
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

12-1-1997

FASTER MUSE CSP ARC CONSISTENCY
ALGORITHMS
Mary P. Harper
Purdue University School of Electrical and Computer Engineering

Christopher M. White
Purdue University School of Electrical and Computer Engineering

Randall A. Helzerman
Purdue University School of Electrical and Computer Engineering

Stephen A. Hockema
Purdue University School of Electrical and Computer Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Harper, Mary P.; White, Christopher M.; Helzerman, Randall A.; and Hockema, Stephen A., "FASTER MUSE CSP ARC
CONSISTENCY ALGORITHMS" (1997). ECE Technical Reports. Paper 77.
http://docs.lib.purdue.edu/ecetr/77

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4946803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages

FASTER MUSE CSP ARC

CONSISTENCY ALGORITHMS

TR-ECE 97-14
DECEMBER 1997

Faster MUSE CSP Arc Consistency Algorithms*

Mary P. Harper, Christopher M. White,

Randall A. Helzerman, and Stephen A. Hockema

School of Electrical and Computer Engineering

1285 Electrical Engineering Building

Purdue University,

West Lafayette, IN 47907

'This research was supported by a grant from the Intel Research Council and the National Science Foundation

under Grant No. IRI-9704358.

Abstract

MUSE CSP (Multiply SEgmented Constraint Satisfaction Problem) [5, 61 is an extension to

the constraint satisfaction problem (CSP) which is especially useful for problems that segment

into riultiple instances of CSP that share variables. In Belzerman and Harper [6], the concepts of

MUSE node, arc, and path consistency were defined and algorithms for MUSE arc consistency,

MUSE AC-1, and MUSE path consistency were developed. MUSE AC-1 is similar to the CSP

arc consistency algorithm AC-4 [l j] . Recently, Bessikre developed a new algorithm, AC-6 [I],

which has the same worst-case running time as AC-4 and is faster than AC-3 and AC-4 in prac-

tice. In this paper, we focus on developing two faster MUSE arc consistency algor~thms: MUSE

AC-2 which directly applies Bessikre's method to improve upon MUSE AC-1, and MUSE AC-3,

which uses our new "lazy" evaluation method for keeping track of the additional sets required

by the MUSE approach. These new algorithms decrease the number of steps required to achieve

arc ccnsistency in randomly generated MUSE CSP instances when compared to MUSE AC-1.

Keyvrords: Problem Solving, Constraint Satisfaction, MUSE arc consistency.

1 Introduction

Constraint satisfaction, with a rich history in Artificial Intelligence, provides a convenient way t o

represent and solve certain types of problems. In general, these are problems tha t can be solved

by assigning mutually compa.tible values t o a predetermined number of variahlles under a set of

constraints.. This approach has been used in a variety of disciplines including ma.chine vision, belief

maintena.nce, temporal reasoning, graph theory, circuit design, diagnostic reasoning, and natural

language processing.

Constr i~int Dependency Grammar (CDG) parsing, as introduced by Maruya,ma [8, 9, 101, was

framed as a constraint satisfaction problem (CSP); the parsing rules are the constraints and the

solutions are the parses. Unfortunately, the CSP approach does not support the simultaneous

analysis of sentences with multiple alternative lexical ca.tegories (e.g., can is a noun, verb, or

modal) no]- multiple feature values (e.g., the as a determiner can modify nouns tha t are third

person singular or third person plural), nor the simultaneous parsing of sentences contained in a

word graph produced by a speech recognizer. Hence, Harper and Helzerman [3] adapted the parsing

algorithm i;o support the simultaneous parsing of alternative sentences resulting from lexical or

feature ambiguity or from word segmentation ambiguity during speech recognition. From this work,

the concepl, of a MUSE CSP (Multiply SEgmented Constraint Satisfaction PI-oblem) [5 , 61 was

developed 1,o support the efficient simultaneous processing of multiple alternati~~re CSP problems.

A MUSE ClSP is defined as follows:

Definition 1 (MUSE CSP)
N = { i , j, . . .} is the set of nodes (or variables), with IN) = n,
C C 2 N is a set of segments with 1x1 = s,
L = { a , 6,. . .) is the set of labels, with J L (= I ,
Li = {altz E L and (i, a) is admissible in at least one segment},
R1 is a unary constraint, and (i , a) is adinissible if R l (i, a) ,
R2 is a binary constraint, (i, a) - (j, b) is admissible if R2(i, a , j , b)

The segments in C are the different sets of nodes representing CSP instances which are combined

to form a Iv[USE CSP. Since a MUSE CSP is represented as a directed acyclic graph, segments are

defined as paths through the MUSE CSP from a special purpose s tar t t o end node. Helzerman

and Harper [6] also defined the concepts of MUSE node, arc, and path consistency and developed

algorithms for MUSE arc consistency, MUSE AC-I, and h1USE path consistency, MUSE PC-1.

These algorithms are similar t o the CSP arc consistency algorithm AC-4 [l l] and path consistency

algorithm P'C-4 [2] . Although AC-4 has a worst-case running time of @(el2) (where e is the number

of constraint arcs), AC-3 [7] with a worst-case running time of @(el3) often performs better than

AC-4 in practice. Recently, Bessikre developed a new algorithm, AC-6 [I], which has the sarne

worst-case running time as AC-4 and is faster than AC-3 and AC-4 in practice. In this paper, we

focus on providing faster MUSE arc consistency algorithms by applying techniques similar t o those

developed by Bessi kre.

MUSE a,rc consistency, as the focus of this paper, is defined as follows:

Definition 2 (MUSE Arc Consistency) An instance of MUSE CSP is said to be M U S E arc consistent if
and only i f , for every label a in each domain Li there is at least one segment o whose nodes' domains contain
at least one label b for which the binary constraint R2 holds, i.e.:

V ~ E N : V a ~ L , : 3 u E C : i E u A V j ' j u : j # i i 3 b E L ~ :RZ(i,a, j ,b)

When enforcing arc consistency in a CSP, a label a E L; can be eliminated from node i whenever

any other domain Lj has no labels that together with a satisfy the binary constraints. However,

in a MUSE: CSP, before a label can be eliminated from a node, it must be no longer supported by

the arcs of every segment in which it appears, as required by the above definition. Hence, there is

more inforination that must be tracked in any NIUSE arc consistency algorithm.

MUSE arc consistency is enforced by removing those labels in each L; that violate the conditions

of Definition 2. MUSE AC-1 [6] builds and maintains several data structures defined in Figure 1,

some that are similar to those used by AC-4 and some that are new (i.e., those below the double

line in Figure l), to allow it to correctly perform this operation. As in AC-4, T\/IUSE AC-1 keeps

track of how much support each label a E L; has from the labels in Lj by counting the number

that are compatible with a and storing that number in Counter[(i, j) , a]. The algorithm also keeps

track of the set of labels in L, that are compatible with a E L; as the set S[(i, j), a]. In AC-4, if

Counter[(i, j), a] becomes zero, a can be immediately removed from L; because a could never appear

in any solu1;ion. However, in the case of MUSE arc consistency, even though a doles not participate

in a solution for any of the segments that contain i and j , there could be another :segment for which

a would be perfectly legal. A label cannot become globally inadmissible until it is ~ncompatible with

every segment. Hence, in MUSE CSP, if Counter[(i, j), a] is zero, the algorithm must record the

fact that a is illegal in the segment involving the variables i and j and propagate that information

throughout the MUSE CSP.

MUSE AC-1 uses the fact that the MUSE CSP is a DAG to determine when labels become

inadmissible either within a segment or globally. To do this, the algorithm uses four new sets:

Prev-Suppc'rt, Next-Support, Local-Prev-Support, and Local-Next-Support, which are defined in

Figure 1. For each variable i and j, j # i, and label n E L,, MUSE AC-1 keeps track of the

sets Prev-Support[(i, j), a] and Next-Support[(i, j), a]. Prev-Support[(i, j) , a] keeps track of those

variables that precede j and support a t least one label in L, and the label a in I.,; whereas, Next-

Support[(i, j), a] tracks variables that follow j and meet the support criteria. If, during MUSE

AC-1, either of these sets become empty, then a is no longer consistent with any segment involving

the variables i and j. This segment information is very important for updating the sets that track

the global admissibility of a label, which is monitored by the Local-Prev-Support and Local-Next-

Support sets. For each variable i and each label a E L;, Local-Prev-Support(i, a) keeps track of

the variables that precede i and support the label a E L;; whereas, Local-Nest-Support(i, a) keeps

track of those that follow i and support the label a. If either local set becomes empty, then a is no

longer a palst of any MUSE arc consistent instance and should be eliminated frorn L; because it is

globally inadmissible.

MUSE AC-1 uses the Counter array and S sets to keep track of the labels t,hat are supported

in the MUSE CSP. If Counter[(i, j) , a] becomes 0, then [(i, j), a] is placed on .List (as in AC-4),

indicating that a is inadmissible in all segments containing the variables i and j. When [(i , j) , a] is

popped off of List during arc consistency, Counter[(j, i) , b] is decremented for all (j, b) E S[(i, j) , a]

(possibly resulting in [(j, i) , b] being placed on List). The fact that a E L; is unsupported by

the variable j is also used to determine whether other segments disallow a E 1:;. Because of a's

loss of sup'port by the variable j, any variable k that precedes j in the DAG must determine

whether j was its only successor supporting a E L;. In addition, any variable 1; that follows j in

the DAG rnust determine whether j was its only predecessor supporting a E L, . This is done by

determining whether Next-Support[(i, k), a] (if j was a successor) or Prev-Support[(i, k), a] (if j was

a predecestor) becomes empty after (2 , j) is removed from the set. If the set becomes empty, then

a is also inztdmissible in the segment involving i and k; if M[(i, k), a] # 1, then the tuple [(i, k) , a] is

placed on List and M[(i, k), a] is set to 1. Finally, if j directly precedes i in the MUSE DAG, then

(i , j) is removed from Local-Prev-Support(i, a) , and if j directly follows i, then (i, j) is removed

from Local-Next-Support(i, a) . If either local set becomes empty, then a is removed from L; and

additional tuples are stored on List t o clean up the Counters and DAG sets associated with the

label a E L;.

The worst-case running time and space complexity of MUSE AC-1 is O(n2Z2 + n31), where n

is the numl~er of nodes in a MUSE CSP and 1 is the domain size. By comparison, the worst-case

running time and space complexity for CSP arc consistency is O(n2Z2), assuming that there are n2

constraint arcs. Note that for applications where 1 = 7 ~ , or C is a planar DAG (in terms of Prev-

Edge and Next-Edge, not E), the worst-case running times of the algorithms are the same order.

Because MUSE AC-1 inherits AC-4's poor average-case performance, we can improve the average-

case running time of MUSE AC by using techniques similar t o those used by Bessikre t o develop

AC-6. We first review Bessikre's AC-6 algorithm and then describe two new MUSE arc consistency

algorithms: MUSE AC-2, which directly applies Bessikre's method to improve upon MUSE AC-1,

and MUSE AC-3, which, in addition to Bessikre's method, uses our "lazy" evaluation method for

keeping track of the Prev-Support, Next-Support, Local-Prev-Support, and Local-Next-Support

sets.

To improve the average-case performance while maintaining the same worst-case time complexity

of AC-4, Bessikre [I~] developed .4C-6, an algorithm conceptually similar t o AC-4 but which avoids

much of the work always carried out by AC-4. AC-6 assumes that the labels in the domains

are stored i n a data structure that enforces an ordering on the labels and supports the following

1 Notation I Meaning 1
E

Li

1 The number of labels in Lj that are compatible with a E L; (used
COmterl(i, j). I only by MUSE AC-1).

All node pairs (i , j) such that there exists a path
between i and j. If (i , j) E E, then (j , i) E E.

{aJa E L and (2, a) is permitted by the constraints

I R2(i , a , j , b)

{(j, b)(R2(i, a , j, b) = 1) (MUSE AC-1) or {(j, b)l(i, a) with
a being the smallest value in L; supporting (j,b)) (I\/IUSE !LC-2,
MUSE AC-3).

R2(i, a , j, b) = 1 indicates the admissibility of a E L; and b (5 L j given
binary const~.aints.

I M[(i, j) , a] = 1 indicates that the label a is not admissible for. (and
has already been eliminated from) all segments containing i and j.

Prev-Edge,

List !-
Next-Edge,

The set of all node pairs (j , a) such that there exists a direct'ed
edge (j , i j E G. It also contains (start, i) if t,here is no x E N
such that (2, i) E G.

The set of node pairs (a ! j) such that there exists a directed edge
from i to j.

A queue of arc support to be deleted.

The set of all node pairs (i, j) such that there exists a directed
edge (i, j) E G. It also contains (i? end) if there is no x E N 1 such that (i ,x) E G.

Local-F'rev-Support(i, a)

A set initialized to {(i, x)l(i, x) E E A (x, i) E Prev-Edge,) U
{(i, start)((start, i) E Prev-Edge,). After arc consistency, if
(i, j) E Local-Prev-Support (i, a) and j # start, a must be compatible
with at least one of j's labels.

Local-Kext-Support,(i, a)

A set initialized to {(i, x)l(i,x) E E A (j , x) E Next-Edge,) U
{(a, j) l(j , a) E Next-Edge,) U {(a, end)l(j,end) E Next-Edge,). After

Next-'support[ii' j) ' arc consistency, if (i, k) E Next-Support[(i, j) , a] and k # end, then
a E L, is compatible with at least one of j's and one of k's labels.

A set initialized to {(a, x) ((i ,x) E E A (i, x) E Next-Edge,) U
{(i! end)l(i, end) E Next-Edge,}. After arc consistency, if
(i, j) E Local-Next-Support(i, a) and j # end, a must be compatible

Prev-'support[(i")l a]

Figure 1: Data structures and notation used by the MUSE CSP arc consistency algorithms.

&ith at least one of j's labels.

A set initialized to {(i, x)l(i,x) E E A (x, j) E Prev-Edge,) u
{(i, j)((i , j) E Prev-Edgej) U {(i, start))(start, j) E Prev-Edge,}. After
ilrc consistency, if (i, k) E Prev-Support[(i, j) ,a] and k #start , then
a E L, is compatible with at least one of j 's and one of k's 1a.bels.

procedure AC-6-initialize (){
1. Last = 0;
2. f o r i E N d o
3. for a E L, d o {
4. S[i, a] := 0;
5 . w[i, a] := 0 ; }
6. for (i , j) E E d o
7. for a E L, d o {
8. b:= f irs t (L,); nextsupport(i, j, a, b , emptysupport);
9. i f emptysupport t h e n {
10. rernove(a, L ;) ;
11. M[i, a] := 1;
12. Lis t := List U {(i, a) } ; }
13. e lse S [j , b] := S [j , b] ~ { (i , a) } ;) }

Figure 2: The procedure to initialize the AC-6 data structures.

procedure AC-6 (){
1. AC-6-initialize();
2. w h i l e Lis t # 0 d o {
3. p o p (j , b) f r o m List;
4. for (i. a) E S[j,b] d o {
5 . s [j , bl := S [j , bl-{(i, a)};
6 . i f M[i ,a] = O t h e n {
7 . c:=b; nextsupport(i, j, a, c , emptysupport);
8. i f emptysupport then {
9. rernove(a, L ,) ;
10. M [i , a] := 1
11. List := List U { (i , a) } ; }
12. e lse s [j , cl := sli, cl u { (; , a) } ;) } 1 }

Figure 3: The procedure AC-6.

constant-time operations:

1. first(,',i) returns the smallest a E Li if Li # 0, else returns 0.

2. last(LCi) ret,urns the greatest a E Li if Li # 0, else returns 0.

3. If a E (L ; - l a s t (L i)) , n e x t (a , Li) returns the smallest b E Li such that a < b.

4. remo.ve(a, L,) removes a from L;.

If a and b :Lre both elements of Li, then a < b means that a comes before b in L;. Additionally,

0 < a is true for all values in L;. AC-6 uses the sets S[i, a] = {(j, b)((i ,a) is the smallest value in

L; supporting (j , b)) t o determine whether the label a is supported by any label associated with a t

least one other variable. M [i , a] is used to indicate whether or not the label a is admissible and has

been elimin.xted from Li. Figure 2 shows the code for initializing the data. structu res, and Figure 3

contains the a.lgorithm for eliminating inconsistent labels from the domains. Figure 4 contains the

procedure nextsupport, which is used by both of these routines.

The ma,jor reason for AC-4's poor average-case running time is tha't during the initialization

phase, AC-11 exhaustively checks every single constraint t o build the support sets S [i , a]. Instead

of calcula.tir~g all the support for a.11 assignments (i, a) during initialization (as i:j done by AC-4),

procedure nextsupport (in i, j, a; in out b; out emptysupport){
1. if b 5 last(Lj) then {
2. emptysupport:=false;
3. while M[j, b] do b :=next(b, L,);
4. while not R2(i, a, j , b) and not emptysupport do
5. if b < last(L,) then b :=next(b, L,);
6. else emptysupport:= true;]
7. else empt,ysupport:= true;)

Figure 4: The procedure nextsupport is used by AC-6, and MUSE AC-2, and MUSE AC-3.

AC-6 initially only looks for the first label b E L j for each node j that supports (i, a). If b is

ever eliminated from Lj , then AC-6 looks for the next label c E L j that supports (i, a) , and if no

such label 'can be found, it eliminates a from L;. AC-6 uses the procedure nextsupport to find the

smallest value in L j that is greater than or equal to b and supports (,i, a) . In this way, AC-6 avoids

scanning through all the constraints. It only checks as many of the constraints as is necessary to

enforce arc consistency, resulting in a much better average-case running time than AC-4.

3 MUSE AC-2 and MUSE AC-3

Because MUSE AC-1 was built on top of AC-4, it inherits AC-4's poor average-case running time.

However, by constructing a MUSE arc consistency algorithm that adapts the mechanisms of AC-6,

we can improve the average-case running time. We have developed two MUSE arc consistency

algorithms. The first, MIUSE AC-2, builds and maintains the same data structures as MUSE AC-1

described in Figure 1 except that the Counter array is eliminated and the S sets are maintained

as in AC-6 The DAG support sets (i.e., Prev-Support, Next-Support, Local-Prev-Support, and

Local-Next-Support) are initialized and updated as in MUSE AC-1. In particular, all possible

tuples are initially stored in the DAG support sets (as described in Figure l), and those sets are

updated depending on tuples stored on List. Figure 5 shows the algorithm for initializing the data

structures and Figure 6 contains the algorithm for eliminating inconsistent labels from the domains.

The procedures t o update the DAG support sets for MUSE AC-2 are the same a; for MUSE AC-1

(see [6]) anti appear in Figure 7.

MUSE AC-3 manages the S support sets in the same way as in MUSE AC-2; however, it uses

a new method for initializing the DAG support sets and updating them in Figure 5. Rather than

initializing Local-Prev-Support(i, a) to a set of all (i, j) pairs such that there i:; a directed edge

from j t o i in the DAG and Local-Next-Support(i, a) to a set of all (i, j) pairs such that there is a

directed edge from i to j, it sets Local-Prev-Support(i, a) t o (i, j) such that j is the smallest node

that precedes i in the DAG, and Local-Next-Support(i, a) to (i, j) such that j is the smallest node

that follows i in the DAG. Note that start and end are defined to be the smallest and largest possible

nodes, respectively. The Prev-Support[(,t:, j), a] set is initialized to (i , k) such that k defaults first to

procedure MUSE-AC-initialize {
1. List := 8;
2. E:={(i , j)13a E C : i , j E a A s # j A i , j E N);
3. for i E N d o
4. for a E L; d o {
5. for j E N such that (2, j) E E d o {
6. S[(i, j) , a] := 0;
7. M[(i, j) , a] := 0;
8. initialize-support(i, j, a);)
9. initialize-local-support(i, a);)
10. for i E N d o
11. f o r a E L ; d o {
12. for j E N such that (a , j) E E d o {
13. b := first(L,); nextsupport(i, j, a, b, emptysupport);
14. if emptysupport t hen {
15. List := List U {[(z, j) , a]);
16. M[(i, j) , a] := 1;)
17. else s[(j , 4, bl := S[(j, i) , bl u {(i, a)) ;))

Figure 5: Initialization of the da ta structures for MUSE AC-2 and MUSE AC-3. The two algorithms
differ only in the version of initialize-support and initialize-localsupport used.

procedure MUSEAC (){
1. MUSE-AC-initialize);
2. while List # B d o /
3. p o p [(j, i), b] from List;
4. for (i ,a) E S[(j, i), b] d o {
5. S[(j, 4, bl := S[(j, i), bl - {(i, a));
6. if M[(i, j) , a] = 0 then {
7. c:=b; nextsupport(i, j, a, c, emptysupport);
8. if emptysupport t hen {
9. List := List U {[(a, j) , a]);
10. M[(2,3),aI:=l; 1
11. else s[(j, 4, cl:=S[(j, i), cl u ((2 , a)); 1)
12. Update-Support-Sets([(j, i), b]);
13. Update-Local-Support-Sets([(j, i), b]);))

Figure 6: Eliminating inconsistent labels from the domains in MUSE AC-2 and AC-3. Up-
da tesuppo- t -Sets and Update-Local-Supportsets are different for MUSE AC-2 and MUSE AC-3.

procedure Update-Support-Sets ([(j , i), b]) {
1. for (j , x) E Prev-Support[(j, i) , b] A x # i A x # start d o {
2. r emove ((j , x) , Prev-Support[(j, i) , b]);
3. Next-Support[(j, x) , b]:=Next-Support[(j, x) , b] - { (j , a)) ;
4. i f Next-Support[(j, x) , b] = 0 A M [(j , x) , b] = 0 t h e n {
5. List := List u { [(j , ~) , b]);
6. M[(j , x) , 61 := 1;))

1 7 . for (j , x) E Next-Support[(j, i) , b] A x # i A x # end d o {
8. r e m o v e ((j , x) , Next-Support[(j, i) , b]);
9. Prev-Support[(j, x) , b]:=Prev-Support[(j, x) ! b] - { (j , i)); 1 10. i f Prer-Support[(j, x) , b] = 0 A M [(j , x) , b] = 0 t h e n {
11. List := List u { [(j , x) , b]);
12. M [(j , x) , bl := 1; 1 1 1
procedure UpdateLocal-Support-Sets ([(j , i) , b]) {
1. i f (i, j) E Prev-Edgej t h e n
2 . Local-Prev-Support(j, b):=Local-Prev-Support(j, b) - { (j , i));
3. i f Local-Prev-Support(j, b) = 0 t h e n {
4. Lj := L, - {b);
5. for (j , x) E Local-Next-Support(j, b) A x # i A x # end d o {
6. r emove ((j , x) , Local-Next-Support(j, b)) ;
7 . i f M [(j , x) , b] = 0 t h e n {
8. List := List U { [(j , ~) , b]);
9. M[(j , x) , bl := 1;) 1)
10. i f (j , i) E Next-Edgej t h e n
11. Local-Next-Support(j, b):=Local-Next-Support(j, b) - { (j ? i)) ;
12. i f Local-Next-Support(j, b) = 0 t h e n {
13. Lj := L, - {b);
14. for (j , x) E Local-Prev-Support(j, b) A x # z A 1: # start d o {
15. remove ((j , x) , Local-Prev-Support(j, b));
16. i f M [(j , x) ? b] = 0 t h e n {
17. List := List U { [(j , ~) , b]);
18. M[(j ,x) ,bI := 1; 1 1 1 1

Figure 7: The procedures for updating the DAG support sets in MUSE AC-2.

a. The network.

Prev-Supporl[(l, 2), a] = {(1,2))
Prev-Support[(l,3), a] = {(1,2), (1 ,3))
Prev-Support[(l, 2), b] = {(1,2))
Prev-Support[(l,3 b = {(1,2), (1,3))
P r e v - S u p p o [(1 = ((2,start))
Prev-Support[(2,3), c] = {(2,3), (2 , l))
Prev-Support[3 1 d] = { 3,s tar t))
Prev-Support[[3:2]: dl = {[3,1)}

Local-Prev-Support
Local-Prev-Support
Local-Prev-Support(2,c) = ((2 , l))
Local-Prev-Support(3,d) = ((3, I) , (3 ,2))

Next-Support[(l,2), a] = {(1,3)}
Next-Support[1,3), a] = ((1,end))
Next-Suppor t~l ,2) , b] = ((1.3))
Next-Support[(l,3),b] = {
Next-Support[(2,l),c] = {
Next-Support[(2,3), c] = ((2, end))
Next-Support[(3, l) ,d] = {(3,1), (3,2))
Next-Support[(3,2), d] = ((3: 2))

-
Local-Next-Support(1, a) = {(1,2), (1,3))
Local-Next-Support(1 ,b) = {(1,2), (1: 3))
Local-Next-Support
Local-Next-Support

b. DAG support set initialization in MUSE AC-2.

Prev-Support[1 2 a] =
Prev-support[[l:3]:aj = {it::]]
Prev-Support[(l,2), b] = ((1, 2))
Prev-Support[(l,3), b] = ((1, 3))
Prev-Support[(2,1 , c] = ((2, start))
Prev-Support[(2.3~. c] = ((2.3))
Prev-Support[(3, 1 , d] = ((3, start))
Prev-Support[(3,2], dl = ((3.1))

Local-Prev-Support(1, a) = ((1, s tar t))
Local-Prev-Support(1, b = ((1, start))
Local-Prev-Support(2,c I = ((2 , l))
Local-Prev-Support(3,d) = ((3 , l))

Next-Support[(l,2), a] =
Next-Support[(l,3), a] =

Next-Support[(2, 1), c] = ((2 , l))
Next-Support[(2,3), c] = ((2, end))
Next-Support[3 1 dl = (3 , l))
Next-Support[[3:2]: dl = {(3,2)}

Local-Next-Support(1,a) = {(1,2))
Local-Next-Support(l.6) = {(1,2))
Local-Next-Support(2.c) = {(2,3))
Local-Next-Support(3,d) = ((3, end))

c. DAG support set initialization for MUSE AC-3.

Figure 8: 11 simple example of the initialization of the DAG support sets by MUSE AC-2 and
MUSE AC-3.

start and then to j (if either is a possible entry) or is the smallest node that precedes j in the DAG.

Similarly, tlne Next-Support[(i, j), a] set is initialized to (i, k) such that k defaults first to end and

then to j (if either is a possible entry) or is the smallest node that follows j in the DAG. Setting

k in this we,y makes dealing with the boundary cases easier and minimizes the need to update the

entry until a is no longer supported by all segments (in the case of start and end) or the tuple

[(i, j), a] is placed on List. Figure 8 illustrates the initialization of the DAG support sets by MUSE

AC-2 (same, as for MUSE AC-1) and MUSE AC-3.

Assumir~g that each node in the network is numbered with a unique integer, it is a simple

matter to determine a total order on the nodes that precede or follow a certain node. The following

constant time functions have been defined:

1. f i r s tq l rev(i) returns the smallest node n such that (n , i) E Prev-Edge;, else returns 0.
2. las t -prev(i) returns the greatest node n such that (n , i) E Prev-Edgei, else returns 0.
3. If k=last-prev(i) and (n , i) E (Prev-Edgei - (k , i)) , n e x t p r e v (i , j) returns the smallest n such that

(n, i) E Prev-Edgei and j<n. If k=lastprev(i), nextprev(i, k) returns 0.
4. first-next(i) returns the smallest node n such that (i, n) E Next-Edge,, else returns 0.
5. las t~next(i) returns the greatest node n such that (i, n) E Next-Edgei, else returns 0.
6 . If k=lastnext(i) and (i , n) E (Next-Edge, - (i, k)) , nextnext(i , j) returns the smallest n such that

(i , n) E Next-Edgei and j<n. If k=lastnext(i) , nextnext (i, k) returns 0.

Whenever MUSE AC-3 pops [(i, j) , a] from List, this information must be propagated to the

DAG support sets using Update-Support-Sets and UpdateLocal-Support-Sets in Figures 9 and

10, respectively. If, during these procedures, the single element in one of the IDAG support sets

is deleted, a new member for the set must be located if one is available; otl-terwise, the set is

considered to be empty (with consequences like those in MUSE AC-1 and AC-'2). Note that due

to the initidization preference of setting k in the (i, k) tuple for Prev-Support[(i, j), a] to the value

of j or start, it becomes necessary to invoke Get-Non-Default-Prev when upda-ting these sets to

reset the (1 , k) tuple so that k is the first prev node that is not equal to j or start. Similarly, due

to the initiitlization preference of setting k in the (i, k) tuple for Next-Support[(i, j), a] to the value

of j or enc', it becomes necessary to invoke Get-Non-Default-Next when updating these sets to

reset the (2 , k) tuple so that k is the first next node that is not equal to j or end. The procedure

next1ocal~1~revsupport locates the next largest j preceding i (shown in Figure 11) to update Local-

Prev-Support(i, a) , nextlocal-nextsupport locates the next largest j following i (shown in Figure

11) to update Local-Next-Support(< a), next-prevsupport locates the next largest k preceding

j (shown i r ~ Figure 12) to update Prev-Support[(i, j) , a], and nextnextsupport, locates the next

largest k following j (shown in Figure 12) to update Next-Support[(i, j) , a]. Each of these procedures

sets the associated empty flag to true if there is no such next element (just as in nextsupport).

The woi:st-case running time for MUSE AC-2 and MUSE AC-3 is the same as for MUSE AC-1,

O(n212 + n"E), where n is the number of nodes in the MUSE CSP and 1 is the number of labels.

The proof clf correctness of the algorithms is comparable to that for MUSE AC-I. [5, 61, and so we

will not give the proof here.

4 Expcximents, Results, and Conclusions

In order to compare the performance of MUSE AC-1, MUSE AC-2, and MUSE AC-3, we have

conducted experiments in which we randomly generate MUSE CSP instances with three different

topologies. The tree topology (Figure 13(a)) is characterized by two parameters: the branching

factor (horn many nodes follow each non-leaf node in the tree) and the path length (how many

nodes there are in a path from the root node to a leaf node). The random split topology (Figure

14(a)) is chxacterized by three parameters: the number of nodes in the initial chain, the probability

that a node is split during an iteration, and the number of iterations. Finally, the lattice topology

(Figure 15(i~)) is characterized by its branching factor and path length.

In addition to the topology, a DAG in a MUSE CSP has three other defining parameters: the

p r o c e d u r e Update-Support-Sets ([(j , i) , b]) {
1. i f Prev-Support[(j , i), b] # N I L then {
2. emp typrev := false;
3. (j , x) := Prev-Support[(j , i) , b];
4. x := Get-Non-Defaul t -Prev(i , j , x , emp typrev) ;
5. w h i l e (n o t emp typrev) d o {
6. i f (x # i && x # s tar t) then {
7. i f (j , i) E Nex t -Suppor t [(j , x), b] then {
8. r e r n o v e ((j , a) ,Next -Support[(j , x) , b]) ;
9. new-next := i ; next~nextsupport(j,x,b,new-next,emptyne:ut);
10. i f emp tynex t A M [(j , x) , b] = 0 then {
11. List := List u { [(j , x), b]} ;
12. M [(j , x) , bl := 1 ; 1
13. e l s e Nex t -Suppor t [(j , x) , b]:= (j , new- nex t) ; })
14. next~prev~support(j,i,b,x,emptyprev);) }
15. i f N e x t - S u p p o r t [(j , i) , b] # N I L then {
16. e m p t y n e x t := false;
17. (j , x) := Nex t -Suppor t [(j , i) , b];
18. x := Get-Non-Defaul t -Next (i , j , x , e m p t y n e x t) ;
19. w h i l e (not e m p t y n e x t) d o {
20. i f (x # i && x # e n d) then {
21. i f (j , i) E Prev-Support[(j , x) , b] then {
22. r e r n o v e ((j , i) ,Prev-Support[(j , x) , b]) ;
23. new-prev := i, next-prevsupport(j,x,b,new-prev,emptyprev);
24. i f emp typrev A M [(j , x) , b] = 0 then {
25. List := List U { [(j , x) , b]};
26. M [(j , x) , b] := 1 ;)
27. e l s e Prev-Support[(j , x) , b] := (j , new-prev);))
28. nextnext-support(j,i,b,x,emptynext);))

I 2

Figure 9: Updating DAG support sets in MUSE AC-3.

number of labels in each node, the probability of a. constraint existing between ~ T N O nodes, and the

probability of RZ(2, a , j, b) = 1 given that i and j are constrained. The number of labels in this

experiment was set to sixteen per node. We randomly generated constraints between variables in

the MUSE instances. The probability of a constraint between two nodes assumes that a constraint

is allowed hetween them. For example, nodes that are on the same level in the tree topology

are in different segments, and so constraints cannot occur between them. For this experiment

the probability of a constraint between two variables was set to fifty percent for all topologies.

The probability that RZ(2, a , j, b) = 1 was varied from 0% to 100% in steps of 5% (The lower the

probability that R2(i, a , j, b) = 1, the tighter the constraints). For each probability, 6 instances

were genemted.

In the first experiment, we ran all three versions of MUSE AC on the three gra,ph topologies; we

used trees with a branching factor of two and a path length of four, random splits with an initial

length of four and a fifty percent chance of a split per iteration with four iterations, and lattices

with a branching factor of three and a path length of four. The results of this experiment are

displayed in Figures 13(b), 14(b), and 15(b). Each subfigure displays the running times for each

of the three MUSE AC algorithms. Following Bessikre [I]? we measure the running times of each

MUSE AC algorithm by counting the number of times an atomic operation is executed. Measuring

procedure UpdateLocal-Support-Sets ([(j, i), b]) {
1. if (a, j) E Prev-Edge, (j , i) E Local-Prev-Support(j, b) then {
2. remove((j , a) , Local-Prev-Support(j, b));
3. newlocalprev := i; nextlocal-prev-support(j, b, newlocalprev, emptyl~cal~rev);
4. if emptylocalprev t h e n {
5. remove(b, Lj);
6. for (j , x) E Local-Next-Support(j, b) d o {
7. emptylocalnext := false;
8. rernove((j, x),Local-Next-Support(j, b));
9. if x = end then continue;
10. while no t emptylocalnext d o {
11. if M[(j, x), b] = 0 t hen (
12. List := List U {[(j, x), b]);
13. M[(j, x) , b] := 1;)
14. nextlocal-nextsupport(j, b, x, emptylocalnext);)))
15. else Local-Prev-Support(j, b):=(j, newlocalprev);)
16. if (j, a) E Next-Edge, A (j , i) E Local-Next-Support(j, b) t h e n {
17. remove((j, i), Local-Next-Support(j, b));
18. newlocalnext. := a ; nextlocal-nextsupport(j, b, newlocalnext, emptylocalnext);

1 19. if emptylocalnext t h e n {
20. rernove(b, L,);
21. for (j , x) E Local-Prev-Support(j, b) d o {
22. emptylocalprev := false;
23. rernove((j, x),Local-Prev-Support(j, b));
24. if x = start t hen continue;
25. while no t emptylocalprev d o {
26. if M[(j, x), b] = 0 t hen {
27. List := Last U {[(j, x) , b]);
28. M [(i x), b] := 1;)
29. nextlocal-prevsupport(j, b, x, emptylocalprev);)))
30. else Local-Next-Support(j, b) := (j, newlocalnext);))

Figure 10: Updating DAG local support sets in MUSE AC-3.

procedure next.loca1-~revsupport(in i, a; in o u t prev; o u t emptylocalprev) {
1. if prev 5 last-prev(i) t hen {
2. prev :=next prev(2,prev);
3. while (prev && M[(i,prev),a]) d o
4. prev :=next-prev(i,prev);
5. if prev then emptylocalprev:= false;
6. else emptylocalprev:= t rue ;)
7. else emptylocalprev:= t rue ;)

procedure nextlocal-nextsupport(in i , a; in o u t next; o u t emptylocalnext) {
1. if next 5 last-next(i) t h e n {
2. next :=nextnext(i ,next);
3. while (next && M[(i,next.),a]) d o
4. next :=nextnext(i ,next);
5. if next then emptylocalnext:= false;
6. else empt.ylocalnext:= t rue ;)
7. else emptylocalnext:= t rue ;)

Figure 11: The procedures nextlocal-prevsupport and nextlocal-nextsupport are used by MUSE
AC-3.

I
procedure next-prev-support(in i, j, a; in ou t prev; ou t emptyprev) {
1. if (prev = j (1 prev 5 last-prev(j)) then {
2. if (prev = j) then prev :=nextprev(j , i) ;
3. else prev :=next-prev(j,prev);
4. while (prev && (M[(i,prev),a] 1) (prev = i)) (1

((i, prev) # E && prev # start)) do(
5 . if (prev = j) then prev :=next-prev(j,i);
6. else prev :=nex t -p re~(j ,~ rev) ; }
7. if prev then emptyprev:= false;
8. else emptyprev:= t rue;)
9. else emptyprev:= t rue; }

procedure nextnextsupport(in i, j, a; in outv next; ou t emptynext) {
1. if (next = j) I next 5 last-next(j)) then (
2. if (next = j) then next :=nextnext(j , i) ;
3. else next :=nextnext(j ,next);
4. while (next && (M[(i,next),a:J (1 (next = z)) (1

((i, next) # E && next # end)) do{
5 . if (next = j) then next :=nex tnex t (j , i) ;
6. else next :=nextnext(j ,next);)
7. if next then emptynext:= false;
8. else emptynext := t rue;)
9. else emptynext:= t rue ;)

Figure 12: The procedures next -prevsupport and next-next support are used by MUSE AC-3.

(a) Tree topology (b) Tree results

Figure 13: 'The number of operations performed by MUSE AC-1, MUSE AC-2, and MUSE AC-3

for a tree of depth 4, each node having 16 labels. The probability of a constraint between two nodes

is 50 percent.

(a) Random split topology (b) R.andom split results

Figure 14: The number of operations performed by MUSE AC-1: MUSE AC-2, and MUSE AC-3

for a randoin-split DAG with initial length of 4, a 50 percent chance of splitting, run for 4 iterations,

each node having 16 labels. The probability of a constraint between two nodes i:; 50 percent.

I , , . , , , , , (1
'0 10 20 30 40 50 M 70 60 D3 100

Probeb~li~ (ln %I ol R(i.a,J,bpl glvm thsl I and j are mnr1rain.d

(a) Lattice topology (b) Lattice results

Figure 15: 'The number of operations performed by MUSE AC-1, MUSE AC-2, and MUSE AC-3

for a lattice with branching factor 3 and path length 4, each node having 16 labels. The probability

of a constraint between two nodes is 50 percent.

the running time this way has the advantage of being implementation independent while remaining

proportional to the actual execution time. We considered the following operations to be atomic:

consulting the value of a constraint; eliminating a label from a domain; setting or consulting an

entry in M ; adding, removing, or consulting an entry in a DAG support set or S set; adding or

removing a, tuple from List; and, initializing the entries for the data structures.

As can be seen in Figures 13(b), 14(b), and 15(b), adapting ideas from Bessikre's AC-6 in

order to formulate the MUSE AC-2 and MUSE AC-3 algorithms greatly reduces the amount of

computatic~n needed for all three topologies when compared to the MUSE AC-1 alsorithm (based on

AC-4). Also, the modifications that were made to MUSE AC-2 to create MUSE AC-3 (as described

in the section on MIJSE AC-2 and MUSE AC-3) produce a modest gain in corr~putational speed.

Also evident in the figures is that all topologies start off with a high number of atomic operations

that sharp1.y decreases and then levels off as the probability of R2(i, a, j , b) = 1 increases, given that

i and 3 are constrained. The decrease and leveling off are due to the network stabilizing because of

the increase in the admissibility of the labels from loose constraints. The asymp1;otic level reached

for moderate-to-loose constraints largely represents the cost of initializing the MUSE CSP.

As a second experiment, we investigated the influence of a lattice's shape on the number of

operations required by MUSE AC-3. We generated lattices with path lengths three, four, or five

and branching factors of three, four, or five with a limit of sixteen nodes in a lattice. As can be seen

in Figure 115, the number of nodes in a lattice affects the number of atomic operations performed,

as one might expect. The lattice with nine nodes used fewer operations than that of both of the

twelve node lattices, which used fewer operations than the fifteen and sixteen node lattices. Also,

the shape of the lattice affects the number of operations needed. Lattices with a shorter path

length but greater branching factor require fewer operations than lattices with the same number

of nodes but with a longer path (see the twelve node and fifteen node lattices where the 4x3 and

5x3 (branching factor x path length) lattices require fewer operations than the 3x4 and 3x5 lattices,

respectively). This is because there are a greater number of alternative segments in the lattices

with higher branching factors; these alternative segments increase the chances that a label will be

MUSE arc consistent.

The MLISE AC-1, MUSE AC-2, and MUSE AC-3 algorithms have been incorporated into our

CDG parse1 to perform arc consistency prior to extraction of legal parses. This pairser uses methods

developed by Harper and Helzerman [4] to parse a sentence containing words with multiple lexical

categories and multiple feature values. This method applies constraints in multiple stages such that,

at the initial stage, the MUSE network representing the sentence is fairly small. During each stage

the MUSE network representing the sentence is expanded so that new types of cl3nstraints can be

applied to it (e.g., number agreement constraints, and subcategorization constraints). This method

of parsing keeps the size of the MUSE network relatively small. For this experiment, we randomly

chose 100 sentences to parse from the Resource Management Corpus [12] in order to compare the

Muse AC-3 - Lattices (Branching Factor X Path Length)

1 4 4 1

I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100
Probability (in %) of R(i,a,j,b)=l given that i and j are constrained

Figure 16: The number of operations performed by MUSE AC-3 for lattices of various sizes specified

by branching factor x path length. Each node has 16 labels, and the probability of a constraint

between two nodes is 50 percent.

Figure 17: Percent improvement statistics for MUSE AC-1, MUSE AC-2, and MUSE AC-3

Comparing MUSE
AC-1 to AC-2
,4C-2 t o AC-3
AC-1 t o AC-3

Sentence

Figure 18: .4verage percent difference in filtering times between MUSE AC-1 ant1 MUSE AC-2 for
each sentence.

Mean
2.07
29.36
30.83

running times of MUSE AC-1, MUSE AC-2, a.nd MUSE AC-3. We calculated the a,mount of time

used by each algorithm during each sentence pa,rse (avera,ged over three test runs) and examined

the percent decrease in running time between each a,rc consistency algorithm. These results are

displayed i r ~ Figure 17. Note that the most dramatic reduction in running resulted from using

MUSE AC-3 as opposed t o MUSE AC-1 or MUSE AC-2. Clea,rly MUSE AC-3 was the outright

winner for all sentences parsed, aa can be seen in Figures 18 and 19. MUSE AC-:I! only resulted in

modest improvements over MUSE AC-1. This is likely due t o the fa.ct tha,t our parsing algorithm

applies the arc consistency algorithm to moderately small constraint networks over multiple stages

of parsing.

We have shown that MUSE AC-2 performs fewer operaations than MUSE AC-1 simply by using

the method of initializing and updating the S sets as in [I]. MUSE AC-3 improves upon MUSE

AC-2 by using our "lazy" method to initialize and update the DAG support sets. These runtime

improvements have proven useful for applications using a MUSE CSP based parser, including spoken

Median
1.68
30.25
31.77

Std. Deviation
2.40
6.28
6.28

Sentence

Figure 19: .4verage percent difference in filtering times between MUSE AC-1 ancl MUSE AC-3
each sentence.

language understanding systems [3] and natural language front ends for multiple databases

These algorithms should also be effective for other CSP problems that have problems compara

to lexical ambiguity, feature ambiguity, or ambiguity resulting from the inability t o segmen

signal into higher-level chunks in a single way. Two examples of comparable domains are vis

understanding and handwriting analysis.

for

References

[I] Christian Bessikre. Arc-consistency and arc-consistency again. Artificial Intelligence, 65:179-

190, 1994.

[2] C. Han and C. Lee. Comments on Mohr and Henderson's path consistency algorithm. Artificial

Intelligence, 36:125-130, 1988.

[3] M. P. Harper and R. A. Helzerman. Extensions t o constraint dependency parsing for spoken

language processing. Computer Speech and Language, 9(3):187-234, 1995.

[4] M . P. Harper and R . A. Helzerman. Managing multiple knowledge sources in constraint-based

parsing of spoken language. Fundamenta Informaticae, 23(2,3,4):303-353, 1,995.

[5] Randa,ll A. Helzerman and Mary P. Harper. An approach t o multiply-seg:mented constraint

satisfaction problems. In Proceedings of th8e Twelfth llrational Conference on Artificial Intelli-

gence, pages 350-355, 1994.

[6] Randall A. Helzerman and Mary P. Harper. MUSE CSP: An extension to the constraint

satisfaction problem. Journal of Artificial Intelligence Research, 5:239-288, 1996.

[7] A. K . Mackwort h and E. Freuder. The complexity of some polynomial network-consistency

algorithms for constraint-satisfaction problems. Artificial Intelligence, 25:65-74, 1985.

[8] H. Maruyama. Constraint dependency grammar. Technical Report #RT0044, IBM, Tokyo,

Japan, 1990.

[9] H. Maruyama. Constraint dependency grammar and its weak generative capacity. Computer

Software, 1990.

[lo] H. Maruyama. Structural disambiguation with constraint propagation. In The Proceedings of

the Annual Meeting of A C L , pages 31-38, 1990.

[l l] R. Mohr and T. C. Henderson. Arc and path consistency revisited. ArtiuFicial Intelligence,

28:225--233, 1986.

[12] P. J . Price, W. Fischer, J . Bernstein, and D. Pallett. A database for continuous speech recog-

nition in a 1000-word domain. In Proceedings of the Internat,ional Conference on Acoustics,

Speech,, and Signal Processing, pages 651-654, 1988.

	Purdue University
	Purdue e-Pubs
	12-1-1997

	FASTER MUSE CSP ARC CONSISTENCY ALGORITHMS
	Mary P. Harper
	Christopher M. White
	Randall A. Helzerman
	Stephen A. Hockema

