
HAL Id: hal-01081186
https://hal.inria.fr/hal-01081186v2

Submitted on 22 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0
International License

Fisheye Consistency: Keeping Data in Synch in a
Georeplicated World

Roy Friedman, Michel Raynal, François Taïani

To cite this version:
Roy Friedman, Michel Raynal, François Taïani. Fisheye Consistency: Keeping Data in Synch in a
Georeplicated World. [Research Report] 2022, IRISA. 2014. �hal-01081186v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49466807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01081186v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Publications Internes de l’IRISA
ISSN : 2102-6327
PI 2022 – October 22, 2015

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World

Roy Friedman* , Michel Raynal** ,*** François Taïani**

Abstract: Over the last thirty years, numerous consistency conditions for replicated data have been proposed and implemented.
Popular examples of such conditions include linearizability (or atomicity), sequential consistency, causal consistency, and eventual
consistency. These consistency conditions are usually defined independently from the computing entities (nodes) that manipulate
the replicated data; i.e., they do not take into account how computing entities might be linked to one another, or geographically
distributed. To address this lack, as a first contribution, this paper introduces the notion of proximity graph between computing
nodes. If two nodes are connected in this graph, their operations must satisfy a strong consistency condition, while the operations
invoked by other nodes are allowed to satisfy a weaker condition. The second contribution is the use of such a graph to provide a
generic approach to the hybridization of data consistency conditions into the same system. We illustrate this approach on sequential
consistency and causal consistency, and present a model in which all data operations are causally consistent, while operations by
neighboring processes in the proximity graph are sequentially consistent. The third contribution of the paper is the design and the
proof of a distributed algorithm based on this proximity graph, which combines sequential consistency and causal consistency (the
resulting condition is called fisheye consistency). In doing so the paper not only extends the domain of consistency conditions, but
provides a generic provably correct solution of direct relevance to modern georeplicated systems.

Key-words: Asynchronous message-passing system, Broadcast abstraction, Causal consistency, Data consistency, Data replication,
Geographical distribution, Linearizability, Provable property, Sequential consistency.

La cohérence en œil de poisson : maintenir la synchronisation des données dans un monde géo-répliqué

Résumé : Au cours des trente dernières années, de nombreuses conditions de cohérence pour les données répliquées ont été pro-
posées et mises en oeuvre. Les exemples courants de ces conditions comprennent la linéarisabilité (ou atomicité), la cohérence
séquentielle, la cohérence causale, et la cohérence éventuelle. Ces conditions de cohérence sont généralement définies indépen-
damment des entités informatiques (noeuds) qui manipulent les données répliquées; c’est à dire qu’elles ne prennent pas en compte
la façon dont les entités informatiques peuvent être liées les unes aux autres, ou géographiquement distribuées. Pour combler ce
manque, ce document introduit la notion de graphe de proximité entre les noeuds de calcul d’un système réparti. Si deux noeuds sont
connectés dans ce graphe, leurs activités doivent satisfaire une condition de cohérence forte, tandis que les opérations invoquées
par d’autres noeuds peuvent ne satisfaire qu’une condition plus faible. Nous proposons d’utiliser un tel graphe pour fournir une
approche générique à l’hybridation de conditions de cohérence des données dans un même système. Nous illustrons cette approche
sur l’exemple de la cohérence séquentielle et de la cohérence causale, et présentons un modèle dans lequel, d’une part, toutes
les opérations sont causalement cohérentes, et, d’autre part, les opérations par des processus qui sont voisins dans le graphe de
proximité satisfont la cohérence séquentielle. Nous proposons et prouvons un algorithme distribué basé sur ce graphe de proximité,
qui combine la cohérence séquentielle et la cohérence causal (nous appelons la cohérence obtenue cohérence en oeil de poisson).
Ce faisant, le papier non seulement étend le domaine des conditions de cohérence, mais fournit une solution algorithmiquement
correcte et générique directement applicable aux systèmes géo–répartis modernes.

Mots clés : Systèmes par passage de messages asynchrones, Abstractions de diffusion, Cohérence Causale, Cohérence des données,
Réplication des données, Distribution géographiques, Linéarisabilité, Propriété prouvables, Cohérence Séquentielle

* The Technion Haifa, Israel
** Institut Universitaire de France

*** Université de Rennes 1, IRISA

©IRISA – Campus de Beaulieu – 35042 Rennes Cedex – France – +33 2 99 84 71 00 – www.irisa.fr

2 R. Friedman, M. Raynal & F. Taïani

1 Introduction

Data consistency in distributed systems Distributed computer systems are growing in size, be it in terms of machines,
data, or geographic distribution. Insuring strong consistency guarantees (e.g., linearizability [19]) in such large-scale
systems has attracted a lot of attention over the years, and remains today a highly challenging area, for reasons of cost,
failures, and scalability. One popular strategy to address these challenges has been to propose and implement weaker
guarantees (e.g., causal consistency [2], or eventual consistency [38]).

These weaker consistency models are not a desirable goal in themselves [5], but rather an unavoidable compromise
to obtain acceptable performance and availability [7, 12, 39]. These works try in general to minimize the violations of
strong consistency, as these create anomalies for programmers and users. They further emphasize the low probability of
such violations in their real deployments [14].

Recent related works For brevity, we cannot name all the many weak consistency conditions that have been proposed
in the past. We focus instead on the most recent works in this area. One of the main hurdles in building systems and
applications based on weak consistency models is how to generate an eventually consistent and meaningful image of the
shared memory or storage [38]. In particular, a paramount sticking point is how to handle conflicting concurrent write
(or update) operations and merge their result in a way that suits the target application. To that end, various conditions
that enables custom conflict resolution and a host of corresponding data-types have been proposed and implemented [3,
4, 9, 13, 25, 29, 35, 34].

Another form of hybrid consistency conditions can be found in the seminal works on release consistency [17, 20]
and hybrid consistency [6, 15], which distinguish between strong and weak operations such that strong operations enjoy
stronger consistency guarantees than weak operations. Additional mechanisms and frameworks that enable combining
operations of varying consistency levels have been recently proposed in the context of large scale and geo-replicated data
centers [37, 39].

Motivation and problem statement In spite of their benefits, the above consistency conditions generally ignore the
relative “distance” between nodes in the underlying “infrastructure”, where the notions of “distance” and “infrastructure”
may be logical or physical, depending on the application. This is unfortunate as distributed systems must scale out and
geo-replication is becoming more common. In a geo-replicated system, the network latency and bandwidth connecting
nearby servers is usually at least an order of magnitude better than what is obtained between remote servers. This means
that the cost of maintaining strong consistency among nearby nodes becomes affordable compared to the overall network
costs and latencies in the system.

Some production-grade systems acknowledge the importance of distance when enforcing consistency, and do propose
consistency mechanisms based on node locations in a distributed system (e.g. whether nodes are located in the same or in
different data-centers). Unfortunately these production-grade systems usually do not distinguish between semantics and
implementation. Rather, their consistency model is defined in operational terms, whose full implications can be difficult
to grasp. In Cassandra [21], for instance, the application can specify for each operation the type of consistency guarantee
it desires. For example, the constraints QUORUM and ALL require the involvement of a quorum of replicas and of all
replicas, respectively; while LOCAL_QUORUM is satisfied when a quorum of the local data center is contacted, and
EACH_QUORUM requires a quorum in each data center. These guarantees are defined by their implementation, but do
not provide the programmer with a precise image of the consistency they deliver.

The need to take into account “distance” into consistency models, and the current lack of any formal underpinning
to do so are exactly what motivates the hybridization of consistency conditions that we propose in this paper (which
we call fisheye consistency). Fisheye consistency conditions provide strong guarantees only for operations issued at
nearby servers. In particular, there are many applications where one can expect that concurrent operations on the same
objects are likely to be generated by geographically nearby nodes, e.g., due to business hours in different time zones, or
because these objects represent localized information, etc. In such situations, a fisheye consistency condition would in
fact provide global strong consistency at the cost of maintaining only locally strong consistency.

Consider for instance a node A that is “close” to a node B, but “far” from a node C, a causally consistent read/write
register will offer the same (weak) guarantees to A on the operations of B, as on the operations of C. This may be
suboptimal, as many applications could benefit from varying levels of consistency conditioned on “how far” nodes are
from each other. Stated differently: a node can accept that “remote” changes only reach it with weak guarantees (e.g.,

Collection des Publications Internes de l’Irisa ©IRISA

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 3

because information takes time to travel), but it wants changes “close” to it to come with strong guarantees (as “local”
changes might impact it more directly).

In this work, we propose to address this problem by integrating a notion of node proximity in the definition of data
consistency. To that end, we formally define a new family of hybrid consistency models that links the strength of data
consistency with the proximity of the participating nodes. In our approach, a particular hybrid model takes as input a
proximity graph, and two consistency conditions, taken from a set of totally ordered consistency conditions, namely a
strong one and a weaker one. A classical set of totally ordered conditions is the following one: linearizability, sequential
consistency, causal consistency, and PRAM-consistency [24]. Moreover, as already said, the notion of proximity can be
geographical (cluster-based physical distribution of the nodes), or purely logical (as in some peer-to-peer systems).

The philosophy we advocate is related to that of Parallel Snapshot Isolation (PSI) proposed in [36]. PSI combines
strong consistency (Snapshot Isolation) for transactions started at nodes in the same site of a geo-replicated system, but
only ensures causality among transactions started at different sites. In addition, PSI prevents write-write conflicts by
preventing concurrent transactions with conflicting write sets, with the exception of commutable objects.

Although PSI and our work operate at different granularities (fisheye-consistency is expressed on individual opera-
tions, each accessing a single object, while PSI addresses general transactions), they both show the interest of consistency
conditions in which nearby nodes enjoy stronger semantics than remote ones. In spite of this similitude, however, the
family of consistency conditions we propose distinguishes itself from PSI in a number of key dimensions. First, PSI is a
specific condition while fisheye-consistency offers a general framework for defining multiple such conditions. PSI only
distinguished between nodes at the same physical site and remote nodes, whereas fisheye-consistency accepts arbitrary
proximity graphs, which can be physical or logical. Finally, the definition of PSI is given in [36] by a reference imple-
mentation, whereas fisheye-consistency is defined in functional terms as restrictions on the ordering of operations that
can be seen by applications, independently of the implementation we propose. As a result, we believe that our formal-
ism makes it easier for users to express and understand the semantics of a given consistency condition and to prove the
correctness of a program written w.r.t. such a condition.

Roadmap The paper is composed of 6 sections. Section 2 introduces the system model and two classical data consis-
tency conditions, namely, sequential consistency (SC) [23] and causal consistency (CC) [2]. Then, Section 3 defines the
notion of proximity graph and the associated fisheye consistency condition, which considers SC as its strong condition
and CC as its weak condition. Section 4 presents a broadcast abstraction, and Section 5 builds on top of this communi-
cation abstraction a distributed algorithm implementing this hybrid proximity-based data consistency condition. These
algorithms are generic, where the genericity parameter is the proximity graph. Interestingly, their two extreme instantia-
tions provide natural implementations of SC and CC. Finally, Section 6 concludes the paper.

2 System Model and Basic Consistency Conditions

2.1 System model

The system consists of n processes denoted p1, ..., pn. We note Π the set of all processes. Each process is sequential
and asynchronous. “Asynchronous” means that each process proceeds at its own speed, which is arbitrary, may vary with
time, and remains always unknown to the other processes. Said differently, there is no notion of a global time that could
be used by the processes.

Processes communicate by sending and receiving messages through channels. Each channel is reliable (no message
loss, duplication, creation, or corruption), and asynchronous (transit times are arbitrary but finite, and remain unknown
to the processes). Each pair of processes is connected by a bi-directional channel.

2.2 Basic notions and definitions

This section is a short reminder of the fundamental notions typically used to define the consistency guarantees of dis-
tributed objects, namely, operation, history, partial order on operations, and history equivalence. Interested readers will
find in-depth presentations of these notions in textbooks such as [8, 18, 26, 30].

Collection des Publications Internes de l’Irisa ©IRISA

4 R. Friedman, M. Raynal & F. Taïani

Concurrent objects with sequential specification A concurrent object is an object that can be simultaneously accessed
by different processes. At the application level the processes interact through concurrent objects [18, 30]. Each object is
defined by a sequential specification, which is a set including all the correct sequences of operations and their results that
can be applied to and obtained from the object. These sequences are called legal sequences.

Execution history The execution of a set of processes interacting through objects is captured by a history Ĥ = (H,→H

), where →H is a partial order on the set H of the object operations invoked by the processes.

Concurrency and sequential history If two operations are not ordered in a history, they are said to be concurrent. A
history is said to be sequential if it does not include any concurrent operations. In this case, the partial order →H is a
total order.

Equivalent history Let Ĥ ∣p represent the projection of Ĥ onto the process p, i.e., the restriction of Ĥ to operations
occurring at process p. Two histories Ĥ1 and Ĥ2 are equivalent if no process can distinguish them, i.e., ∀p ∈ Π ∶ Ĥ1∣p =
Ĥ2∣p.

Legal history Ĥ being a sequential history, let Ĥ ∣X represent the projection of Ĥ onto the object X . A history Ĥ is
legal if, for any object X , the sequence Ĥ ∣X belongs to the specification of X .

Process Order Notice that since we assumed that processes are sequential, we restrict the discussion in this paper to
execution histories Ĥ for which for every process p, Ĥ ∣p is sequential. This total order is also called the process order
for p.

2.3 Sequential consistency

Intuitively, an execution is sequentially consistent if it could have been produced by executing (with the help of a sched-
uler) the processes on a monoprocessor. Formally, a history Ĥ is sequentially consistent (SC) if there exists a history Ŝ
such that:

• Ŝ is sequential,

• Ŝ is legal (the specification of each object is respected),

• Ĥ and Ŝ are equivalent (no process can distinguish Ĥ—what occurred—and Ŝ—what we would like to see, to be
able to reason about).

One can notice that SC does not demand that the sequence Ŝ respects the real-time occurrence order on the operations.
This is the fundamental difference between linearizability and SC.

p
op1p: X .read→0 op2

p: X .write(3)

q
op1

q: X .write(2) op2
q: X .read→3

Figure 1: A sequentially consistent execution

An example of a history Ĥ that is sequentially consistent is shown in Figure 1. Let us observe that, although op1q
occurs before op1p in physical time, op1p does not see the effect of the write operation op1q , and still returns 0. A legal
sequential history Ŝ, equivalent to Ĥ , can be easily built, namely, X.read→ 0, X.write(2), X.write(3), X.read→ 3.

Collection des Publications Internes de l’Irisa ©IRISA

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 5

2.4 Causal consistency

In a sequentially consistent execution, all processes perceive all operations in the same order, which is captured by the
existence of a sequential and legal history Ŝ. Causal consistency [2] relaxes this constraint for read-write registers, and
allows different processes to perceive different orders of operations, as long as causality is preserved.

Formally, a history Ĥ in which processes interact through concurrent read/write registers is causally consistent (CC)
if:

• There is a causal order ;H on the operations of Ĥ , i.e., a partial order that links each read to at most one latest
write (or otherwise to an initial value �), so that the value returned by the read is the one written by this latest write
and ;H respects the process order of all processes.

• For each process pi, there is a sequential and legal history Ŝi that

– is equivalent to Ĥ ∣(pi +W), where Ĥ ∣(pi +W) is the sub-history of Ĥ that contains all operations of pi,
plus the writes of all the other processes,

– respects ;H (i.e., ;H ⊆→Si).

Intuitively, this definition means that all processes see causally related write operations in the same order, but can see
operations that are not causally related (o1 /;H o2 ∧ o2 /;H o1) in different orders.

p
op1

p: X .write(2)

q
op1

q: X .write(3)

r
op1r: X .read→2 op2

r: X .read→3

s
op1

s: X .read→3 op2s: X .read→2

Figure 2: An execution that is causally consistent (but not sequentially consistent)

An example of causally consistent execution is given in Figure 2. The processes r and s observe the write operations
on X by p (op1p) and q (op1q) in two different orders. This is acceptable in a causally consistent history because op1p and
op1q are not causally related. This would not be acceptable in a sequentially consistent history, where the same total order
on operations must be observed by all the processes. (When considering read/write objects, this constitutes the maim
difference between SC and CC.)

3 The Family of Fisheye Consistency Conditions

This section introduces a hybrid consistency model based on (a) two consistency conditions and (b) the notion of a
proximity graph defined on the computing nodes (processes). The two consistency conditions must be totally ordered in
the sense that any execution satisfying the stronger one also satisfies the weaker one. Linearizability and SC define such
a pair of consistency conditions, and similarly SC and CC are such a pair.

3.1 The notion of a proximity graph

Let us assume that for physical or logical reasons linked to the application, each process (node) can be considered either
close to or remote from other processes. This notion of “closeness” can be captured trough a proximity graph denoted
G = (Π,EG ⊆ Π ×Π), whose vertices are the n processes of the system (Π). The edges are undirected. NG(pi) denotes
the neighbors of pi in G.

The aim of G is to state the level of consistency imposed on processes in the following sense: the existence of an edge
between two processes in G imposes a stronger data consistency level than between processes not connected in G.

Collection des Publications Internes de l’Irisa ©IRISA

6 R. Friedman, M. Raynal & F. Taïani

Example To illustrate the semantic of G, we extend the original scenario that Ahamad, Niger et al use to motivate
causal consistency in [2]. Consider the three processes of Figure 3, paris , berlin , and new -york . Processes paris and
berlin interact closely with one another and behave symmetrically : they concurrently write the shared variable X , then
set the flags R and S respectively to 1, and finally read X . By contrast, process new -york behaves sequentially w.r.t.
paris and berlin: new -york waits for paris and berlin to write on X , using the flags R and S, and then writes X .

process paris is
X ← 1
R ← 1
a←X

end process

process berlin is
X ← 2
S ← 1
b←X

end process

process new -york is
repeat c← R until c = 1
repeat d← S until d = 1
X ← 3

end process

Figure 3: new -york does not need to be closely synchronized with paris and berlin , calling for a hybrid form of
consistency

If we assume a model that provides causal consistency at a minimum, the write of X by new -york is guaranteed to
be seen after the writes of paris and berlin by all processes (because new -york waits on R and S to be set to 1). Causal
consistency however does not impose any consistent order on the writes of paris and berlin on X . In the execution
shown on Figure 4, this means that although paris reads 2 in X (and thus sees the write of berlin after its own write),
berlin might still read 1 in b (thus perceiving ‘X .write(1)’ and ‘X .write(2)’ in the opposite order to that of paris).

paris
X .write(1) R.write(1) X .read→2

berlin
X .write(2) S.write(1) X .read→b?

new -york
. . . S.read→1 R.read→1 X .write(3)

Figure 4: Executing the program of Figure 3.

Sequential consistency removes this ambiguity: in this case, in Figure 4, berlin can only read 2 (the value it wrote)
or 3 (written by new -york), but not 1. Sequential consistency is however too strong here: because the write operation
of new -york is already causally ordered with those of paris and berlin , this operation does not need any additional
synchronization effort. This situation can be seen as an extension of the write concurrency freedom condition introduced
in [2]: new -york is here free of concurrent write w.r.t. paris and berlin , making causal consistency equivalent to
sequential consistency for new -york . paris and berlin however write to X concurrently, in which case causal consistency
is not enough to ensure strongly consistent results.

If we assume paris and berlin execute in the same data center, while new -york is located on a distant site, this
example illustrates a more general case in which, because of a program’s logic or activity patterns, no operations at one
site ever conflict with those at another. In such a situation, rather than enforce a strong (and costly) consistency in the
whole system, we propose a form of consistency that is strong for processes within the same site (here paris and berlin),
but weak between sites (here between paris, berlin on one hand and new -york on the other).

In our model, the synchronization needs of individual processes are captured by the proximity graph G introduced
at the start of this section and shown in Figure 5: paris and berlin are connected, meaning the operations they execute
should be perceived as strongly consistent w.r.t. one another ; new -york is neither connected to paris nor berlin , meaning
a weaker consistency is allowed between the operations executed at new -york and those of paris and berlin .

p bny

Figure 5: Capturing the synchronization needs of Fig. 3 with a proximity graph G

Collection des Publications Internes de l’Irisa ©IRISA

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 7

3.2 Fisheye consistency for the pair (sequential consistency, causal consistency)

When applied to the scenario of Figure 4, fisheye consistency combines two consistency conditions (a strong and a
weaker one, here causal and sequential consistency) and a proximity graph to form an hybrid distance-based consistency
condition, which we call G-fisheye (SC,CC)-consistency.

The intuition in combining SC and CC is to require that (write) operations be observed in the same order by all
processes if:

• They are causally related (as in causal consistency),

• Or they occur on “close” nodes (as defined by G).

Formal definition Formally, we say that a history Ĥ is G-fisheye (SC,CC)-consistent if:

• There is a causal order ;H induced by Ĥ (as in causal consistency); and

• ;H can be extended to a subsuming order ★;H,G (i.e. ;H ⊆ ★;H,G) so that

∀p, q ∈ G ∶ (★;H,G)∣{p, q} is a total order

where (★;H,G)∣({p, q} ∩W) is the restriction of ★;H,G to the write operations of p and q; and

• for each process pi there is a history Ŝi that

– (a) is sequential and legal;

– (b) is equivalent to Ĥ ∣(pi +W); and

– (c) respects ★;H,G , i.e., (★;H,G)∣(pi +W) ⊆ (→Si).

If we apply this definition to the example of Figure 4 with the proximity graph proposed in Figure 5 we obtain the
following: because paris and berlin are connected in G, X.write(1) by paris and X.write(2) by berlin must be totally
ordered in ★;H,G (and hence in any sequential history Ŝi perceived by any process pi). X.write(3) by new -york must
be ordered after the writes on X by paris and berlin because of the causality imposed by ;H . As a result, if the system
is G-fisheye (SC,CC)-consistent, b? can be equal to 2 or 3, but not to 1. This set of possible values is as in sequential
consistency, with the difference that G-fisheye (SC,CC)-consistency does not impose any total order on the operation of
new -york .

Given a system of n processes, let ∅ denote the graph G with no edges, and K denote the graph G with an edge
connecting each pair of distinct processes. It is easy to see that CC is ∅-fisheye (SC,CC)-consistency. Similarly SC is
K-fisheye (SC,CC)-consistency.

A larger example Figure 6 and Table 1 illustrate the semantic of G-fisheye (SC,CC) consistency on a second, larger,
example. In this example, the processes p and q on one hand, and r and s on the other hand, are neighbors in the proximity
graph G (shown on the left). There are two pairs of write operations: op1p and op1q on the register X , and op2p and op3r on
the register Y . In a sequentially consistency history, both pairs of writes must be seen in the same order by all processes.
As a consequence, if r sees the value 2 first (op1r) and then the value 3 (op2r) for X , s must do the same, and only the
value 3 can be returned by x?. For the same reason, only the value 3 can be returned by y?, as shown in the first line of
Table 1.

In a causally consistent history, however, both pairs of writes ({op1p,op1q} and {op2p,op3r}) are causally independent.
As a result, any two processes can see each pair in different orders. x? may return 2 or 3, and y? 4 or 5 (second line of
Table 1).
G-fisheye (SC,CC)-consistency provides intermediate guarantees: because p and q are neighbors in G, op1p and op1q

must be observed in the same order by all processes. x? must return 3, as in a sequentially consistent history. However,
because p and r are not connected in G, op2p and op3r may be seen in different orders by different processes (as in a
causally consistent history), and y? may return 4 or 5 (last line of Table 1).

Collection des Publications Internes de l’Irisa ©IRISA

8 R. Friedman, M. Raynal & F. Taïani

p
op1p: X .write(2) op2

p: Y .write(4)

q
op1

q: X .write(3) op2
q: Y .read→4 op3

q: Y .read→5

r
op1

r: X .read→2 op2r: X .read→3 op3
r: Y .write(5)

s
op1s: X .read→3 op2

s: X .read→x? op3s: Y .read→5 op4
s: Y .read→y?

q

p

r

s

Figure 6: Illustrating G-fisheye (SC,CC)-consistency

Table 1: Possible executions for the history of Figure 6

Consistency x? y?
Sequential Consistency 3 5
Causal Consistency {2,3} {4,5}
G-fisheye (SC,CC)-consistency 3 {4,5}

4 Construction of an Underlying (SC,CC)-Broadcast Operation

Our implementation of G-fisheye (SC,CC)-consistency relies on a broadcast operation with hybrid ordering guarantees.
In this section, we present this hybrid broadcast abstraction, before moving on the actual implementation of of G-fisheye
(SC,CC)-consistency in Section 5.

4.1 G-fisheye (SC,CC)-broadcast: definition

The hybrid broadcast we proposed, denoted G-(SC,CC)-broadcast, is parametrized by a proximity graph G which deter-
mines which kind of delivery order should be applied to which messages, according to the position of the sender in the
graph G. Messages (SC,CC)-broadcast by processes which are neighbors in G must be delivered in the same order at all
the processes, while the delivery of the other messages only need to respect causal order.

The (SC,CC)-broadcast abstraction provides the processes with two operations, denoted TOCO_broadcast() and
TOCO_deliver(). We say that messages are toco-broadcast and toco-delivered.

Causal message order Let M be the set of messages that are toco-broadcast. The causal message delivery order,
denoted ;M , is defined as follows [10, 33]. Let m1,m2 ∈M ; m1 ;M m2, iff one of the following conditions holds:

• m1 and m2 have been toco-broadcast by the same process, with m1 first;

• m1 was toco-delivered by a process pi before this process toco-broadcast m2;

• There exists a message m such that (m1 ;M m) ∧ (m ;M m2).

Definition of the G-fisheye (SC,CC)-broadcast The (SC,CC)-broadcast abstraction is defined by the following prop-
erties.

Validity. If a process toco-delivers a message m, this message was toco-broadcast by some process. (No spurious
message.)

Integrity. A message is toco-delivered at most once. (No duplication.)

G-delivery order. For all the processes p and q such that (p, q) is an edge of G, and for all the messages mp and mq

such that mp was toco-broadcast by p and mq was toco-broadcast by q, if a process toco-delivers mp before mq,
no process toco-delivers mq before mp.

Collection des Publications Internes de l’Irisa ©IRISA

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 9

Causal order. If m1 ;M m2, no process toco-delivers m2 before m1.

Termination. If a process toco-broadcasts a message m, this message is toco-delivered by all processes.

It is easy to see that if G has no edges, this definition boils down to causal delivery, and if G is fully connected (clique),
this definition specifies total order delivery respecting causal order. Finally, if G is fully connected and we suppress the
“causal order” property, the definition boils to total order delivery.

4.2 G-fisheye (SC,CC)-broadcast: algorithm

Local variables To implement the G-fisheye (SC,CC)-broadcast abstraction, each process pi manages three local vari-
ables.

• causali[1..n] is a local vector clock used to ensure a causal delivery order of the messages; causali[j] is the
sequence number of the next message that pi will toco-deliver from pj .

• totali[1..n] is a vector of logical clock values such that totali[i] is the local logical clock of pi (Lamport’s clock),
and totali[j] is the value of totalj[j] as known by pi.

• pendingi is a set containing the messages received and not yet toco-delivered by pi.

Description of the algorithm Let us remind that for simplicity, we assume that the channels are FIFO. Algorithm 1
describes the behavior of a process pi. This behavior is decomposed into four parts.

The first part (lines 1-6) is the code of the operation TOCO_broadcast(m). Process pi first increases its local clock
totali[i] and sends the protocol message TOCOBC(m, ⟨causali[⋅], totali[i], i⟩) to each other process. In addition to the
application message m, this protocol message carries the control information needed to ensure the correct toco-delivery
of m, namely, the local causality vector (causali[1..n]), and the value of the local clock (totali[i]). Then, this protocol
message is added to the set pendingi and causali[i] is increased by 1 (this captures the fact that the future application
messages toco-broadcast by pi will causally depend on m).

The second part (lines 7-14) is the code executed by pi when it receives a protocol message TOCOBC(m,⟨s causmj [⋅],
s totmj , j⟩) from pj . When this occurs pi adds first this protocol message to pendingi, and updates its view of the local
clock of pj (totali[j]) to the sending date of the protocol message (namely, s totmj). Then, if the local clock of pi is late
(totali[i] ≤ s totmj), pi catches up (line 11), and informs the other processes of it (line 12).

The third part (lines 15-17) is the processing of a catch up message from a process pj . In this case, pi updates its
view of pj’s local clock to the date carried by the catch up message. Let us notice that, as channels are FIFO, a view
stotali[j] can only increase.

The final part (lines 18-31) is a background task executed by pi, where the application messages are toco-delivered.
The set C contains the protocol messages that were received, have not yet been toco-delivered, and are “minimal” with
respect to the causality relation ;M . This minimality is determined from the vector clock s causmj [1..n], and the
current value of pi’s vector clock (causali[1..n]). If only causal consistency was considered, the messages in C could
be delivered.

Then, pi extracts from C the messages that can be toco-delivered. Those are usually called stable messages. The
notion of stability refers here to the delivery constraint imposed by the proximity graph G. More precisely, a set T1 is
first computed, which contains the messages of C that (thanks to the FIFO channels and the catch up messages) cannot
be made unstable (with respect to the total delivery order defined by G) by messages that pi will receive in the future.
Then the set T2 is computed, which is the subset of T1 such that no message received, and not yet toco-delivered, could
make incorrect – w.r.t. G – the toco-delivery of a message of T2.

Once a non-empty set T2 has been computed, pi extracts the message m whose timestamp ⟨s totmj [j], j⟩ is “minimal”
with respect to the timestamp-based total order (pj is the sender of m). This message is then removed from pendingi
and toco-delivered. Finally, if j ≠ i, causali[j] is increased to take into account this toco-delivery (all the messages m′

toco-broadcast by pi in the future will be such that m ; m′, and this is encoded in causali[j]). If j = i, this causality
update was done at line 5.

Theorem 1 Algorithm 1 implements a G-fisheye (SC,CC)-broadcast.

Collection des Publications Internes de l’Irisa ©IRISA

10 R. Friedman, M. Raynal & F. Taïani

Algorithm 1 The G-fisheye (SC,CC)-broadcast algorithm executed by pi
1: operation TOCO_broadcast(m)
2: totali[i]← totali[i] + 1
3: for all pj ∈ Π ∖ {pi} do send TOCOBC(m, ⟨causali[⋅], totali[i], i⟩) to pj
4: pendingi ← pendingi ∪ ⟨m, ⟨causali[⋅], totali[i], i⟩⟩
5: causali[i]← causali[i] + 1
6: end operation

7: on receiving TOCOBC(m, ⟨s causmj [⋅], s totmj , j⟩)
8: pendingi ← pendingi ∪ ⟨m, ⟨s causmj [⋅], s totmj , j⟩⟩
9: totali[j]← s totmj ▷ Last message from pj had timestamp s totmj

10: if totali[i] ≤ s totmj then
11: totali[i]← s totmj + 1 ▷ Ensuring global logical clocks
12: for all pk ∈ Π ∖ {pi} do send CATCH_UP(totali[i], i) to pk
13: end if
14: end on receiving

15: on receiving CATCH_UP(last_datej , j)
16: totali[j]← last_datej
17: end on receiving

18: background task T is
19: loop forever
20: wait until C ≠ ∅ where
21: C ≡ {⟨m, ⟨s causmj [⋅], s totmj , j⟩⟩ ∈ pendingi ∣ s causmj [⋅] ≤ causali[⋅]}

22: wait until T1 ≠ ∅ where
23: T1 ≡ {⟨m, ⟨s causmj [⋅], s totmj , j⟩⟩ ∈ C ∣ ∀pk ∈ NG(pj) ∶ ⟨totali[k], k⟩ > ⟨s totmj , j⟩}
24: wait until T2 ≠ ∅ where

25: T2 ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⟨m, ⟨s causmj [⋅], s totmj , j⟩⟩ ∈ T1

RRRRRRRRRRRRRRRRRRR

∀pk ∈ NG(pj),
∀⟨mk, ⟨s causmk

k [⋅], s totmk

k , k⟩⟩
∈ pendingi ∶

⟨s totmk

k , k⟩ > ⟨s totmj , j⟩

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
26: ⟨m0, ⟨s causm0

j0
[⋅], s totm0

j0
, j0⟩⟩← arg min

⟨m,⟨s causmj [⋅],s totmj ,j⟩⟩∈T2

{⟨s totmj , j⟩}

27: pendingi ← pendingi ∖ ⟨m0, ⟨s causm0
j0

[⋅], s totmj , j0⟩⟩
28: TOCO_deliver(m0) to application layer
29: if j0 ≠ i then causali[j0]← causali[j0] + 1 end if ▷ for causali[i] see line 5
30: end loop forever
31: end background task

Collection des Publications Internes de l’Irisa ©IRISA

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 11

4.3 Proof of Theorem 1

The proof combines elements of the proofs of the traditional causal-order [11, 33] and total-order broadcast algo-
rithms [22, 7] on which Algorithm 1 is based. It relies in particular on the monoticity of the clocks causali[1..n]
and totali[1..n], and the reliability and FIFO properties of the underlying communication channels. We first prove some
useful lemmata, before proving termination, causal order, and G-delivery order in intermediate theorems. We finally
combine these intermediate results to prove Theorem 1.

We use the usual partial order on vector clocks:

C1[⋅] ≤ C2[⋅] iff ∀pi ∈ Π ∶ C1[i] ≤ C2[i]

with its accompanying strict partial order:

C1[⋅] < C2[⋅] iff C1[⋅] ≤ C2[⋅] ∧C1[⋅] ≠ C2[⋅]

We use the lexicographic order on the scalar clocks ⟨s totj , j⟩:

⟨s totj , j⟩ < ⟨s toti, i⟩ iff (s totj < s toti) ∨ (s totj = s toti ∧ i < j)

We start by three useful lemmata on causali[⋅] and totali[⋅]. These lemmata establish the traditional properties
expected of logical and vector clocks.

Lemma 1 The following holds on the clock values taken by causali[⋅]:

1. The successive values taken by causali[⋅] in Process pi are monotonically increasing.

2. The sequence of causali[⋅] values attached to TOCOBC messages sent out by Process pi are strictly increasing.

Proof Proposition 1 is derived from the fact that the two lines that modify causali[⋅] (lines 5, and 29) only increase
its value. Proposition 2 follows from Proposition 1 and the fact that line 5 insures successive TOCOBC messages cannot
include identical causali[i] values. 2Lemma 1

Lemma 2 The following holds on the clock values taken by totali[⋅]:

1. The successive values taken by totali[i] in Process pi are monotonically increasing.

2. The sequence of totali[i] values included in TOCOBC and CATCH_UP messages sent out by Process pi are strictly
increasing.

3. The successive values taken by totali[⋅] in Process pi are monotonically increasing.

Proof Proposition 1 is derived from the fact that the lines that modify totali[i] (lines 2 and 11) only increase its value
(in the case of line 11 because of the condition at line 10). Proposition 2 follows from Proposition 1, and the fact that
lines 2 and 11 insures successive TOBOBC and CATCH_UP messages cannot include identical totali[i] values.

To prove Proposition 3, we first show that:

∀j ≠ i ∶ the successive values taken by totali[j] in pi are monotonically increasing. (1)

For j ≠ i, totali[j] can only be modified at lines 9 and 16, by values included in TOBOBC and CATCH_UP messages,
when these messages are received. Because the underlying channels are FIFO and reliable, Proposition 2 implies that the
sequence of last_datej and s totmj values received by pi from pj is also strictly increasing, which shows equation (1).

From equation (1) and Proposition 1, we conclude that the successive values taken by the vector totali[⋅] in pi are
monotonically increasing (Proposition 3). 2Lemma 2

Lemma 3 Consider an execution of the protocol. The following invariant holds: for i ≠ j, if m is a message sent
from pj to pi, then at any point of pi’s execution outside of lines 28-29, s causmj [j] < causali[j] iff that m has been
toco-delivered by pi.

Collection des Publications Internes de l’Irisa ©IRISA

12 R. Friedman, M. Raynal & F. Taïani

Proof We first show that if m has been toco-delivered by pi, then s causmj [j] < causali[j], outside of lines 28-29. This
implication follows from the condition s causmj [⋅] ≤ causali[⋅] at line 21, and the increment at line 29.

We prove the reverse implication by induction on the protocol’s execution by process pi. When pi is initialized
causali[⋅] is null:

causal0i [⋅] = [0⋯0] (2)

because the above is true of any process, with Lemma 2, we also have

s causmj [⋅] ≥ [0⋯0] (3)

for all message m that is toco-broadcast by Process pj .
(2) and (3) imply that there are no messages sent by pj so that s causmj [j] < causal0i [j], and the Lemma is thus true

when pi starts.
Let us now assume that the invariant holds at some point of the execution of pi. The only step at which the invariant

might become violated in when causali[j0] is modified for j0 ≠ i at line 29. When this increment occurs, the condition
s causmj0[j0] < causali[j0] of the lemma potentially becomes true for additional messages. We want to show that there
is only one single additional message, and that this message is m0, the message that has just been delivered at line 28,
thus completing the induction, and proving the lemma.

For clarity’s sake, let us denote causal○i [j0] the value of causali[j0] just before line 29, and causal●i [j0] the value
just after. We have causal●i [j0] = causal○i [j0] + 1.

We show that s causm0
j0

[jo] = causal○i [j0], where s causm0
j0

[⋅] is the causal timestamp of the message m0 delivered
at line 28. Because m0 is selected at line 26, this implies that m0 ∈ T2 ⊆ T1 ⊆ C. Because m0 ∈ C, we have

s causm0
j0

[⋅] ≤ causal○i [⋅] (4)

at line 21, and hence
s causm0

j0
[j0] ≤ causal○i [j0] (5)

At line 21, m0 has not been yet delivered (otherwise it would not be in pendingi). Using the contrapositive of our
induction hypothesis, we have

s causm0
j0

[j0] ≥ causal○i [j0] (6)

(5) and (6) yield
s causm0

j0
[j0] = causal○i [j0] (7)

Because of line 5, m0 is the only message tobo_broadcast by Pj0 whose causal timestamp verifies (7). From this
unicity and (7), we conclude that after causali[j0] has been incremented at line 29, if a message m sent by Pj0 verifies
s causmj0[j0] < causal●i [j0], then

• either s causmj0[j0] < causal●i [j0] − 1 = causal○i [j0], and by induction assumption, m has already been delivered;

• or s causmj0[j0] = causal●i [j0] − 1 < causal○i [j0], and m =m0, and m has just been delivered at line 28.

2Lemma 3

Termination

Theorem 2 All messages toco-broadcast using Algorithm 1 are eventually toco-delivered by all processes in the system.

Proof We show Termination by contradiction. Assume a process pi toco-broadcasts a message mi with timestamp
⟨s causmi

i [⋅], s totmi
i , i⟩, and that mi is never toco-delivered by pj .

If i ≠ j, because the underlying communication channels are reliable, pj receives at some point the TOCOBC message
containing mi (line 7), after which we have

⟨mi, ⟨s causmi
i [⋅], s totmi

i , i⟩⟩ ∈ pendingj (8)

If i = j, mi is inserted into pendingi immediately after being toco-broadcast (line 4), and (8) also holds.

Collection des Publications Internes de l’Irisa ©IRISA

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 13

mi might never be toco-delivered by pj because it never meets the condition to be selected into the set C of pj (noted
Cj below) at line 21. We show by contradiction that this is not the case. First, and without loss of generality, we can
choose mi so that it has a minimal causal timestamp s causmi

i [⋅] among all the messages that j never toco-delivers (be
it from pi or from any other process). Minimality means here that

∀mx, pj never delivers mx ⇒ ¬(s causmx
x < s causmi

i) (9)

Let us now assume mi is never selected into Cj , i.e., we always have

¬(s causmi
i [⋅] ≤ causalj[⋅]) (10)

This means there is a process pk so that

s causmi
i [k] > causalj[k] (11)

If i = k, we can consider the message m′

i sent by i just before mi (which exists since the above implies s causmi
i [i] >

0). We have s caus
m′i
i [i] = s causmi

i [i] − 1, and hence from (11) we have

s caus
m′i
i [i] ≥ causalj[k] (12)

Applying Lemma 3 to (12) implies that pj never toco-delivers m′

i either, with s caus
m′i
i [i] < s causmi

i [i] (by way of
Proposition 2 of Lemma 1), which contradicts (9).

If i ≠ k, applying Lemma 3 to causali[⋅] when pi toco-broadcasts mi at line 3, we find a message mk sent by pk
with s causmk

k [k] = s causmi
i [k] − 1 such that mk was received by pi before pi toco-broadcast mi. In other words, mk

belongs to the causal past of mi, and because of the condition on C (line 21) and the increment at line 29, we have

s causmk

k [⋅] < s causmi
i [⋅] (13)

As for the case i = k, (11) also implies

s causmk

k [k] ≥ causalj[k] (14)

which with Lemma 3 implies that that pj never delivers the message mk from pk, and with (13) contradicts mi’s mini-
mality (9).

We conclude that if a message mi from pi is never toco-delivered by pj , after some point mi remains indefinitely in
Cj

mi ∈ Cj (15)

Without loss of generality, we can now choose mi with the smallest total order timestamp ⟨s totmi
i , i⟩ among all the

messages never delivered by pj . Since these timestamps are totally ordered, and no timestamp is allocated twice, there is
only one unique such message.

We first note that because channels are reliable, all processes pk ∈ NG(pi) eventually receive the TOCOBC proto-
col message of pi that contains mi (line 7 and following). Lines 10-11 together with the monotonicity of totalk[k]
(Proposition 1 of Lemma 2), insure that at some point all processes pk have a timestamp totalk[k] strictly larger than
s totmi

i :

∀pk ∈ NG(pi) ∶ totalk[k] > s totmi
i (16)

Since all changes to totalk[k] are systematically rebroadcast to the rest of the system using TOCOBC or CATCHUP

protocol messages (lines 2 and 11), pj will eventually update totalj[k] with a value strictly higher than s totmi
i . This

update, together with the monotonicity of totalj[⋅] (Proposition 3 of Lemma 2), implies that after some point:

∀pk ∈ NG(pi) ∶ totalj[k] > s totmi
i (17)

and that mi is selected in T j
1 . We now show by contradiction that mi eventually progresses to T j

2 . Let us assume mi

never meets T j
2 ’s condition. This means that every time T j

2 is evaluated we have:

Collection des Publications Internes de l’Irisa ©IRISA

14 R. Friedman, M. Raynal & F. Taïani

∃pk ∈ NG(pi),∃⟨mk, ⟨s causmk

k [⋅], s totmk

k , k⟩⟩ ∈ pendingj ∶
⟨s totmk

k , k⟩ ≤ ⟨s totmi , i⟩ (18)

Note that there could be different pk and mk satisfying (18) in each loop of Task T . However, because NG(pi) is
finite, the number of timestamps ⟨s totmk

k , k⟩ such that ⟨s totmk

k , k⟩ ≤ ⟨s totmi , i⟩ is also finite. There is therefore one
process pk0 and one message mk0 that appear infinitely often in the sequence of (pk,mk) that satisfy (18). Since mk0

can only be inserted once into pendingj , this means mk0 remains indefinitely into T j
2 , and hence pendingj , and is never

delivered. (18) and the fact that i ≠ k0 (because pi /∈ NG(pi)) yields

⟨s tot
mk0

k , k0⟩ < ⟨s totmi , i⟩ (19)

which contradicts our assumption that mi has the smallest total order timestamps ⟨s totmi
i , i⟩ among all messages never

delivered to pj . We conclude that after some point mi remains indefinitely into T j
2 .

mi ∈ T j
2 (20)

If we now assume mi is never returned by arg min at line 26, we can repeat a similar argument on the finite number of
timestamps smaller than ⟨s totmi , i⟩, and the fact that once they have been removed form pendingj (line 27), messages are
never inserted back, and find another message mk with a strictly smaller time-stamp that pj that is never delivered. The
existence of mk contradicts again our assumption on the minimality of mi’s timestamp ⟨s totmi , i⟩ among undelivered
messages.

This shows that mi is eventually delivered, and ends our proof by contradiction. 2Theorem 2

Causal Order

We prove the causal order property by induction on the causal order relation ;M .

Lemma 4 Consider m1 and m2, two messages toco-broadcast by Process pi, with m1 toco-broadcast before m2. If a
process pj toco-delivers m2, then it must have toco-delivered m1 before m2.

Proof We first consider the order in which the messages were inserted into pendingj (along with their causal timestamps
s caus

m1∣2
i). For i = j, m1 was inserted before m2 at line 4 by assumption. For i ≠ j, we note that if pj delivers m2 at

line 28, then m2 was received from pi at line 7 at some earlier point. Because channels are FIFO, this also means

m1 was received and added to pendingj before m2 was. (21)

We now want to show that when m2 is delivered by pj , m1 is no longer in pendingj , which will show that m1 has
been delivered before m2. We use an argument by contradiction. Let us assume that

⟨m1, ⟨s causm1
i , s totm1

i , i⟩⟩ ∈ pendingj (22)

at the start of the iteration of Task T which delivers m2 to pj . From Proposition 2 of Lemma 1, we have

s causm1
i < s causm2

i (23)

which implies that m1 is selected into C along with m2 (line 21):

⟨m1, ⟨s causm1
i , s totm1

i , i⟩⟩ ∈ C
Similarly, from Proposition 2 of Lemma 2 we have:

s totm1
i < s totm2

i (24)

which implies that m1 must also belong to T1 and T2 (lines 23 and 25). (24) further implies that ⟨s totm2
i , i⟩ is not the

minimal s tot timestamp of T2, and therefore m0 ≠ m2 in this iteration of Task T . This contradicts our assumption that
m2 was delivered in this iteration; shows that (22) must be false; and therefore with (21) that m1 was delivered before
m2. 2Lemma 4

Collection des Publications Internes de l’Irisa ©IRISA

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 15

Lemma 5 Consider m1 and m2 so that m1 was toco-delivered by a process pi before pi toco-broadcasts m2. If a process
pj toco-delivers m2, then it must have toco-delivered m1 before m2.

Proof Let us note pk the process that has toco-broadcast m1. Because m2 is toco-broadcasts by pi after pi toco-delivers
m1 and increments causali[k] at line 29, we have, using Lemma 3 and Proposition 1 of Lemma 1:

s causm1

k [k] < s causm2
i [k] (25)

Because of the condition on set C at line 21, when pj toco-delivers m2 at line 28, we further have

s causm2
i [⋅] ≤ causalj[⋅] (26)

and hence using (25)
s causm1

k [k] < s causm2
i [k] ≤ causalj[k] (27)

Applying Lemma 3 to (27), we conclude that pjmust have toco-delivered m1 when it delivers m2. 2Lemma 5

Theorem 3 Algorithm 1 respects causal order.

Proof We finish the proof by induction on ;M . Let’s consider three messages m1, m2, m3 such that

m1 ;M m3 ;M m2 (28)

and such that:

• if a process toco-delivers m3, it must have toco-delivered m1;

• if a process toco-delivers m2, it must have toco-delivered m3;

We want to show that if a process toco-delivers m2, it must have tolo-delivered m1. This follows from the transitivity
of temporal order. This result together with Lemmas 4 and 5 concludes the proof. 2Theorem 3

G-delivery order

Theorem 4 Algorithm 1 respects G-delivery order.

Proof Let’s consider four processes pl, ph, pi, and pj . pl and ph are connected in G. pl has toco-broadcast a message
ml, and ph has toco-broadcast a message mh. pi has toco-delivered ml before mh. pj has toco-delivered mh. We want
to show that pj has toco-delivered ml before mh.

We first show that:
⟨s totmh

h , h⟩ > ⟨s totml

l , l⟩ (29)

We do so by considering the iteration of the background task T (lines 18-18) of pi that toco-delivers ml. Because
ph ∈ NG(pl), we have

⟨totali[h], h⟩ > ⟨s totml

l , l⟩ (30)

at line 23.
If mh has not been received by pi yet, then because of Lemma 3.2, and because communication channels are FIFO

and reliable, we have:
⟨s totmh

h , l⟩ > ⟨totali[h], h⟩ (31)

which with (30) yields (29).
If mh has already been received by pi, by assumption it has not been toco-delivered yet, and is therefore in pendingi.

More precisely we have:
⟨mh, ⟨s causmh

h [⋅], s totmh

h , h⟩⟩ ∈ pendingi (32)

which, with ph ∈ NG(pl), and the fact that ml is selected in T i
2 at line 25 also gives us (29).

Collection des Publications Internes de l’Irisa ©IRISA

16 R. Friedman, M. Raynal & F. Taïani

We now want to show that pj must have toco-delivered ml before mh. The reasoning is somewhat the symmetric
of what we have done. We consider the iteration of the background task T of pj that toco-delivers mh. By the same
reasoning as above we have

⟨totalj[l], l⟩ > ⟨s totmh

h , h⟩ (33)

at line 23.
Because of Lemma 3.2, and because communication channels are FIFO and reliable, (33) and (29) imply that ml has

already been received by pj . Because mh is selected in T j
2 at line 25, (29) implies that mh is no longer in pendingj , and

so must have been toco-delivered by pj earlier, which concludes the proof. 2Theorem 4

Theorem 1 Algorithm 1 implements a G-fisheye (SC,CC)-broadcast.

Proof

• Validity and Integrity follow from the integrity and validity of the underlying communication channels, and from
how a message mj is only inserted once into pendingi (at line 4 if i = j, at line 8 otherwise) and always removed
from pendingi at line 27 before it is toco-delivered by pi at line 28;

• G-delivery order follows from Theorem 4;

• Causal order follows from Theorem 3;

• Termination follows from Theorem 2.

2Theorem 1

5 An Algorithm Implementing G-Fisheye (SC,CC)-Consistency

5.1 The high level object operations read and write

Algorithm 2 uses the G-fisheye (SC,CC)-broadcast we have just presented to realized G-fisheye (SC,CC)-consistency
using a fast-read strategy. This algorithm is derived from the fast-read algorithm for sequential consistency proposed by
Attiya and Welch [7], in which the total order broadcast has been replaced by our G-fisheye (SC,CC)-broadcast.

Algorithm 2 Implementing G-fisheye (SC,CC)-consistency, executed by pi
1: operation X.write(v)
2: TOCO_broadcast(WRITE(X,v, i))
3: deliveredi ← false ;
4: wait until deliveredi = true
5: end operation

6: operation X.read()
7: return vx
8: end operation

9: on toco_deliver WRITE(X,v, j)
10: vx ← v ;
11: if (i = j) then deliveredi ← true endif
12: end on toco_deliver

The write(X,v) operation uses the G-fisheye (SC,CC)-broadcast to propagate the new value of the variable X . To
insure any other write operations that must be seen before write(X,v) by pi are properly processed, pi enters a waiting
loop (line 4), which ends after the message WRITE(X,v, i) that has been toco-broadcast at line 2 is toco-delivered at
line 11.

The read(X) operation simply returns the local copy vx of X . These local copies are updated in the background
when WRITE(X,v, j) messages are toco-delivered.

Collection des Publications Internes de l’Irisa ©IRISA

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 17

Theorem 5 Algorithm 2 implements G-fisheye (SC,CC)-consistency.

5.2 Proof of Theorem 5

The proof uses the causal order on messages ;M provided by the G-fisheye (SC,CC)-broadcast to construct the causal
order on operations ;H . It then gradually extends ;H to obtain ★;H,G . It first uses the property of the broadcast
algorithm on messages to-broadcast by processes that are neighbors in G, and then adapts the technique used in [27, 31]
to show that WW (write-write) histories are sequentially consistent. The individual histories Ŝi are obtained by taking a
topological sort of (★;H,G)∣(pi +W).

For readability, we denote in the following rp(X,v) the read operation invoked by process p on object X that returns
a value v (X.read→ v), and wp(X,v) the write operation of value v on object X invoked by process p (X.write(v)). We
may omit the name of the process when not needed.

Let us consider a history Ĥ = (H,
po
→H) that captures an execution of Algorithm 2, i.e.,

po
→H captures the sequence of

operations in each process (process order, po for short). We construct the causal order ;H required by the definition of
Section 3.2 in the following, classical, manner:

• We connect each read operation rp(X,v) = X.read → v invoked by process p (with v ≠ �, the initial value) to the
write operation w(X,v) = X.write(v) that generated the WRITE(X,v) message carrying the value v to p (line 10

in Algorithm 2). In other words, we add an edge ⟨w(X,v)
rf
→ rp(X,v)⟩ to

po
→H (with w and rp as described above)

for each read operation rp(X,v) ∈ H that does not return the initial value �. We connect initial read operations
r(X,�) to an � element that we add to H .

We call these additional relations read-from links (noted
rf
→).

• We take ;H to be the transitive closure of the resulting relation.

;H is acyclic, as assuming otherwise would imply at least one of the WRITE(X,v) messages was received before
it was sent. ;H is therefore an order. We now need to show ;H is a causal order in the sense of the definition of
Section 2.4, i.e., that the result of each read operation r(X,v) is the value of the latest write w(X,v) that occurred
before r(X,v) in ;H (said differently, that no read returns an overwritten value).

Lemma 6 ;H is a causal order.

Proof We show this by contradiction. We assume without loss of generality that all values written are distinct. Let us

consider wp(X,v) and rq(X,v) so that wp(X,v)
rf
→ rq(X,v), which implies wp(X,v) ;H rq(X,v). Let us assume

there exists a second write operation wr(X,v′) ≠ wp(X,v) on the same object, so that

wp(X,v) ;H wr(X,v′) ;H rq(X,v) (34)

(illustrated in Figure 7). wp(X,v) ;H wr(X,v′) means we can find a sequence of operations opi ∈H so that

wp(X,v)→0 op0...→i opi →i+1 ...→k wr(X,v′) (35)

with →i∈ {
po
→H ,

rf
→},∀i ∈ [1, k]. The semantics of

po
→H and

rf
→ means we can construct a sequence of causally related

(SC,CC)-broadcast messages mi ∈ M between the messages that are toco-broadcast by the operations wp(X,v) and
wr(X,v′), which we note WRITEp(X,v) and WRITEr(X,v′) respectively:

WRITEp(X,v) =m0 ;M m1... ;M mi ;M ... ;M mk′ = WRITEr(X,v′) (36)

where ;M is the message causal order introduced in Section 4.1. We conclude that WRITEp(X,v) ;M WRITEr(X,v′),
i.e., that WRITEp(X,v) belongs to the causal past of WRITEr(X,v′), and hence that q in Figure 7 toco-delivers
WRITEr(X,v′) after WRITEp(X,v).

We now want to show that WRITEr(X,v′) is toco-delivered by q before q executes rq(X,v). We can apply the same
reasoning as above to wr(X,v′) ;H rq(X,v), yielding another sequence of operations op′i ∈H:

wr(X,v′)→′

0 op
′

0...→′

i op
′

i →′

i+1 ...→′

k′′ rq(X,v) (37)

Collection des Publications Internes de l’Irisa ©IRISA

18 R. Friedman, M. Raynal & F. Taïani

p
wp(X,v)

q
rq(X,v)

r
wr(X,v′)

rf
→

;H

;H

Figure 7: Proving that ;H is causal by contradiction

with→′

i∈ {
po
→H ,

rf
→}. Because rq(X,v) does not generate any (SC,CC)-broadcast message, we need to distinguish the case

where all op′i relations correspond to the process order
po
→H (i.e., op′i =

po
→H ,∀i). In this case, r = q, and the blocking be-

havior of X .write() (line 4 of Algorithm 2), insures that WRITEr(X,v′) is toco-delivered by q before executing rq(X,v).
If at least one op′i corresponds to the read-from relation, we can consider the latest one in the sequence, which will denote
the toco-delivery of a WRITEz(Y,w) message by q, with WRITEr(X,v′) ;M WRITEz(Y,w). From the causality of the
(SC,CC)-broadcast, we also conclude that WRITEr(X,v′) is toco-delivered by q before executing rq(X,v).

Because q toco-delivers WRITEp(X,v) before WRITEr(X,v′), and toco-delivers WRITEr(X,v′) before it executes
rq(X,v), we conclude that the value v of vx is overwritten by v′ at line 10 of Algorithm 2, and that rq(X,v) does not

return v, contradicting our assumption that wp(X,v)
rf
→ rq(X,v), and concluding our proof that ;H is a causal order.

2Lemma 6

To construct ★;H,G , as required by the definition of (SC,CC)-consistency (Section 3.2), we need to order the write
operations of neighboring processes in the proximity graph G. We do so as follows:

• We add an edge wp(X,v) ww→ wq(Y,w) to ;H for each pair of write operations wp(X,v) and wq(Y,w) in H
such that:

– (p, q) ∈ EG (i.e., p and q are connected in G);

– wp(X,v) and wq(Y,w) are not ordered in ;H ;

– The broadcast message WRITEp(X,v) of wp(X,v) has been toco-delivered before the broadcast message
WRITEp(Y,w) of wq(Y,w) by all processes.

We call these additional edges ww links (noted
ww→).

• We take ★;H,G to be the recursive closure of the relation we obtain.

★;H,G is acyclic, as assuming otherwise would imply that the underlying (SC,CC)-broadcast violates causality. Be-
cause of the G-delivery order and termination of the toco-broadcast (Section 4.1), we know all pairs of WRITEp(X,v)
and WRITEp(Y,w) messages with (p, q) ∈ EG as defined above are toco-delivered in the same order by all processes.
This insures that all write operations of neighboring processes in G are ordered in ★;H,G .

We need to show that ★;H,G remains a causal order, i.e., that no read in ★;H,G returns an overwritten value.

Lemma 7 ★;H,G is a causal order.

Proof We extend the original causal order ;M on the messages of an (SC,CC)-broadcast execution with the following
order ;G

M :
m1 ;G

M m2 if

• m1 ;M m2; or

• m1 was sent by p, m2 by q, (p, q) ∈ EG , and m1 is toco-delivered before m2 by all processes; or

• there exists a message m3 so that m1 ;G

M m3 and m3 ;G

M m2.

Collection des Publications Internes de l’Irisa ©IRISA

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 19

;G

M captures the order imposed by an execution of an (SC,CC)-broadcast on its messages. The proof is then identical to
that of Lemma 6, except that we use the order ;G

M , instead of ;M . 2Lemma 7

Theorem 5 Algorithm 2 implements G-fisheye (SC,CC)-consistency.

Proof The order ★;H,G we have just constructed fulfills the conditions required by the definition of G-fisheye (SC,CC)-
consistency (Section 3.2):

• by construction ★;H,G subsumes ;H (;H ⊆ ★;H,G);

• also by construction ★;H,G , any pair of write operations invoked by processes p,q that are neighbors in G are
ordered in ★;H,G ; i.e., (★;H,G)∣({p, q} ∩W) is a total order.

To finish the proof, we choose, for each process pi, Ŝi as one of the topological sorts of (★;H,G)∣(pi +W), following
the approach of [27, 31]. Ŝi is sequential by construction. Because ★;H,G is causal, Ŝi is legal. Because ★;H,G respects
po
→H , Ŝi is equivalent to Ĥ ∣(pi +W). Finally, Ŝi respects (★;H,G)∣(pi +W) by construction. 2Theorem 5

6 Conclusion

This work was motivated by the increasing popularity of geographically distributed systems. We have presented a frame-
work that enables to formally define and reason about mixed consistency conditions in which the operations invoked by
nearby processes obey stronger consistency requirements than operations invoked by remote ones. The framework is
based on the concept of a proximity graph, which captures the “closeness” relationship between processes. As an ex-
ample, we have formally defined G-fisheye (SC,CC)-consistency, which combines sequential consistency for operations
by close processes with causal consistency among all operations. We have also provided a formally proven protocol for
implementing G-fisheye (SC,CC)-consistency.

Another natural example that has been omitted from this paper for brevity is G-fisheye (LIN,SC)-consistency, which
combines linearizability for operations by nearby nodes with an overall sequential consistency guarantee.

The significance of our approach is that the definitions of consistency conditions are functional rather than opera-
tional. That is, they are independent of a specific implementation, and provide a clear rigorous understanding of the
provided semantics. This clear understanding and formal underpinning comes with improved complexity and perfor-
mance, as illustrated in our implementation of G-fisheye (SC,CC)-consistency, in which operations can terminate without
waiting to synchronize with remote parts of the system.

More generally, we expect the general philosophy we have presented to extend to Convergent Replicated Datatypes
(CRDT) in which not all operations are commutative [28]. These CRDTs usually require at a minimum causal commu-
nications to implement eventual consistency. The hybridization we have proposed opens up the path of CRDTs which
are globally eventually consistent, and locally sequentially consistent, a route we plan to explore in future work.

Acknowledgments

This work has been partially supported by a French government support granted to the CominLabs excellence laboratory
(Project DeSceNt: Plug-based Decentralized Social Network) and managed by the French National Agency for Research
(ANR) in the "Investing for the Future" program under reference Nb. ANR-10-LABX-07-01, and by the SocioPlug
Project funded by French National Agency for Research (ANR), under program ANR INFRA (ANRANR-13-INFR-
0003). We would also like to thank Matthieu Perrin for many enlightening discussions on the topic of weak consistency
models, and for pointing out a flaw in an earlier definition of fisheye consistency.

References
[1] Adve S. and Gharachorloo K., Shared memory consistency models: a tutorial. IEEE Comp. Mag., 29(12):66-76, 1996.

Collection des Publications Internes de l’Irisa ©IRISA

20 R. Friedman, M. Raynal & F. Taïani

[2] Ahamad M., Niger G., Burns J.E., Hut to P.W., and Kohl P. Causal memory: definitions, implementation and programming.
Dist. Computing, 9:37-49, 1995.

[3] Almeida S., Leitaõ J., Rodrigues L., ChainReaction: a Causal+ Consistent Datastore based on Chain Replication. 8th ACM
Europ. Conf. on Comp. Sys. (EuroSys’13), pp. 85-98, 2013.

[4] Alvaro P., Bailis P., Conway N., and Hellerstein J. M. Consistency without borders 4th ACM Symp. on Cloud Computing
(SOCC ’13), 2013, 23

[5] Attiya H. and Friedman R., A correctness condition for high-performance multiprocessors. SIAM Journal on Computing,
27(6):1637-1670, 1998.

[6] Attiya H. and Friedman R., Limitations of Fast Consistency Conditions for Distributed Shared Memories. Information Pro-
cessing Letters, 57(5):243-248, 1996.

[7] Attiya H. and Welch J.L., Sequential consistency versus linearizability. ACM Trans. on Comp. Sys., 12(2):91-12, 1994.

[8] Attiya H. and Welch J.L., Distributed computing: fundamentals, simulations and advanced topics, (2nd Edition), Wiley-Inter
science, 414 pages, 2004 (ISBN 0-471-45324-2).

[9] Bailis P., Ghodsi A., Hellerstein J. M., and Stoica I., Bolt-on Causal Consistency 2013 ACM SIGMOD Int. Conf. on Manage-
ment of Data (SIGMOD’13), pp. 761-772, 2013.

[10] Birman K.P. and Joseph T.A., Reliable communication in presence of failures. ACM Trans. on Comp. Sys., 5(1):47-76, 1987.

[11] Birman K., Schiper A., and Stephenson P., Lightweight Causal and Atomic Group Multicast ACM Trans. Comput. Syst., vol.
9, pp. 272-314, 1991.

[12] Brewer E., Towards Robust Towards Robust Distributed Systems 19th ACM Symposium on Principles of Distributed Comput-
ing (PODC), Invited talk, 2000.

[13] Burckhardt S., Gotsman A., Yang H., and Zawirski M., Replicated Data Types: Specification, Verification, Optimality 41st
ACM Symp. on Principles of Prog. Lang. (POPL’14), pp. 271-284, 2014.

[14] DeCandia G., Hastorun D., Jampani M., Kakulapati G., Lakshman A., Pilchin A., Sivasubramanian S., Vosshall P., and Vogels
W., Dynamo: amazon’s highly available key-value store 21st ACM Symp. on Op. Sys. Principles (SOSP’07), pp. 205-220, 2007

[15] Friedman R., Implementing Hybrid Consistency with High-Level Synchronization Operations. Distributed Computing,
9(3):119-129, 1995.

[16] Garg V.K. and Raynal M., Normality: a consistency condition for concurrent objects. Parallel Processing Letters, 9(1):123-
134, 1999.

[17] , Gharachorloo K., Lenoski D., Laudon J., Gibbons P., Gupta A., and Hennessy J., Memory consistency and event ordering in
scalable shared-memory multiprocessors. 17th ACM Annual International Symp. on Comp. Arch. (ISCA), pp. 15-26, 1990.

[18] Herlihy M. and and Shavit N., The Art of Multiprocessor Programming, Morgan Kaufmann Publishers Inc., 508 pages, 2008
(ISBN 978-0-12-370591-4).

[19] Herlihy M. and Wing J., Linearizability: a correctness condition for concurrent objects. ACM Transactions on Programming
Languages and Systems, 12(3):463–492, 1990.

[20] Keleher P. Cox A.L., and Zwaenepoel W., Lazy release consistency for software distributed shared memory. Proc. 19th ACM
Int’l Symp. on Comp. Arch. (ISCA’92), pages 13–21, 1992.

[21] Lakshman A., and Malik P., Cassandra: a decentralized structured storage system. SIGOPS Oper. Syst. Rev., volume 44,
pp. 35-40, 201.

[22] Lamport L., Time, Clocks and the Ordering of Events in a Distributed System Comm. of the ACM, vol. 21, pp. 558-565, 1978

[23] Lamport L., How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans. on Comp.,
C28(9):690–691, 1979.

[24] PRAM: A Scalable Shared Memory. Technical Report CS-TR-180-88, Princeton University, September 1988.

Collection des Publications Internes de l’Irisa ©IRISA

Fisheye Consistency: Keeping Data in Synch in a Georeplicated World 21

[25] Lloyd W., Freedman M. J., Kaminsky M., and Andersen D. G., Don’t Settle for Eventual: Scalable Causal Consistency for
Wide-area Storage with COPS 23rd ACM Symp. on Op. Sys. Principles, pp. 401-416, 2011

[26] Lynch N.A., Distributed Algorithms. Morgan Kaufman Pub., San Francisco (CA), 872 pages, 1996.

[27] Mizuno M., Raynal M., and Zhou J. Z., Sequential Consistency in Distributed Systems Selected Papers from the International
Workshop on Theory and Practice in Dist. Sys., Springer, pp. 224-241, 1995

[28] Oster, G., Urso, P., Molli, P., and Imine, A. Data consistency for P2P collaborative editing. Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative work, ACM, pp. 259-268, 2006

[29] Preguiça N.M., Marquès, J.M., Shapiro M., and Letia M., A Commutative Replicated Data Type for Cooperative Editing. Proc.
29th IEEE Int’l Conf. on Dist. Comp. Sys. (ICDCS’09), pp. 395–403, 2009.

[30] Raynal M., Concurrent Programming: Algorithms, Principles, and Foundations, Springer, 515 pages, 2013, ISBN 978-3-642-
32026-2.

[31] Raynal M., Distributed Algorirhms for Message-passing Systems, Springer, 500 pages, 2013, ISBN 978-3-642-38122-5.

[32] Raynal M. and Schiper A., A suite of formal definitions for consistency criteria in distributed shared Memories. 9th Int’l IEEE
Conf. on Parallel and Dist. Comp. Sys. (PDCS’96), pp. 125-131, 1996.

[33] Raynal M., Schiper A., and Toueg S., The Causal Ordering Abstraction and a Simple Way to Implement. Information Process-
ing Letters, 39(6):343-350, 1991.

[34] Saito Y. and Shapiro M., Optimistic Replication. it ACM Computing Survey, 37(1):42-81, March 2005.

[35] Shapiro M., Preguiça N.M., Baquero C., and Zawirski M., Convergent and Commutative Replicated Data Types. Bulletin of
the EATCS, 104:67-88, 2011.

[36] Sovran Y., Power R., Aguilera M. K., and Li J., Transactional Storage for Geo-Replicated Systems. 23rd ACM Symposium on
Operating Systems Principles (SOSP’11), pp. 385-400, 2011.

[37] Terry D. B., Prabhakaran V., Kotla R., Balakrishnan M., Aguilera M. K., and Abu-Libdeh H., Consistency-based Service Level
Agreements for Cloud Storage, 24th ACM Symp. on Op. Sys. Principles (SOSP’13), pp. 309-324, 2013.

[38] Terry D. B., Theimer M. M., Petersen K., Demers A. J., Spreitzer M. J., and Hauser C. H., Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System 15th ACM Symp. on Op. Sys. Principles (SOSP’95), pp. 172-182,
1995.

[39] Xie C., Su C., Kapritsos M., Wang Y., Yaghmazadeh N., Alvisi L., and Mahajan P., Salt: Combining ACID and BASE in a
Distributed Database. USENIX Operating Systems Design and Implementation (OSDI), 2014.

Collection des Publications Internes de l’Irisa ©IRISA

	Introduction
	System Model and Basic Consistency Conditions
	System model
	Basic notions and definitions
	Sequential consistency
	Causal consistency

	The Family of Fisheye Consistency Conditions
	The notion of a proximity graph
	Fisheye consistency for the pair (sequential consistency, causal consistency)

	Construction of an Underlying (SC,CC)-Broadcast Operation
	G-fisheye (SC,CC)-broadcast: definition
	G-fisheye (SC,CC)-broadcast: algorithm
	Proof of Theorem 1

	An Algorithm Implementing G-Fisheye (SC,CC)-Consistency
	The high level object operations read and write
	Proof of Theorem 5

	Conclusion

