
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

11-1-2005

Automated Adaptive Intrusion Containment in
Systems of Interacting Services
Yu-Sung Wu

Bingrui Foo

Yu-Chun Mao

Saurabh Bagchi

Eugene H. Spafford
Purdue University, spaf@cs.purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Wu, Yu-Sung; Foo, Bingrui; Mao, Yu-Chun; Bagchi, Saurabh; and Spafford, Eugene H., "Automated Adaptive Intrusion Containment
in Systems of Interacting Services" (2005). ECE Technical Reports. Paper 68.
http://docs.lib.purdue.edu/ecetr/68

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4946811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F68&utm_medium=PDF&utm_campaign=PDFCoverPages

AUTOMATED ADAPTIVE INTRUSION
CONTAINMENT IN SYSTEMS OF
INTERACTING SERVICES

YU-SUNG WU
BINGRUI FOO
YU-CHUN MAO
SAURABH BAGCHI
EUGENE SPAFFORD

TR-ECE – 05-14
NOVEMBER 2005

SCHOOL OF ELECTRICAL
 AND COMPUTER ENGINEERING
PURDUE UNIVERSITY
WEST LAFAYETTE, IN 47907-2035

 1

Automated Adaptive Intrusion Containment in Systems of Interacting Services
Yu-Sung Wu, Bingrui Foo, Yu-Chun Mao, Saurabh Bagchi, Eugene Spafford+

Dependable Computing System Lab (DCSL) & CERIAS
School of Electrical and Computer Engineering +School of Computer Science

Purdue University
{yswu, foob, maoy, sbagchi, spaf}@purdue.edu

Contact author: Saurabh Bagchi

Abstract
Large scale distributed systems typically have interactions among different services that create an avenue for

propagation of a failure from one service to another. The failures being considered may be the result of natural failures or
malicious activity, collectively called disruptions. To make these systems tolerant to failures it is necessary to contain the
spread of the occurrence automatically once it is detected. The objective is to allow certain parts of the system to continue to
provide partial functionality in the system in the face of failures. Real world situations impose several constraints on the
design of such a disruption tolerant system of which we consider the following - the alarms may have type I or type II errors;
it may not be possible to change the service itself even though the interaction may be changed; attacks may use steps that are
not anticipated a priori; and there may be bursts of concurrent alarms.

We present the design and implementation of a system named ADEPTS as the realization of such a disruption tolerant
system. ADEPTS uses a directed graph representation to model the spread of the failure through the system, presents
algorithms for determining appropriate responses and monitoring their effectiveness, and quantifies the effect of disruptions
through a high level survivability metric. ADEPTS is demonstrated on a real e-commerce testbed with actual attack patterns
injected into it.
Keywords: automated adaptive intrusion response, intrusion containment, e-commerce system, survivability, attack graphs.

1 Introduction
Distributed systems comprising multiple services interacting among themselves to provide end-user functions are an

increasingly important platform. Examples abound in the commercial domain and in the critical infrastructure domain, such
as, e-commerce systems and SCADA systems, respectively. A fundamental nature of the distributed systems is that they are
built of multiple services, such as web service and authentication service, running on individual hosts communicating with
each other through standardized protocols, such as SOAP. The huge financial stakes involved or the importance to homeland
security make them prime candidates for computer security attacks. In addition, as the complexity of these systems increases
in exponential order due to the burgeoning number of services and the increasing complexity of the individual services, the
occurrences of accidental failures are also on an upswing. Henceforth in the paper, we will refer to deliberate (or malicious)
failures, commonly called intrusions, while realizing that some of the discussion carries over to natural failures as well.

The motivations outlined above have led to substantial interest in securing distributed systems through prevention of
failures. Prevention of failures is achieved through careful design and development of the components to eliminate most
faults, i.e., bugs or vulnerabilities, followed by detection of impending failures achieved through exploitation of residual
faults. The detection can be done by matching the patterns of events observed with known patterns – either patterns of
expected system behavior (anomaly based signatures) or known failure patterns (misuse based signatures). However, it is
widely believed that prevention cannot be the ultimate solution because despite the heroic efforts of developers, testers, and
deployment specialists, few systems, if any, can claim to prevent all failures. This is especially pertinent when the systems
have interfaces to external users, as all e-commerce systems and many SCADA systems do. For example, the 1998-99
evaluation of several commercial and research intrusion detection systems (IDS) by MIT Lincoln Lab [19] identified that
unknown attacks present a considerable challenge to these systems.

This reasoning has led to a focus on efforts to build survivable systems that can provide sustained operation of mission
critical functions in the face of anticipated and unanticipated intrusions. This has spurred interest in the defense community
as evidenced by DARPA’s OASIS program [20] and the follow-on Self Regenerative Systems (SRS) program [21]. Within
the area of focus on Intrusion Response Systems (IRS), two levels of sophistication of systems may be discerned. The first
kind of IRS is able to diagnose the components affected by the intrusion and alert the system administrator for long term
remedial measures. However, as distributed systems become ubiquitous and they are often placed in environments difficult to
reach for human intervention, automated tools for intrusion response gain importance. The next generation of IRS is able to
automatically reconfigure, regenerate, and rejuvenate the system once an intrusion occurs. A common form of IRS is to
gracefully degrade the functionality of the system when intrusions are detected using techniques well known in the fault
tolerant literature – redundant components built with diversity in mind, and reconfiguration of the failed components. Our

 2

work falls in this second class of IRS. In this paper, we lay out the design requirements, present a structured methodology for
the design of the IRS to meet the requirements, and show an instantiation of the IRS in a system called ADEPTS that provides
resilience to a distributed e-commerce system.

Providing an IRS for a distributed system is very different from providing one for a stand-alone system. One needs to
consider the interaction effects among the multiple services both to accurately identify patterns of the intrusions relevant to
the response process and to identify the effectiveness of the deployed response mechanism. The rudimentary response
mechanism often bundled with anti-virus or intrusion detection system (IDS) products overwhelmingly consider only
immediate local responses that are directly suggested by the detected symptom. For example, a file being infected with a
virus may cause the anti-virus product to quarantine the file and disable all access to the file (e.g., Norton and McAfee anti-
virus products), or a suspect packet being flagged by a network IDS may cause the specific network connection to be
terminated (e.g., Snort In-line). This is unsatisfactory since the response may be sub-optimal at best – greater effect may be
achieved by deploying it at a site different from the detection, and inaccurate at worst – the response is ineffective since the
intrusion goal has already been achieved and the response system plays a fruitless game of catch-up.

In designing an IRS, a possible approach is to consider different attacks and provide customized sequence of response
actions for each step in an attack. A second approach, subtly yet significantly different, is to consider the constituent services
in the system and the different levels of degradation of each individual service due to a successful attack, i.e., an intrusion.
For easier understanding, one may visualize a malicious adversary who is trying to impact the constituent services (the sub-
goals) with the overall goal of either degrading some system functionality (e.g., no new orders may be placed to the e-store)
or violating some system guarantee (e.g., credit card records of the e-store customers will be made public). In ADEPTS, we
take the latter approach. This is motivated by the fact that the set of services and their service levels are finite and reasonably
well understood, while the possible universe of attack sequences is potentially unbounded. Thus, we focus on the
manifestations of the different attacks as they pertain to the services rather than the attack sequence itself. This leads us to
use a representation called an Intrusion Graph (I-GRAPH), where the nodes represent sub-goals for the intrusion and the
edges represent pre-conditions/post-conditions between the goals. Thus, an edge may be OR/AND/Quorum indicating any,
all, or a subset of the goals of the nodes at the head of the edge need to be achieved before the goal at the tail can be
achieved. We will use the term “a node is achieved” to mean the attack goal corresponding to a node in the I-GRAPH is
achieved.

Now we outline the key design principles or design requirements that drive our work. The response choice in an IRS
should be dynamically determined. The set of responses is statically determined while the intrusions may be unanticipated or
the dynamic system conditions, such as the frequency of interaction between the services or the load on a service, may vary.
In ADEPTS, the response choice is determined by a combination of three factors – static information about the response, such
as how disruptive the response is to normal users; dynamic information, essentially history of how effective the response has
been for a specific class of intrusion; and out-of-band parameters of the response, such as expert system knowledge of an
effective response for a specific intrusion or policy determined response when a specific manifestation occurs. The IRS
should be capable of providing its service in the face of unanticipated attacks. This is clearly motivated by the observation
that the potential universe of attack sequences is infinite. Translating this to ADEPTS, it should not assume that the I-GRAPH is
complete nor that there is a detector to flag whenever an I-GRAPH node is achieved. However, we do assume that the
intrusion will ultimately have a manifested goal which is detectable. Any IRS needs to consider the imperfections of the
detection system that inputs alerts to it. The detectors would have both type I and type II errors, i.e., false alarms and missed
alarms. If false alarms are not handled, this can cause the IRS to take unnecessary responses, potentially degrading the
system functionality below that of an unsecured system. If missed alarms (or delayed alarms) are not compensated for, the
system functionality may be severely degraded despite the IRS. In ADEPTS, we take the approach of co-existing with off-the-
shelf detectors in the detection system and consider the problem of improving the accuracy of the detectors as orthogonal and
outside the scope. ADEPTS can also make use of correlation based intrusion detection systems, such as CIDS previously
developed by us [1], that already improves the detection metrics. ADEPTS provides algorithms to estimate the likelihood that
an alarm from the detection system is false or there is a missing alarm. The algorithm is based on following the pattern of
nodes being achieved in the I-GRAPH with the intuition that a lower level sub-goal is achieved with the intention of achieving
a higher level sub-goal.

It is often a challenge for an IRS to handle multiple concurrent attacks incident on a system. The response mechanisms
due to the different manifestations of the distinct attacks may interact in arbitrary ways. For example, the response taken due
to one attack may make that due to a second attack redundant, or make it easier to proceed. It also becomes difficult to
identify the effectiveness of a response when the different attacks are not identified and handled separately. ADEPTS provides
an algorithm to use the factors of locality (spatial in the I-GRAPH or temporal) and causality (parameters of the packet, such
as originating IP) to identify attack instances that need to be handled separately. It is tricky to define what constitutes two
separate concurrent attacks, since they may originate from the same source by the same adversary. We bypass this argument
by considering attack instances whose responses would not interfere as distinct and separate attack instances. An attack sub-
graph is created from the I-GRAPH for every attack instance. The attack sub-graph is grown in a Petri dish as alerts come in
and in parallel, it is matched against an attack template library of graphs to determine appropriate reference responses.

 3

In this paper, our goal is not to present novel response mechanisms for specific classes of attacks. However, there are two
characteristics of the responses used in ADEPTS that are germane to the discussion. In examining different attack scenarios,
we uncovered that there are some which can be called persistent. This implies that the higher level attack goal, even if
achieved, relies on the continual presence of the lower level attack goals. This leads to the insight that a valid response,
which may otherwise be rejected due to being too late to prevent the node being achieved, can still be deployed for persistent
attacks. Second, it is important to consider a lease for a deployed response, after which the response will expire and can be
rolled back. In the absence of such a concept, the effect of the responses will be cumulative over the lifetime of the system,
thus progressively degrading the system functionality. In ADEPTS, the responses have an expiry time, which would in all
likelihood be a pre-configured property of the response or specified by the system administrator at a finer granularity. A
response is deactivated when its expiry time lapses. Conversely, the expiry time can be extended by ADEPTS if it is
determined that the symptoms of the failure that necessitated the response in the first place still exist. We believe this feature
would be important in any IRS that is to operate autonomously over extended periods of time.

Overall, the goal of the paper is to present a structured methodology for automating response actions. Within this
methodology, ADEPTS provides algorithms for determining the appropriate locations and choices for the response, how to
deploy the response, and how to evaluate the effectiveness of a response. If we model the response action as a containment
action, it has the effect of cutting edges in the I-GRAPH thereby preventing the higher level nodes from being achieved. This,
in turn, is reflected through a containment boundary with the services inside the boundary being considered compromised or
suspect and the services outside continuing to provide the critical functionality. The metric used to evaluate an intrusion
tolerant system has to be carefully chosen. Low-level metrics, such as the latency of detection or false and missed alarm rates
do not fully capture the effect of an intrusion on the system’s functionality. We propose the use of the metric called
survivability [22] for evaluating the effect of ADEPTS. We define it such that its value depends on the set of high-level system
transactions that can be achieved (e.g., allow web store browsing) and the set of high-level system goals (e.g., keep users’
private information secure) that are preserved in the event of an intrusion. A high level transaction depends on certain chains
of interactions between multiple functioning services and preserving a high level goal implies thwarting certain intrusion
goals from being reached.

The design of ADEPTS is realized in an implementation which provides intrusion response service to a realistic distributed
e-commerce system. The e-commerce system mimics an online book store system and two auxiliary systems for the
warehouse and the bank. Real attack scenarios are injected into the system with each scenario being realized through a
sequence of steps. The sequence may be non-linear and have control flow, such as trying out a different step if one fails.
ADEPTS’ responses are deployed for different runs of the attack scenarios with different speeds of propagation, which bring
out the latency of the response action and the adaptive nature of ADEPTS. The survivability of the system is compared with
that of a baseline system.

The rest of the paper is organized as follows. Section 2 presents related research. Section 3 presents the design overview
of ADEPTS and lays out the fundamental data structures. Section 4 presents the algorithms for choice of responses. Section 5
describes the implementation and the e-commerce testbed on which ADEPTS is deployed. Section 6 presents the experiments
and the results. Section 7 concludes the paper with mention of some future work.

2 Related Research
In order to guarantee the requirement for continuous availability of the services in a distributed system, it is important to

consider how the system reacts once the intrusion is detected. The majority of current IDSs stops with flagging alarms and
relies on manual response by the security administrator or system administrator. This results in delays between the detection
of the intrusion and the response which may range from minutes to months. Cohen showed using simulated attack scenarios
that given a ten hour delay from detection, 80% of the attacks succeed and given thirty hours, almost all the attacks succeed
irrespective of the skill level of the defending system’s administrator [3]. This insight has led to research in survivable
systems engineering pioneered by CERT at CMU. Survivability is loosely defined as the capability of a system to fulfill its
mission, in a timely manner, in the presence of attacks, failures, or accidents [2][4]. The researchers identify the four key
properties of survivable systems, namely, resistance to attacks, recognition of attacks and damage, recovery of essential and
full services after attack, and adaptation and evolution to reduce effectiveness of future attacks. ADEPTS is motivated by the
requirement to provide the second, third, and fourth properties.

A majority of the IRSs are static in nature in that they provide a set of preprogrammed responses that the administrator
can choose from in initiating a response. This may reduce the time gap between detection and response, but still leaves a
potentially unbounded window of vulnerability. The holy grail is an IRS that can respond to an attack automatically. A
handful of systems provide adaptive responses. In [5], the authors propose a network model that allows an IRS to evaluate
the effect of a response on the network services. The system chooses in a greedy manner the response that minimizes the
penalty. There are some studies which present taxonomy of offensive and defensive responses to aid in selection of coherent
responses in an automated response system ([6],[7],[8]). Cooperating Security Managers (CSM) [9] is a distributed and host-
based intrusion detection and response system. CSM proactively detects intrusions and reactively responds to them using the
Fisch DC&A taxonomy [6]. It uses the suspicion level of the user as the only determining factor in the choice of response. A

 4

second system called EMERALD [10] uses two factors in determining the response – the amount of evidence furnished to
support the claim of intrusion and the severity of the response. None of the systems uses record of the past performance of
the intrusion detection system as measured by the incidence of false positives and false negatives. None keeps track of the
success or failure of the deployed response nor provide a framework for easily incorporating these factors in the automated
response determination. Another adaptive IRS is the Adaptive, Agent-based Intrusion Response System (AAIRS) [11]. The
work provides a good framework on which the IRS can be built. However, it does not provide any of the system-level
techniques and algorithms that will be required for the AAIRS to work in practice. There is some previous work on
protecting distributed systems against flooding based distributed denial of service (DDoS) attacks in an automated manner
through rate limiting ([12],[13]).

A significant volume of work in this domain has focused on using diverse redundant components in building intrusion
tolerant systems ([23]-[26]). The basic intuition is that the components have design diversity and are unlikely to share
vulnerabilities that are exploited by an attack. Using the Sitar system as a representative example, the basic mechanism is
reminiscent of active replication techniques. There are proxy servers which interface with the external world mediating
access to the actual servers after passing the requests through some checks. The outputs from the servers are passed through
validity checks and then voted on. Disagreement during voting acts as a trigger for the reconfiguration module to evaluate
the intrusion threat and initiate reconfiguration, such as bringing in a different server. While diverse components were taken
for granted in all of this work, more recent work performed under the DARPA SRS program has explored introducing
diversity through synthetic means, such as compiler transformations. An attractive feature of this approach is it does not
concern itself with the way the attack is launched but only on the manifestation, namely divergence in the outputs from the
replicas. This philosophy resonates with our philosophy in ADEPTS.

Fault trees have been used extensively in root cause analysis in fault tolerant systems. They have also been used to a
limited extent in secure system design ([14],[15]). We use an attack graph representation with nodes as intermediate goals
since the same intermediate goals show up in several attack paths. Graph theoretic approaches to modeling the temporal
nature of security attributes is found in [16],[17]. The notion of privilege graphs introduced in [17] has some similarity to our
I-GRAPH. However, they represent only attacks launched by escalating the privilege level of the attacker and the arcs are
marked with weights representing the difficulty of the privilege escalation. The weights are dependent on several factors,
such as the expertise and resources of the attacker, and therefore difficult to predict.

3 Process Flow and Fundamental Structures in ADEPTS

3.1 Overview
First we give an overview figure (Figure 1) that shows the different phases in the operation of ADEPTS. In the course of

the paper, we will explain each of the phases and refer back to this figure.

Detector
alerts

Locality
segmentation

……

……

C
ausality-driven C

C
I

U
pdate/C

andidate Labeling
A

lgorithm
s

I-GRAPH
Petri dish

Attack Template
Library

Response
Control Center

Immunizer

Deployment/
Revocation

Distiller
Evaluation of

deployed
responses

Protected
Payload

……

Detector
alerts

Locality
segmentation

…………

…………

C
ausality-driven C

C
I

U
pdate/C

andidate Labeling
A

lgorithm
s

I-GRAPH
Petri dish

Attack Template
Library

Response
Control Center

Immunizer

Deployment/
Revocation

Distiller
Evaluation of

deployed
responses

Protected
Payload

…………

Figure 1: Overview of the different phases of ADEPTS

 5

Throughout ADEPTS, three policy levels are used to control the behavior of the relevant algorithms − aggressive,
moderate, and conservative. The three policies can be abstracted to represent a ratio of missed responses to false responses
deployed, with the aggressive policy having the lowest ratio and the conservative policy having the highest ratio.
3.2 I-GRAPH
3.2.1 I-GRAPH structure

The I-GRAPH is used as the underlying representation for knowledge about intrusions, as they spread achieving
progressively wider set of goals. In the I-GRAPH representation, each intrusion goal is represented by one node in the graph.
The final goal of the intrusion may be disrupting some high level system functionality, such as “Denial of service achieved
against the online store”. This final step will be achieved through multiple small to moderate sized steps. A successful
execution of a step is looked upon as achieving an intermediate intrusion goal and captured as an I-GRAPH node. The
intrusion goals have dependency relationships between one another. For example, in order to corrupt the data in the backend
database server, one may need to exploit a vulnerability in the front-end web server. The edges are used to model this kind of
dependency. The parents of a node are the nodes reached by the outgoing edges of the node. They correspond to higher
goals relative to the goal of the node. The children of a node are the nodes with outgoing edges to the node. They correspond
to lower goals relative to the goal of the node.

1. SSL module
buffer overflow in

Apache host 1

2.Execute
arbitrary code on

Apache host 1

4. Send malicious
chunk encoded

packet

3. Illegal access to
http document root

5. C library code
buffer overflowed

9. MySQL
buffer overflow

6. Chunk handling
buffer overflow

on Apache host 1

12. Execute
arbitrary code on

MySQL host 10. DoS of
MySQL

11. DoS webstore

8. DoS of Apache
host 2

7. DoS of Apache
host 1

13. MySQL
information leak

OR AND

QUORUM

2

n

1. SSL module
buffer overflow in

Apache host 1

2.Execute
arbitrary code on

Apache host 1

4. Send malicious
chunk encoded

packet

3. Illegal access to
http document root

5. C library code
buffer overflowed

9. MySQL
buffer overflow

6. Chunk handling
buffer overflow

on Apache host 1

12. Execute
arbitrary code on

MySQL host 10. DoS of
MySQL

11. DoS webstore

8. DoS of Apache
host 2

7. DoS of Apache
host 1

13. MySQL
information leak

OR AND

QUORUM

2

n

Figure 2. A section of the I-GRAPH from our deployed e-

commerce environment

In the I-GRAPH, edges are categorized into three
types – OR, AND, and Quorum edges. For a node with
incoming OR edges to be achieved, at least one of its
child nodes needs to be achieved, while for AND edges,
all the child nodes have to be achieved. For Quorum
edges, one can assign a Minimum Required Quorum
(MRQ) on it, which represents the minimum number of
child nodes whose goals need to be achieved in order
for the node with incoming Quorum edges to be
achieved. Conforming to the traditional definition of
quorums in fault tolerant systems, one may think MRQ
as the minimum number of service replicas whose loss
will affect the functionality of the service. An example
fragment of the I-GRAPH used in our payload system, a
distributed e-commerce system, is shown in Figure 2.

3.2.2 I-GRAPH generation
A key issue in the usability of ADEPTS is the ease with which the I-GRAPH can be generated and updated as system

configuration changes or new vulnerabilities are brought to light. We employ a semi-automated method called Portable I-
GRAPH Generation (PIG) for this. PIG requires two inputs − vulnerability descriptions and system services description
(SNet). Of the two inputs, the SNet is target system dependent. This is a directed graph, in which each node represents an
individual service in the target system and an edge from node A to node B represents an intrusion-centric channel. An
intrusion-centric channel means if A is compromised, then the intrusion can spread to B through the channel. An intrusion-
centric channel may be of five kinds – (i) DOS channel: if the source service is subjected to a successful DoS attack, then the
destination service can also be subjected to DoS; (ii) Network channel: there is a network data connection between A and B;
(iii) Shared file channel; (iv) Shared memory channel; (v) Super channel: which combines the functionality of all of the
above. The SNet is currently manually created for the target system, though in the future, some tool which can perform
service discovery and interaction discovery can perform this task automatically. This is an active area of research especially
in the industry, such as for IrDA and Bluetooth Service Discovery Protocol (SDP), Sun’s Jini, and Microsoft’s Universal
Plug and Play (UPnP).

The second input to PIG is the target independent vulnerability descriptions. Information on the vulnerabilities can be
obtained by querying the common vulnerability databases, such as CERT, Bugtraq, and CERIAS-VDB. For use in PIG, the
vulnerability is specified through four fields – (i) Name: which is primarily useful for human reference. (ii) Affected service:
which gives the service(s) in the SNet affected by the vulnerability; (iii) Manifestation: this is a Boolean expression in
disjunctive normal form composed of five elementary manifestations, namely, leaking of information, execution of arbitrary
code, incorrect behavior of service, DoS, and service termination. (iv) Dependent vulnerability and services: which denotes
the dependence on other vulnerabilities and services that have to be compromised to exploit this vulnerability. The
vulnerability definitions are analogous to the virus definitions used in anti-virus products. They can be developed either by
the ADEPTS developer or by a third party. The basic idea behind the I-GRAPH generation algorithm is that when a

 6

vulnerability description is read in, a corresponding node in the I-GRAPH is created, thus creating a one-to-one map. In the
next step, the algorithm checks for nodes in the I-GRAPH that this newly created node can get connected to. For this step, it
relies on information from both the SNet and the vulnerability descriptions to decide whether spread of the intrusion is
possible from the newly created node to the other nodes and vice-versa.

A Petri-dish P is used to house sub-graphs. When a new alert
event E comes in, the following algorithm will be initiated to
either push E into some existing sub-graph(s) or create a new
sub-graph NS with E in it.

 EnterDEvent(P, E) {

1. bNeedNewSub-graph := true
2. for each existing sub-graph S do

if LocalityTest(S,E) is true then do
3. bNeedNewSub-graph := false
4. Add the nodes and edges induced by E into S
5. CCIUpdate(S,E)

6. if bNeedNewSub-graph is true then do
7. Create new sub-graph NS
8. Add node corresponding to E into NS
9. Add NS into P
10. CCIUpdate(NS,E)

 }

Check whether alert event E is local to sub-graph S. Assuming
I-GRAPH I and a user-defined threshold T.

LocalityTest(S,E) {

1. D: = the node in the I-GRAPH which corresponds
to event E.

2. if D is NULL then return False
3. for each node X in S
4. H: = the node in the I-GRAPH which

corresponds to X
5. Dist := shortest distance between D and H
6. If Dist < T then return (true, S)
 return false

}

Figure 3: Pseudo-code for attack sub-graph creation when new alert event arrives
It is noted that though temporary countermeasures are usually provided (before patches appear) in some vulnerability

databases (e.g. CERT), they typically require disabling affected services. Without ADEPTS, disabling affected services when
a vulnerability is discovered can be quite disruptive since a large number of services may have already been affected.
3.3 Attack sub-graphs

In ADEPTS, the I-GRAPH is made a read only data structure and is used to create attack sub-graphs corresponding to each
attack instance. Attack sub-graph instances are created and modified during runtime to separately model concurrent and
overlapping attacks. Concurrent attacks are defined to be attacks that occur around the same time and overlapping attacks are
those for which the intersection of their affected I-GRAPH nodes is not null. By using attack sub-graphs, ADEPTS is able to
handle such attacks in parallel and optimize its response to each attack. Each attack sub-graph is grown in a Petri dish as alert
events are received. The use of attack sub-graphs is a departure from the design in the earlier version of ADEPTS [27] where
all alerts were made to operate on the I-GRAPH structure itself. We will refer to the earlier version as version 1. There are
several motivations for the current design. In version 1, multiple attack instances will incorrectly affect each other’s response
determination though the response at a given node may have different effects depending on which attack it is targeted at. For
example, a response at a “Libsafe buffer overflow on Apache” node may be to kill the Apache process. This may be useful
for an attack which tries to inject malicious code through the buffer overflow but not useful for a denial of service attack
against Apache. Similarly, attack instances at different point in time will interfere with one another to different degrees as
well. The different attack sub-graphs can also be processed in parallel by multiple threads on the same processor or different
processors and the read-only nature of the I-GRAPH eliminates a synchronization bottleneck.

The pseudo-code for handling a new alert event is given in Figure 3. For each alert that is received by ADEPTS, the alert is
mapped to a node in the I-GRAPH and then sub-graph creation algorithm determines whether the alert belongs to an existing
attack (and therefore existing sub-graph) or whether it is from a new attack. If it is the former, the alert will be placed into the
corresponding sub-graph and the sub-graph will be evaluated by the system for response determination as described in
Section 4 (the call to CCIUpdate). If it is the latter, the algorithm will create a new sub-graph beginning from the node
mapped to by the alert. Note that in the I-GRAPH, we have general nodes for mapping generic alerts for a service or generic
alerts from a host machine (see Section 4.4). Therefore, under this design, all alerts will always be mapped to some node in
the I-GRAPH.

In reality, it is difficult to accurately determine which attack instance an alert belongs to, though some effort has been
made in [18] by clustering source IP addresses, destination IP addresses, source ports, destination ports, user accounts and
initiated processes. To avoid this problem our algorithm uses locality of the alerts to reduce the uncertainty, and is designed
such that inaccuracies are tolerated. All existing active sub-graph instances are considered to be possible choices for an alert.
This is because when an attack is determined to have concluded or contained, the attack instance is removed. The necessary
condition for an alert to belong to a sub-graph (which corresponds to a specific attack instance) is that the shortest spatial
distance with respect to the nodes in the I-GRAPH (i.e. spatial locality) be within a user-defined threshold. The minimum
spatial distance is the minimum pair-wise distance in the I-GRAPH between the node mapped to by the alert and the nodes in

 7

the sub-graph. In the case when none of the existing sub-graphs passes the LocalityTest, a new sub-graph is created to
house the alert event.

4 Responses in ADEPTS
In this section, we present the different mechanisms in ADEPTS to choose the appropriate responses and the locations to

deploy them after attack sub-graphs are created, handle unanticipated attacks, and provide feedback to the responses.
4.1 Determining response locations

For any given node in the attack sub-graph we can consider there are two kinds of responses associated with it, one set
associated with the outgoing edges which have the role of preventing higher level goals from being achieved, and the second
set with incoming edges which have the role of preventing continued achievement of the node goal.
4.1.1 CCI computation algorithm.

The goal of the algorithm is to determine, based on the received alerts from the detectors, which of the I-GRAPH goal
nodes (and corresponding sub-graph nodes) are likely to have been achieved. Each detector provides confidence values for
its alerts, termed alert confidence. If the detector does not provide an inbuilt confidence value with the alert, then the alert
confidence value is set to one. The alert confidence provided by a detector is then moderated based on the likelihood it is a
false alarm. ADEPTS has a mechanism to determine this on a per-alert basis and will adjust the alert confidence as described
in detail in the next section.

The Compromised Confidence Index (CCI) of a node in a sub-graph is a measure of the likelihood that the node has been
achieved. It is computed based on the alert confidence corresponding to the alert that is mapped to the node and the CCI of
its immediate children nodes. Mathematically, the CCI of a node is given by

max() ,OR edge
,no child

min() ,ANDedge
() ,no detector

(|) ,Quorum edge and quorum met
,otherwise((, .)

0 , Quorum edge and quorum not met

CCIialert confidence
CCIiCCI f CCI fi mean CCI CCIi if f CCI alert confi

τ

⎧
⎧
⎪ ′ ′= =⎨ ⎨

>⎪ ′⎩

⎪
⎪

⎪
⎪⎩

where CCIi corresponds to the CCI of the ith child and τ is a per node threshold.
The intuition behind our implementation is that for an OR edge, the node can be achieved if any of its children nodes is

achieved and therefore the likelihood (due to its children) is the maximum of all of its children. For an AND edge, all the
children nodes have to be achieved and therefore the likelihood is as much as the least likely child node. For Quorum edges,
if the quorum is not met, then the higher goal is not achieved, but if met, the likelihood of it being achieved only depends on
the children nodes that have achieved the quorum. The function ƒ allows various weights to be assigned to determine the
relative effect of the alert confidence and the children’s CCI. The function for the current design is the statistical mean.
Though our specific implementation is defined above, the framework can accommodate formal models as well. For example,
a sub-graph can be considered to be a Bayesian network, and the conditional probability distributions derived from the edge
relations (i.e. OR, AND, Quorum).

When new alerts arrive, the nodes corresponding to these alerts are put in a reorder buffer. ADEPTS enforces the condition
that the difference between the time when ADEPTS is invoked with an alert to the timestamp on the alert put in at the host
where the alert was generated has to be at least a given time bound. This implies alerts can be reordered when they sit in the
reorder buffer before being passed to ADEPTS. The I-GRAPH is traversed in breadth-first-search (BFS) order starting from the
nodes with the earliest alerts, and the CCIs of the nodes are computed until each reachable node has been traversed at most
once. This prevents infinite cycling to occur even though there may be cycles in the I-GRAPH. The disadvantage of such a
traversal (or even a DFS traversal) is that the traversal may lead to a node being processed before all its predecessor nodes
are processed and therefore the CCI computed will be a lower bound. Thus, some causal relations between nodes may be
lost. However, the alerts are usually temporally ordered according to the order in which the events occurred, thus the causal
order is more likely to be obeyed in the CCI computation. Since the CCI of a parent node is dependent on that of its child
nodes, a BFS traversal starting from the earliest node with an alert, rather than DFS, is more justified. A performance
optimization is terminating the CCI computation when the CCI value goes below a threshold since this gives confidence that
a response at nodes beyond this point is unnecessary.

As each node can potentially contain multiple alert events, which has an individual alert confidence, the alert confidence
used to update the CCI is chosen based on policy. For an aggressive policy, the maximum alert confidence in the alert queue
is used; for a moderate policy, the maximum of a subset of alert confidences based on the most recent alerts is chosen; for a
conservative policy, the alert confidence corresponding to the most recent alert is chosen. No matter which case, we call the
chosen alert event as the active alert event. Before a child node is used for CCI computation, ADEPTS will check whether the
active alert events on the child and the parent obey a causal relation. Causal relation is defined as causality in the information
such as packet source IP, destination IP, and process ID that is included in the alerts. By comparing the information, the
causal relation between two alerts can be validated. For example, knowing that the SSH server listens on port 22, the CCI

 8

calculation for the event ‘buffer overflow at SSH server’ can depend on the CCI value from the child node ‘detecting
malicious packet bound for port 22’. On the other hand, the buffer overflow event can’t depend on the CCI value from the
child node ‘detecting malicious packet bound for port 80’, since there’s no causal relation between port 80 and the SSH
server. . Since a parent node can potentially have more than one child node, alternative child nodes will be used in case the
causal relation is found not to match. If no child node can pass the causality validation, the parent node will be regarded as a
leaf node in the CCI update path, and its CCI value will only depend on its own alert confidence. Impreciseness in the
causality validation can be treated as missed/false alarms and can be inherently tolerated by the CCI update algorithm.
4.1.2 False alarm estimation

It is important that the response system not use the alarms from imperfect detectors as the only triggers. The detectors may
have both false alarms and missed alarms. ADEPTS attempts to estimate when either of the two events has happened and
either suppress its operation (false alarm) or trigger its operation (missed alarm). The false alarm detection algorithm
attempts to detect false alarms for a given detector and a given node in the attack sub-graph by considering both present and
past evidence. Our objective for detecting false alarms is to prevent needless invocation of ADEPTS and prevent useless
responses from being deployed. As a result, it will mitigate DoS attacks targeting ADEPTS by injecting spurious alarms. To
achieve this goal, based on the probability of an alert being a false alarm, the confidence of the alert is modified. Alerts with
extremely low confidence are discarded, which allows obvious false alarms to be conveniently ignored. The algorithm is
designed to be conservative in nature, that is, a lot of evidence is required to conclude that an alert is false, but not as much
evidence is required to conclude that a false alert is actually true. This bias is easily controlled using two parameters (α , β).
Also, the rate of increase (decrease) of the false alarm probability increases with successive false (true) alarms giving a
convex (concave) curve. The shapes of the curves are also controlled by the parameters (α , β).

When alerts are passed to ADEPTS from the detectors, a false alarm probability (calculated a priori and initially set to 0) is
recalculated for each alert. Based on this probability, the alert confidence is modified using the following equation

 _ _ *(1 _ _)alert confidence alert confidence false alarm probability= −
The recalculation of the false alarm probabilities is as follows. For each alert, the false alarm probability is
 _ _ _ (1) _false alarm probability links probability history probabilityα α= × + − ×
The links probability represents the lack of evidence linking the alert to other alerts. It is defined as
 1 - max(probability that a link exists) = 1 - max(probability of temporal linkage, probability of spatial linkage)
The probability of spatial linkage is)1(1 qq ×+ γ , where qγ is a scaling parameter and q is the minimum spatial

distance between alerts in the same attack sub-graph. The probability of temporal linkage is similarly given by)1(1 pp ×+ γ ,

where pγ is a scaling parameter and p is the minimum temporal distance between the alert and other alerts in previous

iterations that occurred spatially close to the alert. The temporal distance is in terms of the number of invocations of ADEPTS
that separates the two alerts. The history probability is a combination of past link probabilities, and it is recalculated given
the present links probability using the following equation.

 _ * _ (1)* _history probability links probability history probabilityβ β= + −

4.1.3 Missed alarm estimation
The missed alarm detection algorithm first attempts to determine the possible locations of missed alarms. Then it uses the

methods described in the false alarm detection algorithm to recalculate the missed alarm probability using other link
evidence. This means that all the formulas used are the same as described in the previous section, except that the links
probability is defined to be 1 – max(ratio of alert confidence to combined confidence of successors, ratio of alert confidence
to combined confidence of predecessors). ADEPTS introduces alerts corresponding to the missed alarms into the system in the
next iteration. This is more efficient than re-computing the CCI in the present iteration, as this may lead to multiple re-
computations and can be exploited by an attacker. The alerts introduced will have their alert confidences inversely
proportional to their missed alarm probability.

The algorithm is run asynchronously with respect to the other algorithms, with the exception that it must run after the CCI
computation algorithm because it uses the updated CCI values to determine the possible locations of missed alarms. In a
nutshell, the algorithm determines the locations by doing a reversed CCI computation by traversing a sub-graph in reverse
order, where for each incoming edge of a node,

 9

((max(rCCI),)) , node has and

(max(rCCI)) , node has no
rCCI

() , node has no
0 , otherwise

g g ac d oei
g di
g ac oe

′⎧ ⎫
⎪ ⎪
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎩ ⎭

where rCCIi corresponds to rCCI of the ith outgoing edge,
“ac” is alert confidence, “d” is detector, “oe” is outgoing
edge.

,AND edges
CCI ,OR edges
CCI()

,Quorum & CCI
0 ,Quorum & CCI

N

N

child

child

child

children

y

y
g y

y

⎧
⎪
⎪ ×
⎪

= ⎨
⎪
⎪ > τ
⎪ ≤ τ⎩

∑

The function g′ is the statistical mean of the two inputs, where the return value of the function g′ represents the
likelihood a node has been achieved based on evidence from its detectors and its parents. After the computations are
completed, the locations of the missing alarms are those nodes for which all the following conditions are satisfied. (i)

(CCI) alert confidenceif k′ > × ; (ii) (CCI)i Mf ′ > τ ; (iii) max(rCCI) alert confidencei k> × ; (iv) max(rCCI)i M> τ , where
k and Mτ are constants. A possible missed alarm location is determined based on whether the ratio of evidence of children
being achieved to the direct evidence that the node has been achieved and the ratio of evidence of parents being achieved to
the direct evidence that the node has been achieved is high (conditions (i) and (iii)). Conditions (ii) and (iv) are required to
ensure that there is enough evidence to suggest a missed alarm occurred there.
4.1.4 Response set computation algorithm.

The purpose of this algorithm is to determine the nodes where the current attack is and will most likely spread to. This
will allow the response algorithm to deploy appropriate responses at those locations. Each sub-graph is traversed in reverse
order of the CCI computation algorithm, continuing until all reachable nodes are traversed at most once. During the traversal,
each node is labeled as one of: (i) Strong Candidate (SC), if CCI > τ; (ii) Weak Candidate (WC), if CCI ≤ τ but further
traversal across only AND edges can reach a SC node; (iii) Very Weak Candidate (VWC), if CCI ≤ τ but further traversal
across any type of edge can reach a SC node; (iv) Non-Candidate (NC), otherwise. If the CCI of a node is computed to be
greater than τ, the system concludes the node has been achieved, where τ is a deployment parameter. Therefore the SC label
on a node is a strong indicator that the node has been achieved, while the WC or VWC label indicates smaller likelihoods
due to evidence from their parents.

Next, some nodes are placed in a response set, indicating to the response system where responses should be deployed. For
an aggressive policy, all SC nodes, and WC and VWC nodes which have at least one immediate NC parent node are placed
in the response set. For a moderate policy, all SC and WC nodes that have at least one immediate NC parent node are chosen.
For a conservative policy, all SC nodes that have at least one immediate NC parent node are chosen. The aggressive,
moderate, and conservative policies provide increasingly less disruption as well as less protection. It is important to note that
in ADEPTS, responses may be deployed even in nodes for which no direct evidence as alerts are available. This is a key
differentiator from local responses.
4.2 Response Deployment

In this section we focus on the mechanisms needed to deploy a response. The deployment of the response is achieved by a
Response Repository, a Response Control Center, and distributed Response Execution Agents.
4.2.1 Response Infrastructure

The Response Repository stores the responses available for deployment in a payload system. Each response in the
repository consists of an opcode and one or more operands, with wildcards allowed for each. The opcode is the response
command, and the operands are the different parameters that need to be specified in order to execute the response. For
example, the opcode for the response command of dropping incoming packets from a remote IP to a local port is
DROP_INPUT, and the corresponding operands are REMOTE_IP and LOCAL_PORT. The opcode and the operands
together make up a complete response command. The response structure allows ADEPTS fine-grained customization of the
available responses

The opcode is selected based on the ability of the opcode to cut off the intrusion-centric channels as defined in Section
3.2.2. The Response set computation algorithm (Section 4.1.4) sends to the Response Control Center the list of I-GRAPH
nodes which are candidates for the deployment of responses. For each node, the Response Control Center selects a set of
candidate response opcodes that can be used to prevent attacks from spreading via the node’s outgoing intrusion-centric
channels. The choice is determined by the type of the channel. For example, the file access based opcodes, such as
DENY_FILE_ACCESS or DISABLE_WRITE, are selected as candidate response opcodes if an outgoing shared file channel
is present.

After the opcodes have been chosen, the Response Control Center generates a list of complete response commands by
collecting suitable operands. For this, it examines the alert events stored in the alert queue of the node and uses them to fill in
the operands that are required by the selected opcodes. An opcode can be combined with multiple operands during this
phase. For example, for an opcode KILL_PROCESS, the control center may extract PID#1 from alert event#1 and PID#2

 10

from alert event #2, both in the alert queue. Then, the response command KILL_PROCESS PID#1, PID#2 is generated for
subsequent evaluation.
4.2.2 Choosing responses

For each selected response command, the Response Control Center computes the Response Index (RI). The RI takes into
the account the estimated effectiveness of the response to the particular attack, measured by the Effectiveness Index (EI), and
the perceived disruptiveness of the response to legitimate users of the system, measured by the Disruptiveness Index (DI).
The EI and the DI are both specific to the response command (opcode-operand combination) and the node in the I-GRAPH to
which the response is mapped. The RI is given by RI = a.EI – b.DI, where a and b are deployment parameters.

Note that EI of an identical response command may differ for different attacks that map to different I-GRAPH nodes. For
example, blocking port 65000 or 16660 may be useful against the stacheldraht DDoS attack but is unlikely to be effective
against the TFN DDoS attack. The two attacks can be differentiated by their packet signatures. The control center chooses
the response with the highest RI among the candidate responses, with a threshold being used to suppress a response that falls
below it. The Response Execution Agents, one on each managed node, are used to deploy the responses. If no response is
chosen for a particular node, then the next higher level node is searched for possible responses. When Response Execution
Agents on a particular compromised host have been disabled, responses will be taken at other hosts, as determined by the
spread of the attack through the I-GRAPH.
4.3 Matching in attack template library

ADEPTS maintains an attack template library of attack patterns, similar in structure to the attack sub-graphs which are
created at runtime. The attack patterns can be categorized into two types: static attack pattern and raw attack pattern.

The static attack pattern is created from previously seen attack patterns for which the “best” responses for each node in
the pattern have been determined a priori by an expert system or by a security administrator. These responses would
therefore be chosen over an automatically determined response if the matching score between the static pattern and the
growing attack sub-graph exceeds a user-defined threshold.

Additionally, the reference response may be
determined by policy decisions made by a
corporation or by a public body, e.g., sample data
as a result of an incident may be automatically
mailed to a central monitoring site for use in
corporate-wide profiling and monitoring.
Alternatively, if certain types of classified data
are exposed, the system may notify appropriate
investigators so as to begin an official
investigation. This mechanism is powerful in
letting ADEPTS learn its responses from domain
specific knowledge, acquired knowledge over
previous attack instances, or regulatory policy.

Apache Chunk at
Apache rid:1

Stack Buffer
Overflow at Apache

rid:1

Illegal access to
/var/lib/mysql

When matching score > 0.6

1. Disable wite access to SQL database
2. Block malicious source IP
3. Restart Apache Host
4. Wait for 5 minutes
5. Re-enable write access to SQL database

When matching score > 1.2

1. Shutdown Apache
2. Shutdown SQL

Apache Chunk at
Apache rid:1

Stack Buffer
Overflow at Apache

rid:1

Illegal access to
/var/lib/mysql

When matching score > 0.6

1. Disable wite access to SQL database
2. Block malicious source IP
3. Restart Apache Host
4. Wait for 5 minutes
5. Re-enable write access to SQL database

When matching score > 1.2

1. Shutdown Apache
2. Shutdown SQL

Figure 4: Example of a static attack pattern and reference responses

The matching between the static attack pattern and a growing attack sub-graph is handled by the Immunizer in Figure 1.
The algorithm for calculating the matching score is illustrated in Figure 5. Figure 4 shows an example of a static attack
pattern.

Raw attack patterns are patterns automatically generated by ADEPTS from the attack sub-graphs via the Distiller in
Figure 1. The raw attack patterns are used to store the pattern from an attack sub-graph and the responses which have been
used in that attack sub-graph. Most importantly, the EI values for those responses are stored in the raw attack pattern as well.
As mentioned in Section 3.3, the current version of ADEPTS features the distinction of EI values from different attack
instances. Since the EI value is used to quantify the effectiveness of a response against a certain type of attack, it is necessary
to make sure the attack sub-graphs corresponding to the same type of attack will be using the same copy of EI values. At the
time when the first instance of a type of attack comes into the system, there’s no corresponding raw attack pattern in the
attack template library, and the default EI values will be used for the responses in the attack sub-graph which is being grown
for that instance of attack. After the attack ceases (the attack sub-graph stops growing for a pre-defined expiration time), the
attack sub-graph will be distilled into a raw attack pattern in the attack template library by the Distiller. What will happen
when a later instance of the same type of attack comes into the system is that the Immunizer will match the growing attack
sub-graph against the patterns in the attack template library. As it identifies the best-matched raw attack pattern, the EI
values for the corresponding responses will then be loaded from that pattern into the growing attack sub-graph. At the time
when the second instance of the attack stops, the Distiller will then merge the attack sub-graph back into the best-matched
raw attack pattern. During the merge process, the Distiller writes back the new EI values into the attack pattern and
optionally adds new nodes and new edges to the attack pattern, as some degree of non-determinism can be expected in a
different run of the same type of attack.

 11

4.3.1 Immunizer
The Immunizer matches a growing attack sub-graph against the patterns in the template library. As a suitable raw attack

pattern is matched, the Immunizer uploads the EI values for the corresponding nodes from the attack pattern to the still
growing attack sub-graph. On the other hand, when a suitable static attack pattern is matched, the Immunizer passes the pre-
stored responses to the Response Control Center in Figure 1 for guiding further choice. Now, assuming there are M patterns
I1, I2, …, IM in the attack template library. For each node N from a sub-graph G, we keep a vector S[1..M] which records the
matching score for G with respect to each of the M patterns till the addition of node N. A match is concluded when the
matching score exceeds a threshold. The algorithm for calculating the matching score is given in Figure 5.

Figure 5: Algorithm for calculating matching score

4.4 Handling unknown alerts
In a real-world deployment, it is quite probable that all possible attack paths have not been anticipated and therefore the I-

GRAPH for the payload system is incomplete. Thus, ADEPTS would be unable to map an incoming alert from a detector to a
node. To handle this situation, ADEPTS has the provision of a general node per host. The alert would be mapped to the
general node for the host that is the destination of the attack. It is assumed, with reason we believe, that the host is easily
deducible from the alert. Since the general node represents unknown vulnerabilities, it is connected to all others nodes related
to the services running on the particular host. Thus the effect of a general node flagging will be felt through increased CCI
for other nodes related to the same host. The responses attached to the general node form a pre-specified fixed set called the
general responses. The general responses are the commands that would be possible to deploy with very little knowledge of
the operands, such as killing a process (need process ID), shutting down a service (need service ID), or restarting a host
(need host ID).
4.5 Response chains and persistent attacks

In real-world attack scenarios, there exist attack actions whose success depends on the continued presence of a previous
attack action. In I-GRAPH terminology, a higher level attack goal can only continue to be achieved, if the lower level goal
also continues to be achieved. This means a persistent connection has to be maintained between the attack agents that achieve
the higher and lower level goals for the attack action to persist successfully. An administrator can flag each I-GRAPH node
that requires the lower level goals to continue to be met, as a persistent node. The connected persistent nodes form a
persistent attack path.

When the Response Control Center sees that the I-GRAPH
node on which a response is to be deployed is a persistent
node, it performs an action different from the algorithm
outlined in Section 4.2.2. Instead of taking response on the
node, it searches downward along the persistent attack path
and identifies the non persistent nodes that terminate the path.
Then, the response against these non-persistent nodes are
deployed. For an AND node, one path is searched, and for an
OR node, all paths are searched. In practice, it is possible that
the response taken at the first encountered non-persistent node
does not succeed, and it may be desirable to deploy responses
on the other nodes on the attack path. In ADEPTS, for the
aggressive policy, responses will be deployed both at the top-
level node with which the response algorithm is invoked and
the lowest level non-persistent nodes.

1. Attacker buffer
overflow Apache

2. Insert Malicious
code into Apache

3. Via the malicious
code, the attacker do a
Ip/port scanning to find

SQL server

4. Guess the
password of the root

account on SQL
server 5. Login to SQL

server as root

6. Access
/var/lib/mysql via

the malicious shell

7. Insert automatic
malicious code into

Apache

8. The malicious code at
Apache tries to do a
buffer overflow at the

SQL server

9. Insert automatic
malicious code into SQL

10. Removes data
under /var/lib/mysql

Persistent Node
Non-Persistent Node

1. Attacker buffer
overflow Apache

2. Insert Malicious
code into Apache

3. Via the malicious
code, the attacker do a
Ip/port scanning to find

SQL server

4. Guess the
password of the root

account on SQL
server 5. Login to SQL

server as root

6. Access
/var/lib/mysql via

the malicious shell

7. Insert automatic
malicious code into

Apache

8. The malicious code at
Apache tries to do a
buffer overflow at the

SQL server

9. Insert automatic
malicious code into SQL

10. Removes data
under /var/lib/mysql

Persistent Node
Non-Persistent Node

Figure 6. Persistent attack example

The evaluation algorithm is achieved by adding the following code to CCIUpdate_process_node(G, N) :

…… After the field N->pParentNodeInCCIUpdatePath is determined……..

1. for k := 1 to M do
If there’s a path P from the corresponding node of N->pParentNodeInCCIUpdatePath to the corresponding node of N
in Ik then do

N.S[k] := N->pParentNodeInCCIUpdatePath.S[k] + N.cci/num_of_edges_of(P)

2. Load response EI values for N from Ih, where N.S[h] is maximal for h∈1..M
3. Let p∈1..M such that ∑

∈)(_
][.

Gofnoden
pSn is maximal.

4. If ∑
∈)(_

][.
Gofnoden

pSn >preset-threshold, then return responses from Ip.

 12

An example of a persistent attack is shown in Figure 6. Here, node 2,3,4,5, and 6 are persistent nodes. On this attack path,
it requires the attacker progressively embed malicious codes onto Apache and MySQL. These embedded codes act like relay
stations such that the attacker is able to remotely control a root privileged shell on the SQL server.
4.6 Providing feedback to responses

Feedback to the response system is crucial for ADEPTS, providing the runtime mechanism to bias response choices in
favor of those that have been effective in the past.
4.6.1 Varying EI

The feedback is provided by dynamically varying the EI of the response. After a response has been deployed, the
feedback system checks to see if any active response action is deployed on an edge that can be used to reach a node in the
currently computed response set. If such a response action exists, it is indication that the response action possibly failed and
its EI is decreased.

The amount by which the EI of the response is decreased depends on whether the response is on an AND edge, OR edge,
or Quorum edge to the node in the response set. If it is on an AND edge, then it is certain that the response failed and thus
the node was achieved. Therefore, the EI is decreased by a fixed fraction for responses on all the edges. If the response is on
an OR or Quorum edge, then the EI is decreased in the proportion of the CCI values of the nodes, the maximum decrease
being the same as in the AND case. When a response expires or when an administrator manually deactivates a response, the
EI of the response action is increased by a fixed percentage under the intuition that the response was successful since further
alerts were not observed.

Referencing Figure 2, suppose an active response is present on the edge between node 1 and 7, and node 10 is in the
response set. Suppose the fixed fraction to decrease is α. Then for the active response,

16

1

78

7

CCICCI
CCI

CCICCI
CCI

EIEI oldnew ++
−= α

.

4.6.2 Deactivating responses
To reduce disruptiveness of an ineffective response, each response gets a pre-assigned time-to-live (TTL). After the

response has been deployed, the Response Control Center (RCC) periodically checks the activated responses and deactivates
it when they are expired. On the other hand, the RCC will extend the TTL of an expired response temporarily if it finds the
response is successful and the payload system is still under attack. This is determined by investigating that the alerts mapped
to the current node in I-GRAPH disappears, the immediate upper level node has not been compromised, but the immediate
lower level node still gets alerts.
4.7 Complexity Analysis

Table 1. Notations for complexity analysis
Max number of existing alerts in a sub-graph a Number of new alerts t
Number of existing sub-graphs s Max number of outgoing response from a node o
Max number of nodes in a sub-graph v Max number of alerts in an alert queue q
Max number of edges in a sub-graph e Number of nodes in response set r
Max number of existing active responses in a sub-graph c Number of patterns in attack template library p

The worst case computational complexity follows directly from analysis of the algorithms presented in Sections 3 and 4.
Sub-graph creation: O(tsv); CCI update: O(v2ep); False alarm determination: O(ta); Missed alarm determination: O(ve);
Response set computation: O(ve); Optimal response selection: O(roq); Varying EI algorithm: O(cve)

Thus, the worst case time complexity of an execution of ADEPTS is: O(tsv + v2ep + ta + roq + p + cve).
The process of updating a raw attack pattern from a sub-graph can be done offline and is O(v3+vp).

5 Implementation of ADEPTS and testbed

5.1 Description of e-commerce application
Figure 7 depicts the testbed that we use for experiments. The payload system mimics an e-Commerce webstore, which has

two Apache web servers running webstore applications, which are based on Cubecart (http://www.cubecart.com) and are
written in the PHP scripting language. In the backend, there’s a MySQL database which stores all the store’s information,
which includes products inventory, products description, customer accounts, and order history. There are two other
organizations with which the webstore interacts – a Bank and a Warehouse. The Bank is a home-grown application which
verifies credit card requests from the webstore. The Warehouse is also a home-grown application, which takes shipping
requests from the webstore, checks inventory, applies charges on the customer’s credit card account, and ships the product.
The clients submit transactions to the webstore through a browser. Some important transactions are given in Table 2.

 13

Data mining

ADEPTS
Control
CenterResponse

Cmd via
SSH

Detector Alerts
via MessageQ

Firewall

Apache

Clients

MySQL

PHP

Data Backup

Warehouse /

Shipping

Bank

Applications

Firewall

Apache

Applications

Load
Balancer

PHP

Intra-domain
Inter-domain
ADEPTS-
payload

interaction

Data mining

ADEPTS
Control
CenterResponse

Cmd via
SSH

Detector Alerts
via MessageQ

Firewall

Apache

ClientsClients

MySQL

PHP

Data BackupData Backup

Warehouse /

Shipping

Warehouse /

Shipping

BankBank

Applications

Firewall

Apache

Applications

Load
Balancer

Load
Balancer

PHP

Intra-domain
Inter-domain
ADEPTS-
payload

interaction

Figure 7. Layout of e-commerce testbed

We set certain security goals for the system, the complement of which are specified in Table 3, along with the weights.
Thus adding the word “prevent” before each gives the goal. The attached weights to the transactions and security goals are
used for survivability computation in Section 6.4. The weights are hypothetical but the magnitudes represent the relative
importance to the overall system. In an actual deployment, these weights would be set by the system owner using methods
such as analysis of the Total Cost of Ownership (TCO).

Table 2. List of e-commerce transactions
Name Services involved Weight
Browse webstore Apache, MySQL 10
Add to shopping cart Apache, MySQL 10
Place order Apache, MySQL 10
Charge credit card Warehouse, Bank 5
Admin work Variable 10

Table 3. List of e-commerce security goals
Illegal read of file (20) Illegal process being run (50)
Illegal write to file
(30)

Corruption of Apache
docs/MySQL db (70)

Unauthorized credit
card charges (80)

Confidentiality leak of
customer info (100)

Cracked administrator
password (90)

Unauthorized orders created
or shipped (80)

5.2 Detectors
For our testbed, multiple detectors which communicate with ADEPTS through secure channels are used. We use two off-

the-shelf detectors − Snort and Libsafe, and create three home-grown detectors. Snort is used for detecting intrusion patterns
in network traffic while Libsafe is used to detect buffer overflows in protected C-library calls. We create a kernel-based File
Access Monitor, which can detect file access attempts of monitored processes and compare these access attempts against
preset rules to detect illegitimate activity. Also, we create a Transaction Response Monitor, which monitors the transaction
response time of the webstore using requests from the Apache Benchmark (http://httpd.apache.org/docs-
2.0/programs/ab.html). Finally, there is an Abnormal Account Activity Detector at the Bank, which detects abnormal account
activities such as excessive number of credit card transactions on one account. The detectors used are all imperfect ones, with
the possibility of missed alarms and false alarms. In experiment 1, false alarms and missed alarms are artificially generated to
test the detection algorithms. The frequency of false alarms is controlled manually and missed alarms are generated by non-
deterministically discarding real alerts (or artificially setting a low alert confidence) based on a user-defined missed alarm
probability for an alert. The detectors are not optimized for each attack scenario that the system is tested with. This is
because the process is clearly labor-intensive and relies heavily on administrator expertise. For the off-the-shelf detectors, the
rules are taken from the public distribution, else the rules are created by a researcher separate from the group that generates
the attack scenarios.
5.3 Attack scenarios

The ADEPTS implementation is tested with different attack scenarios classified into three categories − illegal transaction,
DoS, and leaking/corrupting information. Each attack scenario consists of a set of attack steps, with an ultimate high-level
goal. Each step of the attack scenario may be detected by none, one, or more of the detectors. We show in Table 4 and Figure
8 one sample scenario from each category – Scenario 1 is placing unauthorized orders (illegal transaction), Scenario 4 is a
DoS attack on the webstore, and Scenario 8 is vandalizing webstore (leaking/corrupting information).

Scenario 9, which is stealing/corrupting the SQL database (leaking/corrupting information) is different from the other
three attack scenarios shown in Table 4. The difference is that Scenario 9 is a dynamic attack scenario while the other three
are the static ones. In a dynamic attack scenario, an adversary proceeds through the scenario graph in a depth first manner
and if any step is unsuccessful, possibly due to a successful deployed response, the adversary attempts an alternate path.
Thus, a branch out point indicates multiple alternate strategies available to the adversary. Dynamic scenarios are used to
better reflect the actions from a real-world adversary.

 14

Table 4. Attack steps for three static attack scenarios
Scenario 8 Scenario 4

1. Buffer overflow Apache. 1. DDoS attack via issuing huge amount of legal
transactions (i.e. product search)

2. Create a shell with Apache Privilege Scenario 1
3. Attacker issues crontab command to
exploit a vulnerability which can create a root
privilege shell

1. Apache php_mime_split buffer overflow

4. Root privilege shell created out of the
vulnerable cron deamon

2. ‘ls’ to list webstore document root and
identify code regarding warehouse shipments

5. Attacker corrupts the data stored in web
server document root

3. Send shipping request to warehouse, crafting
request form to cause buffer overrun to fill form
with victim’s credit card number

 4. Make unauthorized orders
We also test ADEPTS with other attack scenarios involving buffer overflow attacks to steal client info, and other DoS

attack scenarios entailing memory exhaustion in the Apache mime handling components. The entire I-GRAPH automatically
generated by the PIG algorithm consists of 57 nodes and 1148 edges and is too large to be shown. A fragment of the I-
GRAPH was shown in Figure 2.

Figure 8. Example of a dynamic attack scenario (Attack Scenario 9) [Thicker blue circles denote an associated detector]

5.4 Response Repository
Four types of response commands are included in the Response Repository − general, file, network, and denial-of-service

types. The general-type commands can be deployed to block any types of intrusion-centric channels in the I-GRAPH,
corresponding to the super channel. The other types of commands have a one-to-one map to the kinds of intrusion channels
introduced in Section 3.2.2. The implementation of the file-type commands is achieved by using the Linux Intrusion
Detection System (LIDS) version 2.2.0. The implementation of the network-type commands is performed by using iptables.
The general type commands are killing a process and restarting or shutting down a service or a host. The file-type commands
are to deny any access to a file, or selectively disable read, write, or execute access. The network-type commands are to
block incoming or outgoing network connections, parameterized by source or destination port, IP, or protocol. The DOS-
type commands are to limit the rates of various types of packets, such as SYN, ICMP echo, ICMP host not reachable, and
SYN-ACK.

 15

6 Experiments and results
We perform four sets of experiments on the e-commerce testbed using 9 synthetic attack scenarios, a mix of static and

dynamic. The experiments have the goals of demonstrating the following – (i) Ability of the missed alarm and false alarm
detection algorithms to identify inaccuracies in the detectors, (ii) Ability of ADEPTS to adapt the responses without and with
reference attack patterns, (iii) Scalability of ADEPTS, (iv) Effect of survivability with time as multiple instances of an attack
scenario impact the payload.

Due to the constraints of space, the results for a sample number of attack scenarios are shown. The results show the
behavior of ADEPTS under a limited number of parameter configurations. They are not meant to bring out trends in the
performance of ADEPTS or provide predictability under new attack scenarios or different parameter configurations. Further
experimental work needs to be done for this. Comparing ADEPTS to other dedicated IRSs is difficult since they are not
publicly available. For the experiments, survivability is defined as 1000 – Σ unavailable transactions – Σ failed security
goals. Each response is pre-configured with an expiry time. When a transaction becomes unavailable or the security goal is
violated, the survivability drops by its corresponding weight, which was given in Table 2 and Table 3. Transactions become
unavailable due to responses, such as rebooting a host, or attacks and they become available again when the response
expires. Security goals may be violated due to the successful execution of an attack step. If a security goal is violated
multiple times during an attack, then each violation causes a decrease in the survivability. After a run of an attack scenario is
completed, any drop in survivability due to non-permanent security goal violations (e.g. running a malicious process only to
reach another goal) is reversed. For all the experiments, the moderate policy is used.
6.1 Experiment 1: Missed alarm and False alarm estimation
The objective of this experiment is to demonstrate the behavior of the false alarm and missed alarm algorithms given in
Sections 4.1.2 and 4.1.3. The scaling parameter qγ and pγ are set at 0.2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 13 25 37 49 61 73 85 97 109

Number of times node 30 has flagged

Fa
ls

e
al

ar
m

 p
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41
Number of consecutive missed alarms

M
is

se
d

al
ar

m
 p

ro
ba

bi
lit

y

Alert confidence = 0.0

Alert confidence = 0.1

Alert confidence = 0.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (number of attacks)

D
et

ec
to

r m
is

se
d

al
ar

m
 ra

te Missed alarm rate = 50%

Missed alarm rate = 20%

Missed alarm rate = 5%

Figure 9. Behavior of false and missed alarm computation

algorithms

Figure 9(a) shows how the false alarm probability
fluctuates as real attacks are interspersed with false alarms.
Repeatedly, sets of nine false alarms are generated
successively at node 30 with attack scenario 14 run after each
set of false alarms. Scenario 14 is a static scenario where the
attacker attempts to buffer overflow Apache and MySQL
through their process stacks, to try and illegally access the
MySQL database. Scenario 14 generates a real alert at node
30, along alerts at other nodes. The last set of false alarms has
forty false alarms instead of nine. As can be seen, false alarms
will cause the false alarm probability for alerts at node 30 to
increase. The increase with the first set is the highest since
there is no prior evidence of real attacks.

Due to the variation of the (α,β) bias parameters (they are dependent on the present and past links probabilities), the rate
of increase increases as more false alarms occur but decreases as it converges to one. The large drop when a real alarm
occurs is due to the conservative nature of the algorithm which tries not to miss alarms for which response action is to be
taken.

Figure 9(b) shows how the missed alarm probability of a node in the present I-GRAPH varies when consecutive missed
alarms are continuously generated. This is achieved by repeatedly running attack scenario 14 with node 30 having hardwired
alert confidences of 0.0, 0.1, and 0.2. Due to the highly connected nature of the I-GRAPH, the compromised child node of
node 30 is also connected to the compromised parent node of node 30. This results in a failure to detect a missed alarm when

 16

the alert confidence is 0.0 (i.e. no alert occurs at node 30). This is explained by the fact that a compromised child node can
lead to a parent of node 30 being compromised bypassing node 30 because of the existence of an edge between them.
Therefore it is not possible for the algorithm to determine that there was a missed alarm at node 30 without any other
evidence. If the I-GRAPH was not that connected, or probabilities were assigned to each I-GRAPH edge based on the
likelihood of traversal, then it is very likely that the completely missed alert (alert confidence 0.0) would be detected. Only
when the alert confidences are small non-zero values were missed alarms detected. The growth rate is inversely proportional
to the alert confidence. The missed alarm probability can grow to a maximum 1-alert confidence.

Figure 9(c) shows the Libsafe detector’s calculated missed alarm rate as attack scenario 14 is repeatedly executed with
varying missed alarm rates. This rate is calculated by taking the number of times ADEPTS concludes there is a missed alarm
with probability greater than 0.5 and dividing it by the number of times the attack scenario has been run. This mimics the
situation where a detector is unpredictable and misses a fraction of alerts corresponding to different variants of an attack.
Every time scenario 14 is run, the alert confidence of node 30 is set to 0.1 with a probability equal to the missed alarm rate
(5%, 20%, 50% in the experiments) and to 1.0 otherwise. As we can see, the missed alarms are detected with regularity,
resulting in a calculated missed alarm rate that asymptotically tends to the actual missed alarm rates. For the experimental
setting of ADEPTS, only when the missed alarm probability is greater than 50% will a possible missed alert be considered an
actual missed alert. As a result, the initial missed alarm rate is at 0% and gradually grows later.
6.2 Experiment 2: Adaptation of response action

In this experiment we demonstrate the adaptation in ADEPTS in taking more appropriate responses as multiple instances of
an attack are observed in the system. Recollect that an attack sub-graph is induced from the I-GRAPH for each attack instance.
After the attack instance ceases, the sub-graph is distilled into a raw reference attack pattern and the state regarding the
effectiveness of the responses is maintained in this pattern.

In the experiment, four instances of attack scenario 9 shown in Figure 8 are executed. The instances are not identical since
the dynamic attack scenario 9 allows for diversity of paths. Instance 1 and 3 follow the same attack steps while instance 2
and 4 follow the same attack steps. Raw attack pattern 1 is created after instance 1 and reused in instance 3, while raw attack
pattern 2 has the same role for instances 2 and 4.

The steps for the attack instances are as follows. Attack instances 1 and 3 have the steps: S5 - Attacker sends packet for
Apache chunk buffer overflow; S11 - Stack-based buffer overflow on Apache; S1 - Insert malicious code into Apache; S2 -
IP/Port scanning to find SQL server; S13 - Send packets to SQL server for creating a shell; S3 – Stack-based buffer overflow
SQL; S14 – Create a shell out of SQL process; S4 – Access /var/lib/mysql via the malicious shell. For attack instances 2 and
4, the steps are: S0 – Attacker sends packets for Apache mod_ssl buffer overflow; S12 – Heap-based buffer overflow at
Apache; S1, S2 – Same as above; S6 - Guess the root password on SQL server; S7 – Login to SQL server as a root. S10 –
Modify SQL executable image to create a malicious SQL daemon; S9 – Access /var/lib/mysql via the spawned malicous
process.

Table 5. Placement of testbed services (symbolic addresses are used subsequently)
Client IPC : 128.10.247.110
Apache Replica 1 IPA : 128.10.247.105
MySQL Server IPM : 128.10.247.106
Table 6. Explanation of the responses for attack scenario 9

R0 iptables -A INPUT -p tcp -j DROP -s IPC --dport 80 Block attacker’s IP from accessing port 80 on
Apache Server Replica 1

R1 ./lids-file.sh IPA READ /usr/local/apache2/bin/httpd Make Apache Replica 1’s image read-only

R2, R5,
R8, R91

iptables -A INPUT -j DROP -s IPC Block attacker’s IP from accessing Apache Server
Replica 1

R3, R7 restart.sh IPA /usr/local/apache2/bin/httpd Restarting Apache Server Replicate 1

R4 iptables -A INPUT -p tcp -j DROP -s IPC –dport 443 Block attacker’s IP from accessing port 443 on
Apache Server Replica 1

R6 restart.sh IPM /usr/sbin/mysqld Restart MySQL Server

In Table 7, we show the different responses taken after each instance of the attack. The second column gives the tuples
with the responses and the EIs, both before and after the attack. The third column gives the response that was taken and if it
was a success or a failure. Only a response that is deployed has its EI changed. The fourth column gives the steps in the
attack instance that were executed before it was contained and therefore the attack sub-graph (AS) creation was stopped.

1 Although R2, R5, R8, R9 are all the same, they are actually four independent responses deployed in the four instances of
scenario 9.

 17

After attack instances 1 and 2, the two raw attack patterns are created in the template library, which are shown in Figure 10.
In instance 2, responses R5 and R6 are noted as successful because they prevent data on the SQL Server from being accessed
henceforth, though the attacker’s goal of accessing some data has already been achieved. After instance 3, a more precise and
effective set of responses is chosen using the raw pattern and the attack is stopped two steps ahead compared to instance 1.
Similarly for instance 4, a more effective response R9 is chosen and the attack is stopped four steps ahead compared to
instance 2.

Table 7. Response adaptation for attack scenario 9 without static attack pattern matching (Experiment 2)
Instance
of Attack

(Response, EI) (Response
Taken,
After which
step) (S|F)

Steps executed before AS
stopped

Before: (R0, 1.1); (R1, 1.1); (R2,1.1); R3(,1.1) I1

After: (R0, 0.935); (R1, 0.935);

R0,11 (F)
R1,11 (F)
R2,2(S)
R3,2 (S)

S5 => S11 => S1 => S2

Before: (R4, 1.1); (R5, 1.1); (R6, 1.1)

I2

After: (R4, 0.935)

R4,2 (F)
R5,9 (S)
R6,9 (S)

S0 => S12 => S1 => S2 =>
S6 => S7 => S10 => S9

Load EI values from Raw Attack pattern #1
EI(R1): 0.935
 ⇒ Another response as R1 is less favorable in this attack
instance.
EI(R3). 1.1
⇒ Set R7’s EI to 1.1 because R7 is the same as R3
Before: (R7, 1.1); (R8, 1.1)

I3

After: (All responses are successful. No decreasing of EI
values occurs.)

R7,11 (S)
R8,11 (S)

S5 => S11

Load EI values from Raw Attack pattern #2
EI(R4): 0.935
⇒ Another response as R4 is less favorable in this attack
instance.
EI(R5): 1.1
Before: (R9, 1.1)

I4

After: (All responses are successful. No decreasing of EI
values occurs.)

R9,2 (S) S0 => S12 => S1 => S2

Port scan MySQL Apache buffer
overflow at Apache

rid:1

Apache Chunk at
Apache rid:1

libmysqlclient.so
buffer overflow at

Apache rid:1

Pattern #1

Apache Mod SSL at
Apache rid:1

Port scan
MySQL

Illegal access to
/var/lib/mysql

Pattern #2

Port scan MySQL Apache buffer
overflow at Apache

rid:1

Apache Chunk at
Apache rid:1

libmysqlclient.so
buffer overflow at

Apache rid:1

Pattern #1

Apache Mod SSL at
Apache rid:1

Port scan
MySQL

Illegal access to
/var/lib/mysql

Pattern #2

Figure 10. Raw Patterns #1 and #2 after instance 1 and 2

of attack scenario 9

Table 8. Responses associated with each node of the static
attack pattern in Figure 11

[16. Apache buffer overflow at Apache
rid:1]

[34. Port scan
MySQL]

− iptables -A INPUT -j DROP -s IPC
−./lids-file.sh IPM DENY “/var/lib/mysql"
− Reboot Apache’s host machine
− Wait for 15 minutes before deploying
next response for this node.
− Re-enable access to “/var/lib/mysql” on
IPM

− Shutdown IPA
− Shutdown IPM

As mentioned earlier in Section 4.3, one can populate static attack patterns with optimal responses in the attack template
library. For this part of the experiment, we build a static attack pattern as shown in Figure 11. The associated responses are
shown in Table 8. We use a preset threshold 0.5 for the threshold parameter in the algorithm outlined in Figure 5.

For this part of experiment, we still use Scenario 9 and we take the same attack path as the one used in Instance 1. It is
observed that with the pre-configured static attack pattern, the attack is stopped one step earlier when compared to the result
of instance 1 in Table 7. The recovery step of re-enabling access to “/var/lib/mysql” is also advantageous since it improves
the system survivability. For demonstrating the matching with static attack pattern even better, another instance of scenario 9
is executed and the successful response “Reboot Apache’s host machine” is suppressed for demonstration. The result in

 18

Table 9 (column 2) shows that the attack moves one step further and the responses stored on the node [34. Port scan MySQL]
are deployed in which both the Apache server and MySQL server are both shut down.

Table 9. Response selection with matching against static attack pattern
Instance of Attack Scenario Matching score, Step at

which match is successful
Step : Responses taken (S|F) Steps executed

before AS is stopped
I1 0.64, S11 S11 : R1(S), R2(S), R3(S), R4(S)

… after 15 minutes R5(S)
S5 => S11 =>S1

I2 (Response “Reboot Apache
machine” is suppressed)

0.64, S11
0.72, S2

S11 : R1(S), R2(S), R3(F)
S2 : R6(S), R7(S)

S5 => S11 => S1 =>
S2

6.3 Experiment 3: Scalability of ADEPTS
The design principle of creating multiple attack sub-graphs gives the advantage of handling incoming alerts and

performing responses in parallel at the level of sub-graphs. We performed scalability experiments to bring out the benefit as
the number of concurrent alerts increases. A concrete way of showing the benefit is to show comparative performance with
the earlier version of ADEPTS (referred to as ADEPTS version 1 or ADEPTS 1 to distinguish it from the current ADEPTS version
2). ADEPTS 1 worked with the entire I-GRAPH and therefore could not make use of the parallelism. For the experiment, we
synthesized 8 random I-GRAPHs, each with 700 nodes and 1050 edges differing in topology. For each run of this experiment,
we insert a given number of concurrent alerts into ADEPTS. We then measure the time for processing them measured as the
time between receiving the alerts and determining the nodes for responses. It is assumed that there exist enough
computational resources to work on the parallelized parts of the computation in parallel. The result plots and detailed
discussions are in the Appendix. The important trend is that the growth in the number of parallelizable sub-graphs with the
number of concurrent alerts is sub-linear since the spatial locality algorithm tends to cluster multiple alerts in the same attack
sub-graph. With a small number of alerts (say, 50), ADEPTS 2 performs only slightly better than ADEPTS 1. This is due to the
inherently higher constant overhead of ADEPTS 2 that nullifies the performance gain from limited parallelization of 3-6
generated sub-graphs. However, from around 100 alerts, ADEPTS 2 starts to significantly out-perform ADEPTS 1.
6.4 Experiment 4: Survivability of E-Commerce Testbed

In this experiment, the objective is to show how the survivability of the e-commerce system is affected by repeatedly
stressing the system through the injection of successive instances of a given attack scenario. The results of running three
scenarios are shown, where static scenarios 1 and 8 cover two of the three general attack categories (DoS attacks are not
shown here) and scenario 9 is a dynamic scenario. The survivability is measured with and without ADEPTS. The static attack
template library was kept empty. The initial survivability value without ADEPTS is fixed as 1000 while with ADEPTS it is
1010, so as to provide clarity in the graphs through non overlapping plot lines. In the graphs displayed, when the
survivability returns to its initial value, it means that a single instance of an attack scenario has ended and responses that
were deployed have expired. Permanent violations of security goals (e.g. illegal transaction, corruption of a database) will
not result in the survivability returning to its initial value unless the administrator resets/restores/repairs the system. Multiple
violations of a security goal are assumed to be from different attackers and therefore cause a decrease in survivability
multiple times.

Figure 11. Static attack pattern with optimized responses

for experiment 2

0

200

400

600

800

1000

1200

Scenario 1 Attacks

Su
rv

iv
ab

ili
ty

No response

ADEPTS

Instance 1 Instance 2

 19

0

200

400

600

800

1000

1200

Scenario 8 Attacks

Su
rv

iv
ab

ili
ty

No response

ADEPTS

Inst. 1 Inst. 5Inst. 4Inst. 3Inst. 2

0

200

400

600

800

1000

1200

1400

Scenario 9 Attacks

Su
rv

iv
ab

ili
ty

No response

ADEPTS

Inst. 1
Path 1

Inst. 2
Path 2

Inst. 3
Path 1

Inst. 4
Path 2

Inst. 5
Path 2

Inst. 6
Path 1

Figure 12. Effect of attack scenarios on survivability

In Figure 12(a), attack scenario 1 is executed twice by different attackers. With ADEPTS, the response (restart httpd)
deployed during step 2 of the attack scenario prevents the leakage of system information regarding warehouse shipments.
This results in the termination of the attack scenario and a return to the initial survivability after the response has expired.
This contrasts with the survivability without ADEPTS, which further degrades due to the continuing attack that finally results
in unauthorized orders being made. The survivability degrades further because a separate illegal transaction has occurred in
the second instance. Since the response was effective in the first instance, it is deployed again in the second instance. Table
10 shows the cause of the survivability drop during an instance of scenario 1. In Figure 12(b), attack scenario 8 is executed
five times. Due to the ineffective nature of the responses deployed by ADEPTS initially, the survivability degrades similarly (a
little worse due to deployment of ineffective responses) to the system without ADEPTS. Survivability returns to the initial
value during the first three instances because manual intervention occurs, that is, an administrator repairs the system. During
the fourth and the fifth instances, due to the feedback from earlier instances, a relatively disruptive response of rebooting the
Apache host machine is deployed much earlier, resulting in an effective termination of the attack scenario. The webstore
transactions are unavailable for the period when the response is active, resulting in a lower survivability.

In Figure 12(c), dynamic attack scenario 9 is executed six times. Due to the dynamic nature of the attack, different
optimal responses are learned for different attack paths taken by the attacker. Two different attack paths are tried in this
experiment. That is why an effective response in the first instance does not apply to the second instance. As more instances
occur, the optimal responses are determined based on feedback. For path 1, because the attack does not require a persistent
connection from outside the network, the initial responses that block incoming packets fail. Due to the earlier failures,
another response that restarts the http daemon is deployed. The response is effective in stopping the attack because a clean
copy of the daemon will be running after the restart. Through feedback, ADEPTS deploys this response earlier in instance 3
and instance 6 when the attacker uses path 1 again. The survivability degradation is still the same, but by deploying the
response earlier, the likelihood that the malicious code is successfully injected is minimized. The initial steps through path 2
consist of causing a buffer overflow using the heap, which is undetectable by the available detectors in the system. This
allows the attacker to compromise Apache silently. Then the attacker determines the IP address of the MySQL server and the
port it is listening to. This is detected, but the response of blocking incoming TCP packets from the attacker’s IP to port 443
fails because the attacker is using another port to communicate with the malicious Apache process. The attacker then buffer
overflows the heap of the MySQL daemon using another vulnerability, and this is undetected. Then the attacker illegally
accesses /var/lib/mysql and is detected. The effective response deployed is to restart the MySQL daemon. This relatively late
response results in a significant drop in survivability. In instance 4 and instance 5 when path 2 is repeated, instead of
blocking packets specific to port 443, the effective response of blocking all incoming packets from the attacker is deployed.
The result is a smaller drop in survivability. Without ADEPTS, the survivability only degrades once because the attack is
successful and the database is corrupted and not repaired.

Table 10. Cause of survivability drop with and without ADEPTS in scenario 1
Cause of survivability drop in scenario 1 [Penalty]
Without ADEPTS

Cause of survivability drop in scenario 1 [Penalty]
With ADEPTS

Compromised Apache invoking unauthorized program
(bin/bash) [-50]

Compromised Apache invoking unauthorized program
(bin/bash) [-50]

Compromised Apache invoking unauthorized program
(bin/ls) [-50]

Restart /usr/local/apache2/bin/httpd [-30]

Illegal read in /usr/local/apache2/htdocs [-20]
Illegal order created [-80]

 20

7 Conclusions
In the paper we have presented the design and implementation of an automated intrusion containment system called

ADEPTS. ADEPTS uses a directed graph representation called I-GRAPH to model the spread of the failure through the system.
It provides algorithms to determine the possible path of spread of the intrusion, appropriate services where to deploy the
response, and appropriately choose the response. ADEPTS creates attack sub-graphs from the I-GRAPH for each attack
instance and processes each sub-graph independently, thus making it scalable with the number of alerts. Historical
information learned through previous attack instances as well as domain specific knowledge of optimal responses to well-
known attacks and regulatory policies can be used to guide the response choice. ADEPTS is demonstrated on an e-commerce
system with real attack scenarios. The effect on the system is measured through a high level survivability metric which
captures the effect of transactions that can be supported as well as system goals that are preserved under the attack. The
effect of the attacks on survivability is shown in ADEPTS and in a baseline system with no intrusion response.

We are currently investigating ways to synthesize new responses at runtime from the repository; designing protocols for
better handling concurrent attacks, distinguishing between attacks, and evaluating the robustness of the adaptation feature.
We are also systematically evaluating the performance of ADEPTS with more control parameters being varied and more
number of attack scenarios. Also the current design is suitable to heterogeneous sets of services and we are proposing a
redesign for systems with large sets of homogeneous service replicas.

8 References
[1] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi, “Collaborative Intrusion Detection System (CIDS): A Framework for Accurate and Efficient IDS,”

In Proc. of ACSAC, 2003.
[2] R. Ellison, R. Linger, T. Longstaff, and N. Mead, “Case Study in Survivable Network System Analysis,” Technical Report CMU/SEI-98-TR-

014, SEI, CMU, 1998.
[3] F. Cohen, “Simulating Cyber Attacks, Defenses, and Consequences,” At: http://all.net/journal/ntb/simulate/simulate.html, 1999.
[4] R. Anderson, A. Hearn, and R. Hundley, “Studies of Cyberspace Security Issues and the Concept of a U.S. Minimum Essential Information

Infrastructure,” Proceedings of the 1997 Information Survivability Workshop, CERT, 1997.
[5] T. Toth and C. Kruegel, “Evaluating the Impact of Automated Intrusion Response Mechanisms,” In Proc. of ACSAC, Dec 2002.
[6] E. Fisch, “Intrusion Damage Control and Assessment: A Taxonomy and Implementation of Automated Responses to Intrusive Behavior,”

Ph.D. Dissertation, Texas A&M U, College Station, TX, 1996.
[7] C. Carver and U. Pooch, “An Intrusion Response Taxonomy and its Role in Automatic Intrusion Response,” Proceedings of IEEE Workshop

on Information Assurance and Security, USMA, West Point, NY, 2000.
[8] U. Lindqvist and E. Jonsson, “How to Systematically Classify Computer Security Intrusions,” Proc. of IEEE Security & Privacy, Oakland,

CA, pp. 154 – 163, 1997.
[9] G. White, E. Fisch, and U. Pooch, “Cooperating Security Managers: A Peer-based Intrusion Detection System,” IEEE Network, vol. 10, no. 1,

pp. 20-23, 1996.
[10] P. Porras and P. Neumann, “EMERALD: Event Monitoring Enabling Responses to Anomalous Live Disturbances,” Proceedings of the 20th

National Information Systems Security Conference, pp. 353-365, 1997.
[11] D. Ragsdale, C. Carver, J. Humphries, and U. Pooch, “Adaptation Techniques for Intrusion Detection and Intrusion Response Systems,”

Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 2344-2349, 2000.
[12] D. Sterne, K. Djahandari, B. Wilson, B. Babson, D. Schnackenberg, H. Holliday, and T. Reid, “Autonomic Response to Distributed Denial of

Service Attacks,” Proc. of RAID, 2001.
[13] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker, “Controlling High Bandwidth Aggregates in the Network,” AT&T

Center for Internet Research at ICSI (ACIRI), Feb 2001.
[14] P. Brooke and R. Paige, “Fault Trees for Security System Analysis and Design,” Journal of Computers and Security, 22(3):256-264, Elsevier,

May 2003.
[15] G. Helmer, J. Wong, M. Slagell, V. Honavar, L. Miller, and R. Lutz, “A Software Fault Tree Approach to Requirements Analysis of an

Intrusion Detection System,” Proc. of the 1st Symposium on Requirements Engineering for Information Security, 2001.
[16] M. Dacier, Y. Deswarte, and M. Kaaniche, “Quantitative Assessment of Operational Security: Models and Tools,” LAAS Research Report

96493, May 1996.
[17] R. Ortalo, Y. Deswarte, M. Kaaniche, “Experimenting with Quantitative Evaluation Tools for Monitoring Operational Security,” IEEE

Transactions on Software Engineering, vol. 25 , issue 5, pp. 633-650, Sep-Oct 1999.
[18] C. Carver, J. Hill, and U. Pooch, “Limiting Uncertainty in Intrusion Response,” Proc. of IEEE Info. Assurance and Security, 2001.
[19] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber, S. Webster, D. Wyschogrod, R. Cunningham, and M.

Zissman. "Evaluating Intrusion Detection Systems: The 1998 DARPA Off-line Intrusion Detection Evaluation," DISCEX, vol. 02, no. 2, p.
1012, 2000.

[20] DARPA IPTO, “Organically Assured and Survivable Information Systems (OASIS),” At: http://www.darpa.mil/ipto/programs/oasis.
[21] DARPA Information Processing Technology Office, “Self-Regenerative Systems (SRS),” At: http://www.darpa.mil/ipto/programs/srs
[22] CMU Software Eng. Institute, “Survivable Network Technology,” At: www.sei.cmu.edu/organization/programs/nss/surv-net-tech.html
[23] D. Wang, B. B. Madan, and K. Trivedi, “Security analysis of SITAR intrusion tolerance system,” In SSRS, pp. 23-32, 2003.
[24] C. Cachin, “Distributing Trust on the Internet,” Proc. of DSN, pp.183-192, 2001.
[25] P. Pal, F. Webber, R. Schantz, and J. Loyall, “Intrusion tolerant systems,” IEEE Information Survivability Workshop (ISW), 2000.
[26] V. Stavridou, B. Dutertre, R.A. Riemenschneider, and H. Saidi, “Intrusion tolerant software architectures,” DISCEX01, DARPA Information

Survivalability Conference and Exposition II, May 2001.
[27] B. Foo, Y-S. Wu, Y-C. Mao, S. Bagchi, and E. H. Spafford, “ADEPTS: Adaptive Intrusion Response using Attack Graphs in an E-Commerce

Environment,” Proc. of DSN, pp. 508-517, 2005.

 21

9 Appendix

9.1 Scalability experiment
In this experiment, we examine the performance benefits that accrue from this capacity for parallelism. The benefit is

brought out by comparing the performance of ADEPTS with the ability to handle multiple independent attack instances with
multiple attack sub-graphs, one for each attack instance, against a version of ADEPTS (referred to as version 1 in Section 3.3)
that lacks this ability and therefore operates on the entire I-GRAPH. For the exposition in this section, we will refer to the
current version of ADEPTS as ADEPTS 2 and the earlier version as ADEPTS 1.

In this experiment, we synthesized 8 random I-GRAPHs, each with 700 nodes and 1050 edges differing in topology. For
each run of this experiment, we insert a given number of concurrent alerts into ADEPTS. We then measure the time for
processing them measured as the time between receiving the alerts and determining the nodes for responses. It is assumed
that there exist enough computational resources to work on the parallelized parts of the computation in parallel.

0

5

10

15

20

25

0 200 400 600

Nu m b e r o f Co n c u rre n t Ale rts

#
 S

u
b

-g
ra

p
h

s
 g

e
n

e
ra

te
d

Tre nd Curve 2

Tre nd Curve 1

Tre nd Curve 3

Tre nd Curve 4

Figure 13. Degree of parallelization in ADEPTS

0

2

4

6

8

10

12

50 100 200 300 400 500

Nu m b e r o f c o n c u rre n t a le rts
A

D
E

P
T

S
 2

 T
im

e
/A

D
E

P
T

S
 1

 T
im

e

Figure 14. Speed up in ADEPTS 2 with increasing number
of concurrent alerts

From Figure 14, we see that ADEPTS 2 gives considerable speedup over ADEPTS 1, with an increasing trend as the number
of concurrent alerts increases. Looking at the absolute values of times in ADEPTS 2, we find that the time increases as the
number of alerts increases even though unlimited computation resources are assumed to be available. This is because the
number of parallelizable sub-graphs grows with the number of alerts as shown in Figure 13. However, the growth is sub-
linear and therefore the relative speedup between ADEPTS 2 and ADEPTS 1 increases only sub-linearly with increasing
number of alerts. The sub-linear growth is explained by the fact that the spatial locality algorithm will tend to cluster alerts
close by in the I-GRAPH into the same attack sub-graph. The second comparatively less significant contributor to the
increasing time with increasing number of alerts is that the non parallelizable part of the computation – determining which
sub-graph an incoming alert belongs to – becomes more resource intensive. Figure 14 gives the average speed up of all the 8
cases between ADEPTS 2 and ADEPTS 1. The vertical bar shows 2 standard deviations. With a small number of alerts (say, 50),
ADEPTS 2 performs only slightly better than ADEPTS 1. This is due to the inherently higher constant overhead of ADEPTS 2
nullifies the performance gain from limited parallelization of 3-6 generated sub-graphs. However, from around 100 alerts,
ADEPTS 2 starts to significantly out-perform ADEPTS 1. Of course, it is not reasonable to expect such a huge number of
concurrent alerts for a relatively small scale testbed like ours, but could be close to reality were ADEPTS to be deployed on a
huge corporate system.

	Purdue University
	Purdue e-Pubs
	11-1-2005

	Automated Adaptive Intrusion Containment in Systems of Interacting Services
	Yu-Sung Wu
	Bingrui Foo
	Yu-Chun Mao
	Saurabh Bagchi
	Eugene H. Spafford

