
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

12-1-2005

A language and compiler for enabling automatic
and parallel chemistry simulations
Jun Cao

Ayush Goyal

Sam P. Midkiff

Y. Charlie Hu

James M. Caruthers

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Cao, Jun ; Goyal, Ayush ; Midkiff, Sam P. ; Hu, Y. Charlie ; and Caruthers, James M. , "A language and compiler for enabling automatic
and parallel chemistry simulations" (2005). ECE Technical Reports. Paper 71.
http://docs.lib.purdue.edu/ecetr/71

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4946813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages

A LANGUAGE AND COMPILER FOR
ENABLING AUTOMATIC AND
PARALLEL CHEMISTRY
SIMULATIONS

JUN CAO
AYUSH GOYAL
SAM P. MIDKIFF
Y. CHARLIE HU
JAMES M. CARUTHERS

TR-ECE – 05-18
DECEMBER 2005

SCHOOL OF ELECTRICAL
 AND COMPUTER ENGINEERING
PURDUE UNIVERSITY
WEST LAFAYETTE, IN 47907-2035

A language and compiler for enabling automatic and parallel

chemistry simulations

Jun Cao, Ayush Goyal, Sam P. Midkiff, Y. Charlie Hu, and James M. Caruthers

Purdue University, West Lafayette, IN 47907

{caoj, ayush, smidkiff, ychu, caruther}@purdue.edu

Abstract

The modeling of chemical reactions, and the ability to predict the properties of the end-
products of a chemical reaction, is of extreme commercial importance. The properties of many
compounds have complex dependencies on a variety of additives, in ways that are not well
understood. This paper describes a domain specific language, compiler and parallel runtime
system that allows chemists to investigate, and understand how, different additives affect these
properties. In particular, our system allows the inputs and types of reactions that are possible
to be specified in a high level language. It then produces a set of ordinary differential equations
(ODEs) that when combined with boundary conditions from quantum chemistry are processed
using parallel templates and off-the-shelf solvers to simulate the reaction. This paper describes
the complete system, including optimizations to reduce the amount of redundant computation
in the ODEs, the parallel templates for simulating the reaction, and experimental data showing
the effectiveness of these. Our system saves the chemist from manually developing, testing and
debugging systems of hundreds or thousands of ODEs that require weeks or months to develop.

1 Introduction

The modeling of chemical reactions, and the ability to predict the properties of the end-products of
a chemical reaction, is of extreme commercial importance. Unfortunately, for many economically
important compounds, no “closed form” solution of the outcome of a reaction is possible. A
common experimental paradigm is for the chemist to formulate a compound, create a model for the
underlying chemistry, and then see how well the properties predicted by the model and properties of
the formulated compound match. The model, based on quantum chemistry, is manually developed
and consists of large complex systems of ordinary differential equations (ODEs). These systems
can have hundreds or thousands of differential equations and take days to months to develop and
debug. Each iteration over the “model development, ODE development, result evaluation” is labor
intensive and fraught with error. As well, simulating the reaction by solving the system of ODEs
is computationally intensive.

This paper describes a compiler for a chemical reaction language and a runtime that allows
researchers to automate the labor-intensive and error prone ODE development phase of the cycle,
and to automatically solve the resulting system in parallel, allowing the cycle time to be reduced to
a matter of hours. Figure 1 shows this workflow. In particular the expression of a reaction model
as a system of ODEs, and the linear optimization of the model to determine its correlation with
experimental results, has been automated by our system. Our compiler and runtime targets general

chemical reactions, however in our group it is being used primarily to simulate the chemistry of
rubber compounds.

Reaction

Model

Optimization

Statistical

Analysis

Experiments

Figure 1: The work flow for understanding the chemistry behind compounds

Figure 2: a Reaction Modeling Suite

Our tool set, the Reaction Modeling Suite, is shown in Figure 2. The solid-line boxes are
the components described in this paper. The first component is the Chemistry Frontend, which
accepts a high-level language specification of the chemical reactions and from these automatically
generates the reaction network that describes all possible reactions. Each molecule specified can
have variants that arise because many molecules differ from one another only in the lengths of, e.g.,
chains of sulfur atoms. Our input language allows all these variants to be expressed in a compact
form which is then expanded by the chemistry frontend. The input language is also used to specify
the reactions among all of the input compounds.

The second component is the Equation Generator, which accepts the reaction network created
by the Chemistry Frontend and generates ODEs to describe the reactions involving each variant
of the molecules. These ODEs contain kinetic rate constants which are terms that describe the
relative rates at which different reactions occur, and are set by the chemist, aided by Gaussian
’03 Quantum Chemistry Package [2]. These rate constants serve as constraints on the possible
boundary conditions of the ODEs. The resulting ODEs contain many common terms which lead to

2

significant amounts of redundant computation. The Algebraic Optimizer removes these redundant
calculations in the ODEs, and increases the performance of the following computational stages.

The fourth component is parallel template and library support. This component uses non-linear
optimization of the ODEs’ solutions, by varying the rate constants, to find the closest match of the
simulated model to experimental results. The closeness of this match serves as the quality metric
for the accuracy of the model.

Many compounds, including rubbers, have complex sets of reactions that occur at different
rates and that lead to the final, economically useful end product. By adjusting the ratios and
types of additives the properties of the end product can be dramatically changed. Unfortunately,
the chemistry of these compounds is not yet well enough understood to allow properties to be
predicted based on the knowledge of the inputs to the reaction. Our compiler is a crucial research
tool for allowing chemists to rapidly gain deep insights into the underlying chemical processes by
automating the work of generating and solving the system of ODEs representing the reaction. In
doing so, it reduces a task that formerly took hundreds to thousands of hours of the time of a
skilled chemist to one that can now be done in hours.

This paper makes the following technical contributions:

• We describe our system for automating the testing of chemistry models, and do so in terms
understandable to computer scientists;

• We describe scalar algebraic optimizations developed and implemented for our system that
remove redundant computations from the ODEs produced by our system;

• We describe the parallel templates, developed and implemented for our system, for quickly
finding the optimized ODE solutions;

• We present experimental data, from a research project studying the vulcanization of rubber,
that shows the effectiveness of our domain specific compiler, the sequential optimizations,
and the parallel templates.

The rest of the paper is organized as follows. Section 2 describes the input language and the
generation of all possible intermediate compounds given the input compounds and allowed reactions.
Section 3 describes the generation of ODEs to describe these reactions, and the optimization of
these ODEs to remove redundant computation. Section 4 describes the parallel templates and
library support that allow the efficient computation of the optimized ODEs’ solutions. Section 5
gives our experimental results. Finally, Sections 6 and 7 describe related work and conclusions.

2 The Chemistry Frontend

The chemistry frontend parses a program written in a language that describes sets of molecules
and possible reactions involving those molecules. The input program for the compiler provides
descriptions of molecules that are inputs to the chemical reactions, and how these compounds can
interact. In this section we will describe, using examples, the language and the actions taken by
the frontend on programs written in this language.

In Figure 3 different oxygen molecules and their reactions are described, as well as dissociation
reactions and combination reactions. The first section describes two input molecules, which have
been labeled Per and Hydro. Atoms are denoted by their atomic symbol in brackets, e.g. “[Au]”

3

for gold. For the organic subset of the elements, C, N, O, P, S, Br, Cl and I, the brackets may
be omitted. The first molecule described is the molecule H − O − O − H (two hydrogens and two
oxygens). Note that hydrogen atoms are not specified, and are assumed to exist wherever necessary
to fill electron holes. The second molecule described is H − O∗ – a hydroxide radical1. That this
is a radical is indicated by the “*” subscript on the oxygen symbol (“O”). The sequence “1,1”
says that there is exactly one of the atom in position 1 – by changing this to, e.g. “5,1”, we could
denote a chain of from 1 to 5 of the atom that is given in first position. This allows “families” of
molecules to be compactly expressed. The notation also allows different bonds (e.g. single, double,
and aromatic) and rings to be described. The notation is general enough to allow any chemical
compound to be described.

The dissociation reaction description tells how the molecules can be broken down during the
chemical reaction. The dissociation reaction in Figure 3 says that the “oo” (really H −O−O−H)
molecule Per can be broken into two “H − O∗” radicals. The phrase require r1 reactant(Per))
says that a Per molecule must be used, and will be referred to as r1. The phrase (label-site a1
atom(find neutral O belong-to r1)) identifies a neutral (non-radical) oxygen, and labels it a1. The
phrase ((disconnect a1 a1) says that the bond between two of these neutral oxygens can be broken.
Finally, the phrase (assign rateconstant(Kd)))} says that the rate at which the reaction occurs will
be governed by the rate constant K, and that this is a dissociation (d) reaction.

Similarly, rules for combining molecules can be specified, as seen in lines 11-15. Essentially, a
reaction between a methyl and an ethyl molecule is specified (lines 10 and 11), with the radical
carbon in the methyl molecule (line 12) and the radical carbon in the ethyl molecule (line 13)
binding to one another (line 14.) The bonding of these two forms propane, but that propane is
the end result of the reaction is not stated explicitly: it is the task of the chemistry frontend
to determine this given the list of all possible molecules (for the reactions under investigation)
expressed by the input. Line 15 shows the rate reaction constant for formation of this bond is K,
and the “b” indicates that this is the constant for a combination (or bond forming) reaction.

Other reactions can be specified in the elided code (indicated by the . . .). For example a reaction
making use of the ”H −O∗” radicals formed in lines 6-9 have been elided. In general, rules can be
generated for six actions:

1. disconnect two atoms;

2. connect two atoms;

3. decrease the bond order between two atoms;

4. increase the bond order between two atoms;

5. remove a hydrogen atom;

6. add hydrogen atoms.

As well, certain actions and forms can be forbidden. Phrases also exist to locally assign identifiers
to different atoms within a molecule to allow them to be referred to in later rules. Internally,
molecules are stored and manipulated using the SMILES Java classes [1] – a symbolic chemistry
manipulation library.

1Intuitively, a radical is a charged molecule, i.e. a molecule with empty electron positions in its outer shell.

4

/* molecule representation */

1. molecule input temp1.input(“oo”,“Per”,1,1,molecule table);

2. molecule input temp1.input(“o*”,“Hydro”,1,1,molecule table);

3. molecule input temp1.input(“c*”,“Methyl”,1,1,molecule table);

4. molecule input temp1.input(“cc*”,“Ethyl”,1,1,molecule table);

5. molecule input temp1.input(“ccc”,“Propane”,1,1,molecule table);

/* dissociation reaction */

6. {(require r1 reactant(Per))

7. (label-site a1 atom(find neutral O belong-to r1))

8. ((disconnect a1 a1)

9. (assign rateconstant(Kd)))}

. . .

/* combination reaction */

10. {(require r1 reactant(Methyl))

11. (require r2 reactant(Ethyl))

12. (label-site a1 atom(find radical C belong-to r1))

13. (label-site a2 atom(find radical C belong-to r2))

14. ((connect a1 a1)

15. (assign rateconstant(Kb)))}

. . .

Figure 3: The input to the chemistry frontend. Line numbers are not part of the input

1. −Per + Hydro + Hydro\\ [KdPer] ;
2. −Methyl − Ethyl + Propane\\ [KbMethylEthyl] ;

. . .

Figure 4: The intermediate equations (i.e. the reaction network) generated by the chemistry
frontend

5

1. dper/dt = −KdPer ∗ Per;
2. dHydro/dt = +KdPer ∗ Per;
3. dHydro/dt = +KdPer ∗ Per;
4. dMethyl/dt = −KbMethyl ∗ Ethyl ∗ Methyl;
5. dEthyl/dt = −KbMethyl ∗ Ethyl ∗ Methyl;
6. dPropane/dt = +KbMethyl ∗ Ethyl ∗ Methyl;

. . .

Figure 5: The initial set of ODEs produced from the reaction network of Figure 4
.

Lines 1 and 2 of Figure 4 show the specified reactions expressed as equations. These equations
will be used by the Equation Generator of the compiler to form the system of ODEs for the reaction.
Each equation has a negative term corresponding to the molecules that are consumed in the given
reaction and a positive term for the produced molecules. Thus, in equation 2, methyl and ethyl are
consumed and propane is produced. The rate constant for the reaction is also specified. Because
the rate constant names are overloaded (i.e. in both the combining and dissociation reactions of
Figure 3 the reaction constant is named K) they are disambiguated by appending both the type of
the reaction (b or d) and the required reactants (Methyl and Ethyl in the case of the combining
reaction) to the rate constant name.

3 Equation Generator and Algebraic Optimizations

The output from the chemistry frontend is an exhaustive listing of all possible chemical reactions.
The equation generator transforms these reactions into ODEs. The resulting ODEs have a large
amount of redundancy – as we see in the experimental results section up to 19% of the single node
running time can be eliminated by removing these redundancies. In this section we describe the
optimizations performed by our system’s algebraic optimizer to remove these redundancies.

3.1 Equation Generator

The set of equations (or reaction network) produced by the chemistry frontend, and describing all
chemical reactions possible with the original input, is the input to the equation generator. The
equation generator transforms these chemical reactions into ODEs, and groups ODEs belonging to
the identical molecules together. We will now explain this process by means of an example.

The equation generator transforms the chemical reactions described in Figure 4 into the follow-
ing set of ODEs found in Figure 5.

From the first equation of Figure 4 we get equations 1, 2 and 3 of Figure 5. These equations
are formed as follows. For each reaction specified in the input, there are a set of equations in
the reaction network. Lines 6-9 and 10-15 in Figure 3 specify two reactions, and lines 1 and 2 of
Figure 4 are the equations for each reaction, respectively. Each reaction specifies a reactant in the
first lines: (Per and Methyl, Ethyl) respectively for the two reactions. The right hand side of the
equation for dm/dt , where m is some molecule m involved in the reaction, is the product of every
reactant term in the equation for the reaction, times the rate constant for the reaction. The sign
of the right hand side terms comes from the sign in the reaction network equation. Thus equation

6

1. dPer/dt = −KdPer ∗ Per;
2. dHydro/dt = +KdPer ∗ Per + KdPer ∗ Per;
3. dMethyl/dt = −KbMethyl ∗ Ethyl ∗ Methyl;
4. dEthyl/dt = −KbMethyl ∗ Ethyl ∗ Methyl;
5. dPropane/dt = +KbMethyl ∗ Ethyl ∗ Methyl;

. . .

Figure 6: The final set of ODEs produced from the equations of Figure 5
.

struct equation item {

int number reactant; // is 1, for the 1 reactant Per

string symbol; // is “-”, for the leading term

double rate constant coeff; // is 1, the coefficient of KdPer

string rate constant; // is KdPer

string reactant[MAX NUMBER REACTANT]; // is [“Per”], the reactant name(s)

struct equation item *prenode; // ptr to the previous term

struct equation item *sucnode; // ptr to the next term

};
struct equation item *equation table[number species];

Figure 7: The data structure that holds a term in the ODE description

1 in Figure 4 gives rise to equations with left hand sides dPer/dt and dHydro/dt, with right hand
sides that are the product of all reactions involved in equation 1. These equations are shown in
lines 1–3 of Figure 5. Note that because Hydro appears twice in the reaction network equation,
there are two equations with it on the left hand side in Figure 5.

After these equations are formed, the final ODEs are formed by summing all of the right hand
sides of equations with the same left hand side. The resulting ODEs are shown in Figure 6.

3.2 Equation Simplification

The equation generator maintains an equation table that stores all of the ODEs that have been
created. Every entry in this table represents one molecule, and consists of a doubly linked list
of nodes, each representing a term, as shown in Figure 7. We describe the value of the fields for
the term “−KdPer ∗ Per” from either the first, second or third equation in Figure 5. This table
facilitates the four optimizations described next by keeping, for each term in the equation the
molecule name, the rate constant and its coefficient and the reactants.

The first optimization is to simplify the equations, in particular this optimization changes the
equation:

dA

dt
= 2 ∗ k1 ∗ B ∗ C + ... + 3 ∗ k1 ∗ B ∗ C + ...

7

into
dA

dt
= 5 ∗ k1 ∗ B ∗ C + ...

After this optimization, each product in the sum-of-products representation of each molecule
differs in at least one non-constant term from every other product. The transformation is performed
on-the-fly as the equations are generated: when a new term is added to the linked list representing
the molecule, it is combined with other terms where possible.

3.3 Distributative Optimization

The second optimization is the distributative optimization. This optimization transforms the equa-
tion from:

dA

dt
= k1 ∗ B ∗ C + k1 ∗ B ∗ D + k1 ∗ E ∗ F (1)

into

dA

dt
= k1 ∗ (B ∗ C + B ∗ D + E ∗ F) (2)

and then into

dA

dt
= k1 ∗ (B ∗ (C + D) + E ∗ F) (3)

Before the optimization, there are six multiplications and two additions in the equation, while
afterwards there are only three multiplications and two additions. To perform this optimization on
the equation:

k ∗ Π1 + k ∗ Π2 + . . . + k ∗ Πn + πn+1 + . . . + πm

the algorithm first finds the term k that appears in the most products, where k may itself be
composed of several terms. In the above, terms πi, n + 1 ≤ i ≤ m do not contain k. Rewriting
πi, n + 1 ≤ i ≤ m as Γ, the expression can be rewritten as

k ∗ (Π1 + Π2 + . . . + Πn) + Γ

which generates the intermediate result in Equation 2 above. The algorithm is then applied to k,
(Π1 + Π2 + . . . + Πn) and Γ (which generates the result in Equation 3 above). The algorithm is
applied to each created sub-term until no further optimization is possible.

3.4 Common Subexpression Elimination

We perform two specialized common subexpression elimination algorithms. After the distributative
optimization, there are many common subexpressions both within and across equations. To remove
this redundant computation we implement the third optimization, a form of common subexpression
elimination (CSE). Our first CSE optimization changes the equations from:

dA

dt
= ... + (A + B + C + D) ∗ k1 ∗ E + ...

8

dB

dt
= ... + (A + B + C + D) ∗ k2 ∗ F + ...

into:
temp[0] = A + B + C;

dA

dt
= ... + temp[0] ∗ k1 ∗ E + ...

dB

dt
= ... + temp[0] ∗ k2 ∗ F + ...

After performing the first CSE optimization, there are still redundant expressions in the right
hand sides of the temporary variable assignments. To eliminate these we perform another CSE
optimization, e.g. the equations:

temp[4] = A + B + C + D;

temp[6] = A + B + C + D + F ;

are transformed into
temp[4] = A + B + C + D;

temp[6] = temp[4] + F ;

The optimization proceeds as follows. First, the sub-expressions that form equations are stored
in a hash table keyed on the expression length. The terms of each temporary are stored in a canon-
ical lexicographical order – this allows an easy matching of expressions. The algorithm considers
in turn each el, the longest sub-expression not yet processed (or one of the longest, if there are
several sub-expressions whose length is equal to l.) It then examines all shorter sub-expressions ei

of length 0 < i < l looking for a sub-expression that matches the leading i terms of el. The search
is done from longest to shortest strings ei and terminates when the first such string is found. The
match is facilitated by the canonical order imposed on the terms making up each temporary. If
such an expression is found, el is rewritten in terms of ei and the remaining terms of el, as shown in
the example above. Because an shared common sub-expression is always shorter than the (original
length) of the expression that reuses its value, it is sufficient to emit the expressions in length order
to ensure that all data dependences are satisfied.

Our CSE algorithm differs from the standard algorithms in the literature (e.g. [6]) in several
ways. First, because we control the generation of our code, we know that uses of variables are not
aliased, are only written once (per iteration of the ODE solver loop), and because the values are
floating point numbers, pairs of variables are less likely to have the same value than are pairs of
integer variables. Therefore, we can use the name of a variable to approximate its value, simplifying
our algorithm. In the final code for the system of ODEs the left and right hand sides of the
ODEs could appear to be aliased to the target C compiler, preventing the target C compiler from
optimizing these expressions. Finally, our CSE optimization exploits the structure of the code
in optimizing expressions. With any CSE optimization it is necessary to choose which, of many
possible expressions, to optimize. For example, given the expressions “a+b+c” and “a+c+d” and
“b+c+e”, the compiler must choose whether to make the CSEs “a+b”, “a+c”, “b+c”, or some
combination. maintaining all combinations of these sub-expressions to determine the candidates
for the CSE optimization is expensive, particularly if there are thousands of expressions, and tens
or hundreds of thousands of sub-expressions, as in our system. By exploiting the structure of our

9

computation we can efficiently search the space of expressions that are likely to be common, and
that have a high payoff when recognized as common.

4 Parallel Templates and Library Support

The optimized ordinary differential equations are passed to the ODE Solver and non-linear opti-
mizer routines where the system solves for the kinetic parameters. Before passing the ODEs to
the runtime, it is necessary for the chemist using the system to set bounds on the different kinetic
parameters. These bounds are used to constrain the possible solutions found by the non-linear
solver. The ODE solver is used to find the solutions to the set of ODEs, and the resulting so-
lution is passed to the non-linear solver to find the tightest fit to the experimental results. The
non-linear solver manipulates the relative ratios of the kinetic parameters based on the model and
experimental data. Using the model and experimental data the number of kinetic parameters can
also be reduced, e.g. it is often the case that a kinetic parameter ki is expressed as a ratio of other
kinetic parameters, thus ki can be written in terms of the other parameters. If a tight correlation
exists between the runtime result and the experimental results, the model expressed in the original
equations and kinetic bounds is assumed to be a good estimator of the chemical reactions for the
set of inputs under investigation.

4.1 The ODE Solver

For our ODE solver we use the IMSL libraries for AIX. The IMSL C library provides two ODE
solvers: imsl f ode runge kutta() and imsl f ode adams gear(). Runge-Kutta solves an initial
value problem for ordinary differential equations using the Runge Kutta Verner fifth order and
sixth order method. This function is efficient for non-stiff systems. Adams-Gear solves a stiff
initial value problem for ordinary differential equations. Because chemical reactions proceed to
equilibrium, where molecules and their variants effectively complete their reactions in different
epochs, the differential equations modeling the behavior of such systems are stiff. Therefore we use
the Adams-Gear solver.

4.2 The Non-linear Optimizer

The IMSL C library also provides constrained minimization functions. We use the non-linear least
squares with simple variable bounds algorithm (imsl f bounded least squares()). This function
uses a modified Levenberg-Marquardt method and an active set strategy to solve the non-linear
least squares problems subject to simple bounds on the variables. Figure 8 shows the set-up of
arguments and the call to this routine used in our system. The lower bounds and upper bounds and
initial values for the kinetic rates are set, and the optimization function is called to optimize the
problem as we describe next. The values returned by the non-linear optimizer will be the optimized
values of the kinetic rate constants: they will both be within the constraints set by the chemist,
and the values that provide the closest match to the experimental results.

4.3 Objective Function

The objective function, shown in Figure 10, is the input to the optimization function, and allows the
optimality, or closeness, of the ODE solution for a set of kinetic values to the experimental result to

10

int main(int argc, char *argv[]) {
/* initialize */
set xlb[] lower bounds of kinetic parameters;
set xub[] upper bounds of kinetic parameters;
set xguess[] initial guess values of kinetic parameters;

/* call optimization */
optimized results = imsl f bounded least squares(void objective fcn(),int m,

int n, float xlb[], float xub[], float xguess[] ...);
return 0;

}

Figure 8: the Non-linear Optimization Routine

be determined. There are three major inputs to the optimization function. The first is the kinetic
rate constants mentioned above. The second is the set of ODEs generated by the compiler. The
third is a set of files that contain experimental data. Each file contains of more than 3000 records
of the form <ti, property value>, where ti is a time step and property value is a measure of
the property we desire to learn how to predict. The ODE solver function is called to calculate the
simulated property values. The difference between simulated data values and experimental data
values is stored into error vector[]. Multiple files are used at runtime to provide the results of
multiple experiments. Each file produces a local error vector[], with a sum reduction being done
overall of these vectors to produce a global error vector[].

4.4 Parallel Computation of the Optimized Solution

Because of the complexity of these reactions (real systems have thousands of equations), solving
the ODEs and optimizing the kinetic parameters is computationally expensive. As seen above,
the objective function opens multiple experimental data files and reads them one by one. The
solver consumes most of the computation time in the system – 99% of the time in a 16 data file
run, and a larger percentage with more files. Because our goal is to allow a chemist to quickly
try out many different models (e.g. kinetic rate constant bounds) for a calculation, it is essen-
tial for the utility of the system that it provides a solution as quickly as possible. We therefore
parallelized our system using MPI, as shown in Figures 9 and 10. The number of concurrent
processes is specified when the program begins, and remains constant throughout the execution
of the program. Each process potentially opens several different data files – the data files are
“block distributed” across the processors (one or more whole files constituting a block) – and com-
putes the error (of the ODE solution relative to the experimental data solution) and places it into
error vector[]. Next, MPI AllReduce() is used to reduce the errors across the different data files
into global error vector[], which is then sent to every process.

5 Experimental Results

5.1 Rubber Chemistry

The system is being actively used within our group to model the vulcanization process of rub-
ber. Therefore, the input for our experiments is the kinetic model for the vulcanization process
implemented for the experiments models the vulcanization of natural rubber by the benzothia-
zolesulfenamide class of accelerators. In the final ODEs for this model, there are a total of 148

11

int main(int argc, char *argv[]) {

MPI Init (&argc, &argv);

MPI Comm rank (MPI COMM WORLD, &id);

MPI Comm size (MPI COMM WORLD, &p);

/* initialize */

set xlb[] lower bounds of kinetic parameters;

set xub[] upper bounds of kinetic parameters;

set xguess[] initial guess values of kinetic parameters;

/* call optimization */

optimized results = imsl f bounded least squares(void objective fcn(),int m,

int n, float xlb[], float xub[], float xguess[] ...);

return 0;

}

Figure 9: the Parallel Non-linear Optimization Routine Using MPI

molecules, and 17 distinct kinetic parameters. Experimental data is used to determine the kinetic
parameters and validate the predictions of the reaction model. Measurements of different rubber
formulations have been employed to determine the time evolution of the concentration of crosslinks
– strands of sulfur that link rubber molecules affecting the stiffness of the rubber – for different
formulations cured at different temperatures. We tested this reaction model using 16 experimental
data files, which contain the time evolution of the crosslink concentrations for different formulations
at the same temperature. The total execution time of the runtime phase is recorded to evaluate
the performance.

A sample of the generated ODEs for this reaction can be found in Appendix A. By automatically
generating these ODEs, our compiler now does in a few minutes what used to take graduate students
days to accomplish.

5.2 Experiment Environment

We performed our experiments on a 320 processor IBM RISC System/6000 POWER Parallel System
(SP) with 375 mhz processors located at Purdue University. The 320 processors are divided among
64 thin nodes (quad-processor systems with 4.5 GB of memory) and 4 high nodes (16-processor
systems with 64 GB of memory). Both Ethernet and IBM’s proprietary -switch connect the nodes.
For our experiments we used the proprietary IBM switch and thin nodes, and used one processor
per node.

5.3 Results of Algebraic Optimization

We first measure the single node performance of our compiler optimizations using one processor of
one node on the IBM/SP. The results shown in Table 1 demonstrate the performance improvements
using the different optimization combination. Opt I is the combination optimization, Opt II is the

12

Distributative optimization, Opt III is the first CSE optimization and Opt IV is the second CSE
optimization. These optimizations reduce the single-node execution time by almost 19%. As can
be seen, the total of the four optimizations reduces the number of multiplies to 23% of the original
number, and reduces the number of add-ops to 43% of the original number.

optimization Execution perf. total total
combination Time(seconds) gain (%) mulops (*) add-ops (+,-)

without optimization 1394.50804 1 2668 1769
Opt I 1241.938752 1.123 2289 1444
Opt I+II 1224.896532 1.138 629 1606
Opt I+II+III 1204.987973 1.157 629 1379
Opt I+II+III+IV 1174.855434 1.187 629 761

Table 1: Results in IBM/SP Using Different Optimization Combination

5.4 Results of Parallel Computation Using MPI

Table 2 demonstrates the performance using different number of nodes. Only one processor is used
in each node. As the number of nodes increases, the execution time decreases, and the speedup
increases. The speedup does not increases linearly, but slows down gradually, as more nodes are
in use. The reason for this is that there is a load imbalance caused by different amounts of work
involved in processing each file. We are currently investigating ways to distribute this work more
evenly across the processors.

CPU Combination Total Execution Time(seconds) Speedup

1 node 1224.896532 1
2 nodes 613.341418 1.997
4 nodes 314.494057 3.895
8 nodes 172.893382 7.085
16 nodes 95.802051 12.786

Table 2: Results in IBM/SP Using MPI

6 Related Work

With improvements in computational power, interest in exploiting computers to design new mate-
rials increased dramatically. Venkat et al.[5] [4] applied a reaction modeling suite to material design
applications in catalysis, polymers and fuel additives. They employed hybrid optimization heuristic
techniques like genetic algorithms to design better additives for fuels. Ghosh et al. [3] showed the
feasibility of computer aided design of rubber formulation through reaction kinetic modeling.

Prichett et al. [7] [8] [9] designed a new computer language to describe general types of reactions.
Their Reaction Descriptive Language (RDL) can be used to describe various reaction networks, with

13

reaction classes being defined by sequence of commands to locate the reaction site and manipulate
the reactants to form the product. The syntax of RDL has been adopted in our reaction compiler.

The Chemistry Development Kit (CDK) is a freely available open-source Java library for Struc-
tural Chemo- and Bioinformatics. It is now supported by more than 20 developers world-wide.
The CDK provides methods for many common tasks in molecular informatics, including 2D and
3D rendering of chemical structures, I/O routines, SMILES parsing and generation, ring searches,
isomorphism checking, structure diagram generation, etc. [1] We use the CDK library to handle
molecule manipulation operations in our chemical compiler.

7 Conclusions

Our domain specific chemistry compiler allows a chemist to generate a high-level and easily de-
bugged description of a reaction that can be quickly converted into a set of ODEs. This saves weeks
of time in creating this set of equations. Because we exploit existing library support and a parallel
template we are able to quickly provide feedback as to how well the model proposed by the chemist
matches existing experimental data, allowing the chemist to quickly explore alternate models if nec-
essary. Moreover, because of domain specific information about the structure of the computation,
efficient node code and effective parallelization is straightforward, and guarantees good parallel
performance. The framework should dramatically increase the productivity of chemists, and aid in
the rapid advances in the production of new materials.

References

[1] CDK. http://cdk.sourceforge.net/api/. 2004.

[2] Gaussian ’03 web page. http://www.gaussian.com/g03.htm, last checked Oct. 13, 2005.

[3] P. Ghosh, S. Katareand, P. Patkar, J. M. Caruthers, V. Venkatasubramanian, and K. A. Walker. Sulfur
vulcanization of natural rubber for benzothiazole accelerated formulations: From reaction mechanisms to
a rational kinetic model. Rubber Chemistry and Technology, Vol.76, No.3, pp.592-693, July-August,
2003.

[4] S. Katare, J. M. Caruthers, W. N. Delgass, and V. Venkatasubramanian. An intelligent system for
reaction kinetic modeling and catalyst design. Vol.43, No.14, pp.3484-3512, Jul 7, 2004.

[5] S. Katareand, P. Patkar, P. Ghosh, J. M. Caruthers, W. N. Delgass, and V. Venkatasubramanian. A
systematic framework for rational formulation and design of materials. Materials Design Approaches
and Experience, pp.321-332, 2001.

[6] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant computations. In
POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 12–27, New York, NY, USA, 1988. ACM Press.

[7] S.E.Prickett and M.L.Mavrovouniotis. Construction of complex reaction syatems-I. Reaction description
language. Computers chem Engng, Vol.21, No.11, pp.1219-1235, 1997.

[8] S.E.Prickett and M.L.Mavrovouniotis. Construction of complex reaction syatems-II. Molecule manipula-
tion and reaction application algorithms. Computers chem Engng, Vol.21, No.11, pp.1237-1254, 1997.

[9] S.E.Prickett and M.L.Mavrovouniotis. Construction of complex reaction syatems-II. An exam-
ple:alkylation of olefins. Computers chem Engng, Vol.21, No.11, pp.1325-1337, 1997.

14

#include <mpi.h>

object function(int m, int n, float rate constant[], float global error vector[]) {

MPI Comm rank (MPI COMM WORLD, &id);

MPI Comm size (MPI COMM WORLD, &p);

calculate the number of data files;

size = BLOCK SIZE();

for(i=0; i<size; i++) {

/*get information from experimental data files*/

open this data file;

get number of time steps from this data file;

get data values at each time steps from this data file;

/* initialize ODE solver */

imsl f ode adams gear mgr(IMSL ODE INITIALIZE, &state,...);

for(j=0; j<number timestep; j++) {

/* integrate from t to tend */

simulated value = imsl f ode adams gear(&t, tend, state,

ode fcn,...);

/*calculate the difference between two results*/

error vector[j] += function(simulated value, experimental value);

}

/* end ODE solver function*/

imsl f ode adams gear mgr(IMSL ODE RESET, &state,...);

}

MPI AllReduce(error vector, global error vector, max steps,

MPI FLOAT, MPI SUM, MPI COMM WORLD);

}

Figure 10: the Parallel Objective Function Using MPI

15

Appendix: ODEs Generated for the Rubber Chemistry Problem

Figure 11 shows a list of the ODEs automatically generated by our compiler for the experimental results.
The reaction being studied is part of a long-term study into understanding the vulcanization of rubber.

16

dS8ring/dt=-k[0]*S8ring-k[1]*S8ring*Sdirad[8]-k[2]*S8ring*BtSxrad[1]-k[2]*S8ring*BtSxrad[2]-k[2]*S8ring*BtSxrad[3]

-k[2]*S8ring*BtSxrad[4]-k[2]*S8ring*BtSxrad[5]-k[2]*S8ring*BtSxrad[6]-k[2]*S8ring*BtSxrad[7]-k[2]*S8ring*BtSxrad[8]

-k[3]*S8ring*HSxrad[1]-k[3]*S8ring*HSxrad[2]-k[3]*S8ring*y[68]-k[3]*S8ring*HSxrad[4]-k[3]*S8ring*y[70]-k[3]*S8ring*HSxrad[6]

-k[3]*S8ring*HSxrad[7]-k[3]*S8ring*y[73];

dSdirad[1]/dt=0;dSdirad[2]/dt=0;dSdirad[3]/dt=0;dSdirad[4]/dt=0;dSdirad[5]/dt=0;dSdirad[6]/dt=0;dSdirad[7]/dt=0;

dSdirad[8]/dt=+k[0]*S8ring-k[1]*S8ring*Sdirad[8]-k[4]*Sdirad[8]-k[5]*Sdirad[8]*MBT;

dSdirad[9]/dt=0;dSdirad[10]/dt=0;dSdirad[11]/dt=0;dSdirad[12]/dt=0;dSdirad[13]/dt=0;dSdirad[14]/dt=0;dSdirad[15]/dt=0;

dSdirad[16]/dt=+k[1]*S8ring*Sdirad[8]/-k[4]*Sdirad[16]-k[5]*Sdirad[16]*MBT; dMBT/dt=-k[5]*Sdirad[16]*MBT

-k[5]*Sdirad[8]*MBT+k[6]*RSxBt[3]+k[6]*RSxBt[4]+k[6]*RSxBt[5]+k[6]*RSxBt[6]+k[6]*y[106]+k[6]*y[107]+k[6]*y[108]

+k[6]*RSxBt[10]+k[6]*RSxBt[11]+k[6]*RSxBt[12]+k[6]*RSxBt[13]+k[6]*RSxBt[14]+k[6]*RSxBt[15]+k[6]*RSxBt[16];

dA[1]/dt=0;

dA[2]/dt=-k[7]*A[2]-k[8]*BtSxrad[2]*A[2]-k[8]*BtSxrad[3]*A[2]-k[8]*BtSxrad[4]*A[2]-k[8]*BtSxrad[5]*A[2]-k[8]*BtSxrad[6]*A[2]

-k[8]*BtSxrad[7]*A[2]-k[8]*BtSxrad[8]*A[2]-k[8]*BtSxrad[9]*A[2]-k[8]*BtSxrad[10]*A[2]-k[8]*BtSxrad[11]*A[2]

-k[8]*BtSxrad[12]*A[2]-k[8]*BtSxrad[13]*A[2]-k[8]*BtSxrad[14]*A[2]-k[8]*BtSxrad[15]*A[2];dA[3]/dt=-2.0*k[7]*A[3]

+k[8]*BtSxrad[2]*A[2]-k[8]*BtSxrad[2]*A[3]-k[8]*BtSxrad[3]*A[3]-k[8]*BtSxrad[4]*A[3]-k[8]*BtSxrad[5]*A[3]

-k[8]*BtSxrad[6]*A[3]-k[8]*BtSxrad[7]*A[3]-k[8]*BtSxrad[8]*A[3]-k[8]*BtSxrad[9]*A[3]-k[8]*BtSxrad[10]*A[3]

-k[8]*BtSxrad[11]*A[3]-k[8]*BtSxrad[12]*A[3]-k[8]*BtSxrad[13]*A[3]-k[8]*BtSxrad[14]*A[3];

dA[4]/dt=-2.0*k[7]*A[4]-k[7]*A[4]+k[8]*BtSxrad[2]*A[3]-k[8]*BtSxrad[2]*A[4]+k[8]*BtSxrad[3]*A[2]-k[8]*BtSxrad[3]*A[4]

-k[8]*BtSxrad[4]*A[4]-k[8]*BtSxrad[5]*A[4]-k[8]*BtSxrad[6]*A[4]-k[8]*BtSxrad[7]*A[4]-k[8]*BtSxrad[8]*A[4]

-k[8]*BtSxrad[9]*A[4]-k[8]*BtSxrad[10]*A[4]-k[8]*BtSxrad[11]*A[4]-k[8]*BtSxrad[12]*A[4]-k[8]*BtSxrad[13]*A[4];

dA[5]/dt=-2.0*k[7]*A[5]-2.0*k[7]*A[5]+k[8]*BtSxrad[2]*A[4]-k[8]*BtSxrad[2]*A[5]+k[8]*BtSxrad[3]*A[3]

-k[8]*BtSxrad[3]*A[5]+k[8]*BtSxrad[4]*A[2]-k[8]*BtSxrad[4]*A[5]-k[8]*BtSxrad[5]*A[5]-k[8]*BtSxrad[6]*A[5]

-k[8]*BtSxrad[7]*A[5]-k[8]*BtSxrad[8]*A[5]-k[8]*BtSxrad[9]*A[5]-k[8]*BtSxrad[10]*A[5]-k[8]*BtSxrad[11]*A[5]

-k[8]*BtSxrad[12]*A[5];

dA[6]/dt=-2.0*k[7]*A[6]-2.0*k[7]*A[6]-k[7]*A[6]+k[8]*BtSxrad[2]*A[5]-k[8]*BtSxrad[2]*A[6]+k[8]*BtSxrad[3]*A[4]

-k[8]*BtSxrad[3]*A[6]+k[8]*BtSxrad[4]*A[3]-k[8]*BtSxrad[4]*A[6]+k[8]*BtSxrad[5]*A[2]-k[8]*BtSxrad[5]*A[6] -k[8]*BtSxrad[6]*A[6]

-k[8]*BtSxrad[7]*A[6]-k[8]*BtSxrad[8]*A[6]-k[8]*BtSxrad[9]*A[6]-k[8]*BtSxrad[10]*A[6]-k[8]*BtSxrad[11]*A[6];

dA[7]/dt=-2.0*k[7]*A[7]-2.0*k[7]*A[7]-2.0*k[7]*A[7]+k[8]*BtSxrad[2]*A[6]-k[8]*BtSxrad[2]*A[7]+k[8]*BtSxrad[3]*A[5]

-k[8]*BtSxrad[3]*A[7]+k[8]*BtSxrad[4]*A[4]-k[8]*BtSxrad[4]*A[7]+k[8]*BtSxrad[5]*A[3]-k[8]*BtSxrad[5]*A[7]+k[8]*BtSxrad[6]*A[2]

-k[8]*BtSxrad[6]*A[7]-k[8]*BtSxrad[7]*A[7]-k[8]*BtSxrad[8]*A[7]-k[8]*BtSxrad[9]*A[7]-k[8]*BtSxrad[10]*A[7];

dA[8]/dt=-2.0*k[7]*A[8]-2.0*k[7]*A[8]-2.0*k[7]*A[8]-k[7]*A[8]+k[8]*BtSxrad[2]*A[7]-k[8]*BtSxrad[2]*A[8]+k[8]*BtSxrad[3]*A[6]

-k[8]*BtSxrad[3]*A[8]+k[8]*BtSxrad[4]*A[5]-k[8]*BtSxrad[4]*A[8]+k[8]*BtSxrad[5]*A[4]-k[8]*BtSxrad[5]*A[8]+k[8]*BtSxrad[6]*A[3]

-k[8]*BtSxrad[6]*A[8]+k[8]*BtSxrad[7]*A[2]-k[8]*BtSxrad[7]*A[8]-k[8]*BtSxrad[8]*A[8]-k[8]*BtSxrad[9]*A[8];

dA[9]/dt=-2.0*k[7]*A[9]-2.0*k[7]*A[9]-2.0*k[7]*A[9]-2.0*k[7]*A[9]+k[8]*BtSxrad[2]*A[8]-k[8]*BtSxrad[2]*A[9]

+k[8]*BtSxrad[3]*A[7]-k[8]*BtSxrad[3]*A[9]+k[8]*BtSxrad[4]*A[6]-k[8]*BtSxrad[4]*A[9]+k[8]*BtSxrad[5]*A[5]

-k[8]*BtSxrad[5]*A[9]+k[8]*BtSxrad[6]*A[4]-k[8]*BtSxrad[6]*A[9]+k[8]*BtSxrad[7]*A[3]-k[8]*BtSxrad[7]*A[9] . . .

Figure 11: Partial ODEs Generated By the Chemical Compiler

17

	Purdue University
	Purdue e-Pubs
	12-1-2005

	A language and compiler for enabling automatic and parallel chemistry simulations
	Jun Cao
	Ayush Goyal
	Sam P. Midkiff
	Y. Charlie Hu
	James M. Caruthers

