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ABSTRACT

We have given a solution to the problem o unsupervised classification of multidimen-
sional data. Our approach is based on Bayesian estimation which regards the number of
classes, the data partition and the parameter vectors that describe the density of classes
as unknowns. We compute their M AP estimates simultaneously by maximizing their joint
posterior probability density given the data,. The concept of partition as a variable to be
estimated hasn’t been considered. This formulation also solves the problem of validating
clusters obtained from various methods. Our method can also incorporate any additional
information about a class while assigning its probability density. It can aso utilize any
available training samples that arise from different classes.

We provide a descent algorithm that starts with an arbitrary paatition of the data, and
iteratively computes the MAP estimates. We also focus on robust regression which is a
special case of unsupervised classification with two classes; inliers and outliers.

The problem of intensity image segmentation is posed as an unsupervised classification
problem and solved using the Bayesian formulation in a multiscale set up. The proposed
method isalso applied to data set'sthat occur in statistical literature and target tracking. The
results obtained demonstrate the power of Bayesian approach for unsupervised classification.

Keyworcls: Unsupervised classification, Bayesian estimation, cluster valiclation, robust re-
gression, image segmentation.



1. INTRODUCTION

In unsupervised classification, the given data 7 = {z;.¢ = 1,---,N},z; € R™ has
to be partitioned into mutually exclusive and totally inclusive subsets of Z namely c =
{c1,-",¢c.},¢x € Z so that al the members belonging to a class are close to each other
in some sense. The choice of s isitself a problem. The solution shoulcl include a compact
description of each class so that a new unlabeled data point can be classified easily. Next
the methodology shoulcl include the validation of the partition, i.e does the given partition
adequately explain the data? Given two different partitions, which one of them givesa better
explanation of the data?

When s is fixed, partitions are given by the so called clustering algorithms [2, 3, 4, 5]. It
is clearly understood that these algorithms are designed to generate good partitions; there is
no guarantee that the partition realy explains the data. The criterion function used in the
algorithm:; focus only on the centroid of clusters, not on the shape and orientation of the
clusters. There is an extensive literature [2, 4, 7, 8, 27, 28, 30] on cluster validation; which
includes the choice of s, the number of classes. Further, the criterion function usually has
numerous local minima and many methods are satisfied with obtaining one arbitrary local
minimum. Currently there is no method to compare different cluster sets derived for the
same data obtained from different methods. We will discuss the literature review in a later
section.

In the Bayes approach developed here the partition c isitself regarded as a variable to be
chosen from the appropriate space. When s is known, ¢ = {cy,...,C,), c € Q;, the set of all
partitions of set Z so that none of the sets ¢, in ¢ are null. When s is not specified, s < so,
then c = {ey,-.-,¢5},C € Q,, the set of all partitions of Z into sy subsets. The members
of class k are described by the probability density pr(z; | €%). pr is a known function and

6, is a vector parameter whose values have to be determined, 8, € R". The unknowns
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ae{c=Ae1, -.,cs},0 ={6;,---,6,}}, when s is known. Using the Bayes formalism, the
maximum aposteriori probability(MAP) estimates of { c,8) are obtained by maximizing the
posterior probability of 8 and c given Z. Since the prior distribution of both c and 8 are

assumed to be uniform, the MAP estimates (c'. 8) are given by

{c*8) = Argmin.J(c,8) (L.1)
ch
where
0)=-2% 3 lnpy(z]6y) (1.2)
k=1 2;€C;,

Even though the computation in (1.2) may appear to be time consuming because of the
discrete variable ¢, in fact the computation is much less than that with traditional clus-
tering algorithms leading to much superior results. For illustration le; pi(z; | 8x) ~
Gauss(¢.. r1),0r = {¢p,.7r}. Then

(c,8) = Z Y (= )1t (zi — o) TIn | detry | +min2n (1.3)

=1 2,;€C;

Minimizing ./(¢,8) w.r.t 8 fixing c is straight forward and well known. Similarly minimizing
J(e,8)w.r.t cfixing 8 isagain simple involving no more than data comparisons, i.e, we assign
z; to ¢ if (—=2Inp,(z; | 8.)) has least value for v = I;. By minimizing J(c,8) alternately
w.r.t ¢ and w.r.t 8 we get a local minimum of ./(¢,8) in a finite number of iterations. By
starting with different initial partitions c generated with the aid of random numbers, we can
obtain several local minima of .J(c,8) and choose the best local minimum.

The criterion in (1.3) has some similarity to the criterion used in some clustering algo-
rithms. This aspect is discussed in section VII. One feature of the criterion function is that it
has numerous local minima. In literature, the authors seem to be satisfied with one arbitrary
local minimum without searching for the global minimum. The Bayes approach allows us to
estimate s, the number of classes given that s < so. Correspondingly the best partition c
has to be searched in the space c € {};,. Bayes approach also solves the problem of partition
comparison and partition or cluster validation. Two different partitions ¢ and ¢’ involving
different values of s can be compared by computing the ratio of the corresponding posterior

probabilities P(c | Z) and P(c' | Z).



In many classification problems, we may have additional information on the classes which
are not often utilizecl. For instance, we may know that in a particular class, all the members
z; are clustered tightly around a straight line or a convex curve or a 2-D plane. This
information can be incorporated in assigning the probability density function p, associated
with the class. Again our method can successfully utilize any available training samplesi.e
sets Z*) ;= 1,--.,s where al the members o Z*) are known to be from the k'* class.
These are included in the data set Z, except that the class assignments art: not altered.

Next we formulate the segmentation of 2D image as an unsupervised classification prob-
lem. This problem has two distinguishing features. First of all, the members of each class
may have markovian dependency. More importantly the number of points 'inthe data set 2
may he very large. A typical 256 X 256 image will have 2562 = 65536 data points. The seg-
mentation has to be carried out at different scales, as described later. The key idea here also
is the extensive search of the c-space. Currently available clustering algorithms cannot han-
dle the image segmentation problems where we know only the intensities of all the pixels. In
recent years, stochastic model-based image segmentation methods have gained importance.
In these methods, the labels of the image pixels are modeled as a Markov random field and
the segmentation is computed by estimating the best label for each pixel in an approximate
MAP set up.

We also focus on a closely related problem namely robust estimation and robust regression
[25, 26]. It is a special case of the unsupervised classification problem with two classes.
The members of the two classes are labeled as inliers and outliers; outliers being the noise
or corrupted data, the class label of each point being unknown. The aim is to estimate
the parameters associated with the density of the inliers. Usually the parameters of the
outliers or the classification problem itself are ignored. The robust regression methods are
also used in image processing literature extensively [11, 13, 13]. M-estimators were applied
in several important computer vision problems such as pose estimation, edge detection,
hierarchical surface fitting etc. High breakdown point regression methods are desirable in
computer vision and M-estimators have low breakdown points. The connection between
the robust estimation and unsupervised classification problem has not been appreciated in

the statistical literature. The popular method like Least Median Squares(LMedS)[24], fails
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when the number of data points in the outlier subset is greater than that of the inliers. In
image processing applications, when a window is centered on a corner, or on a boundary
between two regions, we cannot guarantee that 51% of the pixels belong to the surface in the
window center. Our method does not suffer from such a restriction. Further the computation
needed for the solution in our method is much less than that of the methods like Least
Median Squares which need Monte-Carlo procedures since the function to he minimized has
no continuity, let alone derivatives. Finally the Bayes method gives an expression for the

covariance of estimates.



2. OPTIMAL PARTITION WITH A GIVEN NUMBER OF
CLASSES

Let the data set be Z = {z;,i = 1.---,N},2; € R™ whose members are statistically
independent. Let s be the number of distinct classes in Z, s is known to us. Let the
s associated probability densities be pi(z; | 64),0;, € R™ k = 1.--- s. Let theset ¢ =
{¢1,--,¢c;} be a partition of Z into s classes, each ¢; being a subset o Z. the density p;

describing the members of the set c;

ek C 2, Vk=1.---,5 e;Ne; = Null,i # j (2.1)
(2.
Uiycp=2. e # NullVk=1,.-- s

Let 2, be the set of all possible distinct partitions of Z obeying (2.1). c and ¢’ are different

partitionsif they are different sets. The number o distinct partitions, which isthe cardinality

of Q,,is

> (1) (1) (s =N~ = (2.2)

cand 8,k =1,--.,s are the variables to be estimated. We regard c € Q,,,8, € R™ k =
1,-.-,s as independent random variables. P{c), the prior probability associated with c is
same for all c;

1
B #93,87
Let 8= {61,-..,0,}. Let p(8;) hethe prior probability density of 8, so that the probability

Ple) Ve € Q,, (2.3)

density o each component of 8 is uniform for all its components.
Let {¢,0;,k=1,-.-,s} beestimatesof cand 8,,k =1,-..,s, based on Z. Let the loss
function /(c,¢,0,6) be zero-one. zero if c = ¢ and § = 8, one otherwise. Then the risk

function is

s

R(é,80) =Y ]L(c,é,e,é) p(Z | c,8) Plc) (H p(ak)) dZ de, ---dé,. (2.4)

k=1
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The MAP estimates (c* #*) minimize £(c, ),
(c*8")= Arg max P(c,8| 7). (2.5)
ch
Since the priors of 8 and ¢ are uniform
(c",8*) = Arg mabx P(Z]e¢,8). (2.6)
C,

Since the data Z isindependent, the joint density of Z has the following form:

P(Z|e,8)= f[ ( I pelzi | Ok)) : (2.7)

k=1 \z;eC,
Let,
fe(2z,05) = —2lnpi(zi | 0y) (2.8)
Je={er.---,¢:}1,0 =1{01,---.8,}) = D > filzi,0). (2.9)
k=1 Z;€Cy
Then
(c™.0") = Arg mien J(c,8) (2.10)
c.

J(c,8) has interesting extremal properties.

For afixed8 = {6,,--+,8,} thevalue o ¢ which minimizes J(c, 8) w.r.t ¢ can be written
easily:
cg=1{cp,> .} (2.11)
where
cg, =12 fu(zi,0r) < fu(2:.0.), Ve A u,u=1,---,s} k=15 (2.12)

The above expression involves only data comparisons.
Similarly for a fixed ¢ = {e1,--.,¢s}, the minimizing value o € is unique and it can he
given easily:

A

éc = {éc.la"'70C,s} (213)



where

A

Ocr = min Z fe(2i,01), k=1,---,s. (2.14)
okeRnk Z€C

Moreover, an explicit expression for 8¢ can be given because of the structure of f;.
We indicate how the computation required in (2.14) can be done in a simple manner.
Let 8 = (¢,.7i), where ¢, is an m-vector and 7, isan m X m covariance matrix, and
fr(zi,08) = —2Inpe(z;|6k)

= (2; — &) rg(zi — @) tn | detr | +mIn2m (2.15)

For the given c, let the minimizing value of 8¢ be (¢¢ ;. Tc k)

éc,k = T Z Zi
iVlk 1:2;€C
. 1 - .
Tcr = v Z (Zi - ¢C,L~,)(Zi - ¢c,k)T
[\’lk 1:Z;€C
le = #Ck
J(e,8c) = Nm(1tm2r)+t 3 Nyin|detie,y | (2.16)

k=1

Definition 1: (c*,0%) is a local minimum of J(c,8) if
J(c".07) < J(e,87) VeeQ, (2.17)

J(c.8%) < J(c*.0) YO € R™ x R™ .- R™ (2.18)

Definition 2: (Global minimum)

(c,8) is a global minimum if
J(c,8) < J(c,8) YeceQ,, 6§ c R" x R™ ... R™ (2.19)

Note that a local minimum need not be a global minimum, sincein (2.17) and (2.18) we
perturb only c or 8 at one time, not simultaneously.
A simple descent algorithm is given for finding a local minimum of J(c,8). It is done

by changing 8 and c alternatively using expressions (2.12) and (2.14), each time having a

reduction in J(c,8).




Since the determination of 8; utilizing all z; in ¢; involves the inversion of a matrix,
assume that the number of members in ¢, must be greater than 2n;. Let us cal this
assumption (Al). (Al) will be relaxed later.

Descent Algorithm(with assumption Al)

1. Letc =(cl,...,c))and 8’ = (67,.-.,87) beestimates at theend of ji" iteration.
Choose ¢! arbitrarily, perhaps from a solution of a clustering algorithm with

random seeds.
2. Given ¢¥), compute 6\ using the formulain (2.14).
3. Given 8, compute ¢V using (2.12).

4. Stop if ¢ = el*Y); otherwise goto 2.

End.

Note that the computational effort for finding a local minimum s very little. It involvesthe
inversion of a matrix of relatively small dimension and data comparisons.

Theorem: 1:

Given data Z, the algorithm converges to a loca minimum in a finite number of steps.
Since J(c+1 90Ty < J(el,81), convergence of the algorithm isassured. Recall that the
algorithm stops when ¢ = ¢+, This is afixed point for the algorithm. Before reaching
a fixed point, thereis afinite and non-zero reduction in the J value at each iteration namely
{J(c(i)jg(i)) — J(c(i—l)’g(i_l))} . Since Jis bounded below. the convergence has to be in a
finite number of steps.

Comments:

1. Relaxing of the assumption Al:

Suppose at some iteration, say j, one of the subsetsin ¢?, say ¢;. has less than 2n; members.
Then we cannot carry out step 2 completely, since 8 cannot be computed. Then we set

7 = 8,"" and complete step 2. If this condition persists, i.e if one of the subsets of ¢ has
fewer mernbers than required, the implication is that the chosen value of s is too high. Then

redo the algorithm with the reduced value of s.
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2. Computation of the best local minimum

By beginning with different partitions, we get different local minima. The best among them,
i.e one with the least value gives the desired solution. Of course, there is no guarantee that
it is the global minimum. In all the examples, the computation of at most six local minima
was sufficient to give the desired solution.

Since the computational requirements for each local minimum is very little, the overall
computation needecl for the best local minimum is not much.

3. Recovery of the original partition

In a simulation experiment: we obviously know the label of each data point. Will they be
the same as the estimated ones for all : = 1,--., V, assuming s is known'? The answer is,
yes under certain conditions. Let us denote Z*) as the generated data set for the k** class.
Z = Ui, Z™. If the convex closures of each Z*} does not. overlap with that of another,
then one can prove that the estimated data partition is same as the partition of the original
generated data.

4. Accuracy of estimates

We give only an example: Suppose s = 2. Let pi(z; | ;) ~ Gauss(ug,r:), k= 1.2 and

gk = (pk, rk).

The posterior density of p; given cj is
Pe(uy | ef) = Gauss(uy, rr/Nik)

where N}, = number of elements in the set cj.

The covariance matrix of . given cj. is
Cov [ | €3] = 73/ N1k

4. Maximum Likelihood estimate

In the approach of classical statistics, there are s probability distributions pi(z; | %), the
parameters 8;,k = 1,...,s being unknown. Every data point in Z has a definite class |abel
which is nnknown to us or equivalently the ideal partition is an unknown constant. The
likelihood expression of the data Z isin (2.7). where both ¢ and 8 are unknown constants.

Thus the value of ¢ and 8 which maximize P(Z | ¢,8) is the maximum likelihood estimate
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of c and 8. Because of the use of uniform priors, the ML estimate is same asthe MAP
estimates Found earlier.

5. Comparison of partitions c and ¢

Let P(c | Z) denote the probability of the partition c being valid for Z. Given two different

partitions c and ¢/, ¢, ¢’ € €1, ;, with same s, we can compute the ratio }f(((‘ ,||ZZ) We provide

the expressions in the 1D Gaussian case. The class densities are given by p(z; | 8;) ~

Gauss(pk. pi). Define the vectors 8 = {61.....0;} and 8, = (4, p1).

Plc|Z) = ](,P(C-OIZ) a9

= K(Z.5) [ P(Z | e, p) duy -+ dpty dpy -+ d,

= ZSH/(

where k'(Z,8)= P(c) P(8)/P(Z). Following our choiceof prior probabilities P(8) does not

pr(z uk.,pk)) dpur. dpy, (2.20)

2, €Cy,

depend on 8. Denote the integrand by (). Let #cp = Ny.

1 (z; — 2 N,
Qr = H Pe(z | prspi) = exp{—; Z Vlk) — %ln?Trpk} (2.21)

2, €Cy, “ L EC) Pk L

Writing (z; — px) aS(z; — fu +,uk — ), Where fi, = 57, ce, z;/ Nk, simplifying the expression

and integrating w.r.t pu gives

/Qk dyx = & pi™ exp ( k) (2.22)
Pk

where ap = AN;C[};C/'Z, Bk = (]Vk — 1)/2, 5;\7 = (271_)—;3,”\];1/2’ and ﬁk = ZZ;EECk(Zi — ﬂk)T‘/Nk.
Setting v = p;' and using the definition of I-function®.

/Qk dpy dox = fk/’)’fk_2 e dyi
——F 7 B>1 (2.23)
Simplifying further, the final expression for P(c | Z) is given by

Plc| 2) = K(Z,s) Ha 5p Pt (2.24)
k=1

1 . T
1f0007'6 1, Wd‘y:%
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Br—1) . - .
" Wecan comparec and ¢’ viathelog likelihood ratio

where ax == £ T(8, — 1) - (%&)—(

Plc|2)

Pl [2) InP(c| Z)—InP(c'| Z)

In

iibn(ﬂ)-—ﬂﬁk—lﬂnm—wﬁz—lﬂnMJ (2.25)

k=1 a’k

N —
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3. CHOICE OF S, THE NUMBER OF DISTINCT CLASSES

The problem of choosing the value o s is known as model order identification or cluster
validation. A popular method is to use the Akaike’s information criterion. However, it has
been shown in [10] that this criterion does not yield consistent estimates. |n our method we
obtain the estimate of s via Bayesian esimation by considering s also as a random variable.
The value of s isintimately related to the partition. So we combine it along with the MAP
estimation of the partition and parameters.

Using the Bayes formalism we will compare all the partitions c of Z in Q,, for 5, 1 <
s <80, sp being known and find the best partition, and incidentally the best value of s.

Reasoning as before, include s also as an unknown to be estimated, 1 < s < s3. The

optimal Bayes estimator of (s,c,8) is given below:

(5*7(::"0;7"'79;) (31)

= Arg max max mas p(Z |s,c,0)P(c|s) (ﬁ 1)(0;\.))} (3.2)
k=1

5:1<s<sp | C:CEQs s ekER"k

= Argmin H min  Jy(c, 0,k = 1,---,5)} —2In P(c |8)—2]n(H p(Gk)J
* & k=1

10‘: 7k=17'“7s

We need the prior probabilities. Let all s have same prior value,

P(s)=1/s9, s=1,--+,90 (3.3)
Plc|s) = Prior probability of a partition c given that it has s non-zero subsets
1
= , Plc|s)=1 (3.4)
#QSYS CZCEK:]S,S

Prior probability of each component in 8; is uniform and equals 1/L;. Let

Arg min Jo(e, Bk k=1, 8) = {c:.6;,.--.0,} (3.5)

C.U,
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where ¢ € Q. For 1 <5< s, ¢7,05,,-.7,0;,;¢;={c},,...,c},} can be determined.
s = s:lrgsigso Js[c:, :,la e ,0:‘3) + 2111(#95'5) +2 kZ::l niIn L (36)

Since L; 15 the prior density of 8y, it should cover the total range of all the components of
0,. Different choices of L, may give different optimal s. We set Ly = 10,k = 1,-..,s in
the first three numerical examples and Ly = 256,k = 1,-..,s in the image segmentation
examples.
Example:
Let al the s densities p; be multivariate Gaussian. pi(z; | 0 = ¢y, 7x) ~ Gauss(@y, i)

then

Jo(c,05,,--,8,) = Nm(l—Hn‘27r)—{-Z:Ns,klndetf's,zc (3.7)

? 7 s,8
k=1

I

where N, . = #c;, and
7, = the covariance matrix computed from the subset ¢, (3.8)

Let ny = ng = m¥+ m(m + 1)/2,k =1,-..,s. The argument to be minimized in equation

(3.6) be denoted by H,. Then

He = Go+2(Nlns—Insl)+2sne Inl0, 1 <s< 3 (3.9)
s = Arg min H, (3.10)
1<s<sp

Note (+; usually goes down as s increases and {2(N Ins — Ins! )+ 2 s ng In 10) increases
with s. Thus a minimizing H, w.r.t s yields a finite value for s.

Comparison of two partitions c and ¢ with different values of s

Suppose we have 2 partitions ¢! € ,, 5, and c? € Q,, ,, with the number of classes s, and

s, respectively. We can compare the probabilities P(sy,c*.8 | Z) ,k = 1,2 to decide which

Mﬁ)
P(s2,c2.0%12y/" Let the class

densities be multivariate Gaussians given by pi(z; | 81) ~ Gauss(¢,, rx) as in the preceding

example. Then P(s,c,8 | Z)isgiven by H, defined in (3.9), with G, given by (3.8). The

partition is better. We compute the log likelihood ratio ln(

log likelihood ratio can be computed as follows

) 1 1
In P(s1,¢', 0" | Z) —In P(sy,c*, 0| Z) = —5Hs + 5 H,, (3.11)
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4. ROBUST REGRESSION

Ordinary regression by least squares is widely used in many disciplines. However it is
well known that the estimate of the fitted line or plane to the data is very sensitive to the
presence of extraneous data. The addition of even five percent to ten percent of the noise
data-the o called leveraged data points-can drastically alter the fitted line; sometimes it.is
even roughly orthogonal to the original line.

Robust regression is a special case of the unsupervised classification problem with two
classes. The given data set. Z has to he partitioned into 2 classes ¢ = {¢;, ¢, }, ¢; being the
subset of al the inliers or good points and c¢; being the subset of all the outliers or noise
points. It is closely related to the generalized maximum likelihood order statistic (GMLOS)
method given in [13]. Let the data vector be z; = (y;, ;). where y; is the dependent variable
and z; the (m — |) dimensional independent vector. We need to regress y on. X for theinliers.
Fit multivariate Gaussians for both inliers and outliers. For the inliers, the fitted Gaussian

model is

pi(zi | 01) = puly: | @i, @11, p1)p12(xs | D15, 71) (4.1)

where

pulyi | @i, dy.pm) ~ Gauss(ol (1, 2;),p1)

prz(Ti | ¢1277'1) ~ Gauss(@,,,71)

and 8, = {¢,. P9, p1. 71}, D1y IS m-vector, ¢, is (M — 1)-vector, 7 is (m — 1) x (m — 1)-

matrix. The outliers can he fitted by p,(z; | 82) where

p(zi | @dy,72) ~ Gauss(e,,rz)

The optimal data partition c, for s = 1,2,3 etc can be computed and the optimal s can be

estimated as before.
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Apparently there is no Bayesian method of robust estimation in the literature as men-
tioned in )]. The estimates presented here have several important advantages over tradi-
tional methods o robust regression like the Least Median Squares(LMedS) [24].

The LMedS uses the following criterion:

min |Mediany, »yez{(yi — @ — 333,)2}] . (4.2)

o,f3

Note that the median is taken over the entire data. In image processing applications, when-
ever two surfaces meet in a processing window, the pixels belonging to one o the surfaces
can be regarded as outliers for the fit to the other one. Clearly if the number of outlier
points is greater than number o inliers. the median gives information about outliers than
the inliers, i.e, LMedS is fitting the best regression line to the outliers. Obviously LLMedS
result has no relevance.

Secondly the Bayesian theory also yields the covariance matrices of the estimates of pa-
rameters. It iswell known that LMedS estimates are biased and their variances or covariance?

are nowhere near the possible minimum values.
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5. NUMERICAL EXAMPLES

5.1 Example 1: (Star Data)

This example comes from astronomy. It has been used earlier in [25]. The data set (y;,z;)
consists of 47 points. x; is the logarithm o the effective temperature at the surface of the
star and y; is the logarithm of its light intensity. The raw data is shown in Figure 5.1a.
Majority of the stars which constitute the main sequence follow a steep band and four stars
in a vertical line standing apart are the red giants.

We will apply our method, comparethe results with s = 1,2,3 and 4. We will distinguish
between the two problems namely clustering and regression. The goals of regression and
clustering are entirely different. In regression we look for a single line that explains the
entire data except for a few outliers. Thislineis used later for forecasting purposes. Where
as in clustering we look for different distinct groups of data with their associated distribution
parameters. A solution for robust regression, where we first identify the outliers ancl find
the regression line for only the inliers, is clearly provided by clustering with s = 2.

We will compare the results given by our clustering algorithm with s = 2 and the regres-
sion estimate given by the least median squares method(LMedS). The mean square value of
the error residuals will be our criterion for comparison.

In classification for clustering, we fit s bivariate Gaussians to the data, s =1,2,3 and 3
and get the best local minimum in each case whose highlights are given below.

Notice that (¢; valuefallsas s increases. Note (s= 3) hasthelowest valued H; indicating
that the optimal number of classes is 3 according to our criterion. The results of clustering
using our method are given in Figures 5.1a-5.1c¢ for s = 1,2 and 3 respectively. For s = 2
and 3 we show the best local minimum along with a fitted line to each class. We note that
visual inspection of the data does show 3 distinct classes. Hence H; seems to be a useful

statistic in determining the number of classes needed for classification or clustering.
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s Membersin G, H,
optimal partition

1 {47} 03.88 | 116.91

2 {41, 6} -38.02 | 71.80

3 {26, 4, 17} -105.48 | 63.28

4] {4,14,12, 17} | -138.99 | 77.07

Table 5.1 Optimal data partitions and their corresponding costs for the Star data; N = 47

Regression

With s = 2, about half a dozen local minima were found with G, vaue:; {-38.02, -34.03,
-21.36, -21.34, 6.69, 1.41). Theone given in Table. 5.1 is the best local minimum. Except
for local minimawith relatively large values of G,. all other local minima give similar values.

Figure 5.1a is raw data and also indicates the regression line obtained from the least
squares method to entire clata. Figure 5.1b is the partition corresponding to the best local
minimum With Gy = —38.02; the associated starting partitionisin Figure5.1d. Our method
picks up all the 4 red giants as outliers. It also picks two stars from the main Sequence as
outliers. We note here that this partition was declared better than the one with only the 4
red giants as the outliers. Even the mean square value of the residuals for the inlier set is
lower for the configuration given in Figure 5.1b.

The regression lines derived for the fitted bivariate densities are shown for each class.
Note that the regression line is nearly orthogonal to the one obtained with s = 1. Also the
mean square value of residuals of the inlier class with s = 2 is 0.1365, which is less than
one half of the corresponding value obtained with s = 1 namely 0.3052. This feature again
indicates the advantage of detecting outliers and eliminating them from consideration.

Thevariancesof the estimated parametersof theregression linefor s = 1is {(0.0784, 1.4637)}.
For s = 2 the parameters of the regression line fitted to the class with 6 points have
variances {(0.1041,1.3785)} and those of the line fitted to the class with 41 points have
{(0.2894, 5.6296)}.
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Since we need not be restricted to choosing gaussian distributions for the class densities,
we have also conducted experiments using a Gaussian distribution and a uniform distribution
for the regression case. We note that when the outliers form another cluster: which happens
when there are leveraged points, using a gaussian distribution to model them gives better
regression results. However, if they do not, then a uniform distribution captures the outlier
distribution well.

Figure 5.2 shows two partitions each for s = 2 and s = 3 that are fixed points of the
algorithm. These correspond to loca minima of the functional G, other than the best,.
Figures 3.2a and 5.2b are the starting partitions with s = 2 that converged to the partitions
in Figures 5.2c and 5.2d respectively. Similarly, Figures 5.2e and 5.2f are starting partitions
with s = 3 that converged to the partitions shown in Figures 5.2g and 5.2h. The costs of
the respective partitions are shown along with each figure.

Clustering Algorithm

Figures 5.1b and 5.1c give the results obtained by applying the clustering algorithms with
number of classes s equal to 2 and 3 respectively. The results of clustering algorithm are
relatively robust to the starting points. The clustering result of Figure 5.1b with s = 2
is counter intuitive. It makes a horizontal cut of data, including the outliers in one o the
classes. With s = 3, the 4 outliers are placed in a separate class. We could use the results
of clustering algorithm as the initial partition.

LMedS methocl

As discussed in [25], the linefit given by LMedS method, § = 3.898x — 12.298, nicely fits the
mai n sequence of stars. Thereisno apriori recognition of outliersin the LMedS method. The
outliers, if needed to be picked, are identified by their large residual errors after the regression
line is computed. For the parameters estimated using LMedS, there is no available method

to compute the accuracy of estimates.

5.2 Example 2: (Simulated data)

This data set is a variant of the one used extensively in statistical literature in connection
with robust regression [24]. Most robust regression estimation techniquesexcept LMedS fail

in this case. The data set, (y;,x;),i =1,..., N, consists of a cluster around a straight line
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1 with 20 points, the so called inliers and a blob cluster. ? consisting of outlier data with 80
points. The original data had 30 inliers and 20 outliers. We essentially changed the fracton
of outliersin the data from 0.4 to 0.8.

The aum in thestatistical literatureisto recover the regression line associated with inliers.
Since the number of outliersis much greater than that of inliers, all the standard statistical
methods including LMedS fail. They assume that the fraction of outliers is less than 0.5,
consequently the outlier set is treated as the inlier set.

We will use our approach with s = 1.2 and 3, fitting bivariate Gaussians in al the cases.
The results for all the cases are shown in Figure 5.3. We tabulate the results in Table. 5.2.

Figure 5.3a shows the raw data and the regression linefor the entire data.

] Members in ‘ G, H,
optimal partition
1 {100} 610.52 | 633.55
{80, 20} 257.73 | 441.03
| 3 {20, 42, 38} 165.29 | 450.51

(8]

Table 5.2 Optimal data partitions and their corresponding costs for the Simulated data.

s=2

Figures 5.3b and 5.3d show the best local minimum, &, = 257.73, and the initial partition
that led to the best local mininimum respectively for s = 2. There was only one other
minimum for this data set with G, = 489.92. Note from Table. 5.2 that s = 2 has the least
value of ¥/, indicating that the best value of s iss = 2.

s=3

Figure 5.3c shows the best local minimum with s = 3. With s = 3, there is only a finer
partition of the partition with s = 2. Note the regression linefor the inliers is captured well
with s = 2. The G, values corresponding to six other local minima are {165.29, 171.82,

173.94, 157.25, 182.01, 225.76). We have observed that there are numerous local minima

ly, = ; T 2+ Gauss(0,0.04), where z; is uniformly distributed on (1, 4)
22D Gaussian distribution with mean (7.2) and covariance 0.5 | .
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around G = 170. This configuration corresponds to the splitting of the blob cluster into
two and the line cluster.

Clustering algorithm Figures 5.3e and 5.3f give the results of the clustering algorithm

with s = 2 and s = 3 respectively. Both the clustering results are reasonable. As before.
when we get 3 clusters, we have no way of deciding whether the data contains 2 or 3 clusters.
Our method clearly indicates that s = 2 is sufficient,.

The variances of the estimated parametersof theregression linefor s = 1is{(0.0013.0.0525)}.
For s = 2 the parameters of the regression line fitted to the class with 80 points have
variances {(0.0142,0.7077)} and those of the line fitted to the class with 20 points have
{(0.0065,0.0459)}.

5.3 Example 3: (Multi-sensor target tracking)

Multiple sensors send observations z; = (y;,z;),i =1,--., N to the central station |20,
21]. There could be multiple targets in the atmosphere and their number could be variable
at any given time. The raw data of 120 points is shown in Figure 5.4a. The x-coordinate is
related to time. Thefigure shows all the observations collected upto a timet,. We have not
shown time in the graph. As time progresses there is more data,. There is no target label
attached to each observation. It is known apriori that the trajectory of a target obeys some
parametric curvein the X — Y plane; straight line: parabola etc. For simplicity we consider a
straight line. There are also observations caused purely by noise, the clutter. Note that one
trajectory is completely inside the clutter. Moreover the rangeof this trajectory is much less
than that of others. The problem is to identify the number of targets, their tracks and the
clutter points. Intersection of the trajectories in the figure indicates intersection in feature
space, not in real time.

There are many methods for assigning labels to these targets. One of the methods
is clustering. The principle difficulty in some of the procedures is as follows: Consider two
intersecting targets say AB and CD intersecting at the point O, so that AO and OB belong to
onetrajectory, CO and OD to theother. Many methods (including the clustering algorithm)
take two parts of two different trajectories, i.e the part AO from one trajectory and OC from

the other and declare AOC as one trajectory, similarly BOD as the other. This happens
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because the clustering algorithms do not use the available information that the trajectories
are straigll.tlines or parabolas etc.

Each trajectory is parametrized by a line L{3, v, p) and obeys the equation
yi = Ba; + v+ Gauss(0,p), ¢=1,---,N (5.1)

z; are uniformly distributed in therange [0, 10]. Thethreelinetrajectories are L,(0.4.5,0.01),

Ly(—0.3,9,0.01), L3(0.1,2.1,0.0025). The clutter is modeled by a Gaussian distribution
. 5 0.4 0.2 o ]
given by Gauss , . There are 30 points in each trajectory class as well
4 0.2 1.2
asthe clutter class, a total of 120 points.

Results with clustering algorithm

s=4

The result with s = 4 isgiven in Figure 5.4e. The clustering captures only one o the three
linetrajectories. One cluster combines parts o the 2 linesof thedata, before the intersection.
The other cluster captures the other two halves of the line clustersin the data.

s=5

The result, with s = 5 is given in Figure 5.4f. This clustering is aso erroneous. It doesn't
identify any line trajectories correctly. The clusters corresponding to the clutter and the
trajectory within it are subdivided into two clusters without the trajectory being identified.

Results with our method

s=14
All density families p, are multivariate densities. The best local minimum has &, = 219.62
and the corresponding plot isin Figure 5.4c.

Note that our method captures the four classes correctly. Even the trajectory within
the clutter is identified correctly. Another local minimum is given in Figure 5.5d. The
corresponding H; = 638.09.
s=5
The result associated with best loca minimum isin Figure 5.4d. The result with another
local minimum isin Figure 5.5e. Note the result divides the data of smaller trajectory and

the clutter into 3 clusters, correctly finding the clusters of two big lines. G, = 193.69 and

- e
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H, = 685.51. Notice that Hs, the H-statistic with s =5 is much larger than /1, indicating

that the correct value of sis 4.
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6. BAYESIAN APPROACH FOR IMAGE SEGMENTATION

Consider an M x M image with intensities given by {y,, ,2,7 = 0,--..M —1). Our
aim is to partition the image into b segments such that the segments are non-overlapping
except for border pixels. All the pixels corresponding to the same segment represent the
same artifact like road, water, house. etc. However the number of distinct classes, s, is less
than or equal to b, since two or more segments which are separated from each other by some
other segment may belong to the same artifact like water. Thus we have only to deal with
s densities pi(yi; | 0x)

Secondly the number of pixels in an image is a large number. For a 25 X 256 image
we are dealing with N = 256? = 65536 pixels. Carrying out the segmentation at the finest
level may involve very extensive computation. Instead, the computation isformed at several
scales. The image is divided into blocks of size 10 X 10 so that all pixels of the same block
are assigned the same class. Effectively the number N for the algorithm becomes (/N/100).
Based on 1 he segmentation, we go to the next coarser scalesay 5 X 5 etc. Repeat till we get
the lowest level.

We assume that the y; ; are clustered around polynomials specifiable through facet mod-

els.
Yij = oo+ oyl + o) + azty + i (6.1)

n:.; ~ Gauss(0, p;) is the white noise with variance p;. Then the density o y;; belonging to

the k" segment is given by

Pe(Yis | 0%) = Gauss(ao + cui + azj T asij, pi) (6.2)

Note all the pixels belonging to class k have the same variance but not the same parameters

0 = (akﬁpk)-
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For afixed s, to obtain the MAP estimates of ¢ and 8 we have to minimizethe function

Js(c,0) = *QZS: > Inpi(yi; | 0k) (6.3)
k=1

(‘ivj)7yl‘] Eck

Segmentation with multiple scales

We want a partition of theimagec = {¢,,---,c,} wherec, isasubset of Z, and al members
in ¢, may not be contiguous. Since the number o pixels NV is large we have to carry out the
partition at several scales.

In the beginning let us deal with blocks of pixels say 4 x 4. Let the block be denoted by
theleading pixel. For instance the hlock {(:+4,7+{),k,1=10,1,2,3} will he denoted by b,,,.
We assign the entire pixel hlock to one subset ¢, in the partition. Note we are not averaging
the intensities in the block. Each pixel retains its identity. Thus we have (N/16) = N,

blocks. The class assignment of the block is given by

Assign all pixels € b, ; to ¢,

it {Zz_fk(yi,j;ok) <Y fulyiii 0 Vu} (6.4)

ttu j+v +u j4v

Partition at the coarse level

Since in the example we cled with 80 X 80 image, N = 6400. We carry out segmentation at
3 levels: 4 X 4, 2 X 2 and thefinest level. Consider the coarsest level. Let

Zy = {y.;,0 < 1,5 <79} (6.5)
Zy = {624 0 < 1,5 <39} (6.6)
Zs= {63V .0 < 4,5 <19} (6.7)

where 6" = {yu+iv+;,0 < 1,j < k —1). Let the corresponding partition be ¢y,
Cy = {64,11 ce 1c4,s}

wherec,, C Z,. All thelx1 pixelsin thesame block b3 will have the same class assignment,

i.e the same density p; is assigned to all the 1 x 1 pixelsin the same block.

0, = parameter associated with the density of class k
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For a given partition ¢,

0. is computed for the 1 X 1 pixel intensities y, ; in all the blocks by"" assigned to ¢, , as
indicated.

For agiven 8.k =1,---,s the partition is updated as follows

Assign b*" to ¢y, if

Y Surinrsi06) <030 filtugive,; 00 V=1, s (6.8)

0<i j<3 0<i <3

Thus we get the best partition

CZ = {Cil, T ?c:,s}

Partition at next coarse level 2 x 2

We divide the 4 x 4 blocks into 2 groups, the boundary or B blocks and non-boundary or N B
blocks. Each block has 4 immediate neighbors. top, bottom, left, right. Two neighboring
blocks are labeled NB if their class labels are different.
cye = {byr.0yY is NB, by € can}
Z, = U cﬁk
k=1
The innportant idea. here is the class assignments made to the 1 x 1 pixels in the blocks

of cg‘f}? are fixed and not altered in subsequent iterations. Only the assignments of pixelsin

7, are altered. Consider a partition of ¢, at thelevel 2 x 2

Cy; = {02,17 Tt C‘Z,s}

All the 2 x 2 blocks derived from ¢}’? are permanently assigned to ¢, and their class labels

are not altered in iteration.
7} = {by" by" derived from Z}}

At every iteration every member of Z) is assigned to c,,,..-,cqs as the case may be.
Computation of 8 and updating of ¢, is similar to the earlier case of 4 x 4. After arriving

at 1 x 1 level, the final result is cleaned by averaging over a 5 X 5 window.
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Choice of s
The best value of s is that which minimizes H,. However, in our multiscale scheme, it is
more robust to decide on the value of s at a coarser scale itself. So the value of s is decided

at the scale where all the pixels in blocks of size 4 X 4 have the same class assigned to them.
6.1 Example 1: (Synthetic Image)

We consider a synthetic image made up of three textures from the Brodatz album. The
image is 80 x 80 made of 5 segments and 3 classes. The original image is in Figure 6.1a.

First consider the coarse level segmentation at level 3 X 3 involving N = 300 blocks. We
begin with arhitrary class assignments for the initial partition and derive the associated local
minimum. Several different local minima are derived. There are many which are close to
each other visually as well asin J-values. The best local minimum isdisplayed in Figure 6.1b
and the associated initial partition in Figure 6.1c. Next we explore segmentation at 2 x 2
level. Note thereisno need for arbitrary initial choice of partition sincethe {8,k =1,-.-.s}
obtained from 4 X 4 level can serve as the starting point. The fina result is given in Figure
6.1d. Notethat class assignmentsfor the nonboundary blocksin Figure 6.11) are not altered.
Similarly the result of segmentation at the lowest level is display in Figure 6.1e and the
cleaned image in Figure 6.1f. The number of errors in the final segmentation at the pixel
level is 63 which corresponds to 1% misclassification error. We note that the boundaries are
visually perfect and the actual error at the pixel level isonly 1%.
Choice of s
The value;; of H, for s = 2,3 and 4 are 63032.97,61550.89 and 61707.41 respectively. The
value of H, is minimum for s = 3 which is the actual number of distinct textures present in

the image
6.2 Example 2: (Real Intensity I mage)

We consider an aerial image made up of intensitiesin the range [0, 255]. The image is of
size 80 x 80. The original image is in Figure 6.2a . We apply our multiscale segmentation

method to this image. The best local minimum at the coarse level 4 X 4 involving N = 400

'the authors acknowledge J. M. H. duBuf for providing the image
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blocks for s = 3 is displayed in Figure 6.2b. The final result after cleaning is given in
Figure 6.2c. Each iteration at level 4 x 4 took about 1 to 3 sec on a Sparc machine and the
number of' iterations for obtaining each local minimum varied between 20 to 50 iterations.
The time per iteration increases with the number of classes but not significantly. Note that
the central circular region as well as the boundaries of the regions with different textures
are captured reasonably well. The patches appearing within the seemingly uniform regions
of the cleaned image correspond to regions of a different texture. This can be observed on
closer examination of the original image.

Choice of s

The values of H, for s = 2.3 and 4 are 57239.3, 55863.8 and 56052.9 respectively. The
value of H, is minimum for s = 3 and the corresponding segmentation result looks quite

reasonable. We chose L, = 256,k = 1,--.,sto he the range of the parameters of each class.
6.3 Example 3: (Real Intensity Image)

We consider a Baboon image made up of intensities in the range [0,255]. The imageis of
size 256 X 256. The original image isin Figure 6.3a We apply our multiscale segmentation
method to thisimage. The best local minimum at the coarselevel 4 x 4 intolving N = 4096
blocks for s= 3 is displayed in Figure 6.3b. The segmentation result at the pixel level 1 X 1
isgiven in Figure 6.3c. Thefinal result after cleaning isgiven in Figure 6.3d. Each iteration
at level 4 < 4 took about 19 sec in this case and the number of iterations for obtaining each
local minimum varied between 30 to 60 iterations.

Note that the segmentation is quite good capturing the eyes, the two highlights on the
nose and the hair regions well. The hair regions on the sides are both classified to the same
class. In Figure 6.3¢, the hairs were captured clearly before getting smoothed in Figure6.3d.
The segmentation seems reasonable with the visually equivalent regions being classified to
the same class.

We show the results of unsupervised segmentation from [30] in Figures 6.3e and 6.3f.
Figure 6.3e is the segmentation with 4 classes and Figure 6.3f is the segmentation with 6

classes. Cur result clearly is much superior to those segmentations. Out method is fully
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unsupervised with no arbitrary parameters. We also haven't used any random field models

for the class label distributions.
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Fig. 6.1. [mage segmentation on texture image, N = 6400, for s = 3. (b) Classification at
scale 4 x 4 (c) Initial partition that gave (b). (d) Classification at scale 2 x 2 starting from
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version of (c). (e) Results given in [30] for s = 4. (f) Results given in [30] for s = 6.
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7. COMPARISON AND DISCUSSION

7.1 Discussion

There are several clustering algorithms [3, 4, 5, 6, 28, 29]. We will focus only on one or
two of them and relate them to the algorithm developed in the paper. The choice of s, the
number of' classes, has received some attention [29, 19], but there are no definitive results.

The self-organizing feature map proposed by Kohonen is quite popular for unsupervised
classification in the neural network literature. This method is essentially a clustering tech-
nique using a Euclidean metric. For a given data sample, only the neuron closest to it and
those in a small neighborhood around it are allowed to change. The neighborhood needs to
be specified which introduces an arbitrary parameter that has to be chosen by the user.

In the fuzzy c-means clustering [3], the problem is posed, not as one of chosing a partition,
but of using related variables u;; defined as the degree of belonging of z; to class k.

N

LU, P) = ZZ uGllzi — bl Z i, = 1 (7.1)
k=1

k=11=1

where ¢ = {¢1,.."¢s}’¢k €c RMand U = {u,e =1,--,N;k=1,---,s},uy, > 0 and
2 < a<oo. Jo(U, ) isnot convex. Henceit has numerouslocal minima in ¢-¢ space. The
authors [4] use a gradient approach which yields only a stationary point at which the first,
derivative:; of J; w.r.t U and ¢ are zero. The authors claim that it isa strict local minimum
and not just a stationary point.

Further. the structure of the cost criterion in (7.1)issuch that thereisno explicit reference
to a cluster. The shape and orientation of a cluster are not modeled by it. Extensionsto the
above cost criterion involve using matrix norms. But they too suffer from the same criticism
as above namely lack of explicit clusters. Also the matrix norm has to be defined for the
entire data which automatically becomes insensitive to shape and orientation of individual

clusters. Also, it does not exploit the prior information of y and = coordinates, for instance if
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the point'sare clustered around aline. This was evident in the target tracking example. The
criterion in (1.3) accounts for the shape o the cluster by employing the covariance matrix,
which is data dependent: in the cost criterion.

Gray et al [5] consider a criterion function which implicitly recognizes the partition.

hie={en-ehd) = S5 |z - ¢l (7.

1=1 k=1

~1
o
~—

They get it local minimum. There has been no attempt in their paper to begin with several
different initial partitions. They instead propose an annealing like technique and show
convergence to the global minimum in the 1D case.

Because of all these limitations, the results of these algorithms are mixed, i.e there are
many cases especially with 2D data where the suggested solutions do not appear to be
appropriate.

The methods for solving unsupervised classification based on statistical theory begin
with the mixture density [22, 23]. Then. the unsupervised learning problem is equivalent to
identification of finite mixtures. Although Gaussian mixtures are shown to be identifiable,
the Bayesian method has been applied only to 1D datarestricted to only two classes; typically

in digital communications. Fach z; is assumed to obey the mixture density
p(zi;0) = Z])k(zi | 61) o (7.3)
k=1

where 8 = (8,,--.,8,), ay = fraction of the k' class in the entire sample, 0 < o, < 1,

k=1,-..,s,3:_,a& =1 Sincedl z; are independent, the joint density is

N s
H(Z:8,0) =]] (ZP&-(Z:‘ | %) ak) (7.4)
=1 \k=1
The unknowns are the paramters 8,,-..,8, in the densities p; and o3,k = 1,..-,s. The

estimate which maximizes H(Z;8,a) w.r.t 8 and « is the desired estimate. If each 8 is
of dimension n, we are dealing with the unknowns of dimension (s + I)n. (—1n H) has
numerous local minima. Computing the various local minimais itself formidable.

Even solutions when the dimension of z, isone have not been very successful. The mean-
ing of density (7.4)is not clear. If ay,-..,«a, are the prior probabilitiesof t he s classes(fixed

before getting the data) then the mixture density is the density of z; in Bayesian sense; i.e
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the class label of each observation as a random variable with prior probabilities oy, - .-, a,.
But in thestrict likelihood reasoning. we should regard all the class labels of the NV points z;
as unknown. For example in the robust estimation. each data point is a good data or noise
data, nothing in between. The correct ML estimate is the estimate given in this paper, as
mentioned in section II.

There are several methods for image segmentation [14, 15, 16. 17, 18. 19]. Some o the
clustering techniques have been applied for image segmentation, with the associatecl dis-
advantages discussed earlier. In the stochastic model-based methods the different classes
are modeled as random fields and the segmentation problem is posed as a statistical opti-
mization problem. Some of the existing methods employ Gauss-Markov models or Gaussian
mixture models for the class densities P(Z | s,c.8), discrete Markov random fields for the
class label distribution P(c | s) and use the expectation maximization(EM) algorithm to
obtain the maximum likelihood estimates of the unknown distribution parameters. Since
the EM algorithm involves the generation of a sample realization from the class label field
at every ileration, it is essentially Monte-Carlo in nature and aso computationally expen-
sive. The aim of most of the existing statistical techniques is to obtain the parameters of
the class clistributions and the class label field distribution. Using these parameters a final
hard segmentation is derived. The problem of multiplelocal minimain the estimation of the
parameters exists and a systematic search for best local minima hasn't been investigated.
One of the key requirements for such a procedure is a method of validating the partitions
obtained. We provide a method based on the Bayes formulation for comparing and validat-
ing partitions. An attractive feature of our method is that the partitions being compared
need not contain the same number of classes.

We also employ a multiscale method that reduces computation significantly and gives
good results at the pixel level. Our method differs from the existing methods in its ap-
proach. In the multiscale methods currently employed the parameters at different scales are
computed using appropriately decimated statistics at thefinest level. In our method, since
the parameter estimation step is a direct computation, we compute them at the pixel level.

Only the class labels are assigned jointly to blocks of varying sizes at various scales.



-39 _

The number of classes are usually assumed to be known. Otherwiseit is estimated based
on information theoretic criteria such as Akaike's information criterion. These are mostly
based on likelihood of the data with an additional penalty term. A comparison of various
such criteria is given in [30]. In our case, we have the data partition, class parameters and
the number of classes combined jointly into the Bayesian formulation. The optimal number
o classes can be infered from the MAP estimate of the number of classes.

Another very attractive feature of our method is its ability to take an existing segmen-
tation and iteratively improve it by computing the MAP estimates o the partition and
the associated parameters. This can be applied to video segmentation. Typically video is
segmented for various applications such as compression, tracking objects for content char-
acterization and content based retrieval etc. In video, the difference between two successive
frames is small when there is no scene change. Hence their segmentation:; will be close to
each other. Our method can take a good segmentation that is already available ,that of the

previous frame. as an initial condition and find the nearest local minimum.

7.2 Conclusion

We proposed a solution to the problem of unsupervised classification of multidimensional
data based on Bayesian estimation. The new feature of our method is, we regard the data
partition as a variable to be estimated. We developed a Bayesian framework to estimate the
number d classes, the class parameters and the data partition simultaneously. The cluster
validation problem was formally addressed. We addressed the robust regression problem
treating it as a two class unsupervised classification problem. The breakdown point obtained
was as high as 80%. We investigated several examples including the image segmentation
problem. The advantage of our method is a single formulation can handle data clustering,
data cleaning and image segmentation. The exampleson natural imagesillustrate the power
of our method. It is worthwhile noting that we haven't used any Markov random field models
for class labels. We used only a facet model for intensity values which amounts to assuming
that they are independently distributed random variables with varying mean.

Future work will include applications of the current method for video segmentation to

detect objects and facilitate content based retrieval. Using our method we can segment the
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first frame in a shot and use that segmentation as starting partition for the second frame.
Similarly the segmentation obtained for frame 2 can he used as starting partition for frame
3 and so on. Since the number of classes remains aimost the same when there is no scene

change we can gain significantly in terms of computation time.
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