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ABSTRACT 

We have given a solution to the problem of unsupervised classifica,tioll of multidinlen- 
siona,l da,ta,. Our approach is based on Ba,yesian estimation which regards the number of 
classes, th.e da,ta, pa,rti tion a,nd the para,meter vectors that describe the density of classes 
a,s unknovins. compute t,heir M A P  estimates simulta,neously by ma,ximizing their joint 
posterior -proba.bilit,y density given the data,. The concept of partition as a va.ria,ble to be 
estima,t'ed hasn't been considered. This formulation a,lso solves the problem of ~a~lidat ing 
clusters obtained from va,rious methods. Our method can a,lso incorporate a.ny aclditiona,l 
information &out a, class while a,ssigrling its proha.bility densitmy. It can also ut,ilize any 
available 1,ra.ining samples that arise from different classes. 

PVe provide a. descent algorithm that starts with an a,rbitrary paatition of the data, a,nd 
itera.tively coniputes the M A P  estimat,es. We also focus on robust regression which is a, 
special case of unsupervised cla.ssification with two classes; ii~liers and outliers. 

The problem of intensity ima,ge segmerlt,a,tion is posed a.s a,n unsupervised classification 
problem a,nd solved using the Bayesian for~nulat~ion in a ~nultiscale set up. The proposed 
method is also a.pplied to da,ta, set's t,ha.t occur in st'at,istica.l literature and target tracking. The 
results ohi:ained demonstrate t,he power of Bayesian a,pproach for unsupervised cla,ssification. 

Keyworcls: Unsupervised classification, Bayesian est,imat,ion, cluster valiclation, robust re- 
gression, image segmentation. 



1. INTRODUCTION 

In unsupervised classification, the given data Z = { z i , i  = 1, . - .  , lV),zi E Rm has 

to be pariitionecl into nlutually exclusive and totally inclusive subsets of Z namely c = 

{cl, - - , c,), c k  C Z so tha,t all the members belonging to a class are close to each other 

in some sense. The choice of s is itself a problem. The solution shoulcl include a compact 

description of each class so that a new unlabeled data point can be classified easily. Next 

the methodology shoulcl include the valic1a.tion of t,he part'ition, i.e does the given partition 

adequa,tely explain the data? Given two different partitions, which one of t'hem gives a better 

explanat,ion of t,he data:' 

When s is fixed, partitions are given by the so called clustering algorithms [2, 3, 4, 51. It 

is clearly understood that t,hese algorithms are designed to  genera,te good partitions; there is 

no guarantee t,llat t'he pwt,ition really expla.ins the data. The criterion function used in the 

algorithm:; focus only on the centroid of clust'ers, not on t,he shape and o'rientation of the 

clusters. ,There is an extensive literature [2, 4, 7, r i ?  27, 28, 301 on cluster .valiclat.ion; which 

includes the choice of s, the number of classes. Further, the criterion function usually has 

nunlerous local minima and many methods are sa.tisfied wit,h obtaining one arbitrary local 

minimum. Currently there is no method to compare different cluster sets derived for t,he 

same data obtained from different methods. We will discuss the literature review in a, later 

section. 

111 the Bayes approach developed here the partition c is itself rega'rcled as a varia,ble to be 

chosen from the a.ppropriate space. When s is known, c = {cl, . . . , c,), c E fl,?,, the set of all 

partitions of set Z so that none of the sets c k  in c are null. When s is not specified, s < so, 

then c = { c l , .  . , c,,), c E O,,, the set of all partitions of Z into so subse-ts. The members 

of class k are described by the probability density pk(zi  I eA:), pk is a known funct,ion and 

O k  is a vc,ctor para,rneter whose values have to be determined, ek E Rnk. The unknowns 



are {c = {cl, - .  . , c,), 8 = { e l , .  - .  , e,)}, when s is known. Using the Bayes formalism, the 

maximum aposteriori probability(h1AP) estimates of {c, 8) are obtained by maximizing the 

posterior probability of 8 and c given 2. Since the prior distribution of both c and 8 are 

assumed to be uniforrn, the MAP estimates (c'. 8') are given by 

{c*, 8') = Arg min J(c, 8) 
~ . e  

where 

Even though the corllputation in (1.2) may appear to be time consuming because of the 

discrete vil.riable c ,  in fact the comput,at,ion is much less than that with traditional clus- 

tering a.lgorithms leading to much superior results. For illustration lei; pk(z i  1 8,) - 
G a , u ~ s ( + ~ :  rk) ,  O k  = {+k,  r b ) .  Then 

S 

T -1 I ( c ,  8) = C C (z i  - q5k) rb  (zi  - + k )  + ln 1 rlet rk 1 +m ln :!T 
k = l  %iECk 

Minimizing .J(c, 8) w.r.t 8 fixing c is straight forward and well known. Similarly minimizing 

J(c, 8)  w. r.t c fixing 8 is again sirllple involving no more than data comparisons, i.e, we assign 

z; t,o c k  il' (-2 In p,(z; 1 O, , ) )  has least value for .n = I;. By minimizing J(c, 8 )  alternately 

w.r.t c ancl w.r.t 8 we get a local ~liinimum of J(c, 8) in a finite number of iterations. By 

starting with different initial partitions c generated with the aid of rand0111 numbers, we can 

obtain several local minima of J(c,  8) and choose the best local minimum. 

The criterion in (1.3) has some similarity to the criterion used in some clustering algo- 

rithms. This aspect is discussed in section VII. One feature of the criterion ifunction is that i t  

has ~lumei.ous local minima. In literature, the authors seem to be satisfied with one arbitrary 

local minimum without searching for the global minimum. The Bayes approach allows us to 

estimate :;, the number of classes given that s 5 so. Correspondingly t,he best partition c 

has to be searched in the space c E R,, . Bayes approach also solves the problem of partition 

compariscln and partition or clust,er validation. Two different partitions c and c' involving 

different values of s can be compared by computing the ratio of the corresponding posterior 

probabilities P(c I 2) and P(c' I 2). 



In ma,ny classification problems, we may have additional information on the classes which 

are not often utilizecl. For instance, we ma,y know tha,t in a particular class, all the members 

zi are clustered tightly around a stra,ight line or a convex curve or a ;!-D plane. This 

informa,tio'n can be incorporat'ed in assigning the prohbility density function p k  associated 

with t,he cla,ss. Again our method can successf~~lly utilize any available tra,ining samples i.e 

sets z(", i' = 1, - - - s where all t,he members of Z ( k )  are known to be from the kth class. 

These are included in the da,ta set 2, except that the class a,ssignments art: not altered. 

Next we formulat,e the segmentation of 2D image a,s a.n unsupervised cl;~ssifica,tiori prob- 

lem. This problem has two distinguishing features. First of all, the memhers of each class 

may ha.ve nlarkovian dependency. More importantly the number of points 'in the data set Z 

ma,y he very large. A typical 256 x 256 image will have 256" 65,536 da.ta points. The seg- 

mentation has to  be ca.rriec1 out at different scales, as described later. The key idea here a.lso 

is t'he extensive sea,rch of the c-space. Currently available cdustering algorithms cannot han- 

dle the image seg~nentat'ion problems where we know only the intensities of all t'he pixels. In 

recent yea.rs, stochastic model-baed image segmenta,tion nlet'hods have gained importance. 

In these methods, the labels of the image pixels are modeled as a hlarkov randorll field a,nd 

the segmentation is computecl by estimating the best label for each pixel iri an approximate 

MAP set -up. 

CVe alsso focus on a closely related problem namely robust estimation a,nd robust regression 

[2.5, 261. It is a special case of the unsupervised cla,ssifica,t'ion problerll with two classes. 

The members of the two classes are la,beled as inlier.5 and outliers; outliers being the noise 

or corrupted data, the class label of each point being unknown. The aim is to estimate 

the parameters associa,tecl with the density of the inliers. Usually the paramet'ers of the 

outliers or the classifi~a~tion problem itself alre ignored. The robust regres;;ion methods are 

also used in image processing literature extensively [11, 13, 131. M-estimators were applied 

in severa,l important computer vision problems such as pose estimation, edge detection, 

hierarchical surface fitting etc. High breakdown point regression methods are desirable in 

computer vision and M-estimators have low brea,kclown points. The coilnection between 

the robust estinntion and unsupervised classification problem has not been appreciated in 

the statis1;ical literature. The popula,r method like Least Median Squares(LMedS)[24], fails 



when the number of data points in the outlier subset is grea,ter than tha,t of the inliers. In 

image processing applications, when a window is centered on a corner, or on a boundary 

between two regions, we cannot guarantee tha,t 51% of the pixels belong to tihe surface in the 

window center. Our method does not suffer from such a re~t~riction. Further the cornputamtion 

needed for t,he solution in our method is much less than that of the methods like Lea,st 

Median Scluaaes which need Monte-Carlo procedures since the function t,o he minimized has 

no co~~t~inuity, let alone derivatives. Finally the Bayes met,hocl gives aa  expression for the 

covariance of estimat,es. 



2. OPTIMAL PARTITION WITH A GIVEN NUMBER OF 
CLASSES 

Let the data set be Z = {z;, i = 1 . .  - , rV), z ;  E Rm whose members are statistically 

independent. Let s be the number of distinct classes in Z, s is known to  us. Let the 

s associatlxl probability densities be pk(z ,  I O k ) ,  O k  E R nk,  k = 1. .  a * ,  s. Let the set c = 

{cl.. . - ,  c,;) be a partition of Z into s classes, each ch being a subset of ;5. the density pk 

describing the members of the set c k  

c ~ C Z ,  V k = l , . . - , s ;  c , n c , , = N u l l , i #  j 
(2.1) 

U;=,C~ = Z. ~k # NullVk = l , . - - , s .  

Let R,., be the set of all possible distinct partitions of Z obeying (2.1). c and c' are different 

partitions if they are different sets. The number of distinct partitions, which is the cardinality 

of R,., is 

c and O k ,  k = 1,. . , s are the variables to be estimated. We regard c E R,,,, E Rnk, k = 

1 , .  . - , s a:; independent random variables. P(c), the prior probability associated with c is 

same for all c; 

Let 8 = {IBI,. . . ,8,).  Let ~ ( 8 ~ )  he the prior probability density of ek, so tha.t the probability 

density of each component of 01, is uniform for all its components. 

Let {i?? O k ,  k = 1 , .  . - , s )  be estimates of c and O k ,  k = 1 , .  . . , s, based on Z.  Let the loss 

function L(c,i-, 8,8) be zero-one. zero if c = i: and 8 = 8: one otherwise. Then the risk 

function is 



The MAP estimates (c*, 8') minimize R(c,  8 ) ,  

(c*, 8 ")  = Arg ma.x P(c ,  8 ( 2). 
c,8 

Since the priors of 8 and c are uniform 

(c ",  8 " )  = Arg ma.x P(Z  I c: 8 ) .  
c,e 

Since the data Z is independent, the joint density of Z has the followir~g form: 

Let, 

Then 

(c*, 8")  = Arg min J (c ,  8 )  (2.10) 
c,B 

J (c ,  8 )  ha.s interestling extremal properties. 

For a fixed 8 = { e l , .  - .  ,8 , )  the value of c which miilimizes J (c ,  8 )  w.r.t c can be written 

easily: 

where 

k g , ,  = { z ;  : f k ( z i , e k )  < f u ( ~ i : O u ) ,  V k  # ? L , ~ L  = l , . . . , ~ ) , k  = l , . . . , ~  (2.12) 

The above expression involves only data comparisons. 

Similarly for a fixed c = { c l ,  - . : c,); the minimizing value of 8 is unique and it can he 

given easily: 



where 

Idoreover, an explicit expression for 8C,k can be given because of the struciiure of jL. 

We indicate how the co~llputation required in (2.14) can be done in a sirnple manner. 

Let d k  = ( 4 k ,  rk).  where 4,, is an m-vector and r k  is an m x m covariance matrix, and 

fk(zi,  8 k )  = -2lnpk(z; I 8 k )  

T -1 = ( z i  - + k )  rk  (z; - + k )  + In I det r k  I +m In f ! ~  

For the given c, let the minimizing value of OC.k be (+,-., ? c , k )  

S 

~ ( c ,  eC) = S m ( 1  + In 2a) + Nlk In 1 det P c , k  I 
k= 1 

Defin i t io~d:  (c*, 8*) is a local mirlimum of J ( c ,  8)  if 

DefinitionJ: (Global minimum) 

(c, 8)  is a global minimum if 

J ( C ,  8 )  J(C. 8)  v E n,, 8 E R~~ x R~~ - - .  (2.19) 

Note that a local minimum need not be a global minimum, since in (2.17) and (2.18) we 

perturb only c or 8 at one time, not simultaneously. 

A simple descent algorithm is given for finding a local minimum of J(c, 8) .  It is done 

by changing 8 and c alternatively using expressions (2.12) and (2.14), each time having a 

reduction in J ( c ,  8 ) .  



Since t,he determination of ek utilizing all zi in c k  involves the inversion of a matrix, 

assume that the number of members in c k  must be greater than 2 n k .  Let us call this 

assumption (Al) .  ( A l )  will be relaxed later. 

Descent Algorithm(with assumption A l )  

1. Let cj = (c:, . . . , c:) and 6' = (ei, . - . ,6:) be estimates at the end of j th iteration. 

Choose c1 arbitrarily, perhaps from a solut.ion of a clustering algorithm with 

random seeds. 

2. Given C ~ J ) ,  compute eij) using the formula in (2.14). 

3. Given e i j ) ,  compute using (2.12). 

End. 

Note that the computatiorlal effort for finding a local minimum is very litt,le. It involves the 

inversion of a mat'rix of relatively small dimension and data comparisons. 

Given data 2, the algorithm converges to a local minimum in a finite number of steps. 

Since J(c(~+') ,  eiJt')) < J(c(J), 8(-')), convergence of t,he algorit,hm is a.ssuret1. Recall that the 

algorithm stops ~vhen c(j) = c(J+'). This is a fixed point for the algorithm. Before reaching 

a fixed point, there is a finite and non-zero reduction in the J value at each iteration namely 

 it). oil)) ~ ( ~ i t - 1 ) ~  eit-1) ) }  . Since J is bounded below. the convergence has to be in a 

finite number of steps. 

Comments: 

1. Relaxing of the assumption A l :  

Suppose at some iteration, saj. j ,  one of the subsets in cJ, say c; has less than 2 n k  members. 

Then we cannot carry out step 2 completely, since 8; cannot be computed. Then Itre set 

8; = 8;-I and complete step 2. If this condition  persist,^, i.e if one of the subsets of c has 

fewer members than required, the implication is that the chosen value of s is too high. Then 

redo the algorithm with the reduced value of s. 



2. Com~utation of the best local minimum 

By beginning with different partitions, we get different local minima. The best among them, 

i.e one wit,h the least value gives the desired solution. Of course, there is no guarantee tha,t 

it is the global minimum. In all the exanlples, t.he computation of at most six local minima 

was sufficient to give the desired solution. 

Since the computationa.1 requirements for each local minimurn is very little, the overall 

computatjon needecl for the best local minimum is not much. 

3. Recovery of the original partition 

In a simulation experiment: we obviously know the label of each data point. Will they be 

the same as the estimated ones for a,ll i = 1, - .  . , N :  a,ssuming .s is known'? The answer is, 

yes under certain condit'ions. Let us denot,e z(" as the genera,ted cla.ta set for the A:" class. 

Z = U;=, z (~)) .  If the convex closures of ea,ch z('.) does not. overlap with t,ha.t of another, 

then one can prove that the estimated data partition is same as the partition of the original 

generated data. 

4. Accuracy of estimates 

\we give only an example: Suppose s = 2. Let pk(z; 1 O k )  -- Gauss(pk,r,;), k = 1,2 and 

O k  = (pk? ~ k ) .  

The posterior density of pk given c;t. is 

where NIL: = number of elements in the set c;.. 

The covariance matrix of p.k given c: is 

4. Maxirnum Likelihood estimate 

In the approach of classical statistics, there are s proba.bility distributions pk(zi 1 O k ) ,  the 

parametel-s O k ,  k = 1, . . . , s being unknown. Every data point in Z has a definite class label 

which is unknown to us or equivalently the ideal partition is an unknown constant. The 

likelihood expression of the data Z is in (2.7). where both c and 8 are unknown constants. 

Thus the value of c and 8 which maximize P ( Z  I c ,  8 )  is the maximum lil.;~lihood estimate 



of c a.nd 8. Beca.use of the use of uniforrn priors, the  ML estimate is same a.s t,he MAP 

estimates Found earlier. 

5. Comparison of partitions c and c' 

Let P(c 1 Z )  denote the probability of the  partition c being valid for 2. Given two different 

p r t i t i ons  c a,nd c', c_ c' E R,,,, with same s_  we can compute the  ratio *%. We provide 
P(C IZ) 

t,he expressions in the  1D Ga,ussia.n ca.se. The cla.ss densities a.re given by pk(-?; I O k )  

Gauss(pk: pk).  Define the vectors 8 = (81. . . . ,8 , )  and = (pkr pk). 

where I < ( Z ,  s )  = P(c) P ( B ) / P ( Z ) .  Following our choice of prior probabilities P(8) does not 

depend on 8 .  Denote the integrand by Qk.  Let #ck = iVA.. 

&kiting (2:; - p k )  a.s ( z ;  - bk + bx: - ,uk), where fir; = CziECk zi/;VA., simplifying the expression 

and integra.ting w.r.t pk gives 

1 1 2  where o k  = l\ikbk/2. Ok = (!hTk - 1)/2,  Ck = ( ~ T ) - ~ V V ;  , and Ci, = xz ,ECk(z ,  - bk)'/1vk. 
Setting -,A = and using the  definition of r-function1. 

Simplifyirlg further, the final expression for P(c I 2 )  is given by 



- ( P k - l )  
where ok == r(Pk - 1) .  (%) . We can compare c a,nd c' via the log likelihood ratio 



3. CHOICE OF S, THE NUMBER OF DISTINCT CLASSES 

The problem of choosing the value of s is known as model order identification or cluster 

validation. A popular method is to use the Akaike's information criterion. However, it has 

been shown in [lCI] that t,llis criterion does not yield consistent estimates. In  our method we 

obtain the estirnate of s via Bayesian esimation by considering .s also as a random variable. 

The value of s is intimately related to the partition. So we co~llbine it along with the M A P  

estimatior~ of the partition and parameters. 

ITsing the Bayes fornlalism we will compare all the partitions c of Z in R,,, for 5, 1  < 
s 5 so, so being known and find the best partition, and incidentally the best value of s. 

Reasoning as before, include 5 also as an unknown to be estimated, 1 5 s < so. The 

optimal Bayes estimator of (s ,  c, 8) is given below: 

= Arg lrlax max m a s  p(Z I s ,  c ,  8)P(c ( s )  

We need ishe prior probabilities. Let all s have same prior value, 

P(c I s )  = Prior probability of a partition c given that it has .s non-zero subsets 

Prior probability of each component in 8 k  is uniform and equals l / L k .  Let 



where c E f l , , , .  For 1 < s L SO,  c,*, 8 : , l r .  . - , 8::,; C:  = { c : , ~ ,  . . . , c:,,) can be determined. 

Since Lk is the prior density of 8k, it should cover the total range of all the conlponents of 

ek. Different choices of L k  may give different optimal s .  We set Lk = 10, k = 1 , .  , . , s in 

the first tyhree nlirnerical exa,mples and Lk = 256, k = 1 , .  . . , s in the image segmenta,t,ion 

examples. 

Example: 

Let all the s densities be m~lt ivariat~e Gaussian. p k ( z i  1 8k = 4 k , r k )  Gauss((bk,rk) 

then 

where iV,,,; = # c : , ~  and 

+,,k = the covariance matrix computed from the subset c : , ~  (3.8) 

Let 7x1 ,  = no = m + m ( ~ n  + 1 ) / 2 ,  k: = 1 , .  . . , s. The argument t,o be mininlized in equation 

(3.6) be denoted by H,. Then 

S* = Arg min H,  
l<s<so  

Note G, i~sually goes down as s increases and { 2 ( N  111 s - In s ! )  + 2 s no In 10)  increases 

with s .  TJ.lus a minimizing H ,  w.r.t s yields a finite value for s. 

Comparison of two partitions c and c' with different values of s 

Suppose we have 2 partitions c' E R,,,,, and c2 E f l S 2 , S 2  with the number of classes s l  and 

s2 respectively. \4rie car1 compare the probabilities P ( s k ,  c k .  8*k I Z ) ,  I; = 1 ,  '2 to decide which 

partition is better. We compute the log likelihood ratio In ~ ( $ 1  .c1-8*llz) . ~~t the ,-lass 
( P ( ~ ~ , C ? . ~ * ~ Z )  ) 

densities l>e multivariate Gaussians given by p k ( z l  I 8k) r k )  as in the preceding 

example. Then P ( s .  c ,  8 1 Z )  is given by Hs defined in (3.9), with G, given by ( 3 . 8 ) .  The 

log likelihood ratio can be computed as follows 



4. ROBUST REGRESSION 

0rdina)ry regression by least squares is widely used in ma.ny disciplines. However it is 

well know-n that the estimate of the fitted line or plane to the data is very sensitive to the 

presence of extraneous data. The addition of even five percent to ten percent of the noise 

data-the 5.0 called leveraged data points-can drastica.lly alter the fitted line; sometimes it. is 

even rougllly orthogonal to the original line. 

R.ohust regression is a special case of the unsupervised classification problem with two 

classes. The given data set. Z has to  he partitioned int,o 2 classes c = {cl, 'c2), c1 being t,he 

subset of all the inliers or good points and cz being t,he subset of all the outliers or noise 

points. It is closely relat,ed to the generalized maximum likelihood order statistic (GMLOS) 

method given in 1131. Let t'he data vector be zi = ( y;, xi). where yi is the dependent mriable 

and xi the ( m  - I )  dimensional independent vector. We need to regress y on. x for the inliers. 

Fit multilrariate Gaussians for both inliers and outliers. For the inliers, thle fitted Ga.ussian 

model is 

where 

and 81 = {#ql, 4 , , , p l , r l ) ,  411 is rn-vector, 412 is (m - 1)-vector, r is ( m  - 1) x (rn - 1)- 

matrix. The outliers can he fitted by P Z ( Z ~  1 02) where 

The optinlal data partition c, for s = 1 , 2 , 3  et,c can be computed and the optimal .s can be 

estimated as before. 



Apparently there is no Bayesian method of robust estimation in the literature as men- 

tioned in )]. The estimates presented here have several important advantages over tradi- 

tional methods of robust regression like the Least Median Squares(1,MedS) [24]. 

The LTdedS uses the following criterion: 

Note that the median is taken over the entire data. In image processing applications, when- 

ever two surfaces meet in a processing window, the pisels belonging to one of the surfaces 

can be rqgarded as outliers for the fit to the other one. Clearly if the numbel- of outlier 

points i4  greater than number of inliers. the median gives information about outliers than 

the inliers, i.e, LlIedS is fitting the best regression line to the outliers. Obviously LhledS 

result has no rele\rance. 

Secondly the Bayesian theory also yields the covariance matrices of the estimates of pa- 

rameters. It is well known that LhiledS estimates are biased and their variances or covariance? 

are nowhere near the possible minimum values. 



5. NUMERICAL EXAMPLES 

5.1 Exa.mple1: (Star Data) 

This exaniple comes from astronomy. It has been used earlier in [25]. The dat,a set (y;, z;) 

consists of 47 point,s. z; is the logarithm of the effective temperature at the surface of the 

star and y; is the loga,rithm of its light intensity. The ra,w data is show11 in Figure 5.la. 

Ma'jority of the stars which constitute the main sequence follow a steep ba,nd and four sta,rs 

in a vertical line standing apart are the red giant,s. 

Wtie will apply our method, compare t,he results wit,ll .s = 1, 2 , 3  a,nd 4. We will distinguish 

between the t'\vo problems namely clustering and regression. The goals of regression and 

clustering are entirely different. In regression we look for a single line that explains the 

entire clata except for a few outliers. This line is usecl later for forecasting purposes. Where 

as in clustering we look for different distinct groups of data with their associat'ed distribution 

parameters. A solution for robust regression, where we first iclent,ify the outliers ancl find 

the regression line for only the inliers, is clearly provided by clustering with s = 2. 

We wi:ll conlpa,re the result,s given by our clustering algorithm with s = 2 ancl the regres- 

sion est'imat.e given by the least median squares methocl(LMedS). The rnea,n square value of 

the error i:esidua,ls will be our criterion for comparison. 

In classificat,ion for clustering, we fit' s bivariate Gaussians t,o the dat'a, s = 1 , 2 , 3  and 3 

and get the best local minimum in ea.cl1 case whose highlights are given below. 

Notice t l~a , t  G, value falls as s increases. Note (s = 3) has the lowest value of H, indica,t.ing 

that t,he c~ptimal number of classes is 3 according to  our criterion. The results of clustering 

using 011s method are given in Figures 5 . la -5 .1~ for s = 1 ,2  a.nd 3 respectively. For s = 2 

and 3 we show the best local minimum along with a fitt,ed line to each cla,ss. We note that 

visua,l inspection of the data does show 3 dist,inct classes. Hence H,  seerns t,o be a useful 

stactistic in determining the number of classes needed for classification or clust'ering. 



Table 5.1 Optirllal data  partitions and their corresponding costs for the  Star data;  ilr = 47 

s 

1 

2 

Regressior~ 

With s = 2, about half a dozen local minima were found with G, value:; (-38.02, -34.03, 

-21.36, -21.34, 6.69, 1.41). The one given in Table. 5.1 is the best local minimum. Except 

for local minima with relatively large values of G,. all other local minima give similar values. 

Members in 

optimal partition 

(47) 

Figure 5 . la  is raw clata and also indicates the regression line obtained from the least 

squares method to  entire clata. Figure .5.lb is the partition corres~~oncling to  the best local 

mi~ l imum with G', = -38.02; the associated starting partition is in Figure 5.1~1. Our method 

Gs 

93.88 

picks u p  all the  4 red gia,nts as outliers. It also picks two stars from the main sequence a,s 

outliers. iVe note here that  this partition n:a.s de~la~recl better than the one with only the 4 

red giants a,s the outliers. Even the  mean square value of the residua.1~ for the inlier set is 

Hs 

116.91 

141, 6) -38.02 

lower for the configuration given in Figure 5.lb.  

71.80 

The  regression lines derived for the fitted bivariate densities are shown for each class. 

Note that the  regression line is nearly orthogonal t o  the one obtained with s = 1. Also the 

mean square value of residuals of the inlier class with s = 2 is 0.1365, which is less than 

one half of the corresponding value obtained with s = 1 narnely 0.3052. This feature again 

indicates the advantage of detecting outliers and eliminating them from consicleratio11. 

T h e  variances of the estimated parameters of the regression line for s = 1 is {(0.0783,1.4637)}. 

For s = 2 the parameters of the regression line fitted to  the  class with 6 points have 

variances {(0.1031,1.378.5)) and those of the  line fitt,ed to  the class with 41 points have 

{(O.%S94.!j.6296)). 



Since we need not be restricted to choosing gaussian distributions for the class densities, 

we have also conduct,ed experiments using a Gaussian distribution and a ur~iform di~tribut~ion 

for the regression case. We note that when the out,liers form another cluster: which happens 

when t,here are leveraged points, using a gaussian distribution to model them gives better 

regression results. However, if they do not, then a uniform distribution captures the outlier 

distribution well. 

Figure 5.2 shows two partitions each for s = 2 and s = 3 that are fixed points of the 

algorit'hm. These correspond t'o local rninima of the fiinctional G', ot,her than the best,. 

Figures 5.2a a,nd 5.2h are the starting partitions with s = 2 that converged to the pa.rtitions 

in Figures 5 . 2 ~  and 5.2d respectively. Similarly, Figures ri.2e and .5.2f are starting part,itions 

with s = 3 that converged to the part'it'ions show11 in Figures .5.2g and 5.2h. The cost,s of 

the respective partitions are shown along with each figure. 

Clustering Algorithm 

Figures 5.lb and 5 . 1 ~  give the results obtained by applying the clustering algorithms with 

number O F  classes s equal to 2 and 3 respectivelj.. The results of clustering algorith~n are 

relatively robust to the starting points. The clustering result of Figure .5.lb with s = 2 

is counter intuitive. It makes a horizontal cut of data, including the outl~ers in one of the 

classes. P/it.h .s = 3, the 4 outliers are placed in a. separate class. \.Ye cou'ld use the results 

of clustering algorithm as the initial partition. 

LhledS methocl 

As discussed in [25], the line fit given by LMedS method, ij = 3 . 8 9 8 ~  - 12.298, nicely fits the 

main sequence of stars. There is no apriori recognition of outliers in the LMedS method. The 

outliers, if needed to be picked, are identified by their large residual errors after the regression 

line is computed. For the parameters estimated using LMedS, there is no available method 

to  compute the accuracy of estimates. 

5.2 Example 2: (Simulated data) 

This data set is a, variant of the one used extensively in statistical literat lire in connection 

with robust regression [24]. Most robust regression esti~nation techniques except LMedS fa,il 

in this case. The data set, (y;, x i ) ,  i = 1, . . . , AT, consists of a clust,er .around a straight line 



with 20 points, the so called inliers and a blob cluster. consisting of outlier data with 80 

points. The original data had 30 inliers and 20 outliers. We essentially changed the fracton 

of outliers in the data  from 0.4 to 0.8. 

The aim in the statistical literature is to recover the regression line associated with inliers. 

Since the ilumber of outliers is much greater than that of inliers, all the standard statistical 

methods including LMeclS fail. They assume that the fraction of outliers is less than 0.5, 

consequently the outlier set is treated as the inlier set. 

M'e will use our approach with s = 1,' and 3, fitting l~ivariate C;aussianc; in all the cases. 

The results for all the cases are shown in Figure 5.:3. Lye tabulate the results in Table. 5.2. 

Figure 5.:3a shows the raw data and the regression line for the entire data. 

I( s 1 Members in G., I H,  1 1  

Table 5.2 Optimal dat,a partit,ions and their corresponding costs for t'he tiimulatecl data. 

s = 2  

Figures 5.3b and 5.3d show the best local minimum, G, = 257.73, and the initial partition 

that led to the best local mininimum respectively for 5 = 2. There was only one other 

minimum for this data set with G, = 489.92. Note from Table. 5.2 that s = 2 has the least 

value of I;r, indicating that  the best value of s is s = 2. 

s = 3 

Figure 5 . k  shows the best local minimum with s = 3. \Vith s = 3, there is only a finer 

partition of the partition wit,h s = 2. Note the regression line for the inlier,; is captured well 

with s = 2. The G, values corresponding to six other local minima are (165.29, 171.82, 

173.94, 15'7.25, 182.01, 225.76). We have observed that there are numerous local minima 

1 y, = 2, + 2 $ Gauss(O,0.04), where x, is uniforml~ distributed on (1 ,4 )  
"D Gaussian distributioil with mean (7.2) and covariance 0.5 * I. 

+ - -. -- . - 



around G, = 170. This co~lfiguration corresponds t o  the splitting of the blob cluster into 

two and the line cluster. 

Clusterin~g algorithm Figures 5.3e and 5.3f give the results of the  clustering algorithm 

with s = 2 and s = 3 re~pect~ively. Both t,he clustering results are reasonable. As before. 

when we get 3 clusters, we have no way of deciding whether the data  contains 2 or 3 clusters. 

Our method clearly indicates that s = 2 is sufficient,. 

The  variances of the  estimat,ecl parameters of the  regression line for s = 1 is {j0.0013,0.052.5)). 

For s = :! the  parameters of the regression line fitted to  the class with 80 points have 

variances {(0.0142,0.7077)} and those of the line fitted t o  the class with 20 points have 

{(0.0065,0.0359)). 

5.3 Exalmple 3: (Multi-sensor target tracking) 

Multiple sensors send observations z; = (t~;, xi), i = 1, - .  . , N to  the central station [20, 

211. There could be multiple targets in the atmosphere and their number ~zould be variable 

a t  aay given time. The  raw data of 120 points is shown in Figure 5.4a. The  ;r-coordinate is 

related t o  time. The  figure shows all the observations collected upto a time t l .  We have not 

shown tirrle in the  graph. As time progresses t,here is more data,. There is no target label 

attached t'o each observation. It is known apriori that the trajectory of a t(5rget obeys some 

parametric curve in the X - Y plane; straight line: pa,ra,bola etc. For simplicity we consider a 

st'raight line. There are also observations caused purely by noise, the clut'ter. Note t'hat one 

trajectory is completely inside t,he clut,ter. Moreover the range of this t,rajectory is much less 

than that  of ot,hers. The  problem is t'o identify t'he number of ta,rgets, t'heir tracks and the 

clut,ter points. Intersection of the trajectories in the figure indicat.es inter:;ect,ion in feature 

space, not in real time. 

There are many methods for assigning labels t o  these t,argets. One of the methods 

is clustering. The  principle difficulty in some of t'he procedures is as follo~i~s: Consider t'wo 

in te rse~t~ ing  targets say AB and CD intersect'ing a t  the point' 0 ,  so t'hat A 0  and OB belong to  

one trajectory, CO and OD to the  other. Many methods (including the clustering algorithm) 

take two parts of two different tmjectories, i.e the part A 0  from one trajectory and OC from 

the  other and decla,re AOC as one trajectory, similarly BOD as the other. This happens 



because the clustering algorithms do not use the available information tha~,  the trajectories 

are straig11.t lines or parabolas etc. 

Each trajectory is parametrized by a line L(P,  y . p )  and obeys the e q u a t i o ~ ~  

x, are uniformly distributed in the range [O, 101. The three line trajectories are L1(0.4. 5.0.01). 

L2(-0.3, 9,0.01), L3(0.1, 2.1,0.0025). The clutter is modeled by a Gaussia,n distribution 

a.s the clutter class, a tot,al of 120 points. 

Results with clustering algorithm 

s = 4  

The result with s = 4 is given in Figure .5.4e. The clustering captures only one of t,he three 

line trajectories. One cluster combines parts of the 2 lines of the data, before the intersection. 

The other cluster captures the other tnTo halves of the line clusters in the tlata. 

s = 5  

The resul~, with s = .5 is given in Figure 5.4f. This clustering is also erroneous. It doesn't 

identify any line t,rajectories correctly. The clusters corresponding t,o t h ~  clutter and the 

trajectory within it are subdivided into two clusters without the trajectory being identified. 

Results with our method 

s = 4  

All density families p k  are multivariate densities. The best local minimum has C:, = 219.62 

and the corresponding plot is in Figure 5 . 4 ~ .  

Note that our method captures the four classes correctly. Even the tra,jectory within 

the clutter is identified correctly. Another local minimum is given in Figure 5.5~1. The 

corresponlding H, = 638.09. 

s = 5 

The result associated with best local minimum is in Figure .5.4d. The result with another 

local mininlunl is in Figure 5.5e. Note the result divides the data of smaller t,rajectory and 

the clutter into 3 clusters, correctly finding the clusters of two big lines. C:, = 193.69 ant1 



H, = 685.!31. Kotice that H5, the H-statistic with s = 5 is much larger than H4 indi~a t~ ing  

t,hat the correct value of s is 4. 
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o class 1 

6 -  

5 5~ 
> 

1 "  
4 5 -  

4 

5I x class 2 i 

H 
:# x 

~ 

o Class 1 

i! 
O 0 

3: 

I 

3 5 4 4 5 5 ---, X 

(a) :  Initial for s = 2 

-I 
33 3.5 4 4.5 5 

--> x 
(b): Initial for s = 2 

3.5t x class 2 I 
3' I 

3 5 4 5 5 
---> X 

(d): Local min., s = 2. G2 = 6.69 

33L-- 3 5  4 4 5 5 
---> X 

( c ) :  L,ocal min., s = 2, Gz = -21.36 

4 5! 

,. o Class 1 
, x Class2 

3 5  ' class 3 

4 . 5 ~  

3.5- 

3: 
I 

3.5 4 4.5 5 
-> X 

(e): Init,ial for s = 3 

o Class 1 
x Class 2 
' Class 3 

_ I  

3; 4 5 5 " ">X 

( f ) :  Initial for s = :3 

--> x 
(g): I,ocal min., s = 3, Gg = -76.84 

--> x 
(h):  Local min., s = 3, I?, = -69.14 

Fig. Ti.2. Other local minima. Star data,  N = 47, for s = 2,3. (a,b) Starting partitions for 
(c ,d)  respectively. (e,f) St,arting partitions for (g.h) respectively. 



L x  class 1 x 
OO 2 4  6 8 10 

---> X 

(a): s = 1, GI = 610.52 

' I 
2 -  

. 
' Class 1 
o Class 2 
x Class 3 x 

> " x 
1 

2- 

0 
1 - o Class 1 

x Class 2 0 

2 

1 

ol I, 

0 2 4 6 8 10 
---> X 

(d) :  Initial for s = 2 

1 

>4P -?!&I - 
o Class 1 
x Class 2 0 ~ 

" 0 / I 

2 - 

1 - o Class 1 I 
I x Class 2 x I 

I 
2 4 6 8 10 

---> X 

(e): Clustering, s = 2 

A -  * 
1 

2 - 

. ' Class 1 
0 

o Class 2 
x Class 3 0 I 

I 
I 

2 4  6 8 10 
---> X 

(f): Clustering, s = 3 

Fig. Tj.3. :Best local minima. Simulated data, N = 100, for s = 1,2,3. d)  Starting partition 
for (b), s = 2. e,f) Fuzzy clustering results for s = 2 and 3. 



---> X 

(a): s = 3, Gg = 309.35 

--> X 

(c): s = 5, G5 = 193.69 

2- 

o 1  
0 2 4 6 8 10 

---> X 

(b): s = 4, G4 = 219.63 

o ass 1 'e 
x ass2 + iSs ass3 . . 
Elass 5 

Ob 2 4 6 8 10 
---> X 

(cl): Initial for s = 4 

"0 2 4 6 8 10 
---> X 

(e): Clustering, s = 4 

"0 2 4 6 8 10 
---> X 

(f): Clustering, :; = 5 

Fig. 5.4. Best local minima. Target t,racking data, N = 120, for s = 3,4,5. (d)  Starting 
partition for (b),  s = 4. (e,f) Fuzzy clustering results for s = 4 ancl 5. 



I 

4 6 8 10 
---> X 

(a): Local min., s = 3, Gg = 542.74 

---> X 

(c): 1,ocal min., s = 4, G4 = 514.59 

"0 2 4 6 8 10 
---> X 

(b): Initial for s = 3 

1 ° 1  

2 o ass 1 1 ;!l;kEj 
---> X 

(d): Initial for .s = 4 

I 

I 4- 

o ass 1 
2- +!:\s2 x ass2 & n x x 

* Elass 5 
"0 2 4 6 8 10 

---> X 

(e): Local min., s = 5, Gs = 330.11 
---> X 

(f): Initial for s = 5 

Fig. 5.5. Other local minima. Target tracking data, N = 120, for s = 3,4,5. (b,d,f) 
St,arting partitions for (a,c?e) respectively. 



6. BAYESIAN APPROACH FOR IMAGE SEGMENTATION 

Consider an iM x 1bf image with intensities given by {y,, , z, 3 = 0, - . - 1). Our 

aim is to partition the image into b segments such that the segments are non-overlapping 

except for border pixels. ,411 the pixels corresponding to the same segment represent the 

same artifact like road, water, house. etc. However the number of distinct classes, s, is less 

than or equal to 15, since two or more segments which are separated from each other by some 

other segment may belong to  the same artifact like water. Thus we have only to deal with 

s densities pk(y,,, I ek) 
Secondly the number of pixels in an image is a large number. For a 2.56 x 256 image 

we are dealing with N = 2.562 = 65536 pixels. Carrying out the segmentation at the finest 

level may involve very extensive con~putation. Instead, the computation is formed at several 

scales. The image is divided into blocks of size 10 x 10 so that all pixels of the same block 

are assignc-d the same class. Effectively the number X for the algorithm becomes (N/100). 

Based on 1 he segmentation, we go to the next coarser scale say 5 x 5 etc. Repeat till we get 

the lowest level. 

We assume that the y,, are clustered around polynomials specifiable thlcough facet mod- 

els. 

q;,j -- Gauss(0, pk) is the white noise with mriance pk. Then the density of y;j belonging to 

the kth segment is given by 

pk(yi.j I e k )  = Gauss ( ~ o  + crli + a2j  + a3i j ,  pk)  (6.2) 

Note all the pixels belonging to  class k have the same va.ria.nce but not the same parameters 

e k  = ( ak ,  pk). 



For a fixed s, t,o obtain the MAP estimates of c and 8 we have to minimize t,he function 

Segmentation with multiple scales 

FVe want a partition of the image c = {cl, - .  a ,  c,) where c k  is a subset of Z ,  and all members 

in c k  may not be contiguous. Since the number of pixels N is large we have to carry out the 

partition at several scales. 

In the beginning let us deal with blocks of pixels say 4 x 4. Let the block be denoted by 

the leading pixel. For instance the hlock { ( i+k ,  j + 1 ) ,  k ,  1 = 0,1 ,2 ,3)  will he denoted by b,,,. 

We assign the entire pixel hlock to  one subset c k  in the partition. Note we itre not averaging 

the intensities in the block. Each pixel retains its identity. Thus we have (N/16) = :Vl 

blocks. The class assignment of the block is given by 

Assign all pixels E b,,, to cr; 

Partition at the coarse level 

Since in the example we cleal with 80 x 80 image, .I7 = 6400. We carry out segmentmation at 

3 levels: 4 x 4, 2 x 2 and the finest level. Consider the coarsest level. Let 

where 6:'" = {y,+;,,+,, 0 5 i ,  j 5 k - 1). Let the corresponding partition be c 4 ,  

where c4,, C Z4. All the 1 x 1 pixels in the same block b,"'" will have the same class assignment, 

i.e the same density pk is assigned to  all the 1 x 1 pixels in the same block. 

O k  = parameter associated with the density of class k 



For a given partition c4 

O h  is c ~ m p u t ~ e d  for the 1 x 1 pixel intensities y,.j in all the blocks bi'" a,ssigned to c, ,k as 

indicated. 

For a given O k ,  k = 1, - - .  , s the partition is updated as follows 

Assign bu'" to c 4 , k  if 

Thus we gjet the best partition 

Partition at next coarse level 2 x 2 

We divide the 4 x 4 blocks into 2 groups, t,he boundary or B  blocks and non-boundary or NB 

blocks. Each block has 4 inlmecliate neighbors: top, bottom, left, right. Two neighboring 

blocks are labeled NB if their class labels are different. 

The innportant idea. here is the class assignments made to the 1 x 1 pixels in the blocks 

of c K ~  are fixed and not altered in subsequent iterations. Only the assignments of pixels in 

2: are altered. Consider a partition of c2 at the level 2 x 2 

All the 2 :< 2 blocks derived from cTf are permanently assigned to c 2 . k  and their class labels 

are not altered in iteration. 

2; = {b;'", b;'" derived from 2:) 

At every iteration every member of 2: is assigned to c 2 . ~ ,  . . , c ~ . ~  as the case may be. 

Computa1;ion of 8 and updating of c 2  is simi1a.r t,o the earlier case of 4 x 4. After arriving 

at 1 x 1 level, the final result is cleaned by averaging over a, .5 x 5 window. 



Choice o h  

The best value of s is that which minimizes H,. However, in our multiscale scheme, it is 

more robust to decide on the value of .s at a coarser scale itself. So the value of s is decided 

at the scale where all the pixels in blocks of size 4 x 4 have the same class assigned to them. 

6.1 Exa.mple 1: (Synthetic Image) 

We co~isider a synthetic image made up of three textures from the Brodatz album. The 

image is 80 x 80 made of 5 segments and 3 classes. The original image is i l l  Figure 6.la. 

First consider the coarse level segmentation at level 3 x 3 involving :'V == 300 hlocks. We 

begin with arhitrary class assignmel~ts for the initial partition and derive the associated local 

minimum. Several different local mil~ima are derived. There are many which are close to 

each other visually as well as in J-values. The best local mil~imum is displayed in Figure 6.111 

and the associated initial partition in Figure 6 . 1 ~ .  Next we explore segnlcmtation at 2 x 2 

level. Note there is no need for arbitrary initial choice of partition since the { O k ,  k = 1 , .  . - ,  s) 

obtained from 1 x 4 level can serve as the starting point. The final result i s  given in Figure 

6.ld. Note that class assignments for the nonboundary blocks in Figure 6.11) are not altered. 

Similarly the result of segmentation at the lowest level is display in Figure 6.le and the 

cleaned image in Figure 6.lf. The number of errors in the final segmentation at t,he pixel 

level is 63 which corresponds to  1% misclassification error. mie note that the boundaries are 

visually perfect and the actual error at the pixel level is only 1%. 

Choice o h  

The value:; of H, for s = 2 ,3  and 4 are 63032.97,61550.89 and 61707.41 respectively. The 

value of H ,  is minimum for .s = 3 which is the actual number of distinct textures present in 

the image 

6.2 Exa.mple 2: (Real Intensity Image) 

tVe co~isider an aerial image made up of intensities in the range [O, 2551. The image is of 

size 80 x 80. The original image is in Figure 6.2a tVe apply our multiscale segmentation 

method to this image. The best local minimu111 at the coarse level 4 x 4 involving N = 400 

' the aut,liors arkilowledge J .  M.  H .  duBuf for providilig the image 



blocks for s = 3 is displayed in Figure 6.2b. The final result after cleaning is given in 

Figure 6 . 2 ~ .  Each iteration at level 4 x 4 took about 1 to  3 sec on a Sparc machine and the 

number of' iterations for obtaining each local minimum varied between 20 to  50 iterations. 

The time per iteration increases with the number of classes but not significantly. Note that 

the central circular region as well as the boundaries of the regions with different textures 

are captured reasonably well. The patches appearing within the seeminglj. uniform regions 

of the cleaned image correspond to  regions of a different texture. This can be observed on 

closer exainination of the original image. 

Choice o h  

The values of H, for s = 2.3 and 4 are 57239.3,55863.8 and 56052.9 respectively. The 

value of fr, is minimum for s = 3 and the corresponding segmentation result looks quite 

reasonable. We chose L k  = 256, k = 1,. - . , s to  he the range of the parameters of each class. 

6.3 Exa.mple 3: (Real Intensity Image) 

IVe consider a Baboon image made up of intensities in the range [O, 2551. The image is of 

size 256 x 256. The  original image is in Figure 6.3a We apply our multiscale segmentation 

method to  this image. The  best local minimum a t  the coarse level 4 x 4 intolving AV* = 4096 

blocks for s = 3 is displayed in Figure 6.3b. The segmentation result at  the pixel level 1 x 1 

is given in Figure 6 . 3 ~ .  The  final result after cleaning is given in Figure 6.31. Each iteration 

at level 4 < 4 took about 19 sec in this case and the number of iterations for obtaining each 

local minimum varied between 30 t o  60 iterations. 

Note that  the segmentation is quite good capturing the eyes, the two highlights on the 

nose and the hair regions well. The  hair regions on the sides are both classified to  the same 

class. In Figure 6.3c, the hairs were captured clearly before getting smoothed in Figure 6.3d. 

The segmcantation seems reasonable with the visually equzualent regions being classified to  

the same class. 

\Ire show the results of unsupervised segmentation from [30] in Figures 6.3e and 6.3f. 

Figure 6.3e is the segmentation with 4 classes and Figure 6.3f is the segmentation with 6 

classes. Our result clearly is much superior to  those segmentations. 0111 method is fully 



unsupervi:sed with no arbitrary parameters. We also haven't used any random field models 

for the class label distributions. 
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G = 60606.51, Error = 299 
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(a,): Original image (b): Best local min., 4 x 4 (c): initi.al partition 

G = 6003,4.93, Error = 198 G = 59285.90, Error = 169 Error = 63 

(d): Best local min., 2 x 2 (e): Best local min., 1 x 1 (f): Cleamed image 

Fig. 6.1. [mage segmentation on texture image, N = 6400, for s = 3. (b) Classification at 
scale 4 x 4 (c) Initial partition that gave (b). (d) Classification at scale 2 x 2 starting from 

(b). (e) Classification at scale 1 x 1 starting from (d). (f) Cleaned version of (e). 

(a,) : Original image (b): Rest local min., 4 x 4 (c): Cleaned image 

Fig. 6.2. Segmentation of aerial image, N = 6400, for s = 3. a) Originitl image. b) 
Classification at scale 4 x 4. c) Cleaned final result. 
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(d) :  Cleaned image 

From I301 From T30l 

(e): s = 4 (f): s = 6 

Fig. 6.3. Segmentation of Baboon image, N = 65536! s = 3. (a)  Original image. (b) 
Classification at scale 4 x 4. (c) Classification at scale 1 x 1 starting from (b). (d) Cleaned 

version of (c). (e) Results given in [30] for s = 4. (f)  Results given in [30] for s = 6. 



7. COMPARISON A N D  CIISCUSSION 

7.1 Discussion 

There are several clustering algorithms [3, 4, 5, 6, 28, 291. We will focus only on one or 

two of them and relate them to  the algorithm developed in the paper. Thle choice of s ;  the 

number of' classes, has received some attention [29, 191, but there are no definitive results. 

The  self-organizing feature map  proposed by Kohonen is quite popular for unsupervised 

classification in the neural network literature. This method is essentially a clustering tech- 

nique using a Euclidean metric. For a given data sample, only the neuron closest to it and 

those in a small neighborhood around it are allowed to  change. The neighborhood needs to 

be specified which introduces an arbitrary parameter that has t o  be chose11 b ~ .  the user. 

In the fuzzy c-means clustering [3]: t,he proble~n is posed, not as one of chosing a partition, 

but of using relat,ecl variables u ; k  defined as the degree of belonging of zi t o  class k :  

where 4 == { 4 , ,  . . - , 4 , ) ,  41, E Rm and U = {uik7 i = I , . .  , N ;  k  = 1 : .  - .  , s ) ,  u i k  > O and 

2 < a < 03. J2(U,  4 )  is not convex. Hence it has numerous local minima i n  U - 4  space. The 

authors [1] use a gradient approach which yields only a stationary point at  which the first, 

derivative:; of J2 w.r.t U and 4 are zero. The authors claim that it is a strict local minimum 

and not just a stationary point. 

Further. the structure of the cost crit,erion in (7.1) is such that there is no explicit reference 

to  a cluster. The  shape and orientation of a cluster are not modeled by it. Extensions to the 

above cost criterion involve using matrix norms. But they too suffer from the same criticism 

as above namely lack of explicit clusters. Also the rnatrix norm has to  be defined for the 

entire data which automatically becomes insensitive to shape and orientation of individual 

clust,ers. Also, it does not exploit the prior information of y and T coordinates, for instance if 



the point's are clust'ered around a line. This was evident in the target tracking example. The 

crit,erion in (1.3) accounts for the shape of the cluster by employing the covariance ~na t r ix ,  

which is data  dependent: in the cost criterion. 

Gray et a1 1-51 consider a criterion function which implicitly recognizes the partition. 

They get i t  local minimum. There has been no at tempt  in their paper to  begin with several 

different initial partitions. They instead propose an annealing like tecl~niclue ant1 show 

convergence to the global minimum in the 1D case. 

Because of all these limitations, the results of these algorithms are mired, i.e there are 

many cases especially with 2D data  where the suggested solutions do not appear to be 

The methods for sol\.ing unsupervised classificatiorl based on statistical theory begin 

with the mixture density [22, 2:3]. Then. the unsupervised learning problem is ecluivalent to 

identification of finite mixtures. Although Gaussian mixtures are shown to be identifiable, 

the Bayesian method has been applied only to 1D data  restricted to  only two classes; typically 

in digit'al c:ommunications. Ea.ch zi is assu~llecl t,o obey the mixture density 

where 8 == (81, . .  . , 8,), a k  = fraction of the kt

h 

class in the entire sample, 0 5 a k  < I ,  

k = 1, . . : s, C;,=, a; = 1. Since all zi are independent, the joint density is 

The  unknowns are the paramters e l ,  - . . .8 ,  in the tlensities pk and a k ,  k = 1, . . - , 5. The 

estimate which nlaximizes H ( Z :  8 , a )  w.r.t 8 and a is the desired estimate. If each Ox is 

of dimension n ,  nTe are dealing with the unknowns of dimension (.s + 1 ) n .  ( - In N) has 

numerous local minima. Computing the various local minima is itself formitlable. 

Even solutions when the dimension of z ,  is one ha1.e not been very successful. The mean- 

ing of den:,ity (7.4) is not clear. If a l , .  . . ,os are the prior probabilities of t he s classes(fixed 

before getting the dat,a) then the mixture density is the density of z ;  in Bayesia,n sense; i.e 



the class label of each observation as a random variable with prior probabilities a l , .  . - , a,. 

But in the strict likelihood reasoning. we should regard all the class labels of the N points zi 

as unknown. For example in the robust estimation. each data point is a good data or noise 

data, nothing in between. The correct hlL estimate is the estimate given in this paper, as 

mentioned in section 11. 

There are several methods for image segmentation [14, 15, 16, 17, 18. 191. Some of the 

clustering techniques have been applied for image segmentation, with the associatecl dis- 

advantages discussed earlier. In the stochastic model-based methods the different classes 

are modeled as random fields and the segmentation problem is posed as a statistical opti- 

mization problem. Some of the existing methods employ Gauss-Markov ~rlcldels or Gaussian 

mixture rrlodels for the class densities P ( Z  I s, c .  O ) ,  discrete Markov random fields for the 

class label distribution P ( c  I s )  and use the expectation maximization(EM) algorithm to 

obtain the maximum likelihood estimates of the unknown distribution parameters. Since 

the Eh/l algorithm involves the generation of a sample realization from the class label field 

at every ileration, it is essentially Monte-Carlo in nature and also compul,ationally expen- 

sive. The aim of most of the existing statistical techniques is to obtain tlie parameters of 

the class clistributions and the class label field distribution. TJsing these parameters a final 

hard segmentation is derived. The problem of multiple local minima in the 'estimation of the 

parameters exists and a systematic search for best local minima hasn't bleeil investigated. 

One of the key requirements for such a procedure is a method of validating the partitions 

obtained. We provide a method based on the Bayes formulation for comparing and validat- 

ing partitions. An attractive feature of our method is that the partitions being compared 

need not contain the same nunlber of classes. 

We also employ a multiscale method that reduces computation significantly and gives 

good results at the pixel level. Our method differs from the existing methods in its ap- 

proach. In the multiscale methods currently employed the parameters at different scales are 

computed using appropriately decimated statistics at the finest level. In our method, since 

the parameter estimation step is a direct computation, we co~rlpute them at the pixel level. 

On137 the class labels are assigned jointly to blocks of varying sizes at various scales. 



The number of classes are usually assumed to be known. Otherwise it is estimated based 

on information theoretic criteria such as Akaike's information criterion. These are mostly 

based on likelihood of the data with an additional penalty term. A comparison of various 

such criteria is given in [30]. In our case, we have the data partition, class parameters and 

the number of classes combined jointly into the Bayesian formulation. The optimal number 

of classes can be infered from the MAP estimate of the number of classes. 

.Anothc>r very attractive feature of our method is its ability to take an existing segmen- 

tation and iteratively improve it by computing the MAP estimates of the partition and 

the associated parameters. This can be applied to video segmentation. Typically video is 

segmented for various applications such as compression, tracking objects for content char- 

acterizatic~n and content based retrieval etc. In video, the difference between two successive 

frames is :;mall when there is no scene change. Hence their segmentation:; will be close to 

each other. Our method can take a good seg~~lentation that is already available ,that of the 

previous fi-ame. as an initial condition and find the nearest local minimum. 

7.2 Conclusion 

We proposed a solution to the problem of unsul~ervised classification of multidinlensional 

data basetl on Bayesian estimation. The new featlire of our method is, we regard the data 

partition as a variable to  be estimated. We developed a Bayesian framework to estimate the 

number of classes, the class parameters and the data partition simultaneously. The cluster 

validation problem was formally addressed. We addressed the robust regression problem 

treating it as a two class unsupervised classification problem. The breakdomn point obtained 

was as high as 80%. We investigated several examples including the image segmentation 

problem. The advantage of our method is a single formulation can handle data clustering, 

data cleaning and image segmentation. The examples on natural images illustrate the power 

of our method. It is worthwhile noting that we haven't used any Markov random field models 

for class labels. ?tie used only a facet ~llodel for intensity values which amounts to assuming 

that they are independently distributed random variables with varying mean. 

Future work will include applications of the current method for video segmentation to 

detect o b j ~ c t s  and facilitate content based retrieval. {'sing our method we can segment the 



first frame in a shot and use that segmentation as starting partition for the second frame. 

Similarly the segmentation obtained for frame 2 can he used as starting partition for frame 

3 and so on. Since the number of classes remains almost the sa,me when there is no scene 

change we can gain significantly in terms of computation time. 
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