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Abstract

This article studies the quasi-stationary behaviour of absorbed one-
dimensional diffusion processes with killing on [0,∞). We obtain cri-
teria for the exponential convergence to a unique quasi-stationary dis-
tribution in total variation, uniformly with respect to the initial distri-
bution. Our approach is based on probabilistic and coupling methods,
contrary to the classical approach based on spectral theory results. Our
general criteria apply in the case where ∞ is entrance and 0 either
regular or exit, and are proved to be satisfied under several explicit
assumptions expressed only in terms of the speed and killing mea-
sures. We also obtain exponential ergodicity results on the Q-process.
We provide several examples and extensions, including diffusions with
singular speed and killing measures, general models of population dy-
namics, drifted Brownian motions and some one-dimensional processes
with jumps.
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1 Introduction

This article studies the quasi-stationary behaviour of general one-dimen-
sional diffusion processes with killing in an interval E of R, absorbed at
its finite boundaries. When the process is killed or absorbed, it is sent to
some cemetary point ∂. This covers the case of solutions to one-dimensional
stochastic differential equations (SDE) with space-dependent killing rate,
but also of diffusions with singular speed and killing measures.

We recall that a quasi-stationary distribution for a continuous-time Markov
process (Xt, t ≥ 0) on the state space E ∪ {∂}, is a probability measure α
on E such that

Pα(Xt ∈ · | t < τ∂) = α(·), ∀t ≥ 0,

where Pα denotes the distribution of the process X given that X0 has dis-
tribution α, and

τ∂ := inf{t ≥ 0 : Xt = ∂}.

We refer to [13, 20, 16] for general introductions to the topic.
Our goal is to give conditions ensuring the existence of a unique quasi-

limiting distribution α on E, i.e. a probability measure α such that for all
probability measures µ on E and all A ⊂ E measurable,

lim
t→+∞

Pµ(Xt ∈ A | t < τ∂) = α(A), (1.1)

where, in addition, the convergence is exponential and uniform with respect
to µ and A. In particular, α is the unique quasi-stationary distribution.

This topic has been extensively studied for one-dimensional diffusions
without killing in [1, 11, 14, 4], where nearly optimal criteria are obtained.
The case with killing is more complex and the existing results cover less
general situations [19, 10]. In particular, these references are restricted to
the study of solutions to SDEs with continuous absorption rate up to the
boundary of E, and let the questions of uniqueness of the quasi-stationary
distribution and of convergence in (1.1) open.

The present paper is focused on the case of a diffusion on E = [0,+∞)
absorbed at 0 with scale function s, speed measure m and killing measure
k, assuming that killing corresponds to an immediate jump to ∂ = 0. We
consider the situation where ∞ is an entrance boundary and 0 is either exit
or regular. Our results easily extend to cases of bounded intervals with
reachable boundaries.

We give two criteria, each of them involving one condition concerning the
diffusion (without killing) with scale function s and speed measure m, and
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another condition on the killing time. The condition on the diffusion without
killing comes from [4] and covers nearly all one-dimensional diffusions on
[0,∞) such that ∞ is an entrance boundary and a.s. absorbed in finite time
at 0. The conditions on the killing time only concern the behavior of the
diffusion and of the killing measure in the neighborhood of 0, as soon as∞ is
an entrance boundary. In order to apply these results to practical situations,
we provide several explicit criteria ensuring all these conditions and a series
of examples that enter our setting.

This contribution improves known results in several directions. First, it
covers situations of diffusion processes which are not solutions to SDEs and
cases of irregular and unbounded killing rates. Secondly, aside from proving
the existence of a quasi-stationary distribution, we also obtain exponential
convergence of conditional distributions. In particular, all the initial dis-
tributions of X belong to the domain of attraction of the quasi-stationary
distribution. This is of great importance in applications, since in practice,
one usually has no precise estimate of the initial distribution. In addition,
our estimates of convergence are exponential and uniform in total variation
norm, and hence provide a uniform bound for the time needed to observe
stabilisation of the conditional distribution of the process, regardless of the
initial distribution (see also the discussion in [13, Ex. 2]).

The main methodological novelty of our proofs relies on its purely prob-
abilistic approach. We do not use any spectral theoretical result (typically,
Sturm-Liouville theory), which are the key tool of all the previously cited
works on diffusions, except [4]. Instead, we use criteria for general Markov
processes proved in [3], based on coupling and Dobrushin coefficient tech-
niques. These criteria also imply exponential ergodicity for the Q-process,
defined as the process X conditioned to never be absorbed. The generality
and flexibility of this approach also allow to cover, without substantial mod-
ification of the arguments, many situations where the spectral theory has
received much less attention, such as one-dimensional diffusions with jumps
and killing.

For our study, we need to give a probabilistic formulation of the property
that∞ is entrance. In the case without killing, this is known as the classical
property of coming down from infinity (see e.g. [1, 4]). For a diffusion with
killing, we show that a process with entrance boundary at ∞ comes down
from infinity before killing in the sense that the diffusion started from +∞
hits 0 in finite time before killing with positive probability.

The paper is organized as follows. In Section 2, we precisely define the
absorbed diffusion processes with killing under study and give their con-
struction as time-changed Brownian motions. Although quite natural, this

3



alternative construction of killed diffusions is not given in classical refer-
ences. Section 3.1 contains the statement of our main results on the expo-
nential convergence of conditional distributions, the asymptotic behavior of
the probability of survival and the existence and ergodicity of the Q-process.
In Subsection 3.2, we give explicit criteria ensuring the conditions of Sec-
tion 3.1. We focus in Sections 2 and 3 on diffusions on natural scale. The
extension to general diffusions is given in Section 4.1, together with a se-
ries of examples of diffusions which are not solutions to SDEs, of diffusions
with unbounded or irregular killing rates and of one-dimensional processes
with killing and jumps. Section 4.2 is devoted to the study of models of
population dynamics of the form

dYt =
√
YtdBt + Yth(Yt)dt

and Section 4.3 to drifted Brownian motions, which are the basic models
of [19, 10]. Section 5 concerns the property of coming down from infinity
before killing. Finally, Section 6 gives the proofs of our main results.

2 Absorbed diffusion processes with killing

Our goal is to construct diffusion processes with killing on [0,+∞), absorbed
at ∂ = 0. The typical situation corresponds to stochastic population dynam-
ics of continuous densities with possible continuous or sudden extinction.

We recall that a stochastic process (Xt, t ≥ 0) on [0,+∞) is called a
diffusion (without killing) if it has a.s. continuous paths, satisfies the strong
Markov property and is regular. By regular, we mean that for all x ∈ (0,∞)
and y ∈ [0,∞), Px(Ty < ∞) > 0, where Ty is the first hitting time of
y by the process X. Given such a process, there exists a continuous and
strictly increasing function s on [0,∞), called the scale function, such that
(s(Xt∧T0), t ≥ 0) is a local martingale [6]. The stochastic process (s(Xt), t ≥
0) is itself a diffusion process with identity scale function. Replacing (Xt, t ≥
0) by (s(Xt), t ≥ 0), we can assume without loss of generality that s(x) = x.

To such a process X on natural scale, one can associate a unique locally
finite positive measure m(dx) on (0,∞), called the speed measure of X,
which gives positive mass to any open subset of (0,+∞) and such that
Xt = Bσt for all t ≥ 0 for some standard Brownian motion B, where

σt = inf {s > 0 : As > t} , with As =

∫ ∞
0

Lxs m(dx) (2.1)

and Lx is the local time of B at level x. Conversely, given any positive locally
finite measure m on (0,∞) giving positive mass to any open subset of (0,∞),
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any such time change of a Brownian motion defines a regular diffusion on
[0,∞) [9, Thm. 23.9]. Note that, since σt is continuous and since Xt = Bσt
for all t ≥ 0 a.s., we have

σT0 = TB0 , or, equivalently, T0 = ATB0
, (2.2)

where TBx is the first hitting time of x ∈ R by the process B.
In this work, we study diffusion processes on [0,+∞) with killing as

defined in [8]. As above, we can assume without loss of generality that
the diffusion is on natural scale. We show below that such a process can
be obtained from an explicit pathwise construction from a given Brownian
motion (Bt, t ≥ 0) and an independent exponential random variable E of
parameter 1. Although this construction is quite natural, this is not done
in the classical references [8, 6, 12, 9].

Let k and m be two positive locally finite measures on (0,+∞), such
that m gives positive mass to any open subset of (0,+∞). The measures
m and k will be referred to as the speed measure and the killing measure,
respectively, of the diffusion with killing.

We first define the diffusion process on natural scale without killing as
above by

X̃t := Bσt , ∀t ≥ 0,

where σt is defined by (2.1). Next, we define for all t ≥ 0

κt :=

∫ ∞
0

Lyσt k(dy), ∀t ≥ 0. (2.3)

It follows from the definition of the local time (LX̃,xt , t ≥ 0, x ≥ 0) of the
process X̃ of [6, p. 160] that

κt =

∫ ∞
0

LX̃,yt k(dy).

Let E be an exponential r.v. of parameter 1 independent of B. Then we
define

τκ := inf{t ≥ 0 : κt ≥ E} and T̃0 := inf{t ≥ 0 : X̃t = 0}. (2.4)

Our goal is to construct a process X that can hit 0 either continuously
following the path of X̃, or discontinuously when it is killed at time τκ. This
leads to the following definition of the time of discontinuous absorption (or
killing time) τd∂ and the time of continuous absorption τ c∂ :

τd∂ :=

{
τκ if τκ < T̃0,

+∞ if T̃0 ≤ τκ
and τ c∂ :=

{
+∞ if τκ < T̃0,

T̃0 if T̃0 ≤ τκ.
(2.5)
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The absorption time τ∂ is then defined as

τ∂ := τd∂ ∧ τ c∂ .

Then, the absorbed diffusion process with killing X is defined as

Xt :=

{
X̃t if t < τ∂ ,

∂ = 0 otherwise.
(2.6)

Proposition 2.1. The process (Xt, t ≥ 0) defined in (2.6) is a diffusion pro-
cess with killing on natural scale, with speed measure m and killing measure
k, as defined in [8].

Proof. Note that

κt =

∫ ∞
0

LX,yt k(dy), ∀t < τκ,

since X and X̃ coincide before τκ. Since E is independent of B,

P(τκ > t | X̃t, t ≥ 0) = P(τκ > t | Bs, s ≥ 0) = exp

(
−
∫ ∞

0
LX,yt k(dy)

)
.

(2.7)
This is exactly the definition of the distribution of the killing time of the
diffusion process with killing of [8, p. 179].

In particular, in the case where k is absolutely continuous with respect
to m, the killing rate of the diffusion at position x (in the sense e.g. of [10])
is given by dk

dm(x). This can be deduced from (2.7) and from the occupation
time formula of [6].

In addition, the property of regularity of the diffusion with killing can
be easily checked from this definition, as shown in the next proposition.

Proposition 2.2. For all x, y > 0,

Px(Ty <∞) > 0,

and for all x > 0 and t > 0,

Px(τ∂ > t) > 0, ∀x > 0, ∀t ≥ 0. (2.8)

Proof. Fix x 6= y. On the event {T̃y < ∞}, we have σ
T̃y

= TBy < TB0 . In

particular, the infimum of Bs over [0, TBy ] is positive, and its maximum is
finite. Hence the function y 7→ Ly

TBy
is a.s. continuous with compact support
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in (0,+∞), hence a.s. bounded, on the event {T̃y < ∞}. Since k is locally

finite on (0,+∞) and Px(T̃y <∞) > 0, this implies that

Px(Ty <∞) = Px(T̃y <∞ and κ
T̃y
< E)

= Ex
[
1
T̃y<∞ exp

(
−
∫ ∞

0
Ly
TBy

k(dy)

)]
> 0.

To prove (2.8), we fix t > 0. As above, a.s. on the event {t < τ c∂} =
{σt < TB0 }, the function y 7→ Lyσt is continuous with compact support on
(0,+∞). Since k is locally finite on (0,+∞), we deduce that κt < ∞ a.s.
Since in addition Px(X̃t > 0) > 0 for all t > 0, (2.8) follows.

In the sequel, following the terminology of [5], we assume that +∞ is an
entrance boundary, or equivalently (for diffusion processes on natural scale)∫ ∞

1
y(dm(y) + dk(y)) <∞, (2.9)

and that 0 is either regular or an exit point, or equivalently∫ 1

0
y(dm(y) + dk(y)) <∞. (2.10)

Note that, in the case where k = 0, X = X̃ is a diffusion without killing. In
this case, the assumption

∫∞
1 y dm(y) < ∞ corresponds to the fact that X

comes down from infinity [4], i.e. that there exist t > 0 and y > 0 such that

inf
x>y

Px(Ty < t) > 0,

and
∫ 1

0 y dm(y) <∞ is equivalent to assuming that τ∂ = τ c∂ <∞ a.s.
Further general properties of diffusion processes with killing are studied

in Section 5, related to the notion of coming down from infinity.

3 Quasi-stationary distributions for diffusion pro-
cesses with killing

We consider as above a diffusion process X on [0,+∞) with killing, on
natural scale, with speed measure m(dx) and killing measure k(dx).
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3.1 Exponential convergence to quasi-stationary distribution

We provide here sufficient criteria ensuring the existence of a unique quasi-
stationary distribution for X, with exponential convergence of conditional
distributions in total variation. Both criteria involve the diffusion process
without killing X̃ of Section 2.

Condition (C) Assume that
∫∞

0 y (m(dy) + k(dy)) < ∞ and that there
exist two constants t1, A > 0 such that

Px(t1 < T̃0) ≤ Ax, ∀x > 0 (3.1)

and

Px(τd∂ < τ c∂) ≤ Ax, ∀x > 0. (3.2)

Condition (C’) Assume that
∫∞

0 y (m(dy) + k(dy)) < ∞ and that there
exist three constants t1, A, ε > 0 such that

Px(t1 < T̃0) ≤ Ax, ∀x > 0

and k is absoluely continuous w.r.t. m on (0, ε) and satisfies

dk

dm
(x) ≤ A, ∀x ∈ (0, ε). (3.3)

We give practical criteria to check Conditions (C) and (C’) is Subsec-
tion 3.2 and we give examples of applications and compare with existing
results in Section 4.

Theorem 3.1. Assume that X is a one-dimensional diffusion on natural
scale with speed measure m and killing measure k. If Assumption (C) or
Assumption (C’) is satisfied, then there exists a unique probability measure
α on (0,+∞) and two constants C, γ > 0 such that, for all initial distribution
µ on E,

‖Pµ(Xt ∈ · | t < τ∂)− α(·)‖TV ≤ Ce
−γt, ∀t ≥ 0. (3.4)

In this case, α is the unique quasi-stationary distribution for the process.

We recall that the quasi-stationary distribution α of Thm. 3.1 satisfies
the following classical property: there exists λ0 > 0 such that Pα(t < τ∂) =
e−λ0t. The same assumptions also entail the following result on the asymp-
totic behaviour of absorption probabilities.
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Proposition 3.2. Assume that X is a one-dimensional diffusion on nat-
ural scale with speed measure m and killing measure k. If Assumption
(C) or Assumption (C’) is satisfied, then there exists a bounded function
η : (0,∞)→ (0,∞) such that

η(x) = lim
t→∞

Px(t < τ∂)

Pα(t < τ∂)
= lim

t→+∞
eλ0tPx(t < τ∂), (3.5)

where the convergence holds for the uniform norm. Moreover, α(η) = 1,
η(x) ≤ Cx for all x ≥ 0 and some constant C > 0, and η belongs to
the domain of the infinitesimal generator L of X on the set of bounded
measurable functions on [0,+∞) equiped with uniform norm and

Lη = −λ0η. (3.6)

Still under the same assumptions, we also obtain the exponential ergod-
icity of the Q-process, which is defined as the process X conditioned to never
be absorbed.

Theorem 3.3. Assume that X is a one-dimensional diffusion on natural
scale with speed measure m and killing measure k. If Assumption (C) or
Assumption (C’) is satisfied, then the three following properties hold true.

(i) Existence of the Q-process. There exists a family (Qx)x>0 of probability
measures on Ω defined by

lim
t→+∞

Px(A | t < τ∂) = Qx(A)

for all Fs-measurable set A, for all s ≥ 0. The process (Ω, (Ft)t≥0, (Xt)t≥0, (Qx)x>0)
is a (0,∞)-valued homogeneous strong Markov process.

(ii) Transition kernel. The transition kernel of the Markov process X under
(Qx)x>0 is given by

p̃(x; t, dy) = eλ0t
η(y)

η(x)
p(x; t, dy)1y>0, ∀t ≥ 0, x > 0,

where p(x; t, dy) is the transition distribution of the diffusion with
killing X.

(iii) Exponential ergodicity. The probability measure β on (0,+∞) defined
by

β(dx) = η(x)α(dx).
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is the unique invariant distribution of X under Q. Moreover, there ex-
ist positive constants C, γ such that, for any initial distributions µ1, µ2

on (0,+∞),

‖Qµ1(Xt ∈ ·)−Qµ2(Xt ∈ ·)‖TV ≤ Ce
−γt‖µ1 − µ2‖TV ,

where Qµ =
∫

(0,∞) Qx µ(dx).

The proofs of these results are given in Section 6.

3.2 On Conditions (C) and (C’)

The first step to check Conditions (C) or (C’) is to check (3.1). This condi-
tion is the one ensuring exponential convergence of conditional distributions
of general diffusion processes without killing [4, Thm. 3.1], and it has been
extensively studied in [4]. We recall here the most general criterion, which
applies to all practical cases where ∞ is entrance and 0 is exit or natural,
since it fails only when m has strong oscillations near 0 (see [4, Rk. 4]).

Theorem 3.4 ([4] Thm 3.7). Assume that
∫∞

0 ym(dy) <∞ and∫ 1

0

1

x
sup
y≤x

(
1

y

∫
(0,y)

z2m(dz)

)
dx <∞. (3.7)

Then, for all t > 0, there exists At <∞ such that

Px(t < T̃0) ≤ At x, ∀x > 0.

Using this result, the remaining conditions in (C) and (C’) only deal with
the behavior of the diffusion process X near 0. We provide two sufficient
criteria for (3.2) in Condition (C) in Proposition 3.5 and Proposition 3.6.
Note that checking property (3.3) in Condition (C’) from given measures m
and k is straightforward.

Proposition 3.5. Assume that
∫∞

0 y k(dy) <∞ and that there exist ε > 0
and a constant C > 0 such that k is absolutely continuous w.r.t. the Lebesgue
measure Λ on (0, ε) and such that

dk

dΛ
(x) ≤ C

x
, ∀x ∈ (0, ε). (3.8)

Then there exists a positive constant A > 0 such that

Px(τd∂ < τ c∂) ≤ Ax.
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Note that, contrary to Condition (C’), the previous criterion does not
require the killing rate dk/dm of the diffusion process to be bounded on
a neighbourhood of 0. It is actually independent of the measure m. For
instance, if m(dx) = dx and k(dx) = 1

xdx on a neighbourhood of 0, then
the assumptions of Proposition 3.5 are satisfied while dk/dm(x) = 1/x is
unbounded near 0.

Proof of Proposition 3.5. We have from (2.3)

Px(τd∂ < τ c∂) = Px
(
κ
T̃0
> E

)
= Px

(∫ ∞
0

Lyσ
T̃0

dk(y) > E
)

Hence, by (2.2),

Px(τd∂ < τ c∂) = Px
(∫ ∞

0
Ly
TB0
dk(y) > E

)
= PYx

(
T Y0 > E

)
,

where Y is a diffusion process on (0,∞) on natural scale with speed measure
k, absorbed at 0 and without killing. We have

PYx (T Y0 > E) ≤ PYx (E < T Y0 < T Yε ) + PYx (T Yε ≤ T Y0 )

≤ PYx (E < T Y0 < T Yε ) + x/ε,

since Y is on natural scale and hence is a local martingale. As a consequence,
it only remains to prove that PYx (E < T Y0 < T Yε ) ≤ Ax. Because of our
assumption (3.8),

PYx (E < T Y0 < T Yε ) = Px
({

TB0 < TBε
}
∩
{∫ ∞

0
Ly
TB0
dk(y) > E

})
≤ Px

({
TB0 < TBε

}
∩
{∫ ∞

0
Ly
TB0

dy

y
> E/C

})
≤ Px

(∫ ∞
0

Ly
TB0

dy

y
> E/C

)
= 1− v(x)

where v(x) = PZx (TZ0 ≤ E/C) with Z the diffusion on (0,+∞) on natural
scale and with speed measure (1/y)dy, i.e. solution to the SDE

dZt =
√
ZtdWt,

for (Wt)t≥0 a standard Brownian motion. The diffusion process (Zt)t≥0 is a
continuous state branching process (Feller diffusion), hence by the branching
property,

v(x+ y) = v(x)v(y), ∀x, y ≥ 0.
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Since v(x) is non-increasing and v(0) = 1, we deduce from standard argu-
ments that there exists a constant A > 0 such that

v(x) = e−Ax.

Proposition 3.5 follows.

Proposition 3.6. Assume that
∫∞

1 yk(dy) < ∞ and k([0, 1]) < ∞. Then
there exists a positive constant A > 0 such that

Px(τd∂ < τ c∂) ≤ Ax.

We emphasize that measures k which are not absolutely continuous w.r.t.
the Lebesgue measure are of course also covered by Prop. 3.6. Note also
that Prop. 3.6 does not imply Prop. 3.5 since the killing measure dk(x) =
(1/x)dΛ(x)1x∈(0,1) is not finite.

Proof of Proposition 3.6. As in the beginning of the proof of Proposition 3.5,
we obtain

Px(τ c∂ < τd∂ ) = Px
(∫ ∞

0
Ly
TB0
dk(y) < E

)
= Ex

[
exp

(
−
∫ ∞

0
Ly
TB0
dk(y)

)]
≥ 1− Ex

(∫ ∞
0

Ly
TB0
dk(y)

)
= 1− EYx (T0 | Y0 = x),

where EY denotes the expectation w.r.t. the law of a diffusion process Y on
(0,+∞) on natural scale, without killing and whose speed measure is k(dy).
Finally, using classical Green formula for diffusion processes without killing
applied to Y , we conclude that

Px(τ c∂ < τd∂ ) ≥ 1−
∫ ∞

0
(x∧y) k(dy) ≥ 1−xk([0, 1])−x

∫ ∞
1

y k(dy) ≥ 1−Cx.

4 Examples and comparison with existing results

4.1 On general diffusions

Let us first recall that our results also cover the case of general (i.e. not
necessarily on natural scale) killed diffusion processes (Yt, t ≥ 0) on [0,∞)
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with speed measure mY and killing measure kY , such that the diffusion
without killing Ỹ hits 0 in a.s. finite time. Under these assumptions, there
exists a continuous and strictly increasing scale function s : [0,∞)→ [0,∞)
of the process Y such that s(0) = 0 and s(∞) = ∞, and our results apply
to the process Xt = s(Yt) on natural scale, whose speed measure and killing
measure are respectively given by

mX(dx) = mY ∗ s(dx) and kX(dx) = kY ∗ s(dx), (4.1)

where mY ∗ s and kY ∗ s denote the pushforward measures of mY and kY
through the function s (the formula formX can be found in [17, Thm. VII.3.6]
and for the measure kX , one may use for example (2.3) and the fact that

Ly,Ỹt = L
s(y),X̃
t which follows from the occuptation time formula of [6,

p. 160]).
HenceX satisfies (C) or (C’) if and only if Y satisfies the following Condi-

tions (D) or (D’) respectively. In particular, the conclusions of Theorem 3.1
apply to Y if (D) or (D’) is fulfilled.

Condition (D) Assume that
∫∞

0 s(y) (mY (dy) + kY (dy)) < ∞. Assume
also that there exist two constants t1, A > 0 such that

P(t1 < T̃0 | Y0 = y) ≤ As(y), ∀y > 0

and

P(τd∂ < τ c∂ | Y0 = y) ≤ As(y), ∀y > 0,

where the absorption times T̃0, τd∂ and τ c∂ are constructed here from the

processes Y and Ỹ .

Condition (D’) Assume that
∫∞

0 s(y) (mY (dy) + kY (dy)) < ∞. Assume
also that there exist three constants t1, A, ε > 0 such that

P(t1 < T̃0 | Y0 = y) ≤ As(y), ∀y > 0

and kY is absoluely continuous w.r.t. mY on (0, ε) and satisfies

dkY
dmY

(y) ≤ A, ∀y ∈ (0, ε).

In particular, we deduce from (4.1) the following criteria for (D) and
(D’).
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Proposition 4.1. Assume that
∫∞

0 s(y) (mY (dy) + kY (dy)) < ∞ and that
there exist two constants t1, A > 0 such that

P(t1 < T̃0 | Y0 = y) ≤ As(y), ∀y > 0.

Then

(i) If kY ([0, 1]) <∞, then Y satisfies (D).

(ii) If there exists ε, ρ, C > 0 such that

dkY
dΛ

(y) ≤ C

s(y)
, ∀y ∈ (0, ε)

and
s(y)− s(x) ≥ ρ(y − x), ∀0 < x < y < ε, (4.2)

then Y satisfies (D).

(iii) If the killing rate κY (y) := dkY
dmY

(y) exists and is uniformly bounded on
(0, ε) for some ε > 0, then Y satisfies (D’).

Proof. Point (i) follows immediately from Prop. 3.6 since kX([0, s(1)]) =
kY ([0, 1]) <∞.

For Point (ii), we deduce from (4.1) that

dkX
d(Λ ∗ s)

≤ C

x
, ∀x ∈ (0, s(ε)).

In view of of Prop. 3.5, it only remains to prove that d(Λ ∗ s)/dΛ ≤ C ′ in
the neighborhood of 0. This is exactly (4.2).

Finaly, under the conditions of Point (iii), by (4.1), κX(y) := dkX
dmX

(x)
exists and is uniformly bounded on (0, s(ε)). Hence X satisfies (C’).

Let us also mention that, as will appear clearly in the proofs of Section 6,
our methods can be easily extended to diffusion processes on a bounded
interval, where one of the boundary point is an entrance boundary and the
other is exit or regular, and also to cases where both boundary points are
either exit or regular.

We provide now a few examples of diffusion processes that enter our
setting (directly or considering the above extension).

Example 1. Let X be a sticky Brownian motion on the interval (−1, 1)
which is sticky at 0, absorbed at −1 and 1, and with measurable killing rate

14



κ : (−1, 1) 7→ (0,+∞) such that
∫

(−1,1) κ(x)dx < ∞ and κ(0) < ∞. In this
case X is the diffusion with killing on natural scale with speed measure and
killing measure

m(dx) = Λ(dx) + δ0(dx) and k(dx) = κ(x)Λ(dx) + κ(0)δ0(dx).

Extending our result to diffusion processes on (−1, 1) with regular bound-
aries, we immediately deduce from Proposition 3.6 that X admits a unique
quasi-stationary distribution and satisfies (3.4).

Example 2. Let Y be a solution to the SDE

dYt =
√
YtdBt + Yt(r − cYt)dt,

where r ∈ R represents the individual growth rate without competition and
c > 0 governs the competitive density dependence in the growth rate. We
assume that the diffusion process Y is subject to the killing rate κ(y) =
sin(1/y) ∨ √y. Then Y admits a unique quasi-stationary distribution and
satisfies (3.4) (see Proposition 4.2 for a detailed study of this case in a more
general setting).

In this example, 0 is an exit boundary and κ is not continuous at 0 (see
the comparison with the literature in Section 4.3).

Example 3. Let Y be a solution to the SDE

dYt = dBt − Y 2
t dt,

absorbed at 0. We may for example assume that the diffusion process Y is
subject to the non-negative killing rate κ(y) = 1√

y ∨
√
y, or to the killing

measure

k(dy) =
∑
n∈N

bnδan(dy),

for any bounded sequence (an)n∈N and summable family (bn)n∈N. In both
cases, condition (D) is satisfied.

These two examples illustrate that our results also cover cases of un-
bounded (and even singular) killing rate κ.

Example 4. In addition, our method is general enough to apply to more
complex processes. An example of diffusion without killing but with jumps
is studied in [4, Sec. 3.5.4]. The extension to the case of diffusions with
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killing is straightforward using the same method: we consider a diffusion
process on natural scale (Xt, t ≥ 0) on [0,∞) with speed measure m and
killing measure k such that either Condition (C) or (C’) is satisfied. Let us
denote by L the infinitesimal generator of X.

Our first example is the Markov process (X̂t, t ≥ 0) with infinitesimal
generator

L̂f(x) = Lf(x) + (f(x+ 1)− f(x))1x≥1,

for all f in the domain of L. In other words, we consider a càdlàg process
following a diffusion process with speed measure m and killing measure
k between jump times, which occur at the jump times of an independent
Poisson process (Nt, t ≥ 0) of rate 1, with jump size +1 if the process is
above 1, and 0 otherwise. Then, a straightforward adaptation of Prop. 3.10
of [4] implies that the conclusion of Thm. 3.1 holds for X̂.

Another simple example is given by the Markov process (X̂t, t ≥ 0) with
infinitesimal generator

L̂f(x) = Lf(x) + f(x+ 1)− f(x),

for all f in the domain of L. Here, +1 jumps occur at Poisson times,
regardless of the position of the process. Then, in the case where (m, k)
satisfies Condition (C) and if dm

dΛ (x) ≤ C
x in the neighborhood of 0, the

conclusion of Thm. 3.1 holds for X̂.
To prove this, the only new difficulty compared with the previous case

is to check that the probability that the process jumps before being killed
or hitting zero is smaller than Cx when X̂0 = x. By Condition (C), this is
equivalent to prove the same property for the process without killing. Since
the first jump time is exponential of parameter 1, this can be proved with
the exact same argument as in Prop. 3.5 since τ c∂ =

∫∞
0 Ly

TB0
dm(y).

Of course, many easy extensions are possible, for example with jumps
from x to g(x) at constant rate, where g is a non-decreasing function and
might be 0 on some interval. In fact, even random jumps can be easily
covered provided monotonicity properties of jump measures. This also covers
situations with bounded non-decreasing jump rate. The case of general rates
is more complicated but could also be attacked with our method.

4.2 Application to models of population dynamics

Quasi-stationary distributions for one-dimensional diffusion processes have
attracted much interest as an application to population dynamics. In [1, 2],
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the authors consider the conditional behavior of diffusion processes condi-
tioned not to hit 0. In [7], the authors consider one-dimensional diffusion
processes that cannot hit 0 continuously (0 is a natural boundary) but are
subject to a killing rate modeling the risk of catastrophic events. In this
section, our aim is to bring together both points of view by considering
logistic Feller diffusion processes and their extensions to general drifts, as
in [1], with an addition killing rate.

More precisely, let us consider a diffusion process Y on [0,+∞) solution
to the SDE

dYt =
√
YtdBt + Yth(Yt)dt,

where h is a measurable function from R+ → R modeling the density depen-
dence of the individual growth rate of the population. We assume that Y is
subject to the nonnegative killing rate κ = dkY

dmY
∈ L1

loc((0,+∞)). For such
models, the conditions (D) and (D’) directly give criteria for exponential
convergence to the quasi-distribution. The next result gives explicit condi-
tions on κ for a large class of functions h. Other conditions on κ could be
obtained for other asymptotic behaviors of h.

Proposition 4.2. Assume that h ∈ L1
loc([0,+∞)) and that there exists

C, β > 0 such that, for some y0 > 0,

h(y) ≤ −Cyβ, ∀y ≥ y0.

If κ satisfies ∫ ∞
1

κ(y)

y1+β
dy <∞

and

either

∫ 1

0

κ(y)

y
dy <∞ or lim sup

x→0
κ(x) <∞,

then there exists a unique probability measure α on (0,+∞) and two con-
stants C, γ > 0 such that, for all initial distribution µ on (0,∞),

‖Pµ(Xt ∈ · | t < τ∂)− α(·)‖TV ≤ Ce
−γt, ∀t ≥ 0.

Proof. In this case, the scale function and the speed measure associated with
Y are given by

s(y) =

∫ y

0
e−2

∫ u
0 h(z)dzdu and mY (dy) =

e2
∫ y
0 h(u)du

y
dy.
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The killing measure associated to Y is kY = κ(y)m(dy) = κ(y)e2
∫ y
0 h(u)du

y dy.
Our aim is to prove that condition (D) or (D’) holds true using Proposi-
tion 4.1.

To do so, let us first check that∫
(0,+∞)

s(y)(mY (dy) + kY (dy)) <∞. (4.3)

We have∫
(0,+∞)

s(y)(mY (dy) + kY (dy)) =

∫
(0,+∞)

∫ y

0
e−2

∫ u
0 h(z)dzdu

(1 + κ(y))e2
∫ y
0 h(u)du

y
dy.

Since h ∈ L1
loc([0,+∞)), we have∫ y

0
e−2

∫ u
0 h(z)dzdu

(1 + κ(y))e2
∫ y
0 h(u)du

y
∼y→0 1 + κ(y),

which is integrable in any bounded neighborhood of 0 by assumption. As a
consequence, ∫

(0,y0)
s(y)(mY (dy) + kY (dy)) <∞.

On the other hand,

e2
∫ y
0 h(u)du

∫ y

0
e−2

∫ u
0 h(z)dzdu =

∫ y

0
e2

∫ y
u h(z)dzdu

≤
∫ y0

0
e2

∫ y
u h(z)dzdu+

∫ y

y0

e−2C/(1+β)(y1+β−u1+β)du.

We have, for all y ≥ y0,∫ y0

0
e2

∫ y
u h(z)dzdu ≤

∫ y0

0
e2

∫ y0
u h(z)dzdu e−2C/(1+β)(y1+β−y1+β0 ) = C ′e−2Cy1+β/(1+β)

for some finite constant C ′. Moreover, setting Cβ = supx∈(0,1)(1 − x)/(1 −
x1+β) <∞, we have∫ y

y0

e−2C/(1+β)(y1+β−z1+β)dzdu ≤
∫ y

y0

e−2C/(1+β)C−1
β (y−z)yβdzdu

≤
(1 + β)Cβ

2Cyβ
.
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As a consequence, there exists C ′′ > 0 such that∫
(y0,+∞)

s(y)(mY (dy) + kY (dy)) ≤ C ′′
∫

(y0,+∞)

1 + κ(y)

y1+β
dy,

which is finite by assumption. Finally, we conclude that (4.3) holds.
The diffusion process X = s(Y ) is on natural scale with speed measure

mX = mY ∗ s, which is dominated by (2/x) dΛ(x) in the neighborhood of
0, since s(y) ∼0+ y and s′(y) →0+ 1. We deduce from Thm. 3.4 that X
satisfies (3.1) and hence that Y satisfies

P(t1 < T̃0 | Y0 = y) ≤ As(y), ∀y > 0.

On the one hand, if
∫ 1

0
κ(y)
y dy <∞ then

∫ 1
0 kY (dy) <∞, which allows us

to conclude that (D) holds using Point (i) of Proposition 4.1. On the other
hand, if lim supx→0 κ(x) <∞, then Point (iii) of the same proposition holds
true and hence (D’) holds.

4.3 On processes solutions to stochastic differential equa-
tions and comparison with the literature

In the case where the speed measure m is absolutely continuous w.r.t. the
Lebesgue measure on (0,∞), our diffusion processes on natural scale are
solutions, before killing, to SDEs of the form

dXt = σ(Xt)dBt, (4.4)

where σ is a measurable function from (0,∞) to itself such that the speed
measure m(dx) = 1

σ2(x)
dx is locally finite on (0,∞). Following the scale

function trick of Section 4.1, our results actually cover all SDEs of the form

dYt = σ(Yt)dBt + b(Yt)dt

such that b/σ2 ∈ L1
loc((0,∞)) (see Chapter 23 of [9]).

Existence of quasi-stationary distribution of diffusion processes with
killing has been already studied in [19, 10]. These works are based on a
careful study of the generator of the process and Sturm-Liouville methods.
Their results cover the case of entrance or natural boundary at ∞, but only
the case of regular boundary at 0. Our results only cover the case of entrance
boundary at∞, but 0 can be either natural or exit. In the case where∞ is an
entrance boundary, the stronger previously known result is [10, Thm. 4.13]
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for diffusion processes (Yt, t ≥ 0) on [0,∞) which are solution to SDEs of
the form

dYt = dBt − h(Yt)dt, (4.5)

with killing measure absolutely continuous w.r.t. the Lebesgue measure with
continuous density on [0,∞). Let us recall that the scale function of the
solution (Yt, t ≥ 0) to (4.5) is given by

s(x) =

∫ x

0
exp

(
2

∫ y

1
h(z) dz

)
dy,

and that Xt = s(Yt) is solution to the SDE

dXt = exp

(
2

∫ s−1(Xt)

1
h(z) dz

)
dBt. (4.6)

In particular, this diffusion with killing is not as general as (4.4) since it only
covers the case where the diffusion coefficient is positive and continuous. In
fact, in all the references previously cited, the drift h is assumed at least
continuous so that the diffusion coefficient in (4.6) is at least C1.

In addition, our criteria allow unbounded killing rates at 0 as shown in
the next proposition, contrary to existing results. This result can be proved
similarly as Proposition 4.2.

Proposition 4.3. Assume that h ∈ L1
loc([0,+∞)) and that there exists C >

0 and β > 1 such that, for some y0 > 0,

h(y) ≤ −Cyβ, ∀y ≥ y0.

If κ satisfies ∫ 1

0
κ(y)dy <∞ and

∫ ∞
1

κ(y)

yβ
dy <∞,

then (D) is satisfied.

In the case where κ is continuous bounded and h is continuous on
[0,+∞), existence of a quasi-stationary distribution was already proved
in [10]. However, even in this case, uniqueness of the QSD, exponential
convergence of conditional distributions and exponential ergodicity of the
Q-process are new. Conversely, other results of [10] cannot be easily studied
with our methods, such as dichotomy results on the behavior of conditioned
diffusion processes with killing and the case of natural boundary at ∞.
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5 On continuous and discontinuous absorption times
when 0 is regular or exit and ∞ is entrance

We give in this section a result on the probability Px(τ c∂ < t ∧ τd∂ ) that
the process hits 0 continuously before being killed, which is useful for the
proof of our results of Subsection 3.1. In the introduction, we called this
property coming down from infinity before killing in reference to the classical
property of coming down from infinity for diffusion processes without killing
(see [1, 4]). Since this result also has an interest by itself, we give it in a
separate section.

Theorem 5.1.

∃t > 0 such that lim
x→+∞

Px(τ c∂ < t ∧ τd∂ ) > 0

⇐⇒
∫ ∞

0
y (dk(y) + dm(y)) <∞. (5.1)

This result is obtained as a consequence of the next proposition.

Proposition 5.2. For all k and m and all t > 0,

Px(τ c∂ < t ∧ τd∂ ) = Px(τ c∂ < t) = E
[
1∫∞

0 Zxs m(ds)<t exp

(
−
∫ ∞

0
Zxs k(ds)

)]
,

(5.2)
where

Zxt = 2

∫ t

0

√
Zxs dWs + 2(t ∧ x), ∀t ≥ 0.

In particular, Px(τ c∂ < t ∧ τd∂ ) is non-increasing w.r.t. x > 0 and

lim
x→+∞

Px(τ c∂ < t ∧ τd∂ ) = E
[
1∫∞

0 Zsm(ds)<t exp

(
−
∫ ∞

0
Zs k(ds)

)]
, (5.3)

where (Zt, t ≥ 0) is a squared Bessel process of dimension 2 started from 0.

Proof. We have

Px(τ c∂ < t ∧ τd∂ ) = Px(T̃0 < t and κ
T̃0
< E)

= Px
(∫ ∞

0
Lyσ

T̃0

m(dy) < t and

∫ ∞
0

Lyσ
T̃0

k(dy) < E
)

= Px
(∫ ∞

0
Ly
TB0

m(dy) < t and

∫ ∞
0

Ly
TB0

k(dy) < E
)

= Ex
[
1∫∞

0 Ly
TB0

m(dy)<t exp

(
−
∫ ∞

0
Ly
TB0

k(dy)

)]
.
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Hence (5.2) follows from Ray-Knight’s theorem (cf. e.g. [18]).
Since the process Y x

t =
√
Zxt is solution to

dY x
t = dWt +

21t≤x − 1

2Y x
t

dt,

standard comparison arguments show that the processes (Y x)x≥0 constructed
with the same Brownian motion satisfy Y x

t ≤ Y x′
t a.s. for all t ≥ 0 and

x ≤ x′, and Yt := limx→+∞ Y
x
t is a Bessel process of dimension 2. Eq. (5.3)

then follows from Lebesgue’s theorem.

Proof of Theorem 5.1. In view of (5.3), the equivalence (5.1) follows from [15,
Prop. (2.2), Lemma (2.3)], which states that, for any square Bessel process
(Rt, t ≥ 0) of positive dimension started from 0 and any positive Radon
measure µ on (0,+∞),

P
(∫ ∞

0
Rt dµ(t) <∞

)
= 1 ⇐⇒

∫ ∞
0

t dµ(t) <∞

and

P
(∫ ∞

0
Rt dµ(t) =∞

)
= 1 ⇐⇒

∫ ∞
0

t dµ(t) =∞.

Hence both r.v.
∫∞

0 Ly
TB0

m(dy) and
∫∞

0 Ly
TB0

k(dy) are a.s. finite iff
∫∞

0 y (dk(y)+

dm(y)) <∞, which entails (5.1).

6 Proof of the results of Section 3

Theorems 3.1 and 3.3 and the main part of Proposition 3.2 directly follow
from the results on general Markov processes of [3]. More precisely, the
following condition (A) is equivalent to (3.4) ([3, Thm. 2.1]), and implies
properties (3.5) and (3.6) of Proposition 3.2 ([3, Prop. 2.3]) and the whole
Theorem 3.3 ([3, Thm. 3.1]).

Assumption (A) There exists a probability measure ν on (0,+∞) such
that

(A1) there exists t0, c1 > 0 such that for all x > 0,

Px(Xt0 ∈ · | t0 < τ∂) ≥ c1ν(·);
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(A2) there exists c2 > 0 such that for all x > 0 and t ≥ 0,

Pν(t < τ∂) ≥ c2Px(t < τ∂).

Hence, we need first to prove that (C) implies (A) (in Subsection 6.1),
second, to prove that (C’) implies (A) (in Subsection 6.2), and finally, to
prove that η(x) ≤ Cx for all x ≥ 0 (in Subsection 6.3), which is the only
part of Proposition 3.2 left to prove.

6.1 Proof that Condition (C) implies (A)

Note that [3, Thm. 2.1] also assumes that

Px(t < τ∂) > 0, ∀x > 0, ∀t > 0, (6.1)

which is entailed by Prop. 2.2.
Our proof of (A) follows four steps, similarly as the proof of [4, Thm. 3.1].

In the first step, we prove that when X0 is close to 0, then, conditionally
on non-absorption, the process exits some neighborhood of 0 with positive
probability in bounded time. In the second step, we construct the measure
ν involved in (A). We next prove (A1) in the third step, and (A2) in the
last step.

Step 1: the conditioned process escapes a neighborhood of 0 in finite time.
The goal of this step is to prove that there exists ε, c > 0 such that

Px(Xt1 ≥ ε | t1 < τ∂) ≥ c, ∀x > 0, (6.2)

where t1 is taken from Assumption (C).
To prove this, recall that X̃ is a diffusion process on natural scale with

speed measure m but with null killing measure. We first observe that, since
X̃ is a local martingale, for all x ∈ (0, 1),

x = Ex(X̃
t1∧T̃1∧τκ),

where we recall that τκ = τd∂ on the event τd∂ <∞ and T̃0 = τ c∂ on the event
τ c∂ <∞. But the absorption at 0 ensures that

X̃
t1∧T̃1∧τκ = X̃

t1∧T̃1∧τκ1t1∧τκ<T̃0 + 1
T̃1<T̃0<t1∧τκ .

We thus have for all x ∈ (0, 1)

x = Px(t1 ∧ τκ < T̃0)Ex(X̃
t1∧T̃1∧τκ | t1 ∧ τκ < T̃0) + Px(T̃1 < T̃0 < t1 ∧ τκ).
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Now, the strong Markov property entails

Px(T̃1 < T̃0 < t1 ∧ τκ) ≤ Px(T̃1 < T̃0)P1(T̃0 < t1 ∧ τκ).

Since P1(T̃0 < t1 ∧ τκ) < 1 (see Prop. 5.2) and Px(T̃1 ≤ T̃0) = x (recall that
X̃ is a local martingale), we deduce from the two previous equations that
there exists a constant A′ > 0 such that

A′x ≤ Px(t1 ∧ τκ < T̃0)Ex(X̃
t1∧T̃1∧τκ | t1 ∧ τκ < T̃0).

By Assumption (C), we have Px(t1 < T̃0) ≤ Ax and Px(τd∂ < τ c∂) ≤ Ax.

But, by definition of τ c∂ and τd∂ , we have {τd∂ < τ c∂} = {τκ < T̃0}, so that

Px(t1 ∧ τκ < T̃0) ≤ 2Ax.

As a consequence,

Ex
(

1− X̃
t1∧T̃1∧τκ

∣∣∣ t1 ∧ τκ < T̃0

)
≤ 1− A′

2A
.

Since we can assume without loss of generality that A′

2A < 1, Markov’s in-

equality implies that, setting b = 1−
√

1−A′/2A,

Px
(
X̃
t1∧T̃1∧τκ ≤ b

∣∣∣ t1 ∧ τκ < T̃0

)
≤ 1−A′/2A

1− b
= 1− b,

hence

Px
(
X̃
t1∧T̃1∧τκ > b

∣∣∣ t1 ∧ τκ < T̃0

)
≥ b.

We deduce that, for all x ∈ (0, b),

Px(T̃b < t1 ∧ τκ | t1 ∧ τκ < T̃0) = Px(T̃b < t1 ∧ T̃1 ∧ τκ | t1 ∧ τκ < T̃0) ≥ b.
(6.3)

Now, since Pb(t1 < T̃0 ∧ τκ) > 0 (see Prop. 2.2), there exists ε ∈ (0, b) such
that

Pb(t1 < T̃ε ∧ τκ) > 0. (6.4)

Hence, we deduce from the strong Markov property that

Px(Xt1 ≥ ε) = Px(X̃t1 ≥ ε and t1 < τκ)

≥ Px(T̃b < t1 ∧ τκ)Pb(t1 < T̃ε ∧ τκ)

≥ bPx(t1 ∧ τκ < T̃0)Pb(t1 < T̃ε ∧ τκ),
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where the last inequality follows from (6.3). But Px(t1∧ τκ < T̃0) ≥ Px(t1 <
T̃0 ∧ τκ) = Px(t1 < τ∂), so that

Px(Xt1 ≥ ε | t1 < τ∂) ≥ bPb(t1 < T̃ε ∧ τκ) > 0.

This entails (6.2) for x < b.
For x ≥ b, the continuity (before killing) and the strong Markov property

for X imply

Px(Xt1 > ε | t1 < τ∂) ≥ Px(Xt1 > ε)

≥ Px(Tb <∞)Pb(t1 < T̃ε ∧ τκ)

≥ Px(τ c∂ <∞)Pb(t1 < T̃ε ∧ τκ)

Using Proposition 5.2 and (6.4), the proof of (6.2) is completed.

Step 2: Construction of coupling measures for the unconditioned process.
We prove that there exist two constants t2, c

′ > 0 such that, for all x ≥ ε,

Px(Xt2 ∈ ·) ≥ c′ν, (6.5)

where
ν = Pε(Xt2 ∈ · | t2 < τ∂).

Fix x ≥ ε and construct two independent diffusions Xε and Xx with
speed measure m(dx), killing measure k(dx), and initial value ε and x re-
spectively. Let θ = inf{t ≥ 0 : Xε

t = Xx
t }. By the strong Markov property,

the process

Y x
t =

{
Xx
t if t ≤ θ,

Xε
t if t > θ

has the same law as Xx. By the continuity of the paths of the diffusions
before killing, θ ∧ τd,x∂ ≤ τx∂ := inf{t ≥ 0 : Xx

t = 0}. Hence, for all t > 0,

P(θ < t) ≥ P(τ c,x∂ < t and τ c,x∂ < τd,x∂ ).

By Theorem 5.1, there exists t2 > 0 and c′′ > 0 such that

inf
y>0

Py(τ c∂ < t2 and τ c∂ < τd∂ ) ≥ c′′ > 0.

Hence

Px(Xt2 ∈ ·) = P(Y x
t2 ∈ ·) ≥ P(Xε

t2 ∈ ·, τ
c,x
∂ < t2 and τ c,x∂ < τd,x∂ )

≥ c′′Pε(Xt2 ∈ ·),
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where the last inequality follows from the independence of Xx and Xε.
Therefore, (6.5) is proved with c′ = c′′Pε(t2 < τ∂).

Step 3: Proof of (A1).
Using successively the Markov property, Step 2 and Step 1, we have for all
x > 0

Px(Xt1+t2 ∈ · | t1 + t2 < τ∂) ≥ Px(Xt1+t2 ∈ · | t1 < τ∂)

≥
∫ ∞
ε

Py(Xt2 ∈ ·)Px(Xt1 ∈ dy | t1 < τ∂)

≥ c′ν(·)Px(Xt1 ≥ ε | t1 < τ∂)

≥ c c′ ν(·).

This entails (A1) with t0 = t1 + t2 and c1 = cc′.

Step 4: Proof of (A2).
Let a > 0 be such that ν([a,+∞)) > 0. Then we have, for all x ≥ a,

Px(Xt0 ≥ a) ≥ c1ν([a,+∞))Px(τ∂ > t0)

≥ c1ν([a,+∞))Px(Ta <∞)Pa(τ∂ > t0)

≥ c1ν([a,+∞))Px(τ c∂ < τd∂ )Pa(τ∂ > t0),

where we have used the strong Markov property for the second inequality. By
Theorem 5.1, infx∈(0,+∞) Px(τ c∂ < τd∂ ) > 0 and we know that Pa(τ∂ > t0) > 0
by Proposition 2.2. As a consequence,

inf
x≥a

Px(Xt0 ≥ a) > 0.

Using this inequality and a standard renewal argument, we deduce that
there exists ρ > 0 such that, for all k ∈ N,

Pa(Xkt0 ≥ a) ≥ e−ρkt0 . (6.6)

Now, we know from Step 4 of the proof of [4, Theorem 3.1] (see also [1])
that, since the diffusion X̃ on [0,∞) without killing has ∞ as an entrance
boundary, for all r > 0, there exists yr > 0 (which can be assumed larger
than a without loss of generality) such that

sup
x≥yr

Ex(erT̃yr ) < +∞.

This implies
sup
x≥yρ

Ex(eρ(Tyρ∧τ∂)) < +∞, (6.7)
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for the constant ρ of (6.6). Using the strong Markov property, for all x ∈
[a,+∞) and y ∈ [a, yρ],

Px(t < τ∂) ≥ Px(Ta <∞)Pa(Ty <∞)Py(t < τ∂)

≥ Px(τ c∂ < τd∂ )Pa(Tyρ <∞)Py(t < τ∂).

Using Theorem 5.1 and Proposition 2.2, we infer that there exists C > 0
such that, for all t ≥ 0,

sup
x∈[a,yρ]

Px(t < τ∂) ≤ C inf
x∈[a,+∞)

Px(t < τ∂). (6.8)

Finally, we also deduce from the Markov property that, for all s < t,

Pa(Xds/t0et0 ≥ a) inf
x∈[a,+∞)

Px(t− s < τ∂) ≤ Pa(t < τ∂). (6.9)

Now, for all x ≥ yρ, with a constant C > 0 that may change from line
to line, using successively (6.7), (6.8), (6.9) and (6.6), we obtain

Px(t < τ∂) ≤ Px(t < Tyρ ∧ τ∂) +

∫ t

0
Pyρ(t− s < τ∂)Px(Tyρ ∈ ds)

≤ Ce−ρt + C

∫ t

0
Pa(t− s < τ∂)Px(Tyρ ∈ ds)

≤ Ce−ρdt/t0et0 + CPa(t < τ∂)

∫ t

0

1

Pa(Xds/t0et0 ≥ a)
Px(Tyρ ∈ ds)

≤ CPa(t < τ∂) + CPa(t < τ∂)

∫ t

0
eρs Px(Tyρ ∈ ds).

We deduce that, for all t ≥ 0,

sup
x∈[yρ,+∞)

Px(t < τ∂) ≤ C inf
x∈[a,+∞)

Px(t < τ∂). (6.10)

Now, for all x ∈ [a,+∞) and all y ∈ (0, a),

Px(t < τ∂) ≥ Px(Ty <∞)Py(t < τ∂)

≥ Px(τ c∂ < τd∂ )Py(t < τ∂).

Using Proposition 5.2, we deduce that there exists C > 0 such that, ∀t ≥ 0,

sup
x∈(0,a)

Px(t < τ∂) ≤ C inf
x∈[a,+∞)

Px(t < τ∂). (6.11)

Finally, since ν([a,+∞)) > 0, (6.8), (6.10) and (6.11) entail (A2).
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6.2 Proof that Condition (C’) implies (A)

The proof follows exactly the same steps as in Subsection 6.1. The only step
which needs to be modified is Step 1, so we only detail this step.

Step 1: the conditioned process escapes a neighborhood of 0 in finite time.
The goal of this step is to prove that there exists ε′, c > 0 such that

Px(Xt1 ≥ ε′ | t1 < τ∂) ≥ c, ∀x > 0. (6.12)

We know from the study of diffusions without killing of [4, Step 1 of Sec-
tion 5.1] that there exists c, b > 0 such that, for all x ≤ b,

Px(T̃b < t1 ∧ T̃0) ≥ cPx(t1 < T̃0), (6.13)

By Assumption (C’) and using (2.1), a.s. for all t ≤ T̃ε,

κt =

∫ ∞
0

Lyσt dk(y) ≤ A
∫ ∞

0
Lyσt dm(y) = AAσt = At.

Note that we can assume without loss of generality in (6.13) that b ≤ ε.
Therefore, for all x ∈ (0, b), a.s. under Px,

{τκ > t1 ∧ T̃b} = {κ
t1∧T̃b < E} ⊃ {t1 ∧ T̃b < E/A} ⊃ {t1 < E/A}.

Hence, using (6.13) and the independence between E and X̃,

Px(Tb < t1 ∧ τ∂) = Px({T̃b < t1 ∧ T̃0} ∩ {τκ > t1 ∧ T̃b})

≥ Px({T̃b < t1 ∧ T̃0} ∩ {t1 < E/A})

≥ cPx(t1 < T̃0)e−At1 ≥ ce−At1Px(t1 < τ∂).

But, for all ε′ ∈ (0, b), x ∈ (0, b),

Px(Xt1 ≥ ε′) ≥ Px(Tb < t1 ∧ τ∂)Pb(t1 < Tε′ ∧ τκ).

By Proposition 2.2, the last factor of the r.h.s. is positive for ε′ > 0 small
enough, which concludes the proof of (6.12), since the case x ≥ b can be
handled exactly as in Subsection 6.1.

6.3 Proof that η(x) ≤ Cx for all x ≥ 0

We recall that, since we already proved that (C) and (C’) imply (A), [3,
Prop. 2.3] entails the main part of Proposition 3.2, and we only have to
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check that there exists a constant C such that η(x) ≤ Cx for all x ≥ 0,
where η(x) is the uniform limit of eλ0tPx(t < τ∂). Since for all t ≥ t1, where
the constant t1 is the one given in Assumption (C) or (C’),

eλ0tPx(t < τ∂) = eλ0tEx
[
PXt1 (t− t1 < τ∂)

]
≤ Ceλ0t1Px(t1 < τ∂). (6.14)

For the last inequality, we used the fact that eλ0sPy(s < τ∂) is uniformly
bounded in y > 0 and s ≥ 0 because of the uniform convergence in (3.5).

By Assumption (C) or (C’), Px(t1 < τ∂) ≤ Px(t1 < T̃0) ≤ Ax, and we
obtain the inequality η(x) ≤ Cx by letting t→ +∞ in (6.14).
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