methods and describe our model in de- 

tail. Section 111 introduces the different techniques of statistical estimation used to predict 

the parameters of our model. Section IV describes and presents the results of our exper- 

iments comparing the statistically calculated thresholds with the subjective perception of 

edge thresholds, and evaluating the performance of the calculated t hresholdis under different 

noise conditions. 

I1 Histogram Modeling 

A Background 

The decision between edge and non-edge pixels based upon a gradient histogram is very 

similar to the automatic segmentation/thresholding problem. Using grayscale or color as the 

distinguishing criteria, pixels can be classified automatically. In determining the threshold 



for different classes, these methods rely upon the modality, shape, or moments of the classes 

in the histogram [9]. For the bilevel case in particular, these algorithms generally define the 

location of the threshold to be at the minimum value of the valley between two peaks of the 

histogram, which can be clearly seen in Figure 1. As Kapur, Sahoo, and Wong [lo] point 

out, different algorithms try to improve the histograms by making the threshold more visible 

through statistical or other enhancement techniques. 

Due to the nature of the gradient thresholding problem, most of these bilevel classification 

techniques cannot be used. Histograms of the gradient image normally do not have two 

visible peaks and a valley as shown in Figure 2. This means that using the modality, shape, 

or moments to classify the peaks will be futile since the two peaks and the valley separating 

them cannot be identified. 

Other classifications such as the p-tile [9] assume that the percentage of pixels in one class 

is known a priori. The percentage of edge pixels is usually estimated to be 10 to 20% of the 

overall pixels of an image [3, 11, 121. However since these percentages depend strongly upon 

the images and the signal to noise ratio (SNR) present, such techniques will only provide a 

rough estimate of the threshold and not an accurate measure. 

B Our Model 

Our approach employs a statistical classification based upon a 5-parameter model. As men- 

tioned before, the gradient value reflects changes in grayscale over a local region of an image. 

This change is generally the result of both edges (contrast changes) and noise. We assume 

that we can statistically model the data by probability density functions. Given a 512 x 512 

image with over 250,000 points, we have a large sample of data points which can be used 

to find density functions. We model edge pixels and non-edge pixels by using two density 

functions which sum to the original histogram. 

The density functions which we use to model the edge and non-edge pixels are gamma density 

functions. We assume that the edge and non-edge contrasts, as defined by the horizontal 
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Figure I: A bimodal histogram which can be easily thresholdled. 
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Figure 2: A typical histogram for edge thresholding with the estimated densities of the 
non-edge and edge pixels. 





density functions. The second step, "percentage estimation", computes the ratio to edge and 

non-edge pixels in the image. This section describes these estimation techniques in detail. 

A Global Descent 

For the global descent method, the goal is to find the combination of five parameters that 

best fits the gradient histogram data. We are searching in a 5 dimensional space for a set 

of parameters that most closely approximates the histogram. We use a ]?owell algorithm 

[13], a multidimensional minimization based upon successive line minimizaltions that do not 

require a gradient calculation. It utilizes conjugate directions in forming line minimizations 

which converge quadratically to the minimum value of the function. 

In order to use this search strategy, we had to define a "best fit" of the model to the data. 

We investigated three distance measures for the entire experiment, each of ,which provides a 

measure of how well a model with given parameters fits the actual data points. The distance 

measures identify the difference in quantized curves x and y. 

d l :  the absolute distance error given by Ci ( yi - xi I 

d2: the squared error given by Ci(yi - 2;)' 

d3: the area between the curves using a trapezoidal approximation 

While the measures are strongly correlated, they represent different accuracies and compu- 

tation speeds, and vary with the amount of noise present. For the global descent method, 

only the d l  measure was used since the method is already quite computationally expensive. 

B Two Step Estimation 

Breaking the estimation process into two steps, the alpha-beta estimation anld the percentage 

estimation are computed alternately until a convergence is reached. This: strategy is the 

same as the EM (expectation-maximization) algorithm formulation [14, 151 and significantly 

reduces the search space. In alpha-beta estimation, the two parameters For each density 

function are estimated (four parameters total), given p; 

a,k,p,k,a::,plk I P; 



where pk is the relative probability of density0 verses densityl at the kth iteration. With 

these estimates, a new pt parameter is formed in the percentage estimatio:n step 

k + l  1 p k  ,k p k  
PO 07 0 7  19 1'  

These two estimation steps are repeated until the estimated values converge or until no 

progress is being made. 

Since it is difficult to accurately estimate the parameters for two densities simultaneously 

from their sum as in the first step, we divided all the points in the histogram into two non- 

overlapping groups using the prior estimates for the density parameters and the po value. 

Again using the EM algorithm formulation, we compute a ratio of the densities weighted by 

po at each point of the histogram, defined as 

where density0 and densityl are the reconstructions of the gamma densities given the esti- 

mates of the a and p parameters from the most recent estimation. It should be noted that 

this ratio function is actually not a density function, but only a ratio of densities with values 

ranging from 0 to 1. From this ratio function we form two separate density estimates 

for which new a and parameters can be more easily estimated. By truncating the histogram 

where possible, as described later, the computation of this step can be reduced since it is 

directly proportional to the length of the histogram. 

B. l  Alpha-Beta Estimation 

We compared five different methods for estimating the a and ,l3 parameters of the two 

densities. Two of these employed an iterative estimation and the remainder employed a 

two-parameter Powell descent algorithm using different distance measurements. 

1) Method of Moments This method generates point estimators by equating the first 

two moments of the data with the first two moments of the parameter estimates given by 



the following equations: 
1 "  

Datamomentl = - C zi 
;=I 

Estimatemomentl = a4 

Solving these for a and ,B, we get 
n 

2) Maximum Likelihood Estimation As the name implies, this approach is the formal 

ML estimation using the derivative of the gamma density function which finlds the maximum 

of the product of densities using the derivative's zero crossings: 

(-1) 
- X x i  

n n G l x j  e 0 

I-J f (xi I a d )  = 
i=l panr(a)n 

Since the log is a monotonic function, we can take the log of both sides 

C xi 
l o g ( n  f (xi / 8 ) )  = ( a  - 1) z log xi - - - a n  log P - n log I'(a). 

P 
Taking the derivative of this with respect to cr and ,b' and setting the resulting equations to 

0, we obtain the MLE of a and P,  respectively: 

d d 
- + log(xi) - n log 4 - n- log[r(a)] = 0 
d a  d a  

where 

and 

It should be noted that the d / d a  of the log of gamma function requires significant computa- 

tion with the integral. While it may be possible to perform a table look-up of precomputed 

values for similar images, this is impractical over a wide set of images due to the high 



precision required and large range of possible alpha values. 

3-5) The Powell Descent Method This method is the same overall algorithm as the 

global descent method described earlier in this section. The difference is that the Powell 

method for alpha-beta estimation is searching for two parameters for each density, and each 

density is handled separately. The search space is significantly reduced frorn the five dimen- 

sions of the global descent method to only two dimensions. The Powell method minimizes 

the distance between the model of the density and the density computed from the histogram 

ratio function. That is, 

We used three different Powell methods, for alpha-beta algorithms 3-5, with respective dis- 

tance functions d l ,  d2, and d3 as defined in Subsection A. 

B.2 Percentage Estimation 

Four different algorithms were compared for the percentage estimation of non-edges. The 

percentage of non-edge pixels or po is a scaling ratio parameter for the two densities. It 

determines the relative weights of the two densities which sum to the gradient histogram. 

Three of the algorithms use the Golden Section descent method with the distance measures 

d l  through d3. The fourth employs the EM algorithm [14, 151 on a Bernoulli estimate of 

the ratio. 

The Golden Section [13] descent algorithm is a one-dimensional minimization method based 

upon bracketing the minimum value, that is quite efficient in searching for a minimum value. 

Given the two densities described by the a and P parameters, po was defined as the value 

which minimized the distance between the histogram and the sum of the two ;gamma densities 

weighted by po. The equation is: 

dis tance{h i s togram( i ) ,  [densityO(i)  x po + d e n s i t y l ( i )  x ( 1  - p o ) ] )  
i 

where the distance is one of the aforementioned distance functions d l  through d3. 



The fourth estimation algorithm is based on a Bernoulli estimate of the ratio po and uses 

the EM algorithm. The equation is: 

k s u m  
Po = - 

n 

where 

po xi dens i t yO( j )  
k s u m  = h i s t o ( i )  

i po C j ( d e n s i t y O ( j ) )  + ( 1  - po) Ci d e n s i t y l ( j )  

and n is the total number of points in the histogram. 

B.3 Threshold Determination 

Given two overlapping densities, there are several methods of determining a threshold de- 

scribed in pattern recognition and signal processing texts. Most of these methods are de- 

signed for normal densities, rather than the gamma densities of our approach. Although 

some researchers such as Canny prefer dual thresholds for edges, this paper will focus on sin- 

gle threshold estimation. The results can be generalized for dual thresholds with our model 

of the edges with an appropriate threshold criteria given the edge model. U'e considered the 

MAP and ML decision thresholds, which are the most common in practice, and also tested 

a direct po threshold. These three methods of computing the threshold were compared in 

the experiments for their accuracy using our model. 

The MAP threshold decides that an edge is present when 

p ( z  I edge )  x p(edge)  > p(a: 1 non-edge)  x ~ ( n o n - e d g e )  

and a non-edge otherwise. In the notation of this section, we can rewrite this as 

d e n s i t y l  x ( 1  - po) > d e n s i t y 0  x po. 

The maximum likelihood threshold decides that an edge occurs where 

p(a: I edge )  > p(a: ( non- edge)  or d e n s i t y l  > dens i t yo .  

This differs from the MAP decision in that it ignores the prior probabilities of edge and 

non-edges. 

The p-tile method of selecting edges forms a threshold at a given percentage, ignoring all 

other information. Since po is a parameter of the model, we tested this approach, even 



though this threshold is based directly on one parameter rather than the 3 parameters of 

the MAP threshold and the 2 parameters of the maximum likelihood threshold. 

IV Experiments 

Two different techniques were used to analyze the effectiveness of our model. In the first 

experiment, 16 diverse images were processed with the different algorithms and the computed 

thresholds were compared with the subjective edge threshold decisions made by 5 researchers. 

The second experimented evaluates the robustness of the model to different noise levels 

applied to a synthetic image. We will discuss the image preparation and the procedures in 

computing the thresholds, followed by the two evaluation methods. 

A Data Preparation 

All the methods described in Section I11 operate on the gradient histogram prepared from 

the images. To standardize the testing, all the images were prepared using the following 

steps: adding noise, smoothing, applying the Sobel operator, and truncating the histogram 

which will be explained in more detail. 

Histwram of Gradient Squared 

Figure 3: With some histograms, noise is required to spread the peak near zero gradient 
units. 

Additive white Gaussian noise N(O, 1) (zero mean and unit variance) was added to each 



image and rounded to the 255 grayscale values of the original images to spread the sharp 

spikes which occurred in some of the histograms. For images with very low noise and little 

texture which often occur in synthetic images, the histogram takes the form of a delta 

function at gradient value 0 (no edge), and a small peak at a gradient valu'e proportional to 

the contrast of the edge shown in Figure 3. Recalling that the gamma density at x = 0 is 

zero, it is clear that the pixels of the non-edge density will not accurately fit the data. By 

adding Gaussian noise N(0, l )  to the image, the gradient values are shifted away from the 

zero value, spreading the delta function. Since the resultant thresholds are robust to the 

addition of low variance noise, this noise was added to all the images. 

The image was then smoothed using a 3 x 3 Gaussian filter with unit varia.nce. A Gaussian 

filter is commonly applied before edge detection to reduce the effects of noise by smoothing, 

and as a form of regularization as described by Poggio [16]. The smoothing had virtually no 

effect on the overall shape of the histogram. 

Although our algorithm can be used by any differential or gradient based operator obtaining 

similar results, only the 3 x 3 Sobel operator was used in this experiment. This operator was 

chosen since it is effective in the presence of noise and is widely used [3, 21. After convolving 

the Sobel operator with the image, the output gradient values were placed in a histogram 

with a bin size of 1 gradient unit. 

The largest 0.01% of the gradient values of the histogram were truncated which served several 

purposes. First, by reducing the length of the histogram, computation wa;s saved since the 
I 

statistics describing the data fit need only be computed for pertinent values. Second, by 

eliminating these outlying values, the accuracy was improved since such values tended to 

bias both the statistical-based met hods and the fitting methods. Using different percentages 

for truncation did not change the resulting thresholds as long as the percentages were much 

less than the percentage of edge pixels in the image. The histogram was then normalized to 

unit area for purposes of comparing data sets. 



B Running the Algorithms 

The goal of this portion of the experiment was to find and compare thresholds from the differ- 

ent algorithms under the constraints of our model. We applied each method to the prepared 

histograms described earlier in this section. An initial seed of 88% non-edge pixels was used 

for all the images since they commonly compromise between 85% and 90% of image pixels, 

though this is strongly dependent upon the image and the definition of edges. For all cases 

except the global Powell descent involving simultaneous estimation of all the parameters, the 

first iteration of the parameter estimation step utilized the maximum likelihood estimation 

(MLE) method. This step provided a standard, quick, and reasonable initialization using 

the updated percentage information for all the algorithms and did not appear to bias any of 

the algorithms. 

Following the initial estimation step, subsequent parameter estimation followed by the per- 

centage estimation was performed and the process repeated as shown: 

1. initial p: = 88% 

2. initial alpha-beta estimation (p:) returns a,", p,", a!, P: 

3. overall estimation loop ( 

percentage estimation (a!, pi, a!, Pf") updates JI;+' 

alpha-beta estimation (a:, ph, a:, P:, p;") returns a!", p;+', a!+', P:+' 
k = k + l )  

where the k denotes the iteration number. 

The complete iterative process of parameter estimation and percentage e~~timation, shown 

in the overall estimation loop was repeated a maximum of 12 times or until the threshold 

converged within 6 gradient units of the previous iteration for all the algorikhms. The latter 

condition required the minimum precision of the threshold to be approximately 0.5% (6 out 

of a maximum 1200 gradient units) between on successive iterations. 

The parameter estimation algorithms iterated for a maximum of 50 iterations or terminated 

when the both the and PI parameters converged to within .3% of the pi:evious iteration. 

The a parameters were not used as a termination condition since they were less sensitive 



than the p parameters and also tended to vary proportionally to the ,B parameters. The 

percentage estimation algorithms terminated when consecutive estimates (converged within 

0.3%. 

For all the methods, the range of valid percentage of non-edge pixels was restricted to 

[1%,99%] of the truncated histogram. According to the 5-parameter model, the histogram 

consisted of the sum of two non-zero gamma densities representing the ed.ge and non-edge 

pixels. Bounding the size of the non-edge histogram away from 0% and 100% barred the 

elimination of one of the edge densities. 

C Testing O t h e r  Methods  

Before analyzing the results of our 5-parameter model, we tested several other techniques 

described by Sahoo, Soltani, and Wong in their overview of thresholding methods, to verify 

that these methods would not, in general, be effective for different gradient images. We 

prepared the data using the same process of adding noise, filtering, and applying the Sobel 

operator as before. As expected, the p-tile, node, and concavity methods vvere not effective 

due to the varying shapes and edge to non-edge ratios of the different image histograms. 

The p-tile method always selected the same percentage of pixels as the threshold, but the 

percentage of edges in the battery of 16 images varied widely. The centroid and other 

methods including the Otsu method could not find a threshold with the absence of two 

peaks in most of the gradient histograms. 

D Computed  a n d  Subjective Thresholds 

The purpose of the subjective analysis was to find how well the mathennatical threshold 

compared with the subjective perceptual determination of edges. We used tihe human visual 

system as the standard of edge detection since humans are able to rapidly and accurately 

perceive global structures in images such as edges through a complex process, often referred 

to as perceptual organization [17, 18, 19, 201. 

For the experiment, the 16 images shown in Figure 4 were prepared as dlescribed in Sub- 



Figure 4: A battery of 16 ima 
the images are: a house scene 
dragon cartoon, Air images a 
earth, Madonna quantized to 

~ges of varying sc 
,, an xray skull i 
~f a truck, man 
a few gray level 

Eenes. Moving left to right starting at the top, 
mage, bethl, contact, crowd, dilts, a synthetic 
(gih), girl2, jo, john, a satellite image of the 
Is, a text scan, and a still life (im16). 



section A to form a histogram. Since the full range of thresholds is not necessary, we first 

restricted the valid range of thresholds and then divided it into 256 equa1l:y spaced possible 

thresholds, for greater accuracy. 

Five subjects with experience in edge detection and computer vision were shown two black 

and white 5.4" x 5.4" images on the computer screen-the original image and the thresholded 

image. For each of the 16 images, the subjects were asked to raise or lower the threshold 

using the mouse buttons so that the thresholded image matched their idea of a "best" edge 

for the original image. 

Figure 5: The thresholded images using the best algorithm. 

Each of the algorithms of Section I11 were run on the histograms, giving a set of computed 

thresholds. We used the area under the normalized histogram between each computed thresh- 

old and the average subjected threshold as the metric for comparing the performance of the 

different algorithms. Table 1 shows the mean and variance of the area differences for the 



Mean 
0.0611 
0.0618 
0.0633 
0.0741 
0.0836 
0.0963 
0.0967 
0.1016 
0.1084 
0.1166 
0.1219 
0.1229 
0.1234 
0.1324 
0.1362 
0.1365 

% Est. 
1 
4 
4 
3 
4 
1 
4 
3 
4 
1 
4 
2 
1 
4 
4 
3 

Var. 
0.0020 
0.0019 
0.0010 

, 0.0037 
0.0020 
0.0036 
0.0038 
0.0051 
0.0044 
0.0061 
0.0024 
0.0045 
0.0161 
0.0063 
0.0066 
0.0074 

a-,D 
4 
2 
4 
4 
1 
2 
2 
2 
4 
4 
1 
5 
4 
4 
2 
4 

1 : I 0.1637 1 0.0124 1 3 1 2 1 1 1 
0.1651 0.0073 global glolbal global 

Thr. 
2 
2 
2 
2 
2 
2 
3 
2 
3 
1 
1 
2 
3 
1 

Table 1: The mean and variance of the average distance (area) between the computed and 
subjective thresholds, averaged over the 16 images. 

I Al~ha-Beta Estimation 11 I Percentage Estimation 

Mean 
0.1381 
0.1387 
0.1387 
0.1399 
0.1520 
0.1522 
0.1522 
0.1562 
0.1577 
0.1577 
0.1606 

0.1620 
0.1621 

Var. 
0.0064 
0.0064 
0.0068 
0.0067 
0.0067 
0.0067 
0.0076 
0.0167 
0.0131 
0.0131 
0.0081 

0.16180.0368 
0.0370 
0.0042 

I I1 1 " 

I a-O 
1 
2 
3 
4 
5 

Table 2: A list of the algorithms presented in Table I 

a - ,8 
1 
1 
2 
2 
1 
1 
2 
4 
3 
3 
5 
2 
2 
1 

I % Est. 

3 

Method of Moments 
Max Likelihood Est. 
Powell Descent (dl)  
Powell Descent (d2) 
Powell Descent (d3) 

p-tile 

% Est. 
3 
1 
1 
3 
3 
1 
2 
3 
1 
3 
2 
;3 
1 
:2 

Thr. 
1 
1 
1 
1 
2 
2 
2 
3 
1 
1 
1 
3 
3 
2 

1 
2 
3 
4 

Golden Section (dl)  
Golden Section (d2) 
Golden Section (d3) 
Bernoulli EM 



Figure 6: Images thresholded at 27, 39, 57, and 128 gradient units for subjective decisions. 
The computed threshold is the second image. 

best algorithms. Converting the thresholds into percentages of non-edge pixels, the average 

of the 5 best algorithms and average subjective edge decisions are graphed in Figure 7. As 

an example of the edges, three of the researchers chose the thresholds of 27, 57, and 128 

for the im16 image shown in Figure 6. The best algorithm selected the second image of the 

sequence with a threshold of 39. The thresholds for all the images with the best algorithm 

is shown in Figure 5. 

Table 3: The mean and variance of the area between the subjective and computed thresholds 
of the 5 different alpha-beta estimation methods. 

1 Percent Estimation Method I Mean I Variance I 

Alpha-Beta Estimation Method 

Table 4: The mean and variance of the area between the subjective and computed thresholds 
of the 4 different percent age estimation methods. 

Mean 
0.210 
0.142 
0.257 
0.262 
0.313 

1 
2 
3 
4 
5 

For comparing the algorithms, Table 1 demonstrates that many of the a1go:rithms have very 

similar performance over the different images. To better view the data, we have grouped 

the data by averaging the values for every alpha-beta estimation, percent estimation, and 

threshold technique in Tables 3, 4, and 5, respectively. 

Variance 
0.025 
0.013 
0.026 
0.084 
0.042 

Method of Moments 
Maximum Likelihood Est. 
Powell Descent with d l  
Powell Descent with d2 
Powell Descent with d3 
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Figure 7: The percent of non-edge pixels in each of the 16 images as deltermined by the 
average of the 5 researchers (solid lines) and the average of the 5 best algorithms (dotted 
lines). 

I Threshold I Mean I Variance I 
I 1 1 1 MLE 

I I 

1 0.221 ( 0.037 
1 2 1 MAP ( 0.187 1 0.029 1 
3 1 p-tile 1 0.302 1 0.051 1 

Table 5: The mean and variance of the area between the subjective and computed thresholds 
of the 3 different threshold estimation methods. 



The first two alpha-beta algorithms of Table 3 employ statistical methods to determine the 

parameters, but the last three use the Powell Descent fitting technique. Although the results 

in terms of accuracy and robustness are fairly similar, the statistical methodls are many times 

faster than their counterparts. Consequently, the maximum likelihood estiination technique 

is the preferred method in terms of both speed and accuracy. 

In Table 4, the Bernoulli EM algorithm was the most accurate method for percent estimation 

and was also much faster than the Golden Section counterparts. The reasoning is similar to 

the statistical versus the fitting methods of the alpha-beta algorithms. 

For Table 5, the percentage estimation step for the thresholding algorithms was not very 

accurate as expected, since it does not use all the model information to fi.nd an optimized 

threshold, but rather only one parameter of the model. The MAP thresholtl proved the best 

method, but the MLE was also effective. 

E Robustness to Noise 

The previous section demonstrated that the 5-parameter model and corresponding alge 

rithms were robust over a wide range of images. This experiment tests the robustness of the 

algorithms over different noise levels applied to a synthetic image. Using the top algorithms 

from Table 1, we added N(0, a )  noise to ten copies of a synthetic image with a2 ranging from 

1.0 to 4096.0, in multiples of 2.0. Four examples of the noisy images are shown in Figure 8. 

We then calculated the threshold for each image at each noise level. 

To analyze the data, we wanted to calculate the misclassification errors associated with the 

average threshold choices at each noise level. Since the gradient values increiase with the noise 

level (Figure 10)) the thresholds must also increase accordingly for the model to work. For 

this evaluation, we assumed the a2 = 1.0 case corresponded to the perfect c;lassification. We 

then calculated the Type I, Type 11, and total errors as a function of the noise variance which 

are plotted in Figures 9, respectively. As can be seen from the graph, the total classification 

error is low (< .l) until u2 = 512 which corresponds to a SNR as low as 3.0. The reason 



Figure 8: Synthetic images with added white Gaussian zero-mean noise of variances 1.0, 
128.0, 1024.0, and 4096.0. 

Noise Variance 

Figure 9: Type I, Type 11, and overall misclassification errors for different noise levels using 
the best algorithm. 



that the total error is less than the Type I1 error is that the total error represents a weighted 

sum of the errors. The relatively small error over the low SNR indicates that the algorithm 

is effective at identifying a threshold. At high noise levels, the 3 x 3 Sobel is much less 

effective as an edge detection operator which degrades the performance of any thresholding 

technique. As an interesting note, the Type I1 error was significantly higher than the Type 

I error. This implies that the researchers preferred more false positives tha~n false negatives 

in estimating their thresholds. 

V Conclusion 

In object recognition systems, choosing a threshold to accurately find edge pixels in an image 

at the lowest level can lead to significant computational savings at higher levels. Since most 

automatic thresholding techniques do not apply to the specific problem of edge detection, 

heuristic approaches are commonly used in research. We have developed ;a model of edges 

that strongly agrees with the subjective perception of edges consisting of the weighted sum 

of two gamma densities to represent edge and non-edge pixels. The modell proved effective 

over a wide range of images and performed well in the presence of noise with a SNR as low 

as 3.0. 

After testing a number of the algorithms to calculate the thresholds based on the model, 

we recommend both the Powell descent with d2 distance measure and the maximum likeli- 

hood estimate in conjunction with the Bernoulli EM and MAP threshold. 'These algorithms 

performed the best in terms of accuracy and computational speed for our :set of images. 

This paper has discussed the use of automatic threshold determination over the entire image. 

Many applications however require local rather than global thresholds. Our method can be 

applied directly to such applications without modifying the algorithm by slimply taking the 

gradient histogram data from selected regions of the image instead of the whole image. As 

mentioned earlier, the model is also generalizable to operators other than ithe Sobel. 
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Figure 10: Histograms for the synthetic image under three different added noise variances. 
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