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Abstract7

Motion estimation has been studied extensively in neuroscience in the last
two decades. Even though there has been some early interaction between
the biological and computer vision communities at a modelling level, com-
paratively little work has been done on the examination or extension of the
biological models in terms of their engineering efficacy on modern optical
flow estimation datasets. An essential contribution of this paper is to show
how a neural model can be enriched to deal with real sequences. We start
from a classical V1-MT feedforward architecture. We model V1 cells by mo-
tion energy (based on spatio-temporal filtering), and MT pattern cells (by
pooling V1 cell responses). The efficacy of this architecture and its inherent
limitations in the case of real videos are not known. To answer this ques-
tion, we propose a velocity space sampling of MT neurones (using a decoding
scheme to obtain the local velocity from their activity) coupled with a multi-
scale approach. After this, we explore the performance of our model on the
Middlebury dataset. To the best of our knowledge, this is the only neural
model in this dataset. The results are promising and suggest several possi-
ble improvements, in particular to better deal with discontinuities. Overall,
this work provides a baseline for future developments of bio-inspired scalable
computer vision algorithms and the code is publicly available to encourage
research in this direction.
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benchmarking9
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1. Introduction10

Interpretation of visual motion information is a key competency for bi-11

ological vision systems to survive in a dynamic world but also for artificial12

vision systems to process videos efficiently. As such, visual motion estimation13

has been studied extensively by both biological vision and computer vision14

communities. The question is to estimate optical flow, which is defined by15

2-D vectors at sample locations of the visual image that describe temporal16

displacements of moving scene elements within the sensor’s frame of refer-17

ence. This displacement vector field constitutes the image flow representing18

apparent 2-D motions resultant from the 3-D velocities being projected onto19

the sensor. Such 2-D motions are observable only through intensity varia-20

tions as a consequence of the relative change between an observer (eye or21

camera) and the surfaces or objects in a visual scene.22

In the past two decades efforts by computer vision researchers have led23

to development of a large number of models for the computation of optical24

flow (see [1] for a review). In addition to modeling efforts to solve this task,25

a prominent achievement in computer vision has been to develop publicly26

available benchmarking datasets to evaluate and compare models in natural27

image scenarios. These benchmarking datasets have spurred a great deal28

of research resulting in new models, however, despite this large amount of29

work in this area, the problem still remains hard to solve as many of the30

models either lack consistent accuracy across video sequences or have a high31

computational cost.32

On the other hand the neural mechanisms underlying motion analysis in33

the visual cortex have been extensively studied with a lot of emphasis on34

understanding the function of cortical areas V1 [2, 3] and MT [4], which play35

a crucial role in motion estimation (see [5, 6, 7] for reviews). Neurons in V136

are found to respond when motion direction is perpendicular to the contrast37

of the underlying pattern, while neurons in MT are found to respond best38

to a particular speed irrespective of the underlying contrast orientation and39

thus are believed to be solving the local motion estimation problem.40

Several computational models have been proposed based on the available41

experimental data. Initially models focussed on motion sensitive cells in V142

(complex cells). Using the conceptual framework of receptive fields (RF)43

the responses were explained using Gabor functions [8], and spatio-temporal44

motion energy [9]. Then few attempts were made to recover the motion45

vectors directly from the motion energy representation [10, 11]. One could46
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call these models as being at the interface between computer vision and47

biological vision. These initial attempts were later on leveraged and extended48

to explain the properties of MT neurons by considering a feedforward pooling49

from V1 cells followed by divisive normalisation [12, 13, 14]. Apart from50

this class of linear-non linear feedforward models other attempts were made51

to simulate the information processing by V1-MT layers using lateral or52

feedback interactions for solving the aperture problem, by considering a pure53

velocity space representation and various kinds of local motion estimation [15,54

16, 17, 18, 19].55

Even though there was some early interaction among the biological and56

computer vision communities at a modeling level (see, e.g., [20, 21, 13]), com-57

paratively little work has been done for examining or extending the models58

proposed in biology in terms of their engineering efficacy on modern optical59

flow estimation datasets. In this work, we take a step towards filling the60

critical gap between biological and computer vision communities (see [22]61

for a more general discussion), focusing on visual motion estimation lever-62

aging and testing ideas proposed in biology in terms of building scalable63

algorithms. This is a challenging task as many of the models proposed in64

biology are confined to highly primed stimuli or often only examine a local65

decision making process such as a receptive field property, which demands66

non-trivial extensions to be made before the ideas could be tested on complex67

real world datasets.68

In this paper, we focus on the V1-MT feedforward class of models, which69

can be seen as equivalent to the popular and well studied Lucas-Kanade70

approach [23] (see [24]). Our goal is to propose a bio-inspired model bench-71

marked on a state-of-the-art dataset, providing to the computer vision com-72

munity a baseline model which can be extended by incorporating further73

findings from biology. The two key contributions of our work can be stated74

as follows: (i) Proposing a velocity space sampling of tuned MT neurones75

and a scheme to decode the local velocity from the activity of these neurones.76

Most of the experimental studies were focussed on single cell responses of V177

or MT neurones to a subset of stimuli, thus ignoring how does the overall78

population encode the true velocity vectors. We address this problem by our79

sampling and decoding scheme. (ii) Examining the efficacy of V1-MT feed-80

forward processing in natural image scenarios. The stimuli used in various81

experiments are highly homogeneous and do not cover the spatio-temporal82

filtering plane as in the case of natural images [25]. Thus the efficacy of the83

system and inherent limitations in case of natural stimuli are not known.84
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This is explored by considering Middlebury dataset, which comprises com-85

plex natural stimuli.86

The paper is organized as follows: In Sec. 2 we present our V1-MT feed-87

forward architecture for optical flow estimation (called FFV1MT). Our model88

has three main steps: The two first steps model V1 cells and MT pattern89

cells following classical ideas from the literature. The third step is a decoding90

stage to extract the optical flow from MT population response. In Sec. 3 we91

present the algorithmic details of this model, which are an essential contri-92

bution here, since they allow this V1-MT architecture to be applied to real93

videos. In particular, we propose a multi-scale approach to deal with large94

ranges of speeds found in natural scenes. In Sec. 4 we evaluate our approach95

on several kinds of videos. We use test sequences to show the intrinsic prop-96

erties of our approach and we benchmark our approach using the Middlebury97

dataset [26].98

2. Feedforward V1-MT model for optical flow estimation99

2.1. General overview100

In general, the pattern selectivity of MT cells can be explained by follow-101

ing two different approaches [6]: the motion computation can be related to102

some kind of 2-D feature extraction mechanism, or based on intersection of103

constraints (IOC) mechanisms. For the former approach, the consequence is104

that the aperture problem does not affect the motion processing, though lit-105

tle evidence for a feature-tracking mechanism are reported [27, 28, 29]. The106

latter approach is based on geometric relationships among the local velocity107

estimates.108

The model we study in this paper is based on a non-linear integration109

of the V1 afferents to obtain the MT pattern cells [7]. In particular, the110

IOC mechanism is indirectly considered through localized activations of V1111

cells [12, 13, 14]. It is a three-step feedforward model: Step 1 corresponds to112

the V1 simple and complex cells, Step 2 corresponds to the MT pattern cells113

and Step 3 corresponds to a decoding stage to obtain the optical flow from114

the MT population response. In term of modeling, Steps 1 and 2 follow a115

classical view, while Step 3 has been introduced to solve the task of optical116

flow. An illustration of our model called FFV1MT is given in the figure next117

to Tab. 1 (see also Fig. 1 for a more detailed illustration of the computations118

involved).119
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Figure 1: FFV1MT Model overview: It is a three-step feedforward model, where Step 1
corresponds to the V1 layer (obtained by a non-separable spatio-temporal filtering and a
normalisation), Step 2 corresponds to MT layer (obtained by pooling V1 responses first
with respect to θ, then in a local spatial neighbourhood, and applying a static nonlinearity)
and Step 3 is velocity estimation (obtained by a weighted average of MT responses).

This model is inspired from previous works from visual neuroscience [10,120

13, 14] and in Tab. 1, we summarise what are the main differences. In the121

seminal paper of Heeger [10] a first motion estimation model is introduced122

to compute the optical flow. Steps 1 and 2 of our model are similar to the123

ones presented in [13], but in the latter the optical flow is not estimated.124

It is worth to note that the model proposed in [14] is described in the pa-125

rameter space, whereas we present a model in the (p, t) space that is able126

to estimate the optical flow of real-world sequences. All the model, but127

[14], introduce a processing stage to avoid responses to ambiguous low fre-128

quency textures. Finally, we propose an empirical sampling scheme of the129

two-dimensional velocity space, which provides competitive estimates while130

reducing the computational cost significantly when compared to [13].131

2.2. Description of the FFV1MT model132

Let us consider a grayscale image sequence I(p, t), for all positions p =133

(x, y) inside a domain Ω and for all time t > 0. Our goal is to find the optical134

flow v(p, t) = (vx, vy)(p, t) defined as the apparent motion at each position p135

and time t.136

Step 1 : V1 (Motion energy estimation and normalization). In the V1-layer
two sub-populations of neurons are involved in the information processing,
namely V1-direction selective simple cells and complex cells. Simple cells are
characterised by the preferred direction θ of their contrast sensitivity in the
spatial domain and their preferred velocity vc in the direction orthogonal to
their contrast orientation often referred to as component speed. The RFs
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Figure for Table 1

V 1

MT

p
D
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od
in
g

Model char-
acteristics

Heeger [10] Simoncelli
and
Heeger [13]

Rust et
al. [14]

FFV1MT

V1 cell
model

Gabor filters Third
derivative of
a Gaussian

Direction
space only

Gabor filters
as in [10]

MT pooling N.A. Yes Yes Yes
MT nonlin-
earity

N.A. Yes Yes Yes

MT pop-
ulation
sampling

N.A. Dense Direction
space only

Principal
axes only

Decoding Least-square
on motion
energy

No No Linear

Multi scale Yes No No Yes
Coarse-to-
fine

No No No Yes

Table 1: Comparison of our model FFV1MT with respect to other most related work.

of the V1 simple cells are classically modelled using band-pass filters in the
spatio-temporal domain. In order to achieve low computational complexity,
the spatio-temporal filters are decomposed into separable filters in space and
time. Spatial component of the filter is described by Gabor filters H and
temporal component by an exponential decay function P . Given the peak
spatial and temporal frequencies fs and ft of a receptive field, we define the
following complex filters by:

H(p, θ, fs) = Be

(
−(x2+y2)

2σ2

)
ej2π(fscos(θ)x+fssin(θ)y), (1)

P(t, ft) = e(−
t
τ )ej2π(ftt), (2)

where σ and τ define the spatial and temporal scales, respectively. Denoting
the real and imaginary components of the complex filters H and P as He,Pe
and Ho,Po respectively, and a preferred velocity vc related to the frequencies
by the relation

vc =
ft
fs
, (3)
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we introduce the odd and even spatio-temporal filters defined as follows,

Go(p, t, θ, vc) = Ho(p, θ, fs)Pe(t, ft) +He(p, θ, fs)Po(t, ft),
Ge(p, t, θ, vc) = He(p, θ, fs)Pe(t, ft)−Ho(p, θ, fs)Po(t, ft). (4)

These odd and even symmetric and tilted (in space-time domain) filters char-
acterize V1 simple cells. Using these expressions, we define the response of
simple cells, either odd or even, with a preferred direction of contrast sensi-
tivity θ in the spatial domain, with a preferred velocity vc and with a spatial
scale σ by

Ro/e(p, t, θ, v
c) = (Go/e(·, ·, θ, vc)

(x,y,t)∗ I)(p, t). (5)

Fig. 2(a) shows the amplitude power spectra of the spatio-temporal filters137

Go(p, t, θ, vc) (the same is for Ge(p, t, θ, vc)) in the frequency domain. The138

shape of the amplitude power spectra of the filters’ bank is due to the com-139

bination of the odd and even functions (Ho, He, Po, and Pe) given in (4).140

The complex cells are described as a combination of the quadrature pair
of simple cells (5) by using the motion energy formulation

E(p, t, θ, vc) = Ro(p, t, θ, v
c)2 +Re(p, t, θ, v

c)2,

followed by a normalisation: Considering a finite set of orientations θ =
θ1 . . . θN , the final V1 response is defined by

EV 1(p, t, θ, vc) =
E(p, t, θ, vc)∑N

i=1E(p, t, θi, vc) + ε
, (6)

where 0 < ε� 1 is a small constant to avoid divisions by zero in regions with141

no energy (when no spatio-temporal texture is present). The main property142

of V1 is its tuning to the spatial orientation of the visual stimulus, since the143

preferred velocity of each cell is related to the direction orthogonal to its144

spatial orientation.145

Step 2: MT pattern cells response. MT neurones exhibit velocity tuning ir-
respective of the contrast orientation. This is believed to be achieved by
pooling afferent responses in both spatial and orientation domains followed
by a non-linearity [13]. The responses of an MT pattern cell tuned to the
speed vc and to direction of speed d can be expressed as follows:

EMT (p, t, d, vc) = F

(
N∑

i=1

wd(θi)Gσpool

x,y∗ EV 1(p, t, θi, v
c)

)
, (7)
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Figure 2: Representation of the V1 RFs in the frequency domain. (a) The iso-surface of
the power spectra of the considered spatio-temporal filter bank that models the V1 cells.
The spatial radial peak frequency of the filters is constant and the temporal frequency
changes, thus the frequency bands have a cylinder-like shape. The V1 cells afferent to a
population of MT cells for a specific vc are highlighted in cyan. (b) The weights wd(θ)
used to pool the afferent V1 cells. In particular, the weights refer to a cosine weighting
function, with values from -1 to 1 as in the colormap.

where Gσpool denotes a Gaussian kernel of standard deviation σpool for the146

spatial pooling, F (s) = exp(s) is a static nonlinearity chosen as an expo-147

nential function [30, 14], and wd represents the MT linear weights that give148

origin to the MT tuning. In Fig. 2(a) the power spectra of the filters cor-149

responding to the V1 cells afferent to a population of MT cells tuned to a150

specific vc are represented in cyan. Such afferent cells are weighted through151

the wd(θ), as shown in Fig. 2(b).152

Physiological evidence suggests that wd is a smooth function with central
excitation and lateral inhibition. Cosine function shifted over various orien-
tations is a potential function that could satisfy this requirement to produce
the responses for a population of MT neurones [31]. Considering the MT
linear weights shown in [14], wd(θ) is defined by

wd(θ) = cos(d− θ) d ∈ [0, 2π[. (8)

This choice allows to obtain direction tuning curves of pattern cells that153

behave as in [14]. However, considering MT neurones that span over the154

2-D velocity space with a preferred set of tuning speed directions in [0, 2π[155

and also a multiplicity of tuning speeds is not necessary to encode velocity.156

A sampling along the cardinal axes is sufficient to recover the full velocity157

vector: since cosine functions shifted over various orientations (see Eq. (8))158

can be described by the linear combination of an orthonormal basis (i.e.,159
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sine and cosine functions), all the V1 afferent information is encoded by two160

populations of MT neurons (see Eq. (7)). For this reason, in this paper, we161

sample the velocity space using two MT populations tuned to the directions162

d = 0 and d = π/2 with varying tuning speeds.163

Step 3: Decoding. In this step we wonder how optical flow can be estimated
by decoding the population responses of the MT neurones. Indeed, a unique
velocity vector cannot be recovered by activity of a single velocity tuned
MT neurone as multiple scenarios could evoke the same activity, but unique
vector can be recovered based on the activity of a population. In this paper,
we present a decoding step which was not present in [13, 14] to decode the
MT population. We adopt a linear combination approach to decode the MT
population response as in [32, 33]:

{
vx(p, t) =

∑M
i=1 v

c
iE

MT (p, t, 0, vci ),

vy(p, t) =
∑M

i=1 v
c
iE

MT (p, t, π/2, vci ).
(9)

2.3. An extension to deal with discontinuities: The FFV1MT–TF model164

The FFV1MT approach described in this section relies on isotropic spatial165

smoothing at V1 level and isotropic pooling from V1 to MT. There is no166

mechanism to deal with motion discontinuities. In this section, we propose a167

simple extension of the FFV1MT model to show how discontinuities could be168

preserved. The idea is to introduce an iterative diffusion process between MT169

cells, which could be interpreted as the effect of lateral connections inside the170

MT population. The way nearby cells exchange information depends on their171

respective tuning speeds and directions, but it can also depend on the local172

context of the image. For example, local contrast and luminance information173

can modulate neurones characteristics and connections.174

To model this idea, we propose a solution based on the trilateral filter175

(TF) which is an extension of the linear Gaussian filtering. Bilateral and176

trilateral filter have been extensively used in the context of nonlinear image177

smoothing leading to many applications (see [34] for a review). They provide178

a simple way to take discontinuities into account. Considering each popu-179

lation of MT cells tuned to a specific value of d and vc as a spatial map,180

the goal is to apply TF in space to each map EMT (·, t, d, vc). This model is181

called FFV1MT–TF.182

Denoting EMT (p, t, d, vc) by EMT (p) for sake of simplicity, one iteration
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of TF on EMT (p) is defined by:

TFα,β,γ[E
MT ](p) =

1

N(p)

∫

p′∈Ω

fα(‖p− p′‖)fβ(EMT (p′)− EMT (p))

fγ(I(p′, t)− I(p, t))EMT (p′)dp′,
(10)

where
fµ(s) = exp(s2/µ2) s ∈ R, (11)

α, β and γ are parameters defining the smoothing properties of TF and N(p)
is the normalising term

N(p) =

∫

p′∈Ω

fα(‖p− p′‖)fβ(EMT (p′)− EMT (p))fγ(I(p′, t)− I(p, t))dp′.

The interpretation of (10) is that, to estimate the new activity of an MT183

cell located at position p after one pass of TF, we average MT cell activities184

which are close in space, which have a similar activity, and which corre-185

spond to positions having similar luminance. The resulting filtered energy186

TFα,β,γ[E
MT ](p) is smoothed while main discontinuities are preserved and en-187

hanced according to energy and luminance discontinuities. Several iterations188

of this filter can be made depending on the degree of smoothing desired.189

3. Making the approach applicable to real videos190

This kind of V1-MT feedforward architecture presented in Sec. 2 was ini-191

tially proposed to explain recorded neural activities and mainly applied on192

synthetic homogeneous images such as moving gratings and plaids. They193

were not designed to be a systematic alternative to computer vision algo-194

rithms to work on real videos. In this section, we propose algorithmic solu-195

tions to make this V1-MT feedforward architecture applicable to real videos196

so that it could be benchmarked using state-of-the-art dataset.197

3.1. Multiscale approach198

One critical point in dealing with real videos is to be able to deal with199

a large range of speeds. As detailed in Sec. 2, the V1-like RFs are modelled200

through spatio-temporal filters. In order to keep as low as possible the com-201

putational load of the model, only one spatial radial peak frequency fs has202
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been considered. This is in contrast with the physiological findings, since203

information in natural images is spread over a wide range of frequencies, it is204

necessary to use a mechanism that allows to get information from the whole205

range of frequency.206

In this paper, we propose a multi-scale approach as illustrated in Fig. 3.207

This is a classical approach used in computer vision. It consists in (i) a208

pyramidal decomposition with L levels [35] and (ii) a coarse-to-fine refine-209

ment [36], which is a computationally efficient way to take into account the210

presence of different spatial frequency channels in the visual cortex and their211

interaction.212

Using this approach, the spatial distance between corresponding points213

is reduced, thus yielding to a more precise estimate, since the residual values214

of the velocities lie in the filters’ range. This also allows large displacements215

to be estimated which is a crucial aspect when dealing with real sequences.216

Interestingly, at a functional level, there is an experimental evidence that MT217

neurons seems to follow a coarse-to-fine strategy [37] suggesting that motion218

signals become more refined over time.219

The equivalence between a multi-scale approach and the corresponding220

multi-resolution approach is shown in Fig. 4. The multi-scale analysis is221

performed by using three banks of Gabor filters with different spatial peak222

radial frequencies, each separated by an octave scale. The multi-resolution223

approach is obtained by iteratively low-pass filtering and subsampling the224

input image, then only the outermost bank of filter (i.e., the highest frequency225

one) is applied.226

3.2. Boundary conditions227

The problem of boundary conditions arises as soon as we need to con-228

sider values outside the domain of definition Ω. Even with simple Gaussian229

smoothing, when estimating results close to the boundaries, one needs to230

access values outside Ω. This is solved generally by choosing some bound-231

ary conditions like Neumann or Dirichlet. However, in our case, using such232

assumptions might introduce some strong errors at the boundaries. For this233

reason, we proposed instead to work inside an inner region denoted by Ωin234

in which only available values are taken into account (so that no approxima-235

tion or assumption has to be made), and then to interpolate values in the236

remaining outer region denoted by Ωout. Note that this is an important issue237

to consider, especially because we use a multi-scale approach since errors238
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Figure 3: Multi-scale approach: In this example, three scales are represented (L = 3).
Pyramidal decomposition is denoted by Sl with (l = 0 . . . L− 1) (l = 0 is the finer scale).

At a scale l, the estimated residual optical flow (δ̂vl) plus the optical flow coming from the
coarser scale (vl+1) is used to warp the sequence of the spatially filtered images at scale
l − 1.
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Figure 4: Equivalence between a multi-scale approach and the corresponding multi-
resolution approach. This figure shows the amplitude spectra of three banks of Gabor
filters with three spatial peak radial frequencies and eight spatial orientation: this fre-
quency representation is a slice obtained for a fixed ωt, the (ωx, ωy, ωt) amplitude spectra
of the bank of filters is shown in Fig. 2. Processing the image at full resolution by using
the three banks of filters is equivalent to apply the outermost bank of filters to the three
subsampled images.

done at the boundaries at low scales can spread a lot as scales are getting239

finer.240

The way to defined the outer region Ωout is illustrated in Fig. 5(a). It is
constructed by first taking into account the region B1 in which V1 cells would

12



(d)(c)

⌦

A
A

B1

B2

p p

p1

p2

⌦in ⌦out
⌦out ⌦in

⌦in

⌦out (d)(c)

⌦

A
A

B1

B2

p p

p1

p2

⌦in ⌦out
⌦out ⌦in

⌦in

⌦out

(d)(c)

⌦

A
A

B1

B2

p p

p1

p2

⌦in ⌦out
⌦out ⌦in

⌦in

⌦out

(d)(c)

⌦

A
A

B1

B2

p p

p1

p2

⌦in ⌦out
⌦out ⌦in

⌦in

⌦out

(a) (b) (c) (d)

Figure 5: Illustration of the filling-in approach used to deal with boundary conditions and
the unreliable regions. (a) How inner domain Ωin (in grey) is defined taking into account
V1 filter spatial size and V1 to MT pooling. Ωout (in red) corresponds to B1∪B2 (see text).
(b) Image domain showing the inner region Ωin where exact computations can be done
(i.e., without any approximation), the outer region Ωout where an interpolation scheme
is applied, and an example of unreliable region explained in (d). (c) Illustration of the
interpolation scheme for a pixel p ∈ Ωout, showing the spatial neighbourhood associated
with the spatial support of the integration and in green the region A which is used to
estimate the interpolated values. (d) Same as (c) but in the case of an unreliable region.

need values outside Ω, and then the regions B2 corresponding to MT cells that
would pool information from V1 cells in B1. So we have Ωout = B1 ∪ B2 and
Ωin = Ω\Ωout. Given this definition of inner and outer regions (Fig. 5(b)),
the idea is to make all the estimations in Ωin and to interpolate values in the
outer region Ωout (Fig. 5(c)). Given EMT estimated in Ωin, we propose that

EMT (p) =
1

N(p)

∫

p′∈A
fα(‖p− p′‖)fγ(I(p)− I(p′))EMT (p′)dp′ ∀p ∈ Ωout,

(12)
where A contains pixels at the inner boundary of Ωin (green region) where
EMT is well estimated, function fµ is defined as in (11), α and γ are param-
eters and N(p) is a normalizing term

N(p) =

∫

p′∈A
fα(‖p− p′‖)fγ(I(p)− I(p′))dp′.

This method is based on luminance similarities using the same idea as de-241

veloped in Sec. 2.3. Note that other interpolation methods could be used242

instead.243

3.3. Unreliable regions244

A problem is found with regions having a null spatio-temporal content,245

which happens for example in the blank wall problem. In that case, locally,246
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it is not possible to find a velocity. Given a threshold T , a pixel p will be247

categorised as unreliable if and only if EMT (p, t, d, vc) < T for all d and vc.248

For these pixels, the same interpolation as (12) is proposed (Fig. 5(d)).249

4. Results250

4.1. Parameters settings251

Table 2 gives parameters used in our simulations. The size of the spatial252

support of the V1 RF was chosen so that fine details in real-world sequences253

at high image resolution could be processed. V1 and MT RFs process the254

visual signal within an average time of 200 ms [38, 37], which corresponds255

to five frames for a standard video acquisition device, thus we have chosen256

the temporal support of the filters in order to match this constraint. With257

this choice, we can not have tuning to velocities higher than one pixel per258

frame (ppf), i.e., one ppf corresponds to the maximum temporal frequency259

(see (3)) that can be sampled for the Nyquist theorem. This limitation has260

been addressed here by considering a multi-scale approach, as explained in261

Sec. 3.1. The number of scales depends on the size of the input images262

and on the speed range (a priori unknown). For the Middlebury videos we263

chose six spatial scales. It is worth noting that to avoid the introduction264

of a loss of balance between the convolutions with the even and odd Gabor265

filters, the contribution of the DC component is removed [39]. Finally, we266

set the support of the spatial pooling Gσpool to five which is in accordance267

with findings reported in literature [40, 41].268

4.2. Analysis of proposed approaches269

In this section, we evaluate the proposed FFV1MT model using syn-270

thetic and real sequences to show the intrinsic properties of our approach.271

When ground truth optical flow is available, average angular error (AAE)272

and endpoint error (EPE) will be estimated (with associated standard devi-273

ations) [26].274

The influence of the number of spatial scales is shown in Fig. 6. In this275

sequence a dashed bar moves rightward with velocity (2,0) ppf. Results show276

that increasing the number of scales improves the results. It is worth noting277

that the aperture problem is correctly solved by considering three spatial278

scales in the small segments, whereas five spatial scales are needed to handle279

longer segments, though a residual optical flow at the finest scale is not280
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Description Parameter Value Equation

V1
RF spatial scale σ 2.27 pixels (1)
... and spatial support SS 11× 11 pixels, (1)
Time constant of the exp. decay τ 2.5 frames (2)
... and temporal support TS 5 frames (2)
Spatial radial peak frequency fs 0.25 cycles/pixel (1)
Temporal radial peak frequencies ft {0, 0.10, 0.15, 0.23} cycles/frame (2)
Number of spatial contrast orientations N 8 (from 0 to π) (6)
... and sampling θi θ = kπ/N, k = 0..N − 1 (6)
Number of component speeds M 7 (3)
... and sampling vc {−0.9,−0.6,−0.4, 0, 0.4, 0.6, 0.9} (3)
Semi-saturation constant ε 10−9 (6)
MT
Std dev of the Gaussian spatial pooling σpool 0.9 pixels (7)
... and spatial support 5× 5 pixels (7)
Decoding step
Number of MT direction tuning directions 2 (9)
... and sampling d {0, π/2} (9)
Algorithm
Number of scales L 6
Spatial parameter of the interpolation α 2.5 pixels (12)
Luminance parameter of interpolation γ 1/6 of luminance range (12)
Other parameters for FFV1MT-TF model
Spatial parameter α {0.50, 0.83, 1.16, 1.50, 1.83} (10)

as a function of spatial scale
Range parameter β 1/6 of energy range (10)
Luminance parameter γ 1/6 of luminance range (10)

Table 2: Parameter values used in our simulations for the FFV1MT model and its ex-
tension FFV1MT-TF. Equation number refers to the equation where it has been first
introduced.
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Ground truth FFV1MT (L = 1) FFV1MT (L = 3) FFV1MT (L = 5)
AAE=52.21±4.43 AAE=10.32±5.78 AAE=6.20±3.82

EPE=1.79±0.08 EPE=0.36±0.22 EPE=0.24±0.14

Figure 6: Influence of the number of spatial scales. The FFV1MT model is tested with
L=1, 3 and 5 scales. The color code used to show optical flow is in the inset on the first
image. This color code will be used in all figures to represent optical flow. Note that
the aperture problem is partially solved by considering a scale-space approach, where the
effective receptive field size of MT increases and thus takes into consideration 2-D cues
that are present at a distance. This can be readily observed by the results on bars with
different lengths.

correctly recovered in the middle of the longest segment, since the spatial281

support of the RFs is too small with respect to the visual feature.282

The next example in Fig. 7 is on another synthetic video that represents283

a textured shape moving on top of a translating background. Optical flow284

result show a good estimation of the optical flow except in the neighbour-285

hood of objects boundaries (which are also here motion boundaries). The286

FFV1MT–TF approach looks qualitatively better, however it does not im-287

prove the quantitative performance. It might be due to the noisy texture of288

this synthetic sequence.289

In order to analyze the roles of the different stages of the model, Fig. 8290

shows the V1 and MT activities. The first row shows ‖EV 1‖θ(p, vc) =291 (∑N
i=1E

V 1(p, θi, v
c)2
)1/2

: the activities do not identify specific tuning speeds,292

since all the spatial orientations are pooled in the norm and the tuning speeds293

are component speeds, i.e., they are orthogonal to the spatial orientation of294

the cell. The second row shows ‖EV 1‖vc(p, θ) =
(∑M

i=1E
V 1(p, θ, vci )

2
)1/2

:295

the cells are elicited by the spatial orientation of the shape, the V1 layer296

shows a tuning on the spatial orientation. The third and fourth rows show297

EMT (p, 0, vc) and EMT (p, π/2, vc) maps, respectively. At MT layer, a speed298

tuning emerges: on the left, the energies are higher for the region related299
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to the shape, this means that there is a negative speed for the horizontal300

and vertical velocities related to the shape. On the right, the energies are301

higher for the background (for the third row, only), since the background302

moves rightwards. These results confirm that the V1 layer has a tuning on303

the spatial orientation (cells respond to the spatial orientation of the shape),304

whereas at MT layer, a speed tuning no more related to spatial orientation305

emerges (i.e., the aperture problem is solved).306

In Fig. 9 we show the distribution of EMT at different positions to under-307

stand its relation to velocities. By observing the distribution of MT energies308

in four different positions on the original image (indicated as (a), (b), (c) and309

(d) in Fig. 7), we see how the MT layer encodes the velocities. In particular:310

the behaviours in (a) and (c) are affected by the values of the neighboring311

borders, thus there are no prominent activities; in (b), which corresponds to312

a point on the foreground shape sufficiently far from borders given the actual313

spatial support of the filters, cells tuned to negative speeds (vc1) on both hor-314

izontal and vertical direction (EMT with d = 0 and d = π/2, respectively)315

have the maximum response; in (d), which corresponds to a point on the316

background, only the response of the horizontal direction has a maximum317

for positive horizontal speed (vc7).318

Fig. 10 shows the results of the FFV1MT model on the classical real-319

istic Yosemite sequence with clouds. We obtain AAE=5.57 which is better320

than former biologically-inspired models such as the original Heeger approach321

(AAE=11.74, with 44.8% of reliable pixels,[42]) and the neural model from322

Bayerl and Neumann (AAE=6.20, [43]). One can also make comparisons with323

standard computer vision approaches such as Pyramidal Lucas and Kanade324

(AAE=6.41), modified Horn and Schunk (AAE=5.48 with 32.9% of reliable pix-325

els, [42]) and 3DCLG (AAE=6.18, [44]), showing a better performance of the326

FFV1MT. The FFV1MT–TF approach shows a slightly better performance327

in particular close to motion discontinuities.328

4.3. Performance evaluation on Middlebury dataset329

In this section, we benchmark our approach on the computer vision330

dataset Middlebury [26]1. The sequences in this dataset bring several chal-331

lenges, such as sharp edges, high velocities and occlusions. Figure 11 show332

results obtained on the training dataset, which has public available ground333

1http://vision.middlebury.edu/flow/data/
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Sample input Ground truth FFV1MT FFV1MT–TF

Figure 7: Results on a synthetic video: A translating shape is moving with velocity
v = (−3,−3) ppf on top of a translating background moving with velocity v = (4, 0) ppf.
Results are AAE=3.56±14.40, EPE=0.26±0.86. for FFV1MT and AAE=3.70±14.78,
EPE=0.27±0.86 for FFV1MT–TF.

‖EV 1‖θ(·, vc)

vc1 vc2 vc3 vc4 vc5 vc6 vc7

‖EV 1‖vc(·, θ)

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

EMT (·, 0)

EMT (·, π/2)

vc1 vc2 vc3 vc4 vc5 vc6 vc7

Figure 8: V1 and MT activities on the synthetic video shown in Fig. 7 (see text).

Figure 9

(a) (b) (c) (d)

Figure 9: Distribution of MT energy at positions indicated in Fig. 7.
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Sample input Ground truth FFV1MT FFV1MT–TF
AAE=5.57 ± 12.27 AAE=4.58 ± 9.35

EPE=0.23 ± 0.39 EPE=0.20 ± 0.33

Figure 10: Performance of the FFV1MT and FFV1MT–TF models on the classical
Yosemite sequence with clouds. The color code is the same as in Fig. 6.

truth. The AAEs and EPEs show that FFV1MT is able to recover reliable334

optical flows, though some issues remain open. Smooth effects are present on335

edges and fine details (see Grove2 and Grove3), FFV1MT–TF partially solves336

this issue, as shown in RubberWhale and Urban2. The δAAE maps highlight337

the differences in the AAEs between FFV1MT and FFV1MT–TF, showing338

that the latter is better on edges as expected (red tones). In presence of high339

image velocity large occlusions occur, on which both approaches fail (see left-340

hand side of Urban3). In this case, the worst performance of FFV1MT–TF341

method is due to the fast movements of edges that undermines the luminance342

similarity principle on which it is based.343

Figure 12 show results obtained on the test dataset. Higher errors coin-344

cide with occlusions (see, e.g., Urban sequence) and sharp edges (see, e.g.,345

Urban and Wooden sequences), similarly to what was observed on the train-346

ing set. Results can be further analysed through the Middleburg website and347

compared to a variety of state-of-the-art algorithms. It is worth noting that348

our FFV1MT model is the only neural model for motion estimation shown349

in the table so far.350

5. Conclusion351

In this paper, we have presented an approach that is based on mod-352

els primarily developed to account for various physiological findings related353

to motion processing in primates. Starting from the classical hierarchical354

feedforward processing model involving V1 and MT cortical areas, which is355

usually limited to a single spatial scale, we have extended it to consider the356

whole range of frequency by adapting a multi scale approach and analysed357
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Sample Ground FFV1MT FFV1MT FFV1MT–TF FFV1MT–TF δAAE
input truth output AAE map output AAE map

Sequence FFV1MT FFV1MT–TF
AAE ± STD EPE ± STD AAE ± STD EPE ± STD

grove2 4.28 ± 10.25 0.29 ± 0.62 3.96 ± 10.00 0.26 ± 0.60
grove3 9.72 ± 19.34 1.13 ± 1.85 9.40 ± 18.39 1.10 ± 1.74

Hydrangea 5.96 ± 11.17 0.62 ± 0.96 5.74 ± 11.03 0.59 ± 0.86
RubberWhale 10.20 ± 17.67 0.34 ± 0.54 9.38 ± 15.21 0.31 ±0.46

urban2 14.51 ± 21.02 1.46 ± 2.13 13.62 ± 10.23 1.19 ±1.58
urban3 15.11 ± 35.28 1.88 ± 3.27 16.22 ± 2.21 1.69 ±2.85

Figure 11: Sample results and error measurements on Middlebury training set.
δAAE=AAEFFV 1MT − AAEFFV 1MT−−TF is represented with a color code, where red
and blue tones are for positive and negative values, respectively.

the efficacy of the approach in estimating the dense optical flow in real world358

scenarios by considering an efficient velocity decoding step.359

Here, we show that a V1-MT feedforward model can be successfully used360
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Sample input Ground FFV1MT FFV1MT
input truth output AAE map

Sequence AAE EPE
All (Rank) - Disc. (Rank) All (Rank) - Disc. (Rank)

Army 12.02(102) - 23.3(102) 0.33(100) - 0.64(100)
Mequon 10.7(94) - 26.6(103) 0.79(94) - 1.90(103)

Schefflera 15.6(96) - 29.0(101) 1.33(104) - 1.90(101)
Wooden 16.6(102) - 36.3(105) 1.38(103) - 2.98(104)

Grove 6.51(105) - 6.40(103) 1.76(105) - 1.99(105)
Urban 16.2(104) - 30.7(105) 2.33(105) - 3.64(106)

Yosemite 3.41(74) - 5.44(88) 0.16(66) - 0.18(83)
Teddy 12.3(101) - 18.8(102) 1.81(100) - 2.64(100)

Figure 12: Sample results and error measurements of FFV1MT model on Middlebury
test set. By the time of evaluation 107 algorithms are benchmarked by the website,
and Rank indicates the relative performance of the method with respect to others for
both the entire sequence (All) and for discontinuities (Disc.). The results are public at
http://vision.middlebury.edu/flow/eval
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to compute optical flow in real videos. We have tested the performance of our361

model using synthetic stimuli as well as the standard Middlebury dataset.362

A qualitative evaluation shows that model could recover velocity vectors in363

regions with coarse textures quite well, but typically fails to achieve robust364

estimates in regions with very fine texture or regions with sharp edges. This365

was expected, since the V1-MT feedforward model does not take into account366

the details of lateral interactions and scale space issues that need to be tackled367

in order to solve the blank wall problem. In order to address these problems,368

we proposed a simple extension of our baseline model using trilateral filtering369

at MT level as a way to simulate lateral interactions between MT cells.370

Results were slightly improved suggesting that one should further focus on371

lateral interactions and possibly feedback into the models to better deal with372

real videos.373

Moreover, this work has opened up several interesting question, which374

could be of relevance to biologists as well, for example what could be afferent375

pooling strategy of MT when there are multiple surfaces or occlusion bound-376

aries within the MT receptive field? Can a better dense optical flow map377

be recovered by considering different multi-scale strategies? These questions378

are currently under consideration.379

We think that this work could act as a good starting point for building380

scalable computer vision algorithms for motion processing that are rooted in381

biology. For that reason we propose to share the code in order to encourage382

research in this direction. Our Matlab code for the FFV1MT model has383

been made available on ModelDB [45]: http://senselab.med.yale.edu/384

modeldb/.385
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