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Abstract

progressively using a 2-phase assembling method.

Background: In the context of ancestral gene order reconstruction from extant genomes, there exist two main
computational approaches: rearrangement-based, and homology-based methods. The rearrangement-based
methods consist in minimizing a total rearrangement distance on the branches of a species tree. The homology-
based methods consist in the detection of a set of potential ancestral contiguity features, followed by the
assembling of these features into Contiguous Ancestral Regions (CARs).

Results: In this paper, we present a new homology-based method that uses a progressive approach for both the
detection and the assembling of ancestral contiguity features into CARs. The method is based on detecting a set
of potential ancestral adjacencies iteratively using the current set of CARs at each step, and constructing CARs

Conclusion: We show the usefulness of the method through a reconstruction of the boreoeutherian ancestral
gene order, and a comparison with three other homology-based methods: AnGeS, InferCARs and GapAdj. The
program, written in Python, and the dataset used in this paper are available at http://bioinfo.lifl fr/procars/.

Background

The small phylogeny problem consists in reconstructing
the ancestral gene orders at the internal nodes of a species
tree, given the gene orders of the extant genomes at the
leaves of the tree. There exist two main computational
approaches for the reconstruction of ancestral gene orders
from extant gene orders: rearrangement-based methods,
and homology-based methods.

The rearrangement-based methods require a rearrange-
ment model, and consist in finding a rearrangement sce-
nario that minimizes the total rearrangement distance on
the branches of the species tree [1-3]. The homology-
based methods consist in finding the ancestral gene
orders associated with the internal nodes of the species
tree, such that the total amount of homoplasy phenom-
enon observed in the species tree is minimized [4-9].
Homoplasy is a phenomenon by which two genomes in
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different lineages acquire independently a same feature
that is not shared and derived from a common ancestor.
For the inference of the ancestral gene order at a tagged
internal node, the homology-based methods are usually
composed of two steps. The first step consists in detect-
ing a set of potential ancestral contiguity features, by
comparison of pairs of extant genomes whose path goes
through the ancestor in the species tree. The second step
is an assembling phase that requires to compute an accu-
rate conservation score for each potential ancestral fea-
ture, based on the species tree. Using these scores, some
heuristic algorithms are then used to resolve the conflicts
between the ancestral features in order to assemble them
into Contiguous Ancestral Regions (CARs). A CAR of an
ancestral genome is an ordered sequence of oriented
blocks (genes, or synteny blocks) that potentially appear
consecutively in this ancestral genome.

In the absence of tangible evolution model, the
homology-based methods have the convenience to
reconstruct CARs that contain only reliable features
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inferred from a conservation signal observed in the
extant genomes. However, the ancestral genomes recon-
structed using homology-based methods are often not
completely assembled, as some rearrangement or con-
tent-modifying events might have caused the loss of
some ancestral contiguity features in the extant gen-
omes. Thus, the homology-based methods proposed in
the literature usually enlarge the condition of contiguity
in order to detect more potential ancestral contiguity
features, -adjacencies between two blocks [5,6,9], maxi-
mum common intervals of blocks [4,10,7], gapped adja-
cencies [11]. Hence, these different types of contiguity
features can be classified according to the tightness of
their definition of contiguity. The homology-based meth-
ods should then account for this classification when
assembling different types of contiguity features. This
approach was used in [11] where a method, GapAdj, was
presented for iteratively detecting gapped adjacencies.
GapAdj uses a progressively relaxed definition of conti-
guity allowing an increasing number of gaps between
ancestral contiguous synteny blocks in extant genomes,
and iteratively assembling these gapped adjacencies using
a heuristic Traveling Salesman algorithm (TSP). The TSP
is applied on a graph whose vertices are synteny blocks,
and edges are potential ancestral adjacencies between
these blocks.

Here, we follow the same idea, and we present an
homology-based method that is based on iteratively
detecting and assembling ancestral adjacencies, while
allowing some micro-rearrangements of synteny blocks
at the extremities of the progressively assembled CARs.
The method starts with a set of non-duplicated blocks as
the initial set of CARs, and detects iteratively the poten-
tial ancestral adjacencies between extremities of CARs,
while building up the CARs progressively by adding, at
each step, new non-conflicting adjacencies that induce
the less homoplasy phenomenon. The species tree is
used, in some additional internal steps, to compute a
score for the remaining conflicting adjacencies, and to
detect other reliable adjacencies, in order to reach com-
pletely assembled ancestral genomes. The first originality
of the method comes from the usage of the progressively
assembled CARs for the detection of ancestral contiguity
features allowing micro-rearrangements. The second ori-
ginality comes from the assembling method at each itera-
tive step that consists in adding the contiguity features
gradually giving priority to the features that minimize the
homoplasy phenomenon, rather than relying on a heuris-
tic algorithm for discarding false-positive features. We
discuss the usefulness of the method through a compari-
son with three other homology-based methods (AnGeS
[12], InferCARs [5] and GapAdj [11]) on the same real
dataset of amniote genomes for the reconstruction of the
boreoeutherian genome.
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Preliminaries: genomes, species tree, conserved
adjacencies

For the reconstruction of ancestral genomes from extant
ones, genomes are represented by identifying homolo-
gous conserved segments along their DNA sequences,
called synteny blocks. These blocks can be relatively
small, or very large fragments of chromosomes. The
order and orientation of the blocks, and their distribu-
tion on chromosomes may vary in different genomes.
A signed block is a block preceded by a sign + or —
representing its orientation. By convention, a signed
block +a is simply written a. Here we assume that all
genomes contain the same set of non-duplicated blocks
and consist of several circular or linear chromosomes
composed of signed blocks.

For example, consider the five genomes represented at
the leaves of the tree in Figure 1. The bullets at the
extremities of the chromosomes represent the telomeres
of linear chromosomes. Genomes A and B consist of
one linear chromosome each, and genomes C, D, and E
consist of two linear chromosomes each.

A Contiguous Ancestral Region (CAR) is defined as a
potential chromosome of an ancestral genome.

A segment in a genome is an ordered set of signed
blocks that appear consecutively in the genome. The
length of a segment is the number of blocks composing
this segment. In the above example, {b ¢ d e} is a seg-
ment of length 4 in the genome A.

Two segments of two different genomes are called
syntenic segments if they contain the same set of blocks.
For example, the segments {# -g - f d} of genome D
and {-d f g h} of genome E are syntenic.

An adjacency in a genome is an ordered pair of two
consecutive signed blocks. For example, in the above
genomes, (a b) is an adjacency of genomes A, B, C, and
E, and (a -b) is an adjacency of genome B. Since a
whole chromosome or a segment can always be flipped,

A:eabcdefghe

B:eabcdefg-he 19)

C:eabcde;ecfg-he

D:ea-bc-ce; oh-g—fdo} I

Conserved adjacencies:

@b) (be) e-0) (df) (gh) (g-) (@)~ - o abe-ce e-dfghe } 8

Figure 1 Example of a species tree. A species tree on five
genomes A, B, C, D, and E. The black-colored ancestral node defines
two ingroup sets each composed of a single genome, /; = {D} and
I, = {£}, and an outgroup set O = {A, B, (}. The conserved
adjacencies at the ancestral black-colored node are given.
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we have (x y) = (-y —-x). For example, (g -h) = (h -g) is
an adjacency shared by genomes B, C, and D.

A species tree on a set of k genomes is a rooted tree
with k leaves, where each genome is associated with a
single leaf of the tree, and the internal nodes of the tree
represent ancestral genomes. For example, Figure 1
shows a species tree on genomes A, B, C, D, and E.

Here, for the reconstruction of ancestral gene orders,
we consider an ancestral node of the species tree that has
exactly two children resulting from a speciation (black-
colored node in Figure 1). The species partition defined
by an ancestral node is the partition of the extant species
into three sets: two ingroup sets /; and I, corresponding
to the two lineages descending from the ancestor, and
one outgroup set O containing all other extant genomes.

A conserved adjacency at an ancestral node of the spe-
cies tree is an adjacency shared by at least two genomes
belonging to at least two different sets of the species
partition defined by the ancestral node. Such two gen-
omes are linked by a path that goes through the ances-
tral node. For example, in Figure 1, (a b) is a conserved
adjacency of the black-colored ancestral node because it
is shared by genomes C and E whose path goes through
the ancestor. The adjacency (¢ —e) is also a conserved
adjacency of this ancestor because of its presence in
genomes D and E.

A conserved adjacency at an ancestral node is consid-
ered as a potential adjacency of this ancestor. Homology-
based methods for the reconstruction of ancestral gene
orders usually consist in, first, detecting all the conserved
adjacencies at the ancestral node, and next, assembling
these conserved adjacencies into CARs. The difficulty in
this assembling phase comes from the conflicts that may
exist between some conserved adjacencies. Two adjacen-
cies are called conflicting adjacencies when they involve a
same block extremity, and thus they cannot be both
present in the same ancestral genome. For example, in
Figure 1, the conserved adjacencies (g /#) and (g —/) of
the black-colored node are conflicting as they both
involve the right extremity of block g. Two adjacencies
that are not conflicting are called compatible. A set of
adjacencies is said non-conflicting (NC) if all pairs of adja-
cencies in the set are compatible.

Here, we distinguish two types of conserved adjacency
regarding their presence or absence in the three sets of
species defined by the considered ancestral node: the
two ingroup sets I; and I, and the outgroup set O.
A fully-conserved adjacency is a conserved adjacency
that is present in at least one genome of each of the
three sets of species. A partly-conserved adjacency is any
other conserved adjacency. For example, in Figure 1,
(fg) is a fully-conserved adjacency of the black-colored
ancestral node, while all other conserved adjacencies are
partly-conserved adjacencies.
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The homoplasy cost of an adjacency at a given ancestral
node A counts the number of branches linked to this
ancestor on which the adjacency would have been gained
(right before the ancestor) or lost (after the ancestor) if it
was present in the ancestor. It is defined as follows: it is
either 0 if the adjacency is fully-conserved at A, or 1 if it
is partly-conserved at A, or 2 if it is present in only one
of the sets I, I, and O, or 3 if it is present in none of
these sets. Note that if an adjacency has an homoplasy
cost of 2 or 3 at the ancestral node A4, then the adjacency
is not conserved at this node. For example, in Figure 1,
the adjacency (fg) has a cost 0, the adjacency (a b) a cost
1, the adjacency (a -b) a cost 2, while the adjacency (a c)
has a cost 3.

Method

The homology-based problem considered in this paper
for the reconstruction of ancestral gene orders can be
stated as follows:

Problem. Given a species tree on a set of extant gen-
omes, each composed of the same set of blocks, and
given an ancestral node in this species tree, find a set of
CARs at the ancestral node, with a maximum number
of adjacencies, that minimizes the total homoplasy cost.

Compared to other homology-based methods for the
reconstruction of ancestral gene orders, the progressive
method presented in the following consists in adding
adjacencies progressively, as opposed to discarding false
adjacencies in a single assembling step.

A global description of the progressive method steps is
presented in the following, and the refined descriptions
are presented next.

Inputs and start

The input of the method is a phylogeny with a tagged
ancestral node whose block order is to be reconstructed,
and a set of n orthologous blocks that are used to
describe the block orders of the genomes at the leaves
of the tree. The initialization of the method consists in
starting with an initial set of # CARs, each composed of
a single block.

Overall idea

The core of the method relies on iteratively computing
new block adjacencies in order to concatenate CARs
progressively (see Figure 2 that shows the diagram of
the method steps). At each step, a set of potential adja-
cencies is first detected, then the method selects a sub-
set of non-conflicting adjacencies that are added to the
current CARs. The following three steps are used itera-
tively in order to collect the ancestral adjacencies: Step
a) consists in detecting the conserved adjacencies and
the homoplasy costs of these adjacencies are used to
classify and select a subset of non-conflicting adjacencies
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[Phylogeny] [ Blocks ]

\ /

Initialization :
start with single
block CARs

Origin of adjacencies

a) non-conflicting
adjacencies:

b) conflict-resolved @
adjacencies: m

Step a) :
esssesnsnnnsnassst compute conserved
: adjacencies

Add adj; i
c) DCJ-reliable
adjacencies:

Set NC of
non-conflicting
adjacencies

1)

DO

v
Set C of conflicting
adjacencies

Step b) :
Resolve conflicts

Stepc):
detect DCJ-reliable
adjacencies

Set DR of
DCJ-reliabl
adjacencies

Figure 2 Diagram of the method steps. Overall description of the
ProCARs method steps

to be added in current CARs; Step b) consists in resol-
ving conflicts between adjacencies and selecting a subset
of non-conflicting adjacencies to be added in current
CARs; Step c) consists in detecting some adjacencies
not conserved at the ancestral node, but supported by
putative genome rearrangement events. In the next
paragraphs, we briefly give an overview of each of these
steps.

a) Adding non-conflicting conserved adjacencies

This step comes after the initialization phase, or after a
step a), or b) or c) that ended up with a non-empty set
of added adjacencies. The step begins with the detection
of the conserved adjacencies between the current CARs
at the ancestral node. Next, the non-conflicting fully-
conserved adjacencies are selected in a first phase.
Then, the non-conflicting partly-conserved adjacencies
that are compatible with all fully-conserved adjacencies
are added in a second phase. The set of all conserved
adjacencies added in the CARs in this step is denoted
by NC. It constitutes a non-conflicting set of adjacen-
cies. The conserved adjacencies not added in this step
are stored in a set C and tagged as conflicting adjacen-
cies for a next step b).

b) Resolving conflicts between adjacencies

This step comes after a step a) that ended up with an
empty set NC, and a non-empty set C. It considers the
set C of adjacencies tagged as conflicting in this last
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step a). A cost, different from the homoplasy cost, is
computed for each of these adjacencies, and a non-
conflicting subset C,,, of C that has a maximum size and
minimizes the sum of the adjacencies costs is computed.
This subset of adjacencies is added in the CARs, and
the remaining adjacencies of the set C-C,, are discarded
permanently.
¢) Detecting DCJ-reliable adjacencies
This step comes after a step a) that ended up with an
empty set NC, and an empty set C. It consists in finding
new potential adjacencies that are not conserved at the
ancestral node (i.e. neither partly-conserved nor fully-
conserved). Each of these new potential adjacencies is
supported by the presence of an adjacency in the cur-
rent set of CARs, and two adjacencies in an extant gen-
ome G, such that those three adjacencies completed by
the new potential adjacency induce a single genome
rearrangement event, specifically Double-Cut-and-Join
(DCJ) events, between the ancestral genome and the
genome G. A maximum size non-conflicting subset of
the new potential adjacencies is added in the CARs, and
the remaining adjacencies are discarded permanently.
We now give the detailed descriptions of Step a), b)
and c).

Step a): Detection of non-conflicting conserved
adjacencies

In this section, we first explain how the conserved adja-
cencies are defined. Next, we describe how a subset of
non-conflicting adjacencies is selected by giving priority
to the fully-conserved adjacencies.

Detection of the conserved adjacencies

We begin by stating the definition of a CAR adjacency
in an extant genome at a leaf of the species tree, given
the set of CARs in the current step of the method.

Let us recall that a CAR is an oriented sequence of
signed blocks. We denote by |x| the block correspond-
ing to a signed block x in a CAR. A signed CAR is a
CAR possibly preceded by - indicating its reverse orien-
tation. For example, if car_x = {a -b ¢}, then -car_x =
{-c b - a}.

Let car_a and car_b be two signed CARs in the cur-
rent set of CARs with car_a = {a; a5 ... a,,} and car_b =
{01 by ... b}

The ordered pair (car_a car_b) is a CAR adjacency in
an extant genome G if there exists a pair of segments S,
and S, consecutive in genome G such that the segment
S, (resp. S,) contains only blocks from car_a (resp.
car_b), and satisfies the following constraints:

1.1.) S, is either the segment {a,}, else ii) a segment of
length 1, > 1 ending with the block |a,,|, else iii) a segment
syntenic to a segment of car_a containing the block |a,,

2. i) S, is either the segment {b;}, else ii) a segment of
length n;, > 1 starting with the block |b;][, else iii) a
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segment syntenic to a segment of car_b containing the
block |by].

As for the blocks, the CAR adjacency (car_a car_b) is
equivalent to (—car_b - car_a).

For example, consider the following three CARs com-
posed of ten blocks:

car 1=eabce;

car2=e¢defge;

car 3=ehije

The genome G=+bc-dfe;ee-gija-hehas
three CAR adjacencies: (car_1 car_2), (car_2 -car_3),
and (car_3 car_1). The pair (car_1 car_2) is a CAR adja-
cency because of segment S; = {c} and S, = {-d f} that
are consecutive in the genome G, and such that S; satis-
fies the constraint 1.i) and S, satisfies the constraint 2.
ii). The CAR adjacency (car_2 - car_3) is supported by
the segments S, = {e —g} satisfying 1.ii) and S3 = {i j} =
{-j —i} satisfying 2.iii). The CAR adjacency (car_3 car_1)
is supported by the segments S3 = {j} satisfying 1.i) and
S1 = {a} satisfying 2.i).

The block adjacency corresponding to the CAR adja-
cency (car_a car_b) with car_a = {a; a, ... a,} and car_b
= {by b, ... b,;} is the adjacency (a,, b;).

In the previous example, the block adjacencies corre-
sponding to (car_1 car_2), (car_2 - car_3) and (car_3
car_1) are respectively (c d), (g —j), and (j a).

Proposition 1 Let car_a = {a, a, ... a,} be a signed
CAR in the current set of CARs. An extant genome G
has at most two CAR adjacencies of the form (car_a
car_x).

Proof Let us suppose that an extant genome G has
more than two CAR adjacencies of the form (car_a
car_x). Say (car_a car_x), (car_a car_y), and (car_a car_z)
are three of them. These CAR adjacencies would be sup-
ported by 1) three pairs of consecutive segments on G,
(SaysSx)r (Sazs Sy)r (Sass S2), such that 2) S,,, Sa,, Sa; con-
tain the block |a,|, and 3) S,, S, , S, are non-intersecting
segments since they belong to three different CARs. It is
impossible to find an ordering of the six segments on G
such that the constraints 1), 2) and 3) are all satisfied
simultaneously. Thus, the genome G contains at most
two CAR adjacencies of the form (car_a car_x). O

Remark 1 The definitions of fully or partly conserved
adjacencies are naturally extended to CAR adjacencies as
follows: a conserved CAR adjacency at an ancestral node
of the species tree is a CAR adjacency shared by at least
two extant genomes that belong to at least two different
sets of the species partition defined by the ancestral node.
A fully-conserved CAR adjacency is a conserved CAR
adjacency belonging to at least one genome of each of the
three sets of the species partition defined by the ancestral
node. A partly-conserved CAR adjacency is any other
conserved CAR adjacency. The homoplasy cost associated
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to a CAR adjacency is a natural extension of the defini-
tion given for the block adjacencies.

Classification and selection of the conserved adjacencies
The overall idea of this phase is to select conserved
adjacencies while giving priority to the fully-conserved
adjacencies, and to the adjacencies that have the less
conflicts with other adjacencies.

Let S be the set of block adjacencies corresponding to
the conserved CAR adjacencies at the ancestral node. In
the sequel, the abbreviations FS, PS, NC, C stand for
Fully, Partly, Non-Conflicting, and Conflicting conserved
adjacencies respectively. Figure 3 shows the organization
of the sets of adjacencies that are considered in this
phase.

Let FS and PS be the subsets of S that contain
respectively the fully-conserved adjacencies and the
partly-conserved adjacencies. Thus, S = FS U PS and
FSNnPS =@.

First, we consider the fully-conserved adjacencies. Let
FS_NC be the subset of FS that contains the adjacencies
that are compatible with all other adjacencies in FS. The
corresponding set of conflicting adjacencies is FS_C =
FS - FS_NC. The fully-conserved non-conflicting

PS_D

FS_NC FS_C

PS_NC PS_C

PS_NC? PS_NC_C

Figure 3 Organization of the sets of adjacencies considered in
Step a). A tree whose nodes represent sets of conserved
adjacencies found at the current step of the method, and edges
represent the inclusion relations between the sets: the root of the
tree is the set S of all conserved adjacencies. Abbreviations: FS
(Fully-conserved adjacencies), PS (Partly-conserved adjacencies), NC
(Non-Conflicting), C (Conflicting), R (Retained), and D (Discarded).
Non-conflicting sets are represented with square nodes. The sets of
non-conflicting adjacencies added at the current step are
represented with black-colored nodes. The sets of conflicting
adjacencies saved for the next step b) are represented with gray-
colored nodes.
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adjacencies contained in the set FS_NC are automati-
cally retained to be added in the CARs. Thus, (*) in the
following, any adjacency that is in conflict with some
adjacencies of FS_NC will be discarded permanently.

Next, we consider the partly-conserved adjacencies.
Let PS_D be the subset of PS containing adjacencies
that are in conflict with some adjacencies of FS_NC,
and PS_R be the set of the remaining adjacencies in PS.
Thus, PS_R = PS - PS_D. The adjacencies of PS_D are
discarded permanently, as explained previously in (*).

Let PS_NC be the subset of PS_R that contains the
adjacencies that are compatible with all other adjacen-
cies in PS_R. The corresponding set of conflicting adja-
cencies is PS C = PS R - PS_NC.

Finally, since the priority is given to fully-conserved
adjacencies, we want to retain only the adjacencies of
PS_NC that are not in conflict with the adjacencies of
the set FS. Let PS_NC? be the subset of PS_NC that
contains the adjacencies that are compatible with all the
adjacencies in FS. The partly-conserved non-conflicting
adjacencies contained in the set PS_NC? are also
retained automatically to be added in the CARs.

It follows that the set of retained adjacencies NC =
FS_NC U PS_NC? is a set of non-conflicting adjacencies.

This step a) of the method adds the set of adjacencies
NC to the current CARs of the ancestral genome, and
updates the current set of conflicting adjacencies to the
set C = S - PS_D - NC. By construction, each adjacency
contained in the set C is in conflict with at least one
other adjacency of C, and compatible with all the adja-
cencies contained in the set NC.

The step a) can be recalled several times consecutively
as far as the set NC of added adjacencies is not empty.
We now state a proposition ensuring that the current set
of conflicting adjacencies C misses no previously found
conflicting adjacency (a b) such that the signed block a is
the end of a signed CAR, and the signed block b is the
start of a signed CAR in the current set of CARSs.

Proposition 2 Let (a b) be an adjacency corresponding
to a conserved CAR adjacency found in a previous step
a) of the method. The adjacency (a b) is either present in
the current set of CARs, or is in conflict with an adja-
cency present in the current set of CARs, or is also found
in the current step a) i.e (a b) € S.

Proof Say that, in a previous step a), the adjacency (a
b) was supported by the detection of a conserved CAR
adjacency (car_a; car_b;) present in a subset G of the
extant genomes.

1) If there exist in the current set of CARs, a signed
CAR car_a, ending with the signed block 4, and a
signed CAR car_b, starting with the signed block b,
then the CAR adjacency (car_a, car_b,) is also found in
the same set G of extant genomes. Thus, the adjacency
(a b) is also found in the current step.
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2) Otherwise, either there exists an adjacency of the
form (a c) or (¢ b) in the current set of CARs in conflict
with the adjacency (a b), or the adjacency (a b) is pre-
sent in the current set of CARs. O

Step b): Resolution of conflicts between adjacencies

This step considers a conflicting set C of adjacencies
obtained at the end of a previous step a), and computes
a non-conflicting subset of the set C to be added in the
current set of CARs.

Definition of the cost of adjacencies

We begin by stating the definition of the cost of an
adjacency in this step. The mutation cost of a labeling of
the nodes of a species tree on a given alphabet is the
number of edges in the tree having two different labels
at their extremities [13,14]. Here, the cost of an adja-
cency (a b) € C is the minimum mutation cost of a
labeling of the nodes of the species tree on a binary
alphabet {0, 1} such that (i) the ancestral node is labeled
with 1, (ii) the extant species nodes, where (a b) corre-
sponds to a CAR adjacency, are labeled with 1, and
(iii) the other extant species nodes are labeled with 0.

In other terms, an adjacency has two possible states in
a genome: present (1) or absent (0). The cost of an adja-
cency (a b) is the minimum number of changes of state
necessary to explain the evolutionary history of the adja-
cency along the species tree, with the adjacency being
present at the ancestral node.

For example, the costs of the two conflicting con-
served adjacencies (g #) and (g —/4) shown in Figure 1
are 3 and 2 respectively. Figure 4 shows two minimum
mutation cost labelings of the nodes of the species tree
corresponding to both adjacencies.

Computation of the non-conflicting subset of adjacencies
The cost of a set of adjacencies is the sum of the costs of
the adjacencies composing this set.

Let m be the maximum size of a non-conflicting subset
of the conflicting set C of adjacencies. This step b) finds
a non-conflicting subset C,,, of C of size m and minimum
cost. The set of adjacencies C,, is added to the current
CARs of the ancestral genome, and the remaining adja-
cencies in the set C — C,, are discarded permanently.

Remark 2 Note that the adjacencies of the set C - C,,
discarded in this step will never be detected again, since
these adjacencies are in conflict with the adjacencies of
the set C,, added in the current step.

Step c): Detection of DCJ-reliable adjacencies
This step considers the current set of CARs, and com-
putes new potential adjacencies not conserved, but sup-
ported by putative ancestral rearrangement events.

A Double-Cut-and-Join (DCJ) rearrangement event on
a genome consists in the cut of two adjacencies of the
genome in order to glue the four exposed extremities in
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0
1.
1
1
1 1
1
(g-h 1
. 0
Figure 4 Examples of minimum mutation cost labelings of the nodes of a species tree. Right and left trees show two minimum mutation
cost labelings of the nodes of the species tree for the adjacencies (g h) (left labeling) and (g —h) (right labeling) conserved at the ancestral node
in the species tree depicted in Figure 1. For each labeling, the edges of tree with a change of state are in dashed line. The cost of the left
labeling is 3, and the cost of the right labeling is 2.

a different way. For example, a DCJ event on the gen-
ome A = (« a b ¢ d +) that cuts the adjacencies (a b) and
(c d) to obtain the adjacencies (a —c) and (-b d) pro-
duces the genome B = (¢ a —c -b d +).

We now give the definition of potential ancestral adja-
cencies that can be inferred from putative genome rear-
rangements inspired from the definitions of reliable
adjacencies in [15,16].

Here, we add the constraint that the signal of the reli-
able adjacency must be conserved on a path of the spe-
cies tree that goes through the ancestor.

Let car_a and car_b be two signed CARs in the current
set of CARs with car_a = {a; a5 ... a,} and car_b = {b; b, ...
b,.}. The adjacency (a,, b;) is a DCJ-reliable adjacency of
the ancestral node if there exists an adjacency (x ) in the
current set of CARs such that the adjacencies (x b;) and
(a, y) are present in an extant genome G;, and (car_a
car_b) is a CAR adjacency in an extant genome G, such
that the genomes G; and G, belong to two different sets
of the species partition defined by the ancestral node.

The potential presence of the adjacency (a,, b;) in the
ancestral genome induces a DC]J event that has cut the
adjacencies (a, b;) and (x y) in the ancestral genome to
produce the adjacencies (x b;) and (a,, y) in the extant
genome G;.

An example is given in Section Results and discussion.

In this step of the method, a maximum size non-
conflicting subset of the DCJ-reliable adjacencies is
added in the CARs, and the remaining DC]J-reliable
adjacencies are discarded permanently.

Remark 3 Note that the homoplasy cost of a DCJ reli-
able adjacency is always 2.

Results and discussion
We used ProCARs to compute a set of CARs for the
boreoeutherian ancestral genome using the block orders

of twelve amniote genomes, and we compared the result
with the ancestors reconstructed by three other homol-
ogy-based methods: AnGeS [12], InferCARs [5] and
GapAdj [11].

Orthology blocks and phylogeny

We chose twelve genomes completely assembled and pre-
sent in a Pecan [17] multiple alignment of 20 amniote gen-
omes available in the release 73 of the Ensembl Compara
database [18]. The phylogenetic tree was directly infered
from the classifications of the species obtained from the
National Center for Biotechnology Information Taxonomy
database [19] (see Additional File 1). We constructed a set
of synteny blocks using the multiple alignments as seeds.
We used the block construction method described in [20],
keeping only the seeds that had an occurrence in each of
the twelve genomes, removing the seeds that spanned less
than 100Kb, and joining seeds collinear in all genomes.
This resulted in a set of 12 genomes composed of 689
blocks for species Homo sapiens (GRCh37), Pan troglo-
dytes (CHIMP2.1.4), Pongo abelii (PPYG2), Macaca
mulatta (MMUL 1), Mus musculus (GRCm38), Rattus
norvegicus (Rnor 5.0), Equus caballus (EquCab2), Canis
familiaris (CanFam3.1), Bos taurus (UMD3.1), Monodel-
phis domestica (BROADOS5), Gallus gallus (Galgal4) and
Taeniopygia guttata (taeGut3.2.4).

Reconstruction of the boreoeutherian ancestor
ProCARs ran in 5 steps and finally returned 25 CARs
with a number of blocks per CAR ranging from 2 to 68
(Table 1). The total number of adjacencies computed
for the boreoeutherian ancestor is 664 compared to the
666, 669, 659 adjacencies present in respectively Homo
sapiens, Mus musculus and Bos taurus.

The numbers of blocks per CAR are detailed in Table 2.
The human chromosomal syntenies are 1-5, 3-21, 4-8,
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Table 1. Steps of ProCARs
Step 0: init 1: step a) 2: step a) 3:step b) 4: step ) 5 step a)
#CARs 689 45 32 30 27 25
size 1 1-67 1-68 1-68 2 - 68 2-68
#adjacencies 0 647 9 3 3 2

Number of CARs, number of blocks per CAR, and number of new adjacencies returned at each iteration of ProCARs method.

8-19, 12-22, 14-15 and 16-19. In [21], the boreoeuthe-rian
ancestor has two more human chromosomal syntenies
7-16 and 10-12-22, and all other syntenies were also found
by ProCARs.

Comparison with other methods
All the methods (ProCARs, AnGeS [12], InferCARs [5]
and GapAdj [11]) take as input a phylogeny with a tagged
ancestral node in this phylogeny, and a set of blocks with
the arrangement of the blocks in each extant genome of
the phylogeny. AnGeS [12] first builds a set of potential
ancestral features (adjacencies, and sets of contiguous
blocks) by comparing pairs of species whose path goes
through the tagged ancestral node. Then, an arrangement
of the blocks that corresponds to a subset of these adja-
cencies is built in order to satisfy the consecutive ones
property. This assembling phase requires the length of
the branches of the phylogenetic tree. InferCARs [5] is
based on an adaptation of the Fitch parsimony method
for adjacencies. Potential neighbors of blocks are mod-
eled through graphs at each node of the phylogenetic
tree. Conflicts between potential neighboring relations
are resolved using a weight function which requires the
length of the branches of the phylogenetic tree. GapAdj
[11] works iteratively, detecting new adjacencies at each
step by allowing more and more gaps within adjacencies
until the maximum number of gaps MAX,, is reached. At
each step, the assembling of the extended CARs is done
using a TSP algorithm, and a threshold 7 is required to
discard the less reliable adjacencies.

As GapAdj is the only method with parameters (MAX,,
and 7 ), we ran GapAdj on 500 sets of parameters for
MAX,, ranging from 1 to 10, and 7 ranging from 0.50 to

Table 2. CARs of ProCARs

CAR 1 2 3 4 5 6 7 8 9 0 11 12
size 57 46 9 27 36 3 17 15 53 12 18 32
hes 1 15 10 10 11 12 12- 13 14- 16 16- 17
22 15 19
CAR 13 14 15 16 17 18 19 20 21 22 23 24 25
size 20 15 28 30 28 68 50 43 7 20 2 47 6
hcs 18 8 2 2 20 3- 48 6 7 7 8 9 X
19 21

Number of blocks and human chromosomal syntenies (hcs) for each CAR
computed by ProCARs. Human chromosomal syntenies involving two human
chromosomes are in bold.

0.99. We then selected the reconstruction that had the
minimal breakpoint distance to the ancestor recon-
structed by ProCARs. The breakpoint distance between
two genomes is the number of blocks extremities whose
neighbors are not conserved in both genomes. Among
the 500 sets of parameters tested, the closest result is
obtained when 7 equals 0.79 and MAX,, equals 3, giving a
breakpoint distance of 32.5 between this reconstruction
and the ancestor reconstructed by ProCARs. That corre-
sponds to 4.7% of the block extremities having different
neighbors in both reconstructions. Note that the recon-
struction selected for GapAdj is also the closest to the
ancestors reconstructed by InferCARs and AnGeS.
Figure 5 gives the breakpoint distances between all
pairwise comparisons. This shows that GapAdj is the
method which gives the most different result, while
AnGeS is the method which finds the closest result to
ProCARs. The distribution of the number of blocks
involved in each CAR is roughly the same (Figure 6).
We then computed the list of adjacencies shared by all
the methods and the adjacencies that are specific to a
subset of the methods, as shown in Figure 7. The number
of adjacencies shared by all the methods is 635. The
method which infers the highest number of specific adja-
cencies is GapAdj (15 adjacencies), as suggested by the
breakpoint distances shown in Figure 5. All adjacencies

ProCARs InferCARS
14.5

4 33

32.5
AnGeS

315 GapAdj

Figure 5 Breakpoint distances between the sets of CARs. The
label on each edge gives the breakpoint distance between the two
methods in the nodes.
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Figure 6 Distribution of the number of blocks involved in each CAR. For each of the four methods, the number of CARs for which the
number of blocks is in a given range is plotted.

found by AnGeS are also found by ProCARs, as con-
firmed by the small breakpoint distance between the two
methods. Finally, it is noteworthy that there is no adja-
cency shared by the three methods AnGeS, InferCARs
and GapAdj that is not found by ProCARs.

Justification of ProCARs specific adjacencies

Adjacency (50 - 545) is found at iteration 4 of ProCAR:s.
In the other methods, the block 50 is alone in a single-
block CAR. This adjacency was detected thanks to a step
¢) of ProCARs method. It is then a DCJ-reliable adja-
cency detected as follows: at iteration 3, adjacency (535
536) was found, block 50 is at the end of CAR 2, and
block 545 is at the end of CAR 20. In Bos taurus, the
CAR adjacency (2 - 20) is conserved. In Mus musculus,
block adcencies (545 536) and (50 — 535) are present.
Hence, as the path from Bos taurus to Mus musculus
goes through the ancestor, a potential DCJ rearrange-
ment on adjacencies (50 — 545) and (535 536) in the
ancestor could explain the adjacencies found in Mus

musculus: (545 536) and (50 - 535). Moreover, this adja-
cency (50 - 545) found by ProCARs is the one support-
ing the human chromosomal synteny 1-5 that was also
reported in [21] using a cytogenetic method, but not
found by any of the other methods (see Table 3).
Adjacency (616 618) is found at iteration 2. It is then a
conserved adjacency detected as follows: at iteration 1,
block 616 is alone in a CAR, and block -618 is at the end
of a CAR. This adjacency (616 618) is present, on the one
hand, in Mus musculus and Rattus norvegicus (ingroup
L) and on the other hand in Equus caballus and Bos
taurus (ingroup I7). Hence, it is a partly-conserved adja-
cency and, as it is not in conflict with any other con-
served adjacency, ProCARs joined 616 and 618 at
iteration 2. In InferCARs and AnGeS, 616 is alone in a
CAR while 618 is also at the begining of a CAR. There-
fore, CARs found by InferCARs and AnGeS are not in
conflict with the adjacency (616 618) that ProCARs added,
but no signal was found by those methods to infer this

ProCARs
1 21

Gl gt GO =
o-=0=0

AnGeS GapAdj

i 15

1:9,2:5, 31

4

InferCARs

Figure 7 Number of adjacencies shared or exclusive for each of the four methods compared. AnGeS contains no specific adjacency. For
example, 635 adjacencies are shared by all the methods, and 16 are shared between AnGeS, InferCARs and ProCARs. For ProCARs and GapAdj
(in italic), we also give the number of adjacencies and the step in which they have been added. For example, there are 15 adjacencies exclusive
to GapAdj, of which 9 have been added at step 1, 5 at step 2 and 1 at step 3.
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Table 3. Comparison of human chromosomal syntenies
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Human chromosomal syntenies 1-5 3-21 4-8 7-16

8-19 12-22 14-15 16-19 7-9 5-6-18 10-11

In [21]

+10 . . - - -

ProCARs . . . _

AnGeS - . . -

InferCARs - . . -

GapAd; - . +2 -

For each method, we give which human chromosomal synteny is found. A number in a cell indicates that the synteny is found but with additionnal part of

another chromosome.

adjacency. In GapAdj, 618 is alone in a CAR while 616 is in
a CAR containing (-299 616 617). However, (616 617) is
only present in species in the ingroup I, (Homo sapiens,
Pan troglodytes, Pongo abelii and Macaca mulatta). There-
fore it is not a conserved adjacency, and that is why Pro-
CARSs preferred the partly-conserved adjacency (616 618).
Justification of adjacencies not found by ProCARs

AnGeS contains no specific adjacency and thus Pro-
CARs found all adjacencies detected by AnGeS. There
are 2 adjacencies found by both GapAdj and InferCARs
but not by ProCARs.

For adjacency (67 68), InferCARs inferred a unique CAR
which is the concatenation of CARs 3 and 4 of ProCARs
involving respectively blocks 67 and 68. GapAdj also
inferred this concatenation of the two ProCARs CARs,
except a segment of the CAR involving block 68 in Pro-
CARs which is in a separated CAR. The (67 68) adjacency
is only present in Homo sapiens, Pan troglodytes, Pongo
abelii and Macaca mulatta (ingroup I,) and hence cannot
be a partly-conserved adjacency. It is not a DCJ-reliable
adjacency either.

Concerning the adjacency (-657 658), ProCARs has
adjacencies (-657 - 659 — 658) in CAR 24 while Infer-
CARs (resp. GapAdj) created adjacencies (-657 658 659)
in CAR 28 (resp. 27). The adjacency (-657 658) is pre-
sent only in Mus musculus and Rattus norvegicus
(ingroup I,) and is hence not a conserved adjacency. It
is not a DCJ-reliable adjacency either, otherwise this
adjacency would have been detected during iteration 4.
Human chromosomal syntenies
Human syntenies found by other methods are: for AnGeS:
3-21, 4-8, 8-19, 12-22, 14-15, 16-19; for InferCARs: 3-21,
4-8 and 12-22; for GapAdj: 2-4-8, 3-21, 7-9, 5-6-18, 8-19,
10-11, 12-22 and 16-19. A comparison between the four
methods is given in Table 3 and a karyotype of the ances-
tral genomes in Additional File 2. We can notice that Pro-
CARs returns the closest result to the ancestor
reconstructed in [21] using a cytogenetic method.

Conclusions

InferCARs is the first method using an adaptation of the
Fitch algorithm to infer ancestral gene orders based on
homology instead of rearrangements. AnGeS makes use

of common intervals to be able to account for micro-
rearrangements. GapAdj brings the iterative approach
allowing to build CARs step by step. With ProCARs, we
propose a new methodology which combines the differ-
ent approaches found in other methods, using a model
based on adjacencies only.

ProCARs has the advantage to be a parameter-free
method, without the requirement of branch lengths for
the phylogenetic tree. ProCARs is based on a single defini-
tion of contiguity, the CAR adjacency, that allows some
micro-rearrangements under a very simple model. How-
ever, since ProCARs considers only genomes containing
the same set of non-duplicated blocks, it does not allow to
reconstruct ancestors in the context of duplication or loss
events.

In order to select the adjacencies at each step of Pro-
CARs, the adjacencies are classified according to an homo-
plasy cost instead of using a heuristic assembly algorithm.
ProCARs gives priority to discarding conflicting adjacen-
cies rather than necessarily adding new adjacencies at each
step.

The final result of ProCARs is a set of completely
resolved CARs, for which the arrangements of all the
blocks are given.

As for other homology-based methods, ProCARs is not
suitable in the case of convergent evolution. ProCARs is
also a greedy algorithm which could be seen as a disadvan-
tage because adjacencies are added permanently at each
step. However, this greediness is balanced by the fact that
ProCARs works iteratively and adds only reliable non-con-
flicting adjacencies at each step.

Availability of supporting data

ProCARs is written in Python and is available at http://

bioinfo.lifl.fr/procars. The dataset used in section
Results and discussion is also available from this web

page.

Additional material

Additional file 1: Phylogeny of the 12 species used in the
application. A figure at the PDF format depicting the phylogeny of the
12 species used in the application. The black node in the phylogeny
corresponds to the boreoeutherian ancestor.
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Additional file 2: Chromosomal syntenies with the human genome.
A figure at the PDF format depicting the Human chromosomal syntenies
between the boreoeutherian ancestor found by the four methods
ProCARs, InferCARs, GapAdj and AnGeS.

List of abbreviations

TSP: Traveling Salesman Problem; CAR: Contiguous Ancestral Region; NC:
Non-Conflicting adjacencies; C: Conflicting adjacencies; FS: Fully-conserved
adjacencies; PS: Partly-conserved adjacencies; R: Retained adjacencies; D:
Discarded adjacencies.
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