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Abstract

This paper considers the problem of estimation and variable selection for large high-dimensional data (high
number of predictors p and large sample size N, without excluding the possibility that N < p) resulting from an
individually matched case-control study. We develop a simple algorithm for the adaptation of the Lasso and
related methods to the conditional logistic regression model. Our proposal relies on the simplification of the
calculations involved in the likelihood function. Then, the proposed algorithm iteratively solves reweighted Lasso
problems using cyclical coordinate descent, computed along a regularization path. This method can handle large
problems and deal with sparse features efficiently. We discuss benefits and drawbacks with respect to the existing
available implementations. We also illustrate the interest and use of these techniques on a
pharmacoepidemiological study of medication use and traffic safety.

Background
Epidemiological case-control studies are used to identify
factors that may contribute to a health event by compar-
ing a group of cases, that is, people with the health
event under investigation, with a group of controls who
do not have the health event but who are believed to be
similar in other respects. Logistic regression is the most
important statistical method in epidemiology to analyze
data arising from a case-control study. It allows to
account for the potential confounders (factors indepen-
dently associated with both the health outcome and the
risk factors of main interest) and, if the logistic model is
correct, to eliminate their effect.
Cases and controls are sometimes matched: every case

is matched with a preset number of controls who share a
similar exposure to these matching factors, to ensure that
controls and cases are similar in variables that are related
to the variable under study but are not of interest by
themselves [1]. Matching is useful when the distributions

of the confounders differs radically between the
unmatched comparison groups. In these situations, the
weight of confounding factors is so important that a sim-
ple adjustment does not guarantee a straightforward
interpretation of results. The case-crossover design, in
which each subject serves as his own control, is a particu-
lar matched case-control design [2,3]. The association
between event onset and risk factors is estimated by com-
paring exposure during the period of time just prior to
the event onset (case period) to the same subject’s expo-
sure during one or more control periods. This design
inherently removes the confounding effects of time-
invariant factors while it is still sensitive to the effects of
time-varying risk factors [4,5]. The conditional logistic
regression model is the standard tool for the analysis of
matched case-control and case-crossover studies.
Big and/or high-dimensional data arise nowadays in

many diverse fields of epidemiologic research such as
registry-based epidemiology. An advantage of having a
large sample size from registry data is the ability to study
rare exposures, outcomes, or subgroups in a population
large enough to provide sufficient precision [6]. However,
the analysis of these studies has to be addressed using
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methods that appropriately account for their statistical and
computational complexity. In what concerns matched
case-control studies, matching by a high-dimensional
propensity or stratification score are increasingly popular
approaches to deal with high-dimensional confounding in
epidemiological studies investigating effects of a treatment
or exposure [7-10]. In these studies, a score is built from
independent observations and then used to match data.
Standard estimation methods accounting for data depen-
dence due to matching, such as maximum-conditional like-
lihood are then applied and variable selection is performed
by conventional selection procedures. Finding optimal sub-
sets becomes an essential problem [11,12]. When high-
dimensionality is related to the risk factors of main interest
instead the potential confounders, regularization methods,
such as the Lasso (least absolute shrinkage and selection
operator) [13], have emerged as a convenient approach, but
remain unfamiliar to most epidemiologists [14].
Our first implementation of the Lasso to conditional

logistic regression was based on the correspondence
between the conditional likelihood of conditional logistic
regression and the partial likelihood of stratified, dis-
crete-time Cox proportional hazards model (where cases
are defined as events and controls are censored) [15,16].
This allowed the analysis of the pharmacoepidemiolo-

gical case-crossover data of prescription drugs and driv-
ing described in Orriols and colleagues [17] for the
older driver population. The same algorithm was inde-
pendently proposed in two other high-dimensional
matched case-control studies to identify association
between

• Crohn’s disease and genetic markers in family-
based designs (such as case-sibling and case-parent)
[18];
• specific brain regions of acute infarction and hospi-
tal acquired pneumonia in stroke patients [19].

Here, we describe a more efficient algorithm, directly
targeting the optimization of the conditional likelihood.
This algorithm is based on the IRLS (iteratively
reweighted least squares) algorithm [20], which is widely
used for estimating generalized linear models, and
which can be applied with Lasso-type penalties. This
line of approach was used in

• a matched case-control study to identify association
between DNA methylation levels and hepatocellular
carcinoma in tumor-adjacent non-tumor tissues [21];
• the case-crossover study of prescription drugs and
driving for the whole population [22].

In these two studies, as well as in [23], the algorithms
are based on the penalized IRLS, solved as a weighted

Lasso problem via cyclical coordinate descent [24,25].
However, they differ in their actual implementations, a
major benefit of our proposal relying in the simplifica-
tion of the calculations involved in the likelihood func-
tion. The resulting gain in efficiency allows for the
processing of large-scale datasets [22]. We detail these
calculations here and illustrate their interest on the
pharmacoepidemiological study that originally motivated
these algorithmical developments.

Methods
Conditional likelihood
We are interested in the relationship between a binary
outcome Y and several risk factors U = (U1, . . . , Up).
We assume that subjects are grouped into N strata (cor-
responding to matched sets), consisting in one case
(Yin = 1) and M controls (Yln = 0, l ≠ i) each one having
a U value: For subject i of stratum n, the vector of
observations is uin = (uin1, . . . , uinp), i = 0, 1, . . . , M ,
n = 1, . . . , N .
Denote by πin = π(uin) the probability of event for the

i-th subject of the n-th stratum. We model the depen-
dence of the probability of disease on the risk factors
values via the logistic model, supposing that each stra-
tum has its own baseline odds of disease, which may dif-
fer across strata:

logit(πin) = αn + uinβ , (1)

where an are coefficients representing the global effect
of matching factors on the response; and coefficients
b = (b1, . . . , bp)t express the log odds ratios corre-
sponding to the risk factors. When the differences
among strata are not relevant (in the sense that match-
ing factors are potential confounders, but are not the
potential risk factors of interest), we just need to esti-
mate b. Therefore, strata-specific parameters an are
eliminated from the likelihood by conditioning on the
fact that exactly one subject in every matched case-con-
trol set is a case. Consider the n-th stratum, the uncon-
ditional probability of observing the occurrence of the
event only in the i-th subject is:

πin × ∏
l�=i

(1 − πln) =
πin

1 − πin

M∏
l=0

(1 − πln). (2)

Under the logistic model, the conditional probability
that within a matched set, the assignment of the M + 1
values is given by:

πin
1−πin

∏M
l=0 (1 − πln)∑M

l=0
πln

1−πln

∏M
i=0 (1 − πin)

=
πin

1−πin∑M
l=0

πln
1−πln

=
euinβ∑M
l=0 eulnβ

. (3)

We use the convention that all cases are indexed by
i = 0 and all controls are indexed by i ∈ {1, . . . , M}
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(Y0n = 1 and Yin = 0, i ≠ 0). When M = 1 (that is 1:1
matching), the likelihood evaluated at b simplifies to:

L(β , D) =
N∏

n=1

eu0nβ

eu0nβ + eu1nβ
=

N∏
n=1

1
1 + e−(u0n−u1n)β

=
N∏

n=1

1
1 + e−xnβ

, (4)

where xn = u0n − u1n, D = {(xn, 1)}n = 1,...,N . Thus, in a
1:1 matched case-control design, the conditional likeli-
hood is identical to the unconditional likelihood of the
binary logistic model with xn as covariates, no intercept,
and a constant response equal to 1. When M > 1 (that
is 1:M matching), it will be useful in the algorithms
introduced below to rewrite the likelihood function:

L(β , D) =
N∏

n=1

eu0nβ

eu0nβ +
∑M

l=1 eulnβ
, (5)

also in terms of differences:

L(β , D) =
N∏

n=1

1

1 +
∑M

l=1 e−(u0n−uln)β
=

N∏
n=1

1

1 +
∑M

l=1 e−xlnβ
,(6)

where xin = u0n − uin, D = {(xin, 1)}n = 1,...,N ;i = 1,...,M.
Usually, the parameters b are estimated by maximizing

the conditional log-likelihood function log(L(b, D)).
However, maximum likelihood analysis may lead to an
inflated variance and/or a biased estimation of log odds
ratios in studies with a small number of strata or several
unbalanced risk factors, especially when the number of
covariates is large or the proportions are close to zero.
Different methods have been developed, generally in
low-dimensional settings, to correct bias while control-
ling for variance [26-31]. In moderate to high-dimen-
sional settings, penalized methods such as the Lasso
[13] have been proposed to reduce variance (to improve
prediction accuracy) and to identify the subset of expo-
sures that exhibit the strongest associations with the
response [15,18,16]. The Lasso applied to conditional
logistic regression consists in maximizing the condi-
tional log-likelihood function penalized by the L1 norm
of the unknown coefficient vector, or equivalently, mini-
mizing the negative objective function:

min
β

(− log(L(β , D)) + λ||β||1), (7)

where l is a regularization parameter, and

||β||1 =
∑p

j=1 |βj| is the L1-norm of coefficients. Then,

the parameter estimator is:

β̂L
D(λ) = arg min

β

(
N∑

n=1

log(1+
M∑
l=1

e−xlnβ) + λ||β||1) (8)

Algorithms
The conditional likelihood in (6) derived for the condi-
tional logistic model corresponds to the partial likelihood

of the stratified, discrete-time Cox proportional hazards
model. Standard survival data analysis software can be
used for the analysis of a 1:M matched case-control
study. Analogously, algorithms proposed for solving the
Lasso for the Cox model allowing for stratification can be
used.
For the particular design consisting in one case and

one control, we may apply a penalized unconditional
logistic regression. Indeed, as showed above, the con-
ditional likelihood function simplifies dramatically
resulting in the likelihood function for the uncondi-
tional logistic regression without intercept term
applied to the differences of the predictors. The L1

penalized logistic regression problem (7) is convex but
not differentiable. This characteristic leads to greater
difficulty in solving the optimization problem. There
has been very active development on numerical algo-
rithms. An extensive, although not exhaustive, review
and comparison of existing methods can be found in
[32,33].
The IRLS algorithm [20] uses a quadratic approxima-

tion for the average logistic loss function, which is
consequently solved by a L1 penalized least squares
solver. This method is particularly easy to implement
since it takes advantage of existing algorithms for the
Lasso linear regression. We revisit here the IRLS algo-
rithm proposed for solving the L1 logistic model by
[13,34,35]. These methods differ basically in the algo-
rithm applied to resolve the Lasso linear step. The last
authors applied the Lars-Lasso algorithm [36] to find a
Newton direction at each step and then used a back-
tracking line search to minimize the objective value.
They also provided convergence results. Essentially, we
applied this proposal to the particular objective func-
tion arisen in 1:1 matching, but replacing the Lars
algorithm by the cyclic coordinate descent algorithm
[24,25]. We generalize then this approach to estimate
the conditional logistic likelihood coefficients in 1:M
matching (6). Sparsity-related works of other research
areas have also explored the use and properties of
IRLS [37-39].
IRLS-cyclic coordinate descent for the 1:1 matching

Denote by f (β , D, λ) = − log(L(β , D)) + λ||β||1 =
N∑

n=1
log(1 + e−xnβ) + λ||β||1

the objective function in (7) and (8) with M = 1. In par-
ticular, the unpenalized objective function f (b, D, 0) is
noted f (b). Let X be the N × p matrix of the observed
differences xnj = u0nj − u1nj , n = 1, . . . , N , j = 1, . . . ,
p; let g(b) and H(b) be the gradient and Hessian of the
unpenalized objective function:

g(β) = −Xt
(

e−x1β

1 + e−x1β
, . . . ,

e−xNβ

1 + e−xNβ

)t

,

H(β) = XtW(β)X,

(9)
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where

W(β) = diag

(
e−x1β

(1 + e−x1β)2 , . . . ,
e−xNβ

(1 + e−xNβ)2

)
, (10)

is the matrix of weights. The Newton method consists
in finding a step direction by computing the optimum g
[k] of the quadratic approximation at b[k] (the current
point in the k-th iteration) as:

γ [k] = β [k] − H−1(β [k])g(β [k]) (11)

The next iterate is then computed using the step
direction by a line search over the step size parameter t:

β [k+1] = (1 − t)β [k] + tγ [k], (12)

Algorithm 1 IRLS-cyclic coordinate descent algorithm
for the 1:1 matching
1: Fix XN × p, l ≥ 0, b, 0 ≤ a1 ≤ 0.5, 0 < a2 < 1 and

τ > 0.
2: while the stopping criterion is not satisfied do
3: Compute W[k] and z[k] using (10) and (13).
4: Resolve (16) applying cyclic coordinate descent.

Let g [k] be the solution.
5: Backtracking line-search:

Initialize t = 1, set Δb[k] = g [k] − b[k].
6: while the stopping criterion is not satisfied do
7: g [k] = b[k] + tΔb[k]

8: Check the stopping criterion: f (g[k]) ≤ f (b[k]) +
a1t g(b[k])tΔb[k]

9: if The stopping criterion not satified then
10: t ¬ a2t
11: end if
12: end while
13: Compute b[k+1] = (1 − t)b[k] + tg[k].
14: Check the stopping criterion:

|f (β [k+1]) − f (β [k])|
|f (β [k+1])| ≤ τ

15: end while
where 0 < t ≤ 1. Let z, the working response vector,

be defined as:

(z[k])n = xnβ
[k] + (W[k])−1

n
e−xnβ

[k]

1 + e−xnβ[k] = xnβ
[k] + (1 + e−xnβ

[k]
). (13)

Then the gradient, Hessian and the step direction in
(11) can be reformulated as follows:

g(β [k]) = −XtW[k](z[k] − Xβ [k]),

H(β [k]) = XtW[k]X,

γ [k] = (XtW[k]X)−1XtW[k]z[k].

(14)

Thus g [k] is the solution to the weighted least squares
problem:

γ [k] = arg min
γ

||(W[k])1/2(z[k] − Xγ )||22. (15)

Applying the same development to the penalized pro-
blem, we obtain that g[k] is the solution to the penalized
weighted least squares problem:

γ [k] = argmin
γ

||(W[k])1/2(z[k] − Xγ )||22 + λ||γ ||1.

Generalization to the 1:M matching
As previously, the IRLS algorithm is applied to resolve
(7)-(8). It iterates the following steps until conver-
gence: first, for the current b, update the matrix of
weights and the working response vector, then, com-
pute the vector that minimizes penalized weighted
least squares problem, using cyclic coordinate descent;
finally, perform a line search to determine the step size
to update b. The objective function in (7) is now

f (β , D, λ) = − log(L(β , D)) + λ||β||1 =
N∑

n=1

log(1+
M∑
l=1

e−xlnβ) + λ||β||1

Algorithm 2 IRLS-cyclic coordinate descent algorithm
for the 1:M matching
1: Fix XN M × p, l ≥ 0, b0, 0 ≤ a1 ≤ 0.5, 0 < a2 < 1

and τ > 0.
2: while the stopping criterion is not satisfied do
3: Compute W[k] and z[k] using (18).
4: Resolve (19) applying cyclic coordinate descent.

Let g[k] be the solution.
5: Backtracking line-search:

Initialize t = 1, set Δb[k] = g [k] − b[k].
6: while the stopping criterion is not satisfied do
7: g [k] = b[k] + tΔb[k]

8: Check the stopping criterion: f (g [k]) ≤ f (b[k]) +
a1t g(b[k])tΔb[k]

9: if The stopping criterion not satified then
10: t ¬ a2t
11: end if
12: end while
13: Compute b[k+1] = (1 − t)b[k] + tg[k].
14: Check the stopping criterion:

|f (β [k+1]) − f (β [k])|
|f (β [k+1])| ≤ τ

15: end while
Let X be the matrix of the observed differences xinj =

u0nj − uinj , i = 1, . . . , M , n = 1, . . . , N , j = 1, . . . , p,
now with M N rows and p columns. The gradient g(b)
and Hessian H(b) of the unpenalized objective function
have now the form:

g(β) = −Xt

(
e−x11β

1 +
∑M

l=1 e−xl1β
, . . . ,

e−xM1β

1 +
∑M

l=1 e−xl1β
, . . . ,

e−x1Nβ

1 +
∑M

l=1 e−xlNβ
, . . . ,

e−xMNβ

1 +
∑M

l=1 e−xlNβ

)t

,

H(β) = XtW(β)X,

(17)

with the matrix of weights and the working response
vector written now as:

Avalos et al. BMC Bioinformatics 2015, 16(Suppl 6):S1
http://www.biomedcentral.com/1471-2105/16/S6/S1

Page 4 of 11



W(β) = diag

(
e−x11β

(1 +
∑M

l=1 e−xl1β)
2 , . . . ,

e−xM1β

(1 +
∑M

l=1 e−xl1β)
2 , . . . ,

e−x1Nβ

(1 +
∑M

l=1 e−xlNβ)
2 , . . . ,

e−xMNβ

(1 +
∑M

l=1 e−xlNβ)
2

)
,

(z[k])in = xinβ
[k] + (W[k])−1

in
e−xinβ

[k]

1 +
∑M

l=1 e−xlnβ
[k] = xinβ

[k] + (1 +
M∑
l=1

e−xlnβ
[k]

).

(18)

With this N M × N M matrix of weights and working
response vector of length N M, g[k] is the solution to the
penalized weighted least squares problem:

γ [k] = argmin
γ

||(W[k])1/2(z[k] − Xγ )||22 + λ||γ ||1. (19)

Notice that when using the likelihood function in (6)
as a function of xin, i = 1, . . . , M , n = 1, . . . , N , the
matrix of weights is diagonal while, when using it as a
function of uin, i = 0, 1, . . . , M , n = 1, . . . , N , W(b)
is nondiagonal, which complicates the matrix inversion
problem in terms of computation.

The regularization path
For a given value of l, a certain number of predictors
with non-zero regression coefficients are obtained by
minimizing the L1-penalized negative log-likelihood. In
general, the smaller l, the more the penalty is relaxed,
and the more predictors are selected. Inversely, the
higher l, the more predictors are eliminated. The regu-
larization path is the continuous trace of the Lasso esti-
mates of the regression coefficients obtained when
varying l from 0 (the maximum-likelihood solution for
the full conditional logistic model) to a certain thresh-
old, which depends on data, beyond which no predictors
are retained in the model. In general, the amount of
penalization on the L1-norm of the coefficients is chosen
by computing, first, the regularization path of the solu-
tion to (7), as the regularization parameter varies. Then,
the value of l is estimated from a grid of values using
an appropriate criterion. Unlike L1-regularization paths
for linear models, paths for logistic models are not pie-
cewise linear, approximate regularization paths should
then be considered [36,40-42]. To construct the grid of
l-values, lmax > . . . > lmin, firstly, we calculate lmax

and lmin, the smallest l for which all coefficients are
zero and the smallest l for which the algorithm con-
verge without numerical problems, respectively.

It can be shown that, if λ > max
j∈{1,... ,p}

| ∂f
∂βj

(0)| then the

directional derivatives of the λ‖β‖1 term at b = 0 domi-
nate and so b = 0 is the minimizer of f (b, D, l) [41,42].
The evaluation of the gradient function g(b) at b = 0

leads to λmax = max
j∈{1,...,p}

, | 1
M + 1

∑n

n=1

∑M

l=1
xlnj|. We fix

λmin =∈ λmax.
Next, we generate T values equally spaced (on the lin-

ear or log scale) decreasing from lmax to lmin.
For l1=lmax, the initial vector of coefficients is set to
b0 = 0. For each lt, 1 < t ≤ T , the initial vector of

coefficients is set to β [0] = β̂(λt−1), i.e. the coefficient
vector at convergence for the precedent l value.
After this discretization, the optimal regularization

parameter can be chosen by a model selection criterion
such as cross-validation or the Bayesian Information
Criterion (BIC) [43,44].

Publicly available implementation
Several algorithms have been proposed for solving the
Lasso for the Cox model [45,42,46-50]. Among those
proposing a publicly available code, only the method
proposed by Goeman [49] allows for stratification
(implementation publicly available through penalized
R-package). However, as discussed in [16], this imple-
mentation is not applicable to large datasets.
Among the efficient algorithms solving the Lasso for

the logistic model, those proposed by [42] (consisting in
a generalization of the Lars-Lasso algorithm described
in [36]), [49] (based on a combination of gradient des-
cent and Newton’s methods), and [24] (based on a
quadratic approximation followed by a cyclic coordinate
descent method) have a publicly available R implemen-
tation (glmpath, penalized and glmnet packages, respec-
tively). The glmpath package [42] did not accommodate
models without intercept. The penalized package [49]
allows for several practical options. In particular, a no-
intercept Lasso logistic regression model can be fitted
using the differences as independent variables and a
constant response. However, though the Newton
method has fast convergence, forming and solving the
underlying Newton systems require excessive amounts
of memory for large-scale problems. This package is
optimized for situations with many covariates, but does
not handle a large amount of observations. Finally, the
glmnet package can deal efficiently with very large
(sparse) matrices and has been shown to be faster than
competing methods [33,24]. However, the logistic func-
tion of this package fails to converge when a constant
response is used in the logistic model without intercept.
A summary is presented in Table 1.
Parallel to our work, Sun et al. [21] and Reid et al.

[23] proposed an IRLS-cyclic coordinate descent algo-
rithm to resolve the Lasso for (un)conditional logistic
regression. While all these works rely on IRLS-cyclic
coordinate descent, the objectives and the strategies
implemented to address these objectives are different.
The algorithm developed in [21] was implemented into
the pclogit R package which can be downloaded at
http://www.columbia.edu/~sw2206/. This algorithm is
based on the optimization of the original unsimplified
likelihood function (5) with a penalty that encourages
the grouping encoded by a given network graph. The
algorithm developed in [23] was implemented into the
clogitL1 R package which can be downloaded from
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CRAN. The main concern of the authors is the exten-
sion to matched sets consisting in more than one case
(denote K the number of cases per stratum) and M > 1
controls, with large K and large M . In this situation,
the conditional likelihood function has a more compli-
cated form, and the authors apply a recursive formula to
compute the likelihood and its derivatives exactly. This
scheme results in involving intensive computations that
are not amenable to the processing of large datasets.
Our R package clogitLasso is available at our institu-

tion’s Web page, in the “links and downloads” menu,
http://www.isped.u-bordeaux.fr/biostat. Two strategies are
implemented. The first one, discussed in [16], is dedicated
to small to moderate sample sizes. It is based on the strati-
fied discrete-time Cox proportional hazards model and
depending on the penalized package [49]. The second one,
discussed in the present paper, is amenable to the proces-
sing of large datasets (large N ). It directly targets the con-
ditional logistic regression problem, relying on the
lassoshooting package [25] for the application of cyclic
coordinate descent. The lassoshooting package is particu-
larly well adapted for large-scale problems and provides a
no-intercept option. For example, large sparse data
matrices (resulting from rare exposures), can be stored in
a sparse format as well as the diagonal matrix of weights
and working response vector. The Lasso solver lassoshoot-
ing proceeds with XtWX and XtWz (of dimension p × p
and p × 1, respectively) instead of W1/2X and W1/2z (of
dimension N M × p and N M × 1, respectively). Other
practical options are available, for example penalized and
unpenalized (always included in the model) variables can
be specified. The methods, model selection criteria and
capabilities of clogitLasso are detailed in [51,44].

Results
Medicinal drugs have a potential effect on the skills
needed for driving, a task that involves a wide range of

cognitive, perceptual and psychomotor activities. Never-
theless, disentangling their impact on road traffic crashes
is a complex issue from a pharmacoepidemiological point
of view because, between others, the large variety of phar-
maceutical classes. A major approach relies on the use of
population-registries data, such as those conducted in UK
[52,53], Norway [54], France [17] or Finland [55]. We
report the use of the algorithms detailed in this paper for
exploratory analysis of the large pharmacoepidemiological
data of prescription drugs and driving described in Orriols
and colleagues [17].

Data sources and designs
Information on drug prescriptions and road traffic acci-
dents was obtained from the following anonymized
population-based registries: the national health care
insurance database (which covers the whole French
population and includes data on reimbursed prescription
drugs), police reports, and the national police database
of injurious road traffic crashes. Drivers involved in an
injurious crash in France, between July 2005 and May
2008, were included in the study.
Traffic crash data including information about alcohol

impairment and drivers’ responsibility for the crash were
collected. When the breath test is negative (concentration
< 0.5 g/L), the driver is recorded as not being under the
influence of alcohol. Responsibility was determined by a
standardized method that assigns a score to each driver
on the basis of factors likely to reduce driver responsibil-
ity (such as road, vehicle and driving conditions, type of
accident, difficulty of the task involved, and traffic rule
obedience, including alcohol consumption).
We consider all dispensed and reimbursed medicines

to the drivers in the study, in the 6 months before the
crash, coded by the WHO ATC (World Health Organi-
zation Anatomical Therapeutic Chemical) classification
fourth level system. For each drug, the exposure period

Table 1. Main publicly available R packages that solves the Lasso and other sparse penalties for the Cox, logistic or
conditional logistic models (surveyed October 1st, 2014)

Package 1:1 matching? 1:M matching? Amenable to processing of with grouping penalties with large N K:M matching?

Logistic Model

glmpath [42] NO NO NO NO NO

penalized [49] YES NO NO NO NO

glmnet [24] NO NO NO NO NO

Cox Model

glmpath [42] NO NO NO NO NO

penalized [49] YES YES NO NO NO

glmnet [50] NO NO NO NO NO

Conditional Logistic

pclogit [21] YES YES YES NO NO

clogitL1 [23] YES YES NO NO YES

clogitLasso [43,51] YES YES NO YES NO
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started one day after dispensing and the length of the
exposure period was estimated from median values
reported within a survey on drug prescription in France.
This leaded to about 400 candidate binary predictors
(exposure, coded 1, and unexposure, coded 0, to each
medicinal drug).
The objective is to identify the relevant associations

between the exposure to medicinal drugs and the risk of
being responsible for an injurious non-alcohol related
road traffic crash. We considered two study designs, each
one addressing a different epidemiological question.
Individually matched case-control study
The epidemiological question is:
“What is different about at-fault drivers, if they are

highly comparable to not at-fault drivers on external fac-
tors that may influence a road crash such as weather or
road conditions?”
The purpose of the analysis is to compare exposure to

medicinal drugs probabilities on the day of crash
between at-fault drivers (cases) and not at-fault drivers
(controls). Thus, we matched each case to one control
(1:1 matching) on the basis of the date, hour and loca-
tion of the crash. We also adjusted for potential con-
founders: age, sex and long-term chronic diseases, that

is, factors that have shown to be associated with the risk
of accident and may confound the impact of medicinal
drugs on responsibility. These factors were forced in the
models (unpenalized). Age was coded by using a discrete
qualitative variable with seven categories: 18-24, 25-44,
45-64, 65-70, 70-75, 75-80, ≥80 and then using dummy
variables. Long-term diseases were defined by an admin-
istrative status in the French health care insurance data-
base allowing full reimbursement of health care
expenses related to 30 chronic diseases. Chronic disease
was coded by using a binary variable: presence or
absence of any fully reimbursed chronic diseases.
Of the 58,700 drivers with a negative alcohol test in

the analytic database, 26,568 (45%) were considered
responsible for their crash. After matching, 6,857 case-
control pairs were highly comparable in terms of exter-
nal factors, among them, 3,381 matched pairs showed
different medicinal drug exposure (for at least one drug)
on the day of the crash. Figure 1 shows the flowchart
summarizing the selection of the subjects of the data-
base. After eliminating medicines that have been little or
not consumed (by less than 10 subjects), we get 189
binary predictors (in addition to the factors forced in
the models).

Figure 1 Flowchart of the inclusion procedure.
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Case-crossover study
The epidemiological question is:
“What is different about the day of the crash for at-

fault drivers?”
The purpose of the analysis is to compare exposure to

medicinal drugs probabilities on the day of crash (case
period) and on the day one, two, three and four months
prior to the crash date (control periods) for each at-fault
driver. Thus, we matched each case period to four con-
trol periods (1:4 matching). Each period was separated
from the next one by one month, the maximal duration
of a treatment dispensed at the pharmacy in France, to
avoid any residual effect of an exposure in one period
on the following one.
Of the 26,568 at-fault drivers with a negative alcohol test

in the analytic database, 15,367 (58%) showed different
medicinal drug exposure (for at least one of the five peri-
ods; for at least one drug). Thus, 76,835 person-periods
contributed to the estimation according to the flowchart
in Figure 1, and they were described using the 189 binary
predictors already mentioned above.

Pharmacoepidemiological results
Although some drugs are usually prescribed together
and correlation problems are possible, we observed only
mild correlation, probably because the large sample size,
then only the L1 penalty was applied. We used 10-fold
likelihood-based cross- validation to estimate the penali-
zation parameter. Figure 2 shows the Lasso regulariza-
tion path as a function of l for the paired case-control
study. Since all participants were involved in an acci-
dent, positive effects (β̂j > 0) have not a direct interpre-
tation as protective factors. Thus, they are not displayed.
Only four medicinal drugs were simultaneously

selected as showing relevant associations with the risk of
being at-fault for an injurious non-alcohol related traffic
crash in both design studies (that is independently of the
study design): Carboxamide derivative antiepileptics
(N03AF), Benzodiazepine derivatives (N05CD), Other
hypnotics and sedatives (N05CX), Antidepressants
(N06AX). Odds ratio estimates are presented in table 2.
The confounding underlying health conditions are not
well controlled in our matched case-control study, how-
ever the case-crossover design inherently removes the
confounding effects of time-invariant factors such as
chronic health conditions. Thus, drug adversities may
explain these results instead of chronic health-related
complications. The effects of these four drugs on driving
are well documented in the literature. In addition these
medicines contain warning messages in relation to
impairing driving ability. From a prevention perspective,
it would be important to identify more precisely which
populations are concerned by this at risk behavior.
Further analyses should also be necessary to elucidate

why these drugs appear to be related to an increased risk
of at-fault crashes while other drugs from the same class
do not. Such differences can simply be explained by a
higher consumption, but other hypotheses are plausible.

Conclusion
We have developed a simple algorithm for the adaptation
of the Lasso and related methods to the conditional logis-
tic regression model. Our proposal relies on the simplifi-
cation of the calculations involved in the likelihood
function and the IRLS algorithm, that iteratively solves
reweighted Lasso problems using cyclical coordinate des-
cent, computed along a regularization path. As a result,
this algorithm can handle large problems and deal with
sparse features efficiently.
Problems related to high-dimensionality arise nowa-

days in many fields of epidemiological research (genetic,
environmental or pharmacoepidemiology, for instance).
In particular, we illustrate the interest of this methodol-
ogy on the pharmacoepidemiological study of prescrip-
tion drugs and driving that originally motivated these
algorithmical developments.
The use of Lasso-related techniques is justified in this

context as follows. First, regression models, with

Figure 2 Individually matched case-control study. The Lasso
regularization path as a function of l for the paired case-control
design. The black vertical line indicates the l value optimizing the
cross-validation criterion. Coefficient values of drugs selected are
indicated in black, the others are in gray. Only drugs estimated to
be risk factors (positive β̂j) are displayed. Potential confounders (sex,
age, chronic disease), forced in the model, are omitted.
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straightforward interpretation, are the most important
statistical techniques used in analytical epidemiology.
Thus, these techniques appear to be a good compromise
between traditional and data-driven approaches since
modeling is based on standard regression models, rather
than a black-box. Second, controlling for potential con-
founding is a critical point in epidemiology, thus multi-
variate modeling approaches are preferable to separate
univariate tests. Third, it is expected that only few drugs
will be truly associated with the risk of being involved
in a road traffic crash, thus sparsity-inducing penalties
seem to be appropriate. It is also expected that most of
these relevant drugs will have a weakly strength of asso-
ciation, however, only predictors with effect sizes above
the noise level can be detected using Lasso-related tech-
niques. Nevertheless, this limitation is shared by any
model selection method [56-58].
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Table 2. Odds ratio (OR) by study design

ATC class second level ATC class fourth level Case-crossover Matched case-control

Drugs for acid related disorders A02BA 1.88

A02BX 1.19

Drugs for functional gastrointestinal disorders A03FA 1.24

Laxatives A06AD 1.37

Mineral supplements A12CC 1.10

A12AX 1.57

Antianemic preparations B03AA 1.20

B03BB 1.24

Peripheral vasodilators C04AX 1.15

Antifungals for dermatological use D01AE 1.13

Corticosteroids D07AB 1.16

Sex hormones and modulators of the genital system G03CA 1.20

Muscle relaxants M03BX 1.23

Analgesics N02BG 1.09

Antiepileptics N03AA 2.93

N03AF 1.34 2.11

N03AX 1.19

Psycholeptics N05BA 1.11

N05CD 1.37 1.09

N05CX 1.01 1.46

Psychoanaleptics N06AB 1.06

N06AX 1.05 1.11

Drugs for obstructive airway diseases R03BB 1.23

Cough and cold preparations R05DA 1.08

Antihistamines for systemic use R06AX 1.06

Odds ratio estimates are displayed only for selected risk factors.
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