
HAL Id: hal-01218204
https://hal.inria.fr/hal-01218204

Submitted on 6 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing a causally consistent protocol for
geo-distributed partial replication

Tyler Crain, Marc Shapiro

To cite this version:
Tyler Crain, Marc Shapiro. Designing a causally consistent protocol for geo-distributed partial repli-
cation. W. on Principles and Practice of Consistency for Distributed Data (PaPoC), ACM Sigops,
Apr 2015, Bordeaux, France. �10.1145/2745947.2745953�. �hal-01218204�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49467204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01218204
https://hal.archives-ouvertes.fr

Designing a causally consistent protocol
for geo-distributed partial replication

Tyler Crain
Inria Paris-Rocquencourt &

Sorbonne Universités, UPMC Univ Paris 06, LIP6
tyler.crain@lip6.fr

Marc Shapiro
Inria Paris-Rocquencourt &

Sorbonne Universités, UPMC Univ Paris 06, LIP6
marc.shapiro@acm.org

Abstract
Modern internet applications require scalability to millions
of clients, response times in the tens of milliseconds, and
availability in the presence of partitions, hardware faults and
even disasters. To obtain these requirements, applications
are usually geo-replicated across several data centres (DCs)
spread throughout the world, providing clients with fast ac-
cess to nearby DCs and fault-tolerance in case of a DC out-
age. Using multiple replicas also has disadvantages, not only
does this incur extra storage, bandwidth and hardware costs,
but programming these systems becomes more difficult.

To address the additional hardware costs, data is often
partially replicated, meaning that only certain DCs will keep
a copy of certain data, for example in a key-value store it
may only store values corresponding to a portion of the keys.
Additionally, to address the issue of programming these sys-
tems, consistency protocols are run on top ensuring different
guarantees for the data, but as shown by the CAP theorem,
strong consistency, availability, and partition tolerance can-
not be ensured at the same time. For many applications avail-
ability is paramout, thus strong consistency is exchanged for
weaker consistencies allowing concurrent writes like causal
consistency. Unfortunately these protocols are not designed
with partial replication in mind and either end up not sup-
porting it or do so in an inefficient manner. In this work we
will look at why this happens and propose a protocol de-

The research leading to these results has received funding from the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 609551.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PaPoC’15, April 21, 2015, Bordeaux, France.
Copyright c© 2015 ACM 978-1-4503-3537-9/15/04. . . $15.00.
http://dx.doi.org/10.1145/2745947.2745953

signed to support partial replication under causal consistency
more efficiently.

1. Partial replication
Partial replication is becoming essential in geo-replicated
systems to avoid spending uncescessary resources on stor-
age and networking hardware. Implementing partial repli-
cation is more difficult than deciding how many replicas to
have because protocols for data consistency must hide the
organisation of replicas so that the programmer sees the data
as a single continuous store. Furthermore ensuring consis-
tency with partial replication does not always easily scale,
as it often requires additional communication between nodes
not involved in the operations. For example, in [8], Saeida
shows that a scalable implementation of partial replication,
namely one that ensures genuine partial replication [9] is not
compatible with the snapshot-isolation consistency criterion.
Differently, this work focuses on causal consistency which
allows concurrent writes and uses meta-data propagation in-
stead of synchronisation to ensure consistency, but even in
this case, implementing partial replication in a scalable way
is not a straightforward.

1.1 Causal consistency and partal replication
While protocols ensuring causal consistency are generally
efficient when compared to strongly consistent ones, they of-
ten do not support partial replication by default or if they do,
limit scalability by requiring coordination with nodes that do
not replicate the values updated during propagation. Within
the standard structure of these protocols, updates are per-
formed locally, then propagated to all other replicas where
they are applied respecting their causal order, which is given
by session order and reads-from order or can be defined ex-
plicitly. Given the asynchrony of the system, propagated up-
dates might arrive out of causal order at external replicas,
thus before they are applied a dependency check must be per-
formed to to ensure the correctness. This check is based on
ordering meta-data that is propagated along with the updates
or through separate messages [2].

The best known structure of this meta-data are vector-
clocks where each totally-ordered participant is given a vec-
tor entry and each of their updates are assigned a unique in-
creasing scalar value. Since these geo-replicated systems can
have a large number of participants, they often use slightly
different representations of the vector-clocks. For example,
certain protocols use vectors with one entry per DC [13], or
one entry per partition of keys [3], or use vectors that can be
trimmed based on update stability or the organisation of the
partitions of keys across DCs [3]. Other than vector clocks
other approaches exist including real time clocks [5], or to
track reads of memory locations [6] or operations [7] up to
the the last update performed by this client.

Interestingly, all of these mechanisms create (over) ap-
proximations of the dependencies of each operation, i.e.
from this meta-data you cannot tell exactly what the causal
dependencies for this operation are, but for correctness they
cover at minimum all the dependencies. For example when
using a single vector entry per server, all operations from
separate clients connected to this server will be totally or-
dered even if they access disjoint sets of data.

Such systems use these approximations primarily be-
cause precise tracking of dependencies would not scale as
the size of the meta-data would grow up to the order of the
number of objects or users in the systems (depending on
how dependencies are tracked). The issue with over approx-
imating dependencies is that the dependency check might
have wait on more dependencies than necessary, allowing
the client to read stale versions of the data. Fortunately
though this does not block the progress of clients as updates
are replicated outside of the critical path.

1.2 Partial replication and approximate dependencies
This approximate tracking of dependencies also creates an
unintended effect of making partial replication more costly.

To see why this happens, consider the example shown in
figure 1 where a protocol is used that tracks dependencies
using a version vector with an entry per server. Assume this
protocol supports partial replication by only sending updates
and meta-data to the servers that replicate the concerned
object. In this example there are two DCs DCA and DCB

each with 2 servers: A1 and A2 at DCA and B1 and B2

at DCB . Server A1 replicates objects x1 and x2, server
B1 replicates objects x2 and x3 while server A2 replicates
objects y1 and y2 and server B2 replicates objects y2 and y3.
The system starts in an initial state where no updates have
performed. Consider then that a client performs an update
u1 on object x1 at server A1, resulting in the client having a
dependency vector of [1, 0, 0, 0], with the 1 in the first entry
of the vector representing the update u1 at A1. Since x1

is not replicated elsewhere the update stays locally at A1.
Following this, the client performs an update u2 on object
y2at server A2, returning a dependency vector of [1, 1, 0, 0].
The update u2 is then propagated asynchronously to B2,
where upon arrival a dependency check is performed. Since

the dependency vector inclues a dependency from A1, before
applying the update, B2 must check with B1 that it has
received any updates covered by this dependency in case
they were on a key replicated by B1. But since B1 has not
heard from A1 it does not know if the update was delayed
in the network, or if the update involved an object it does
not replicate. Thus B1 must send a request to A1 checking
that is has received the necessary update. A1 will then reply
that it is safe because u1 did not modify an object replicated
by B1, which will then be forwarded to to B2 at which
time u2 can be safely applied. Notice that if dependencies
were tracked precisely, this additional round of dependency
checks would not be necessary as the dependency included
with u2 would let the server know that it only depended on
keys not replicated at DCB .

While this is a simple example that one could imagine
easily fixing, different workloads and topologies can cre-
ate complex graphs of dependencies that are not so easily
avoided. Furthermore, current protocols designed for full
replication do not take any additional measures specifically
to minimize this cost, instead they suggest to send the meta-
data to every DC as if it was fully replicated either in a sep-
arate channel [2] or simply without the update payload. In
effect using no specific design patterns to take advantage of
partial replication.

2. An initial approach
The goal of this work then is to develop a protocol support-
ing partial replication and providing performance equal to
fully replicated protocols in a full replication setting, while
minimising dependency meta-data and checks in a partial
replication setting. We will now give a short description of
the main mechanisms used to design this algorithm. It should
be noted that these mechanisms are common to many pro-
tocols supporting causal consistency, except here they are
combined in a way with the goal of supporting partial repli-
cation.

• Update identification Vector clocks are the most com-
mon way to support causality. To avoid linear growth
of vector clocks in the number of (client) replicas, we
apply a similar technique as in the work of Zawirski et
al.[13]. Each entry in a vector represents a DC, or more
precisely a cluster within a DC. Modified versions of pro-
tocols such as ClockSI [4] or a DC- local service handing
out logical timestamps, such as a version counter, can be
used to induce a total order to the updates issued at this
DC, which can then be represented in the DC’s vector
entry.
For causality tracking, each update is associated with its
unique timestamp given by its home DC, plus a vec-
tor clock describing its dependencies. To provide session
guarantees such as causally consistent reads when inter-
acting with clients, the client keeps a vector reflecting its

Client

B1

B2

A2

ok
, [
1,
0,
0,
0]
)

ch
ec
k(
A
1
, 1
)

safe, A
1 , 1

ge
t
de
p(
1)

safe, A
1 , 1

ok
, [
1,
1,
0,
0]

U
(x

1 , [0, 0, 0, 0])

U
(y

2 , [1, 0, 0, 0])

A1

Replicates keys: x1, x2

Replicates keys: x2, x3

Replicates keys: y1, y2

Replicates keys: y2, y3

replicate(y
2 , [1, 0, 0, 0])

Figure 1: An example showing the possible dependency checks needed to ensure causality in a system with partial replication
using version vectors with one entry per server for tracking dependencies.

previously observed values and writes. The system then
ensures that clients may only read values containing all
dependencies given this vector.
Given that in partial replication a DC might not replicate
all objects, certain reads will have to be forwarded to
other DCs where the object being read is replicated. The
receiving DC then uses the client’s dependency vector to
generate a consistent version of the object that is then
forwarded to be cached at the DC the client is connected
to.

• Disjoint safe-time metadata In general, most protocols
ensure causal consistency by not making updates from
external DCs visible locally to clients until all updates
causally preceding it have been received. When objects
are replicated at all DCs this is fairly straightforward as
all dependent updates are expected to be received. This
is not always the case in partial replication since only
the replicated dependent operations should be received,
which could result in additional messages or dependency
checks (see figure 1 for an example of why these addi-
tional checks would be needed), something which we are
trying to avoid in order to have an efficient implementa-
tion.
To avoid these additional dependency checks and meta-
data, the key insight in this work is to perform the depen-
dency calculation at the origin DC and not the receiving
DCs. Updates are still sent directly to their sibling repli-
cas at other DCs, but they are not made visible to read-
ers at the receiving DC until the origin DC confirms that
its dependencies have been received i.e. the origin DC
tracks which of its updates are safe to make visible at the

receiver. At the origin DC, updates issued up to a time t
are considered safe to apply at a receiving DC when all
of the origin DC’s servers have sent all their updates on
the replicated objects of the receiver items up to time t.
To keep track of this, a server at the origin DC commu-
nicates with each local server, keeping track of the time
of the latest updates sent to external DCs, and once it has
heard from each local server that time t is safe, this infor-
mation is then propagated to the external DCs as a single
message. Doing this avoids unnecessary cross-DC depen-
dency checks and meta-data propagation, saving compu-
tation and network bandwidth. The negative consequence
of this is that the observable data at the receiving DC
might be slightly more stale than in the full replication
case because the receiving DC has to wait until the send-
ing DC has let it know that this data is safe. Such a delay
can be seen as a consequence of tracking dependencies
approximately as seen in the example in figure 1

• Local writes to non-replicated keys Given that causal
consistency allows for concurrent writes, in order to en-
sue low latency and high availability a DC will accept
writes for all objects, including those that it does not
replicate. Using the vector clocks and metadata as de-
scribed above this can be done without any additional
synchronisation by just assigning unique timestamps to
these updates that are reflected in the vector of the local
DC. These updates can then be safely logged and made
durable even in the case of network partition.

• Atomic writes and snapshot reads Beyond simple key-
value operations, the protocol provides a weak form of
transactions which allows to group reads and updates to-
gether and supporting CRDT objects [10]. Atomic writes

can be performed at the local DC using a 2-phase com-
mit mechanism without contacting the remote replicas in
order to allow for low latency and high availability. The
updates are then propagated to the other DCs using the
total ordered dependency metadata described previously
ensuring their atomicity. (Note that atomic updates can
include keys not replicated at the origin DC.) Causally
consistent snapshot reads can be performed at a local DC
by reading values according to a consistent vector clock,
where reads of data items not replicated at the local DC
are performed at another DC using the same vector clock.

Using these mechanisms allow partial or full replication
with causal consistency while limiting the amount of unnec-
essary inter-DC meta-data traffic. All DCs are able to ac-
cept writes to any key, and causally consistent values can be
read as long as one replica is available. Additionally the way
the keys are partitions within a DC is transparent to external
DCs, allowing this to be maintained locally.

An implementation of this protocol [12] is being devel-
oped within Antidote [11], the research platform for the
SyncFree FP7 project, which is built on top of Riak-core [1]
designed for testing scalable geo-replicated protocols.

Finally, it is important to note that while this protocol
helps mitigate some of the costs of implementing partial
replication in previous protocols, it does not completely
solve the problem. It still uses imprecise representation of
dependencies, which can still lead to false dependencies
(that are checked locally within the sending DC) and can
result in reading stale values that might otherwise be safe to
read. Further studies are still needed and novel approaches
using different mechanisms to see if these costs can be
avoided entirely.

References
[1] Basho. Riak-core. https://github.com/basho/riak_

core, 2015.

[2] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkatara-
mani, P. Yalagandula, and J. Zheng. PRACTI replica-
tion. In Networked Sys. Design and Implem. (NSDI),
pages 59–72, San Jose, CA, USA, May 2006. Usenix,
Usenix. URL https://www.usenix.org/legacy/event/

nsdi06/tech/belaramani.html.

[3] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scal-
able causal consistency using dependency matrices and phys-
ical clocks. In Symp. on Cloud Computing, pages 11:1–11:14,
Santa Clara, CA, USA, Oct. 2013. Assoc. for Computing Ma-
chinery. . URL http://doi.acm.org/10.1145/2523616.

2523628.

[4] J. Du, S. Elnikety, and W. Zwaenepoel. Clock-SI: Snap-
shot isolation for partitioned data stores using loosely syn-
chronized clocks. In Symp. on Reliable Dist. Sys. (SRDS),
pages 173–184, Braga, Portugal, Oct. 2013. IEEE Comp. So-
ciety. . URL http://doi.ieeecomputersociety.org/

10.1109/SRDS.2013.26.

[5] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Clos-
ing the performance gap between causal consistency and
eventual consistency,. In W. on the Principles and Practice
of Eventual Consistency (PaPEC), Amsterdam, the Nether-
lands, 2014. URL http://eventos.fct.unl.pt/papec/

pages/program.

[6] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: scalable causal consistency for wide-
area storage with COPS. In Symp. on Op. Sys. Principles
(SOSP), pages 401–416, Cascais, Portugal, Oct. 2011. Assoc.
for Computing Machinery. .

[7] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency geo-
replicated storage. In Networked Sys. Design and Im-
plem. (NSDI), pages 313–328, Lombard, IL, USA, Apr.
2013. URL https://www.usenix.org/system/files/

conference/nsdi13/nsdi13-final149.pdf.

[8] M. Saeida Ardekani, P. Sutra, M. Shapiro, and N. Preguia.
On the scalability of snapshot isolation. In F. Wolf, B. Mohr,
and D. an Mey, editors, Euro-Par 2013 Parallel Process-
ing, volume 8097 of Lecture Notes in Computer Science,
pages 369–381. Springer Berlin Heidelberg, 2013. ISBN 978-
3-642-40046-9. . URL http://dx.doi.org/10.1007/

978-3-642-40047-6_39.

[9] N. Schiper, P. Sutra, and F. Pedone. P-Store: Genuine par-
tial replication in wide area networks. In Symp. on Re-
liable Dist. Sys. (SRDS), pages 214–224, New Dehli, In-
dia, Oct. 2010. IEEE Comp. Society. URL http://doi.

ieeecomputersociety.org/10.1109/SRDS.2010.32.

[10] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In X. Défago, F. Petit,
and V. Villain, editors, Int. Symp. on Stabilization, Safety,
and Security of Distributed Systems (SSS), volume 6976
of Lecture Notes in Comp. Sc., pages 386–400, Grenoble,
France, Oct. 2011. Springer-Verlag. . URL http://www.

springerlink.com/content/3rg39l2287330370/.

[11] SyncFree. Antidote reference platform. https://github.

com/SyncFree/antidote, 2015.

[12] SyncFree. Antidote reference platform - partial replica-
tion branch. https://github.com/SyncFree/antidote/
tree/partial_replication, 2015.

[13] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. Preguiça. Swiftcloud: Fault-tolerant geo-
replication integrated all the way to the client machine. arXiv
preprint arXiv:1310.3107, 2013.

