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Abstract: Tiling is a crucial program transformation with many benefits: it improves locality, exposes
parallelism, allows for adjusting the ops-to-bytes balance of codes, and can be applied at multiple levels.
Allowing tile sizes to be symbolic parameters at compile time has many benefits, including efficient auto-
tuning, and run-time adaptability to system variations. For polyhedral programs, parametric tiling in its full
generality is known to be non-linear, breaking the mathematical closure properties of the polyhedral model.
Most compilation tools therefore either avoid it by only performing fixed size tiling, or apply it in only the
final, code generation step. Both strategies have limitations.
We first introduce mono-parametric partitioning, a restricted parametric, tiling-like transformation which
can be used to express a tiling. We show that, despite being parametric, it is a polyhedral transformation.
We first prove that applying mono-parametric partitioning (i) to a polyhedron yields a union of polyhedra,
and (ii) to an affine function produces a piecewise-affine function. We then use these properties to show how
to partition an entire polyhedral program, including one with reductions. Next, we generalize this transfor-
mation to tiles with arbitrary tile shapes that can tesselate the iteration space (e.g., hexagonal, trapezoidal,
etc). We show how mono-parametric tiling can be applied at multiple levels, and enables a wide range of
polyhedral analyses and transformations to be applied.
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Le tuilage mono-paramétrique est une transformation polyédrique
Résumé : Le tuilage est une transformation de programme importante avec de nombreux avantages: il
améliore la localité du programme, expose du parallélisme, permet d’ajuster le ratio calcul-communications
et peut être appliqué à de multiples niveaux. Avoir des tailles de tuiles paramétrées pendant la compi-
lation est également intéressant: cela permet d’autotuner efficacement le code et de pouvoir s’adapter
pendant l’exécution aux changements du système. Dans le contexte des programmes polyédriques, le
tuilage paramétrique est connue pour ne pas être linéaire en général, ce qui brise les propriétés mathéma-
tiques de clôture du modèle polyédrique. La plupart des compilateurs polyédriques évitent ce problème
en n’appliquant que des tuilages à taille fixée, ou en appliquant cette transformation uniquement à la
dernière étape, la génération de code. Chaque stratégie a ses limitations.

Nous introduisons tout d’abord le partitionnement mono-paramétrique, une transformation similaire
à un tuilage dont l’aspect paramétrique est restreint, qui peut être utilisé pour définir un tuilage. Nous
montrons que, malgré la paramétrisation des tailles de tuiles, cette transformation est polyédrique. Tout
d’abord, nous prouvons qu’appliquer le partitionnement mono-paramétrique (i) à un polyèdre produit
une union de polyèdres, et (ii) à une fonction affine produit une fonction affine par morceaux. Nous
utilisons ensuite ces propriétés pour montrer comment partitionner un programme polyédrique complet,
potentiellement contenant des réductions. Ensuite, nous généralisons cette transformation à des formes de
tuiles arbitraires qui pavent l’espace d’itération (par exemple, hexagone, trapézoïde, etc). Nous montrons
également comment le tuilage mono-paramétrique peut être appliqué à de multiples niveaux et permet
l’application d’analyses et de transformations polyédriques.

Mots-clés : Parallélisation automatique, compilation polyédrique, tuilage



Mono-parametric Tiling is a Polyhedral Transformation 3

1 Introduction
Iteration space tiling [46, 25, 41, 45, 37] is a very important program transformation, and offers a number
of benefits. It can be used to improve data locality, to expose parallelism, and to allow for adjusting the
granularity or balance [9, 48], i.e., the ratio of operations to data (also called the arithmetic or operational
intensity [43], that a segment of code performs). It can be applied at multiple levels. Tiling is often applied
manually, but it is an even more critical transformation in most compiler tools, especially those that tackle
the class of data- and compute-intensive programs that can exploit the mathematical foundations of the
polyhedral model [36, 35, 15, 17].

Allowing tile sizes to be symbolic parameters at compile time has many benefits, including efficient
autotuning, and run-time adaptability to system variations. For polyhedral programs, parametric tiling in
its full generality is known to be non-linear, breaking the mathematical closure properties of the model.
Most polyhedral compilation tools therefore, either avoid it by only performing fixed size tiling, or apply
it in only the final, code generation step. Both strategies have limitations.

Limitations of fixed size tiling The very purpose of tiling is to improve performance, and the tile size(s)
have a huge influence on performance. However, the exact nature of how tile sizes affect performance is
very poorly understood, so a widely accepted strategy is through autotuning or iterative compilation [27,
28] by searching through or empirically evaluating the space of different compiler parameters (notably
tile sizes) and chosing the best one. The search may be guided by cost models, and strategies like machine
learning may be used to improve the quality of the results, but the key element is the repeated evaluation
of the performance of a number of target programs with different tunable parameters, including tile size.
With fixed size tiling, a separate program must be generated and compiled for each tile size, and this is
very expensive. Furthermore, the best tile sizes may depend on parameters that are not known at compile
time, e.g., the input sizes. In such cases, many alternate versions, e.g., the best one for each of a range of
input sizes, must be pre-generated and compiled into the final executable, leading to possible code size
bloat.

Current limitations of parametric tiling Because parametric tiling takes a program outside the poly-
hedral model, we cannot subsequently apply any other polyhedral transformation and analysis. Hence,
current polyhedral compilation tools apply parametric tiling only at the final, code generation phase. As
a result, many decisions about the parallelization and/or optimization strategy are “hardwired” into the
code generator, thereby negating one of the main advantages of the polyhedral model—composability of
program transformations.

A simple example is that when parallel tiled code is generated by current parametric tiled code gen-
erators they all choose the standard “45° wavefront” parallelization1 among the tiles. While this known
to be a legal choice provided tile sizes are large enough [25], it is certainly not the only one. For exam-
ple, in some situations it may be legal and preferable to use a canonic vector—one of the tile loops may
not carry any dependences and could be simply declared to be parallel with a pragma in the generated
code. However, in order to incorporate this “simple decision” two very different code patterns must be
generated, as in the GPU compiler developed by Konstantinidis et. al [29].

In this paper, we propose a middle ground called mono-parametric tiling: a restricted parametric
tiling where all tile sizes are multiples of a single parameter. We first show (Sec. 4) the somewhat un-
intuitive result that a tiling-like transformation, called monoparametric partitioning, where all tile sizes
are multiples of a single parameter and the “tiling” is along the canonic axes, is a polyhedral transfor-
mation. In particular, applying it (i) to a polyhedron yields a union of polyhedra, and (ii) to an affine
function produces a piecewise-affine function. Then, in Sec. 5, we show how to exploit these properties

1This corresponds, mathematically, to using a wavefront hyperplane whose normal vector is ~1 as the schedule.
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4 Guillaume Iooss & Sanjay Rajopadhye & Christophe Alias & Yun Zou

to monoparametrically partition an entire polyhedral program, given a partitioning of a subset of data
arrays and statements, and also how to handle non-canonic directions. This includes: consistently com-
bining potentially different partitionings of subexpressions, and handling programs with reductions. Next,
(Sec. 6) we generalize to partitions of arbitrary polyhedral shapes that tesselate the iteration space, includ-
ing hexagonal, trapezoidal, etc. We illustrate our results by showing how mono-parametric partitioning
can be applied at multiple levels, and enables a wide range of polyhedral analyses and transformations
(Sec. 7). We also describe how tiling is a simple extension of partitioning and give a method to check the
legality of a proposed mono-parametric tiling.

2 Related Work

Tiling has been an active research research topic for nearly thirty years [46, 25, 41, 45, 37] for both poly-
hedral and more general programs. Although its importantce for polyhedral programs was well known,
it was difficult to incorporate into fully automatic compilation tools, despite early efforts [44, 2, 1]. Early
work on scheduling polyhedral programs was mostly focused on optimality under unbounded resource
assumptions [17, 18, 10, 11], and an algorithm to optimally choose tile shapes was only developed rele-
tavely recently [8].

Many authors worked on applying tiling optimizations on different programs, especially stencil com-
putations, an important class of programs that occurs in a variety of scientific applications, and for which
tiling is often difficult. For this reason, much of the techniques discussed in this paper are related to
stencils, although our approach is of course, applicable to arbitrary polyhedral programs.

Dursun et at. [13] and Peng et al.[33] apply tiling on a subset of the computation dimensions (data
dimensions) for stencil computations, and benefits are showed on multiprocessors. However, the amount
of cache reuse is very limited, and tiling all the dimensions is necessary to maximize data reuse.

For stencil computations, due to the cross dependences in the time dimension, rectangular tiling can-
not be applied directly. Time skewing [45, 48, 47, 3] is an important approach to exploit data locality
across all dimensions. It looks at the dependences in the whole iteration domain, skews it with respect
to the time dimension, then divides it into rectangular tiles. Due to dependences between tiles, it is also
necessary to subsequently parallelize the tiled program, say with the classic 45° wavefront parallelization.

Krishnamoorthy et al. [30] pointed out that the classic wavefront parallelization suffers from the
pipeline fill-flush overhead, and proposed split tiling and overlapped tiling techniques to enable concur-
rent start. Concurrent start can also be achieved with different tile shapes, such as diamond and hexagonal.
Strzodka presents a technique called cache accurate time skewing (CATS) [42] for stencil computations.
CATS tiles a subset of the dimensions to form large diamond tiles, and a sequential wavefront traversal is
performed inside the tiles and the parallelism is explored among the tiles. Grosser et al. [20] presented a
hybrid hexagonal tiling technique for GPUs, which tiles the face constructed by the time dimension and
one data dimension with hexagonal tiles, and all the other dimensions with parallelogram shaped tiles.

Due to the complexity of the tiled code, a code generator is usually implemented when a tiling strategy
is presented. Depending on whether tile sizes are left as tunable program parameters in the generated
code, the code generators may be either fixed sized or parametric. When tile sizes are fixed (not as
tunable program parameters), tiling can be described as a linear transformation, and purely polyhedral
code generators as developed by Quilleré et al. [34], Bastoul et al. [6] are adequate, otherwise parametric
code generation is necessary.

Since parametric tiling is a non-linear transformation, the resulting program is no longer polyhedral.
Existing parametric tiled code generators apply rectangular tiling, possibly after a preprocessing step,
and generate codes by purely syntactic manipulation of the AST [39, 40]. Given a d-dimensional loop
nest, these tools generate a d-dimensional tiled loop nest that visits all the tile origins/coordinates, and
a d-dimensional point loop nest that visits all the points for a visited tile. A straightforward solution is

Inria



Mono-parametric Tiling is a Polyhedral Transformation 5

to construct the bounding box of the iteration domain [49], and generate the tile-loops that enumerate
the tile origins in the bounding box and perform proper checking for whether a tile contains any valid
iteration points. However, the bounding box strategy can end up with enumerating many empty tiles.

In order to avoid the enumeration of empty tiles, PrimeTile [22] tiles the original iteration space
one dimension at a time. At each one, it identifies the largest sub-rectangular space formed by the cur-
rent dimension and the previous dimensions, to which it then then applies rectangular tiling. The sub-
rectangular space identification code is generated and executed at run-time, and this may incur run-time
overhead. DynTile [23], DTiler [26] and PTile [5] avoid enumeration of empty tiles by constructing an
outset, which only includes non-empty tile origins. Wavefront parallelization is supported in most of
the parametric tiled code generators. DynTile [23] achieves wavefront parallelization through a run-time
scheduler, while DTiler [26] and PTile [5] statically constructs the schedule for the classic 45° wavefront
parallelization.

Authors have also explored concurrent start for parallelization, such as diamond tiling [42], hexagonal
tiling [21, 20], and split and overlapped tiling [30, 24]. However, all the accompanying code generators
use fixed size tiling. Generating parametric tiled codes for these shapes is known to be a hard problem.
Recently Bertolacci et al. [7], described the loop structure for parametric diamond with a single parameter,
but they did not resolve the automatic code generation problem.

In all this work, solutions to many problems that should remain separate—choice of tile shapes, and
for each one, choice of parallelization, including communication and data locality, across and within
tiles—are all combined in an ad hoc manner. Our goal is to develop a single framework to enable a
separation of concerns and allow solutions to be developed modularly. The price of this is a restricted
parametric tiling (i.e., mono-parametric tiling)

Finally, a word about our notation. In this paper, we use the term partitioning to describe only a
reindexing transformation that maps a d-dimensional space to a 2d-dimensional one. It does not, in anay
way, alter the program execution order or semantics. This allows us to focus on the mathematical details,
and defer the discussion of legality of the transformation. It also enables more sophisticated analyses, as
we shall see.

3 Background
The polyhedral model [36, 35, 15, 17] is a mathematical formalism for analyzing, parallelizing and trans-
forming an important class of compute- and data-intensive programs, or program fragments, called Affine
Control Loops (ACL). An ACL satisfies the following properties: (i) it only consists of (sequences of) ar-
bitrarily nested loops, (ii) the statements in the loop are assignment statements, possibly with conditions;
(iii) the loop lower (respectively, upper) bounds are the maxima (respectively, minima) of a finite num-
ber of affine functions of outer loop indices and program parameters, and (iv) the conditions and array
accesses are also affine functions of outer loop indices and program parameters. The following terms are
usually used in describing a polyhedral program:

Iteration vector. Each statement in an ACL is surrounded by zero or more loops, and an iteration
vector is used to represent the dynamic instances of a statement. An iteration vector is described as an
n-entry column vector~i = (i0, i1, i2, . . . , in−1)T , where n is the number of loops surrounding the statement
(called the depth of the statement), and ik is the loop index of the kth loop (i0 being the outermost). In an
ACL with s size parameters, the s-entry column vector ~p with these parameters is called the parameter
vector of the ACL.

Definition 3.1. The domain, D, of a statement describes the set of legal values that its iteration vec-
tors can take. Because of the constrains of ALCs, the iteration space is represented by a set of linear
inequalities, and hence is a polyhedron, parametrized by the size parameters:

D =
{
~i |~i ∈ Zn,Q.~i + Q(p).~p + ~q ≥ 0

}
RR n° 8802



6 Guillaume Iooss & Sanjay Rajopadhye & Christophe Alias & Yun Zou

where~i and ~p are, respectively, the iteration and parameter vector, Q and Q(p) are constant matrices with
size m × n and m × s respectively, and ~q is an m-entry constant vector, where the number of constraints
defining the polyhedron is m.

Definition 3.2. Flow Dependence: A statement instance 〈S 1,~i〉 depends on the instance 〈S 2, ~j〉, written
as 〈S 1,~i〉 → 〈S 2, ~j〉 if the value produced by 〈S 2, ~j〉 is used by 〈S 1,~i〉.

Domains and affine functions are the critical elements of all polyhedral compilation tools.

Definition 3.3. Given a vector of sizes, ~b ∈ Zn, a canonic partitioning transformation, T~b maps an

index point~i ∈ Zn to a point, 〈~ib, ~il〉 ∈ Z2n, where~ib =

~i~b
, and~il = ~i mod ~b, and we have extended the

division, modulo and floor operation elementwise to vectors.
The inverse, T −1

~b
of a canonic partitioning is given by, T −1

~b
(〈~ib, ~il〉) = ~ib.~b + ~il, where the product and

sum are elementwise.
If ~b is a constant vector, the canonic partitioning is said to be fixed size, if the elements of ~b are all

symbolic, it is a parametric partitioning, and if all elements are multiples of a single parameter, it is a
monoparametric partitioning.

For example, a monoparametric partitioning can have rectangles of size b × 2b, but not b × b′ where
b and b′ are two different parameters. This means that we fix the shape of a partition, and we can only
change its size by homothetically scaling it by a single size parameter b. When the context is clear, we
may drop the word “canonic,” and use “blocking” or “tiling” for partitioning.

(Canonically) partitioning a polyhedron D means applying a canonic partitioning transformation
(Def. 3.3) to it. Note that even though the notation uses floor and modulo operations, it is well known
that the image of D by a fixed size partitioning is a polyhedron. However, the image by a parametric
partitioning is not.

Program Representation and Reductions In his seminal paper, Feautrier [15] showed that, for any
array reference on the right hand side of any statement in an ACL, the corresponding flow dependence
can be determined exactly and symbolically, in the sense that for every flow dependence 〈S 1,~i〉 → 〈S 2, ~j〉,
〈S 2, ~j〉, can be expressed as a piece-wise affine function of ~i and ~p. Hence we can translate the ACL
to the following polyhedral program representation: a program is abstracted as a set of computations of
statement instances, each of which is described as follows:

~i ∈ D : 〈S ,~i〉 = g(〈S 1, f1(~i)〉, . . . , 〈S d, fd(~i)〉)

where~i is the iteration vector for statement S , ~D is a subset of the domain for statement S , the function
g takes d arguments and each argument is a result of a statement, and for k = 0 . . . d, fk is a dependence
function. This representation is often described as a Polyhedral Reduced Dependence Graph (PRDG).
Program inputs are represented as special “dummy statements” which are sink nodes in the PRDG.

It is well known that reductions, scans or prefix computations are very powerful programming and
computational abstractions. They can be specified as the application of associative (and often com-
mutative) operators to (collections of) values, producing (collections of) values. Redon and Feautrier
showed [38] that for ACLs, after obtaining flow dependences as piece-wise affine functions, reductions
and scans also also be detected relatively easily. Since monoparametric tiling can be applied to such pro-
grams to and provides some significant benefits, we extend our program representation/PRDG to include
reductions too.

A reduction is represented with two statements: a “body statement” defined over an iteration domain
D, just like any other statement, and a “result statement.” Moreover, it has a special projection function,
π, a many-to one affine function, that maps D to Dr = π(D). This is the domain of the result statement.

Inria



Mono-parametric Tiling is a Polyhedral Transformation 7

In the PRDG, we have a special reduction node for the body, and there is an edge from the result node to
this node, labeled with π. A reduction is written as:

~i ∈ Dr : 〈S ,~i〉 =
⊕
~j ∈ D
~i = π(~j)

g(〈S 1, f1(~j)〉, . . . , 〈S d, fd(~j)〉)

where ⊕ is an associative and communicative binary operator.

Example 3.1. [15] If a and b are vectors, representing two polynomials of degrees, m, and n, respec-
tively, the vector c representing their product is obtained by computing the outer product of a and b, and
adding up the anti-diagonals of this matrix:

c[k] =
∑

k=i+ j

a[i] ∗ b[ j]

4 Hyperrectangular Monoparametric partitioning
In this section, we focus on the two main mathematical objects in our program representation: polyhedra
and affine functions. We show that applying a monoparametric partitioning transformation to these objects
gives us, respectively, a union of polyhedra, and a piecewise affine function. These operations will be
applied to partition a complete program in Section 5. In Section 6 we extend these two properties to any
general shape and to complete programs.

4.1 Monoparametric partitionning of polyhedra

Consider a polyhedron D =
{
~i | . . .

}
⊂ Zn. Let us introduce a block size parameter b and a diagonal

matrix D of size n called ratio of a tile, whose coefficients are used to specify the “shape” of the partition.
We want to study the effect of applying monoparametric partitioning on a polyhedron D. Such a

transformation partitions each index,~i into two indices (as in the “strip mining” intuition), a block index
~ib, and a local index. ~il We seek the constraints that these new indices must satisfy, i.e., we want to obtain
a 2n-dimensional set ∆ = {~ib, ~il | constraints}. Intuitively, ~ib corresponds to the block to which~i is mapped,
and ~il corresponds to the local coordinate of~i inside this block (c.f. Figure 1). We also assume that all
parameters ~p can be decomposed into ~p = b. ~pb + ~pl, where ~pb are the block parameters and ~pl the local
parameters.

The intuition behind our main results is that starting from the constraints ofD, by eliminating the old
indices~i and parameters ~p, it is possible to obtain a disjoint disjunction of integral affine constraints on
the blocked and local indices and parameters. Therefore, we prove that ∆ is a finite union of polyhedra.
For example, if we tile a triangle D = {i, j | 0 ≤ i, j ∧ i + j < N} with square tiles (assuming that the
block size parameter divides N), we have two tile shapes: the tiles along the diagonal are triangles, all
internal tiles are full squares. Therefore, ∆ is the union of two polyhedra: a one-dimensional collection
of triangles corresponding to the diagonal tiles, and a two dimensional, triangular collection of squares
corresponding to the interior tiles.

More interestingly, if the same triangleD = {i, j | 0 ≤ i, j∧ i + j < N} is tiled with 2b×b rectangles as
in Fig. 1, we get three sets of shapes (if b divides N). In the “tall-skinny” triangular region • {ib, jb | 0 ≤
ib, jb ∧ 2ib + jb + 3 ≤ Nb}, where Nb = N/b, we have full rectangles, specified by {il, jl | 0 ≤ il < 2b∧ 0 ≤
jl < b}. Along the line segment • {ib, jb | 2ib + jb + 2 = Nb}, we have trapezoidal tiles whose shape is
{il, jl | 0 ≤ il, jl ∧ il + jl < 2b ∧ jl < b}. And finally, along the line segment • {ib, jb | 2ib + jb + 1 = Nb},
we have triangular tiles {il, jl | 0 ≤ il, jl ∧ il + jl < b}.

RR n° 8802
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i

j

il

jl
(ib, jb)

2.b

b

Figure 1: A 2D monoparametric partition with 2 × 1 rectangles.

Notice how each collection itself is a disjoint polyhedron, and its constraints involve only the block
indices. Also notice how the constraints defining each shape involve only the local indices, and the size
parameter, b. This is not a coincidence, and the following theorem shows that ∆ is separable in this sense.

Theorem 4.1. The image of a polyhedron D = {~i | Q.~i + Q(p).~p + ~q ≥ ~0} by a monoparametric blocking
transformation is:

∆ =
m⋂

c=1

[ ⊎
kmin

c <kc≤kmax
c

~ib, ~il
∣∣∣∣ Qc.D.~ib + Q(p)

c . ~pb + kc = 0
b.kc ≤ Qc.~il + Q(p)

c . ~pl + qc
~0 ≤ ~il < b.D.~1


]

{
~ib, ~il

∣∣∣∣ Qc.D.~ib + Q(p)
c . ~pb + kmin

c ≥ 0
~0 ≤ ~il < b.D.~1

} ]
where ~k enumerates the possible values of

⌊
Q.~il+Q(p). ~pl+~q

b

⌋
∈ [|~kmin;~kmax|].

Proof. Let us derive the constraints of ∆ from the constraints ofD:

Q.~i + Q(p).~p + ~q ≥ ~0 (1)

Since D is the intersection of m half planes, each one of them defined by a single constraint Qc.~i +

Q(p)
c .~p + qc ≥ 0, for 1 ≤ c ≤ m, and we consider each constraint independently. Let us use the definitions

of ~ib, ~il, ~pb and ~pl to eliminate~i and ~p.

b.Qc.D.~ib + Qc.~il + b.Q(p)
c . ~pb + Q(p)

c . ~pl + qc ≥ 0 (2)

Notice that these constraints are no longer linear, because of the b.~ib and b. ~pb terms. To eliminate
them, we divide each constraint by b > 0 to obtain:

Qc.D.~ib + Q(p)
c . ~pb +

Qc.~il + Q(p)
c . ~pl + qc

b
≥ 0

In general, this fraction is a rational vector. Thus, to define integer points, we take the floor of each
constraint (which is valid because a ≥ 0⇔ bac ≥ 0 and bn + ac = n + bac for n ∈ Z):

Qc.D.~ib + Q(p)
c . ~pb +

⌊Qc.~il + Q(p)
c . ~pl + qc

b

⌋
≥ 0 (3)

Inria



Mono-parametric Tiling is a Polyhedral Transformation 9

Let use define kc(~il) =
⌊

Qc.~il+Q(p)
c . ~pl+qc
b

⌋
. Now kc(~il) can only take a constant non parametric number of

values. Indeed, ~il belongs to a rectangle: 0 ≤ ~il < D.b.~1. Thus the maximum will be reached on a vertex
of the rectangle, i.e., when all the coordinates of ~il are either 0 or d.(b − 1) (depending on the sign of the
coefficient in front of it). Let us define QD+

c the vector of non-negative coefficients of Qc.D, Q(p)+
c the

vector of non-negative coefficients of Q(p), and note that ||.||1 denotes the L1-norm. We have:

kmax
c = max

~il

⌊Qc.~il + Q(p)
c . ~pl + qc

b

⌋
Also: Qc.~il =

∑
j Qc, j.~il( j). According to the remark above, the sum is maximized for ~il( j) = d j.(b−1)

if Qc, j.d j(b − 1) > 0 and ~il( j) = 0 otherwise. Hence: max~il Qc.~il =
∑

j{Qc, j.d j(b − 1) | Qc, j.d j > 0}, which
is exactly (b − 1)||QD+

c ||1. Therefore:

kmax
c =

⌊
||QD+

c ||1.(b−1)+Q(p)
c . ~pl+qc

b

⌋
= ||QD+

c ||1 +
⌊Q(p)

c . ~pl−||QD+
c ||1+qc

b

⌋
≤ ||QD+

c ||1 +
⌊
||Q(p)+

c ||1.(b−1)−||QD+
c ||1+qc

b

⌋
≤ ||QD+

c ||1 + ||Q(p)+
c ||1 +

⌊ qc−||Q
(p)+
c ||1−||QD+

c ||1

b

⌋
Thus, we have a constant upper-bound on all kc(~il). Likewise, we can show that we have a constant

lower-bound on kc(~il), therefore, kc(~il) can only take a constant number of values. Thus, we can create
one polyhedron per value of kc(~il).

Let us build the polyhedron obtained for a value of kc(~il) in [|kmin
c ; kmax

c |]. Eqn (3) becomes:

Qc.D.~ib + Q(p)
c . ~pb + kc(~il) ≥ 0 (4)

kc(~il) is the quotient of the integer division in (3). Then there exists 0 ≤ rc < b such that Qc.~il +

Q(p)
c . ~pl + qc = b.kc(~il) + rc. Hence:

b.kc(~il) ≤ Qc.~il + Q(p)
c . ~pl + qc < b.(kc(~il) + 1) (5)

Also, the constraints (4) and (5) are affine, since kc(~il) is a constant, and all we need to do is to ensure
that ~il belongs to the tile, by adding the constraint ~0 ≤ ~il < b.D.~1, and we get the desired polyhedron.

To summarize, the cth constraint of (1) has the same set of integer solutions as the union of polyhedra
obtained for each value of kc(~il):

⊎
kc

~ib, ~il
∣∣∣∣ Qc.D.~ib + Q(p)

c . ~pb + kc ≥ 0
b.kc ≤ Qc.~il + Q(p)

c . ~pl + qc < b.(kc + 1)
~0 ≤ ~il < b.D.~1


where kc enumerates all possible values of

⌊
Qc.~il+Q(p)

c . ~pl+qc
b

⌋
in the interval [|kmin

c ; kmax
c |].

Now, all we need to do is to intersect these unions for each constraint c ∈ [|1; m|] to obtain the
blocking. Actually, it is possible to improve the result, as described below.

First, let us study the pattern of the constraints of the polyhedra of the union. Let us call (Blockkc )
the constraint on the block indices and (Localkc ) the constraints on the local indices. We can notice some
properties among these constraints (Figure 2):

RR n° 8802
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kmax
c

. . .

kmin
c + 1

kmin
c

implies

Figure 2: Stripe coverage inside a given tile

• Each kc covers a different stripe of a tile (whose equations is given by (Localkc )). The union of all
these stripes, for kmin

c ≤ kc ≤ kmax
c forms a partition of the whole tile (by definition of kmin

c and kmax
c ).

• If a tile ~ib satisfies the constraint (Blockkc ) for a given kc, then the same tile also satisfies (Blockk′c )
for every k′c > kc (because a ≥ 0 ⇒ a + 1 ≥ 0). In other words, if the kcth stripe in a tile is
non-empty, the tile will have all the k′c stripes, for every k′c > kc.

Thus, if a block ~ib satisfies (Blockkmin
c

), then it satisfy all the (Blockkc ) for kc ≥ kmin
c and the whole

rectangular tile is covered by the union of polyhedra ∆

Also, if a block ~ib satisfies exactly (Blockkc ) (i.e., if Qc.D.~ib + Q(p)
c . ~pb +kc = 0), then it does not satisfy

the (Blockk′c ) for k′c < kc and we do not have the stripes below kc. Therefore, only the local indices il
which satisfy (b.kc ≤ Qc.~il + Q(p)

c . ~pl + qc) are covered by the union of polyhedra ∆.
Using these observations, we can separate the tiles into two categories: those which satisfy (Blockkmin

c
)

(corresponding to a full tile), and those which satisfy exactly a (Blockkc ) where kmin
c < kc (corresponding

to a portion of the tile).
Mathematically, by splitting all of the polyhedra of the union according to the constraints Qc.D~ib +

Q(p)
c . ~pb + kc = 0, kmin

c < kc ≤ kmax
c , then pasting them together, we obtain the following improved

expression:

⊎
kmin

c <kc≤kmax
c

~ib, ~il
∣∣∣∣ Qc.D.~ib + Q(p)

c . ~pb + kc = 0
b.kc ≤ Qc.~il + Q(p)

c . ~pl + qc
~0 ≤ ~il < b.D.~1


]

{
~ib, ~il

∣∣∣∣ Qc.D.~ib + Q(p)
c . ~pb + kmin

c ≥ 0
~0 ≤ ~il < b.D.~1

}
Thus, by intersecting all of these unions for each constraint, we obtain the expression of ∆. By

distributing the intersection of the union of polyhedra, we obtain a union of disjoint polyhedra. After
eliminating the empty polyhedra, the number of obtained disjoint polyhedra is the number of different tile
shapes of the partitioned version ofD. �

Example 4.2. Let us consider the following parameterized triangle:

D = {i, j | N − 1 − i − j ≥ 0 ∧ i ≥ 0 ∧ j ≥ 0}

Inria



Mono-parametric Tiling is a Polyhedral Transformation 11

i

j

∆
=

First tiled polyhedron
(k1 = −1)

∪

Second tiled polyhedron
(k1 = −2)

Obtained union of tiled polyhedra ∆

Figure 3: Obtained union of tiled polyhedra ∆ for Example 4.2

We consider monoparametric tiles of size b × b. Let us introduce
(
i
j

)
= b.

(
ib
jb

)
+

(
il
jl

)
and, to simplify the

result, let us assume that the parameter N is a multiple of the size parameter b: N = Nb.b. Then, the first
inequality becomes:

N − 1 − i − j ≥ 0 ⇔ Nb.b − 1 − b.ib − il − b. jb − jl ≥ 0
⇔ Nb − ib − jb +

⌊
−il− jl−1

b

⌋
≥ 0

Let us study the values of k1(il, jl) =
⌊
−il− jl−1

b

⌋
. Because of the sign of the numerator coefficients, the

maximum is −1 (il = jl = 0) and the minimum is −2 (il = jl = b − 1). After analyzing the two other
inequalities, we obtain:

∆ =

ib, jb, il, jl |

Nb − ib − jb − 1 = 0
ib, jb ≥ 0

0 ≤ il, jl < b
−b ≤ −il − jl − 1


⊎ib, jb, il, jl |

Nb − ib − jb − 2 ≥ 0
ib, jb ≥ 0

0 ≤ il, jl < b


This union of polyhedra is shown in Figure 3.

Example 4.3. Let us consider the following polyhedron: D = {i, j | i + j ≤ N − 1 ∧ j ≤ M ∧ 0 ≤ i, j}
with tiles of size b × b. Let us define N = Nb.b + Nl and M = Mb.b + Ml the block and local parameters,
where 0 ≤ Ml < b and 0 ≤ Nl < b. By going through the same steps as in the proof, we obtain:

N − 1 − i − j ≥ 0
M − j ≥ 0
i ≥ 0
j ≥ 0

{


Nb − ib − jb + k1 ≥ 0
Mb − jb + k2 ≥ 0
ib + k3 ≥ 0
jb + k4 ≥ 0

where 
k1 =

⌊
Nl−il− jl−1

b

⌋
= −2,−1 or 0

k2 =
⌊

Ml− jl
b

⌋
= −1 or 0

k3 =
⌊

il
b

⌋
= 0

k4 =
⌊

jl
b

⌋
= 0
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i

j

0 N − 1

M

Nb − ib − jb = 0 | Mb − jb = 0

Nb − ib − jb = 0 | Mb − jb ≥ 1

Nb − ib − jb = 1 | Mb − jb = 0

Nb − ib − jb = 1 | Mb − jb ≥ 1

Nb − ib − jb ≥ 2 | Mb − jb = 0

Nb − ib − jb ≥ 2 | Mb − jb ≥ 1

Figure 4: Example 4.3 - obtained union of polyhedra

We obtain a union of 6 polyhedra, one for each possible values of (k1, k2, k3, k4) which are shown in
Figure 4. We notice that two of these polyhedra (yellow and green) have the same shapes: this is because
Ml ≤ Nl, and these two polyhedra do not have the same shape otherwise. Moreover, when Ml ≥ Nl, the
blue and grey polyhedra will have the same shape.

4.2 Monoparametric partitionning of affine functions

Let us consider an affine function f : (~i 7→ Q.~i + Q(p).~p + ~q). We assume that each block size is a multiple
of the same size parameter b. Thus, we have, for the input indices, the following nonlinear (quadratic)
equality: ~i = b.D.~ib + ~il, where:

• ~ib are called the block indices, ~il are called the local indices and we have ~0 ≤ ~il < b.D.~1.

• D is a diagonal matrix of strictly positive integer coefficients.

Likewise, we can introduce the same objects for the output indices: ~i′ = b.D′.~ib
′

+ ~il
′

with similar
assumptions. We also assume that all parameters ~p can be decomposed in the same fashion: ~p = b. ~pb + ~pl

where ~pb is called the blocked parameters, ~pl the local parameters and ~0 ≤ ~pl < b.~1.
Blocking the affine function f is the same as replacing the input indices by ~ib and ~il, and expressing

the result in the tiled space (~ib
′
, ~il
′
). Thus, if f : Zn 7→ Zn′ , we want to obtain a function φ : Z2n 7→ Z2n′ .

By starting with the definition of f , we can derive the value of φ, using a similar derivation as in the
previous subsection:

Theorem 4.4. Given two monoparametric blocking transformation (Tb and T ′b) and any affine function
( f (~i) = Q.~i + Q(p).~p + ~q) the composition T ′b ◦ f ◦ T −1

b is a piecewise affine function, whose branches

Inria



Mono-parametric Tiling is a Polyhedral Transformation 13

are:

φ(~ib, ~il) =

D′−1.Q.D.~ib + D′−1.Q(p). ~pb + ~k
Q.~il + Q(p). ~pl + ~q − b.D′.~k


if b.~k ≤ D′−1.Q.~il + D′−1.Q(p). ~pl + D′−1.~q < b.(~k + ~1)

for each ~k ∈ [|~kmin;~kmax|], and assuming that (D′−1.Q.D) and (D′−1.Q(p)) are integer matrices.

Proof. Let us start from the definition of f : ~i′ = Q.~i + Q(p).~p + ~q. With similar arguments as at the
beginning of the proof of Theorem 4.1, we can get rid of ~il

′
to obtain:

~ib
′

=
⌊
D′−1.Q.D.~ib + D′−1.Q(p). ~pb +

D′−1.(Q.~il + Q(p). ~pl + ~q)
b

⌋
However, we have no guaranty that, in general, (D′−1.Q.D.~ib) and (D′−1.Q(p). ~pb) are integral vectors.

To allow us to draw these terms outside the floor operator, we will assume that (D′−1.Q.D) and (D′−1.Q(p))
are integer matrices. We will show later that these two hypotheses form a necessary and sufficient condi-
tion to have only affine conditions in the piecewise affine function φ. We obtain:

~ib
′

= D′−1.Q.D.~ib + D′−1.Q(p). ~pb +
⌊D′−1.(Q.~il + Q(p). ~pl + ~q)

b

⌋
By defining ~k(~il) =

⌊
D′−1.(Q.~il+Q(p). ~pl+~q)

b

⌋
and by conducting the same kind of analysis as previously, we

manage to bound ~k(~ii) between ~kmin and ~kmax. Finally, we obtain a piecewise expression of ~ib
′
, in which

each branch corresponds to a value of ~k(il):

~ib
′

= D′−1.Q.D.~ib + D′−1.Q(p). ~pb + ~k
if b.~k ≤ D′−1.Q.~il + D′−1.Q(p). ~pl + D′−1.~q < b.(~k + ~1)

for each ~k ∈ [|~kmin;~kmax|].
We can easily compute ~il

′
for each obtained branch by using the definition of ~ib

′
, to obtain the expres-

sion of φ as a piecewise affine function. Indeed, for a given branch:

~il
′

=~i′ − b.D′.~ib
′

= Q.~i + Q(p).~p + ~q − b.D′.(D′−1.Q.D.~ib + D′−1.Q(p). ~pb + ~k)
= Q.(b.D.~ib + ~il) + Q(p).(b. ~pb + ~pl) + ~q − b.Q.D.~ib − b.Q(p). ~pb − b.D′.~k
= Q.~il + Q(p). ~pl + ~q − b.D′.~k

�

Compared to the decomposition we obtained for polyhedra, we might have several pieces in the same
tile. Indeed the value of the piecewise affine function is different for each branch, thus we cannot merge
them.

Example 4.5. Let us consider the affine function f : (i, j 7→ 2i,N − j − 1, i + j).

Let us introduce
(
i
j

)
= b.

(
2 0
0 2

)
.

(
ib
jb

)
+

(
il
jl

)
where 0 ≤ il, jl < 2b and

(
i′

j′

)
= b.

(
i′b
j′b

)
+

(
i′l
j′l

)
where

0 ≤ i′l , j′l < b. We assume that the parameter N is divisible by b, and we introduce N = Nb.b. We can
check that (D′−1.Q.D) and (D′−1.Q(p)) are both integral, thus we will have polyhedral constraints.

After performing the operations described previously, we obtain an expression of ~i′b:i′b
j′b
k′b

 =

4 0
0 −2
1 1


[
ib
jb

]
+

010
 . [M]

+

k1
k2
k3


RR n° 8802
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φ(ib, jb, il, jl) =



(4ib,M − 2 jb − 1, ib + jb, 2il, b − jl − 1, il + jl)
if 0 ≤ il < b ∧ 0 ≤ jl < b ∧ 0 ≤ il + jl < 2b

(4ib + 1,M − 2 jb − 1, ib + jb, 2il − b, b − jl − 1, il + jl)
if b ≤ il < 2b ∧ 0 ≤ jl < b ∧ 0 ≤ il + jl < 2b

(4ib,M − 2 jb − 2, ib + jb, 2il, 2b − jl − 1, il + jl)
if 0 ≤ il < b ∧ b ≤ jl < 2b ∧ 0 ≤ il + jl < 2b

(4ib,M − 2 jb − 2, ib + jb + 1, 2il, 2b − jl − 1, il + jl − 2b)
if 0 ≤ il < b ∧ b ≤ jl < 2b ∧ 2b ≤ il + jl < 4b

(4ib + 1,M − 2 jb − 1, ib + jb + 1, 2il − b, b − jl − 1, il + jl − 2b)
if b ≤ il < 2b ∧ 0 ≤ jl < b ∧ 2b ≤ il + jl < 4b

(4ib + 1,M − 2 jb − 2, ib + jb + 1, 2il − b, 2b − jl − 1, il + jl − 2b)
if b ≤ il < 2b ∧ b ≤ jl < 2b ∧ 2b ≤ il + jl < 4b

Figure 5: Example 4.5 - obtained piecewise affine function

where k1 =
⌊

2il
b

⌋
, k2 =

⌊
− jl−1

b

⌋
and k3 =

⌊
il+ jl
2b

⌋
. Thus, 0 ≤ k1 ≤ 1, −2 ≤ k2 ≤ −1 and 0 ≤ k3 ≤ 1.

Two out of the resulting eight branches have unsatisfiable conditions. Therefore, after pruning them
out, we obtain the expression of φ described in Figure 5.

Example 4.6. Let us consider the affine function f : (i, j 7→ 2N + 2i + 4 j − 1), with a block size of
b × b for the input indices, and 2b for the output indices. The conditions are verified, and we obtain after
derivation:

i′b = Nb + ib + 2 jb + k1 where k1 =
⌊2.Nl + 2.il + 4. jl − 1

2b

⌋
The final result is:

(i′b, i
′
l) =


(Nb + ib + 2. jb − 1,Nl + il + 2. jl + b) if 2.Nl + 2.il + 4. jl − 1 < 0
(Nb + ib + 2. jb,Nl + il + 2. jl) if 0 ≤ 2.Nl + 2.il + 4. jl − 1 < 2b
(Nb + ib + 2. jb + 1,Nl + il + 2. jl − b) if 2b ≤ 2.Nl + 2.il + 4. jl − 1 < 4b
(Nb + ib + 2. jb + 2,Nl + il + 2. jl − 2b) if 4b ≤ 2.Nl + 2.il + 4. jl − 1 < 6b
(Nb + ib + 2. jb + 3,Nl + il + 2. jl − 3b) if 6b ≤ 2.Nl + 2.il + 4. jl − 1

In Theorem 4.4, we have introduced a condition on two products of matrices to have only affine
conditions in φ. Let us see what happens when this condition is not satisfied.

Example 4.7. Let us consider the identity function (i 7→ i) where D = (2) and D′ = (6). Because Q = (1)

and Q(p) = (0), D′−1.Q.D =

(
1
3

)
and D′−1.Q(p) = (0), the conditions are not satisfied. In particular, given

a point (ib, il) in the antecedent domain of this function, you have to know the result of the integer division
of ib by 3 to know in which block we end up, thus you need to know the value of ib mod 3 to compute the
new local index.

α, ii

α + 1, ii

α + 2, ii

⌊
α
3

⌋
, ii

⌊
α
3

⌋
, ii + 2b

⌊
α
3

⌋
, ii + 4b

Necessary and sufficient condition to avoid modulo constraints Now, let us show that the condition
in Theorem 4.4 is a necessary and sufficient condition to have only affine conditions in φ, and when it is
not respected, conditions containing modulo appear in φ.

Inria



Mono-parametric Tiling is a Polyhedral Transformation 15

Theorem 4.8. Given two monoparametric blocking transformation (Tb and T ′b) and any affine function
( f (~i) = Q.~i+ Q(p).~p+~q). Assuming that the ratio of the tile of Tb is D and the ratio of the tile of T ′b is D′,
the composition T ′b ◦ f ◦ T −1

b has only polyhedral constraint iff (D′−1.Q.D) and (D′−1.Q(p)) are integer
matrices.

Proof. In the proof of Theorem 4.4, we had obtained the following equality:

~ib
′

=
⌊
D′−1.Q.D.~ib + D′−1.Q(p). ~pb +

D′−1.(Q.~il + Q(p). ~pl + ~q)
b

⌋
Let us consider the c-th dimension, 0 ≤ c < |~i′b|:

i′bl,c =
⌊Qc.D.~ib

D′c,c
+

Q(p)
c . ~pb

D′c,c
+

Qc.~il + Q(p)
c . ~pl + qc

D′c,c.b

⌋
If the fraction Qc.D

D′c,c
is non-integral, it can affect the value of kc (which was previously only a function

of the local indices and parameters). This means that, depending the value of ~ib and its modulo with
respect to D′c,c, the value of kc is shifted and the cuts are different. Thus, we need to distinguish the

different values of ib modulo D′c,c, which is a non-affine constraints. Likewise, if the fraction Q(p)
c . ~pb
D′c,c

is
non-integer, ~pb affects the value of kc and we have non-affine constraints on ~pb.

Therefore, we just have shown that if the condition is not satisfied, then we have modulo constraints.
Theorem 4.4 has already shown that if the condition is satisfied, we do not have modulo constraints.
Therefore, this condition is a necessary and sufficient condition. �

Example 4.7 shows what happens in practice when the condition is not satisfied.

Derivation when the condition is not satisfied If the necessary and sufficient condition is not satisfied,
we can still finish the computation of φ and obtain a piecewise affine function with modulo conditions, as
shown by the following theorem:

Theorem 4.9. If the condition is not satisfied, φ is a piecewise affine function with modulo conditions.

Proof. Assuming that this condition is not satisfied, we introduce ~ib = ~ib
(div),l

.D′l,l + ~ib
(mod),l

and ~pb =

~pb
(div),l.D′l,l + ~pb

(mod),l where ~0 ≤ ~ib
(mod),l

< D′l,l.~1 and ~0 ≤ ~pb
(mod),l < D′l,l.~1. We obtain the following

equality in our derivation:

~ib
′

l = Ql.D.~ib
(div),l

+ Q(p)
l . ~pb

(div),l
+

⌊Ql.D.~ib
(mod),l

+ Q(p)
l . ~pb

(mod),l

D′l,l.b
+

Ql.~il + Q(p)
l . ~pl + ql

D′l,l.b

⌋
Let us define kl(~ib

(mod),l
, ~pb

(mod),l) =
⌊Ql.D.~ib

(mod),l
+Q(p)

l . ~pb
(mod),l

D′l,l.b
+

Ql.~il+Q(p)
l . ~pl+ql

D′l,l.b

⌋
. Because ~ib

(mod),l
and ~pb

(mod),l

can only take a finite number of value, we can do one analysis of kl for each of their values.
The number of branches resulting from the analysis of the l-th dimension correspond to the number

of values the triplet (~ib
(mod),l

, ~pb
(mod),l, kl) can take. The total number of branches of the piecewise affine

function is the product between the number of branches coming from each dimension. Thus, the number
of branches is considerable, but an expression of φ can be found. �

Even if we manage to get an expression of φ when the condition is not satisfied, the number of
branches is considerable, and it means going outside of the polyhedral model.
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Example 4.10. Let us consider f : (i, j 7→ i, j) where the input indices are tiled as
(
i
j

)
=

(
ib
jb

)
.b +

(
il
jl

)
and the output indices are tiled as

(
i′

j′

)
=

(
2i′b
3 j′b

)
.b +

(
i′l
j′l

)
. Let us consider the first output dimension:

i′ = i ⇔ 2.i′b.b + i′l = ib.b + il
⇒ i′b =

⌊
ib
2 + il

2b

⌋
= i(1)

bb +
⌊ i(1)

bl
2 + il

2b

⌋
where ib = 2.i(1)

bb + i(1)
bl and 0 ≤ i(1)

bl ≤ 1. Likewise, we have:

j′b = j(2)
bb +

⌊ j(2)
bl

3
+

jl
3b

⌋
where jb = 3. j(2)

bb + j(2)
bl and 0 ≤ j(2)

bl ≤ 2. Finally, we can build the pieces of φ by enumerating all the
possible values of i(1)

bl and j(2)
bl . For example, for i(1)

bl = j(2)
bl = 0:

~k(il, jl) =
(⌊

il
2b

⌋ ⌊
jl

3b

⌋)T

We only have one possible value for k1(il, jl) and k2(il, jl) (which is 0 in both cases), thus we will only
have one branch in φ corresponding to these values. The full expression of φ is:

φ :


ib
jb
il
jl

 7→


(ib/2, jb/3, il, jl)T if ib ≡ 0 mod 2 ∧ jb ≡ 0 mod 3
(ib/2, ( jb − 1)/3, il, jl + b)T if ib ≡ 0 mod 2 ∧ jb ≡ 1 mod 3
(ib/2, ( jb − 2)/3, il, jl + 2b)T if ib ≡ 0 mod 2 ∧ jb ≡ 2 mod 3
((ib − 1)/2, jb/3, il + b, jl)T if ib ≡ 1 mod 2 ∧ jb ≡ 0 mod 3
((ib − 1)/2, ( jb − 1)/3, il + b, jl + b)T if ib ≡ 1 mod 2 ∧ jb ≡ 1 mod 3
((ib − 1)/2, ( jb − 2)/3, il + b, jl + 2b)T if ib ≡ 1 mod 2 ∧ jb ≡ 2 mod 3

5 Hyperrectangular monoparametric partitioning program trans-
formation

In the previous section, we showed how to monoparametrically partition a polyhedron and an affine
function, the two main mathematical objects in any polyhedral program representation. Now, we show
how we can apply these tools to block a complete polyhedral program. We will show afterward how to
choose a ratio for the local variables, which does not introduce modulo conditions in our transformed
program.

5.1 Applying the monoparametric partitionning transformation to a program
Let us consider a polyhedral program:

(∀~i ∈ D) : S [~i] = Expr(S 1[u1(~i)], . . . , S d[ud(~i)])
(∀~i ∈ Dr) : S [~i] =

⊕
~j ∈ D
~i = π(~j)

Expr(S 1[ f1(~j)], . . . , S d[ fd(~j)])

To apply the monoparametric partitionning transformation to this program, we have to replace all the
polyhedron and affine function of this program by their monoparametric partitionned version. The number
of dimensions of all domain is doubled, and, because the polyhedra and affine functions remain the same
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(but are expressed with different indices) the computation (and the order of computation) performed by
the program is not changed.

However, this substitution introduces piecewise affine functions in the middle of the program, which
is not allowed. Thus, a normalization step is required to rise the conditions of the branches of such
piecewise affine function.

Example 5.1. Let us consider the following program, corresponding to a Jacobi1D computation:

(∀0 ≤ i < N) : Out[i] = Temp[T − 1, i]
(∀0 ≤ i < N ∧ t = 0) : Temp[t, i] = I[i]
(∀i = 0 ∧ 0 < t < T ) : Temp[t, i] = Temp[t − 1, i]
(∀i = N − 1 ∧ 0 < t < T ) : Temp[t, i] = Temp[t − 1, i]
(∀0 < i < N − 1 ∧ 0 < t < T ) : Temp[t, i] = (Temp[t − 1, i − 1]+

Temp[t − 1, i] + Temp[t − 1, i + 1])/3

where Out is an output variable and I and input defined over {i|0 ≤ i < N}.
For simplicity, we assume that the parameters N and T are multiples of the tile size parameter b (N =

Nb.b and T = Tb.b). After substituting every polyhedron and affine function and before the normalization
step, we obtain the program described in Figure 5.1.

The normalization step flattens all the branch conditions and pruning the empty branches. Each branch
corresponds to a different computation. However, if we do this in two separated steps, this transformation
does not scale. In our Jacobi1D example, if we consider the last equation, we have a summation between
3 variables. After flattening them and before pruning the empty branches, we have a total of 4 × 2 × 4 =

32 branches (some of them being empty). This number explodes when considering stencils of higher-
orders. For example, if we consider a Jacobi2D example, we have a summation between 9 variables,
corresponding to a total of 48 ∗ 2 = 217 branches before pruning. Thus, the pruning must occur at every
steps of the normalization transformation.

5.2 Derivation of the partitioning
While applying the monoparametric partitioning transformation, we might have different partitionings
(a.k.a. ratio, in the case of rectangular tiles) interacting within an expression. For example, if we
choose a ratio of 1 × 2 for a statement T , what ratio should we pick for a statement that uses T , say
S [i, j, k] = g(. . . T [i, k + j] . . . ), and how to adapt this expression to make the (potentially different)
statement partitioning compatible?

If we assume that the ratio of all variables were chosen beforehand, we just have to check for their
compatibility, i.e., we have to check that partitioning the dependence functions do not introduce non-
polyhedral modulo constraints (cf Theorem 4.8). This means that we have to check that, for any depen-
dence function (~i 7→ Q.~i + Q(p).~p + ~q) and ratio D and D′, (D′−1.Q.D) and (D′−1.Q(p)) are integral.

In a more general situation, we can assume that the ratio of some variables was chosen beforehand
(either by the user or by the compiler), but not all ratios were decided. It is possible to adapt the different
ratio by partitioning the dependences functions accordingly (with different partitionings on each side).
We assume that for any loop in our PRDG representation, at least one statement was given a ratio. For
example, if a variable S depends on itself then its ratio must be specified. Or if a variable S depends
on T , which depends on S , at least one of these variable must have their ratio specified. This condition
avoid recursive divisibility equation when we derive the missing ratio of the program. About the order
of derivation of the missing ratio of the program, under this condition, it is always possible to find a
statement for which all the statements it uses have already been given a ratio. Therefore, by considering
successively such statements, we can derive a ratio for all the statements of the program.

RR n° 8802



18 Guillaume Iooss & Sanjay Rajopadhye & Christophe Alias & Yun Zou

∀

{
0 ≤ ib < Nb

0 ≤ il < b : Out[ib, il] = Temp[Tb, ib, b − 1, il]

∀


0 ≤ ib < Nb

0 ≤ il < b
tb = tl = 0

: Temp[tb, ib, tl, il] = I[ib, il]

∀


ib = il = 0 0 < tb ∧ 0 ≤ tl < b

∨

tb = 0 ∧ 0 < tl < b

 : Temp[tb, ib, tl, il] = Temp
[

tl = 0 : (tb − 1, ib, b − 1, il)
0 < tl : (tb, ib, tl − 1, il)

]

∀


ib = Nb − 1 ∧ il = b − 1 0 < tb ∧ 0 ≤ tl < b

∨

tb = 0 ∧ 0 < tl < b

 : Temp[tb, ib, tl, il] = Temp
[

tl = 0 : (tb − 1, ib, b − 1, il)
0 < tl : (tb, ib, tl − 1, il)

]

∀




ib = 0 ∧ 0 < il < b

∨

ib = Nb − 1 ∧ 0 ≤ il < b − 1
∨

0 < ib < Nb − 1 ∧ 0 < il < b

 0 < tb ∧ 0 ≤ tl < b
∨

tb = 0 ∧ 0 < tl < b


: Temp[tb, ib, tl, il] = 1/3 × (

Temp


tl = 0 ∧ il = 0 : (tb − 1, ib − 1, b − 1, b − 1)
tl = 0 ∧ il > 0 : (tb − 1, ib, b − 1, il − 1)
0 < tl ∧ il = 0 : (tb, ib − 1, tl − 1, b − 1)
0 < tl ∧ il > 0 : (tb, ib, tl − 1, il − 1)

 + Temp
[

tl = 0 : (tb − 1, ib, b − 1, il)
0 < tl : (tb, ib, tl − 1, il)

]

+Temp


tl = 0 ∧ il = b − 1 : (tb − 1, ib + 1, b − 1, 0)
tl = 0 ∧ il < b − 1 : (tb − 1, ib, b − 1, il + 1)
0 < tl ∧ il = b − 1 : (tb, ib + 1, tl − 1, 0)
0 < tl ∧ il < b − 1 : (tb, ib, tl − 1, il + 1)

)

Figure 6: Jacobi1D computation, after substituting every polyhedron and affine function by its monopara-
metric partitioned equivalent) and before the normalization step. We summarize union of polyhedra by
allowing disjunctions of polyhedra
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We always pick the smallest ratios possible for an expression: indeed, let us assume that we have
derived DTk for a statement Tk[~i] = . . . and that we reach a statement S [~i] = g(. . . Tk[ fk(~i)] . . . ) in which
the ratio of S is determined. We have to make sure that (D−1

Tk
.Q.DS ) is integer. We systematically take the

lowest ratio possible, to minimize the risk the algorithm fails to avoid modulo constraints.
Let us consider a statements for which all the statements it uses have already been given a ratio. Two

situations might arise:

• If the statement is normal: S [~i] = g(T1[ f1(~i)], . . . ,Td[ fd(~i)]). Assuming that each dependence
function fk are of the form fk : (~i 7→ Q.k.~i + Q.k(p).~p + ~q), the constraints that must be satisfied by
the ratio of S are: {

(∀1 ≤ k ≤ d) D−1
Tk
.Qk.DS is integer

(∀1 ≤ k ≤ d) D−1
Tk
.Qk(p) is integer

which means: {
(∀1 ≤ k ≤ d) (∀i, j) (DTk )i divides Qki, j.(DS ) j

(∀1 ≤ k ≤ d) (∀i, j) (DTk )i divides Qk(p)
i, j

The last condition (concerning the parameters) does not impact the ratios of S . Moreover, if this
condition is not satisfied, then we must have modulo constraints on the parameters when partition-
ing this dependence expression. Let us now study the first condition to find the smallest ratio of S
possible. We can factorize (DTk )i as a product of prime numbers. Because of the first condition,
these prime numbers must be present either inside Qki, j or (DS ) j (which is the unknown). If some
of them are already inside Qki, j, they do not need to be in (DS ) j. Thus, let us introduce δki, j, the
product of prime factors of (DTk )i which are not inside Qki, j:

δki, j = (DTk )i/gcd((DTk )i,Qki, j)

The conditions become (∀k)(∀i j), δki, j divides (DS ) j. Thus, the smallest ratio we can take for S
are:

(DS ) j = lcmk,i(δki, j)

• If the statement is a reduction:

〈S ,~i〉 =
⊕
~i = π(~j)
~j ∈ D

g(〈T0, f0(~j)〉, . . . , 〈Td, fd(~j)〉).

In the PRDG this statement has two nodes: one corresponding to the subexpression of the reduction
body, and one corresponding to the reduction itself. We can determine the minimal ratios for the
body node DSExpr by using the method described in the previous case. However, we still need to
partition the projection function π : (~j 7→ Q.~j+ Q(p).~p+~q). The conditions to avoid non-parametric
modulo constraints are: {

(∀i, j) (DS )i divides Qi, j.(DS Expr) j

(∀i, j) (DS )i divides Q(p)
i, j

We notice that the divisibility constraint is in the opposite direction than what we had in the previous
case: instead of having to find a value of (DS )i which is divisible by another value, we have to find
a value of (DS )i which divides another value. Thus, we could just take (DS )i = 1, which is the
smallest ratio possible. However, after simplification, we might obtain a projection function which

does not admit an integer right inverse [31]. For example, if DS Expr =

(
2 0
0 1

)
and the projection

function is π : (i, j 7→ i), then we obtain a piecewise affine function with two branches:

ib, jb, il, jl 7→
{

2.ib, il when 0 ≤ il < b
2.ib + 1, il − b when b ≤ il < 2b
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A

B

C

Figure 7: Example 5.2 - Chosen ratios

Because a projection function must be affine, we need to split the reduction into two reductions,
whose projection function correspond to a single branch of the piecewise affine function. Because
each branch independently does not admit an integer right inverse, each obtained reduction is de-
fined over non-polyhedral domains (respectively “i′b even” and “i′b odd”).

To avoid this situation, we apply a preprocessing step to the program to make the projection
canonic, i.e., of the form (~x, ~y 7→ ~x). Then, we just keep the ratio of SExpr for the dimensions
which are not projected. In that case, the partitioned projection function will have only one branch,
of the form ( ~xb, ~yb, ~xl, ~yl 7→ ~xb, ~xl).

We can notice that taking a square shape (1 × 1 × · · · × 1) for every variable automatically satisfies all
the constraints. Thus, there always exists an assignment of ratios which can be provided by the user, and
which avoid modulo conditions.

Example 5.2. Let us consider a matrix multiplication computation, where the ratios of A are 2b×2b, the
ratios of B are 2b × b and the ratios of C are 2b × b:

(∀0 ≤ i, j < N)C[i, j] =
∑

0≤k<N

A[i, k] ∗ B[k, j]

After applying our algorithm, the minimal ratio for the subexpression of the reduction is 2b×b×2b. After
the reduction, because we project out the k dimension, the smallest ratio becomes 2b × b. These ratios
are the same as C, thus the algorithm succeeds. The result of the derivation is shown in Figure 7.

Example 5.3. Let us consider the following program, in which A got a ratio of 2, B got a ratio of 3 and
Out a ratio of b:

(∀0 ≤ i < N)Temp[i] = A[i + 1] + B[3.i](∀0 ≤ i < N)Out[i] = Temp[i]

We consider the first equation to derive the minimum ratio of Temp which does not introduce modulo
constraints. The contribution of A in this equation (A[i+1]) forces it to be divisible by 2b. The contribution
of B in this equation B[3.i] forces it to be divisible by 3b/3 = b. Therefore, the minimal ratio of Temp is
2b.

Then, we consider the second equation. The ratio of Temp is 2b and the ratio of Out is b, thus we are
forced to have a modulo constraint here and the algorithm fails. If the ratio picked for Out is a multiple
of 2b, the ratios match.

Set of possible ratios Let us show that if our algorithm fails, then there is no possible combination of
ratio which does not introduce any modulo conditions.
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Theorem 5.4. The set of valid ratio for a variable are the multiples of a single minimal ratio, which is
the one picked by our algorithm. Therefore, if our algorithm fails, then the specified ratios do not lead to
any possible combination of ratio for the rest of the program.

Proof. The ratios we compute for each variable are everytimes locally the smallest one which avoid
modulo constraints. Also, all the constraints involving ratios are divisibility constraints. Therefore, the
ratio we pick for a variable is the product of the divisors which cannot be eliminated (through the array
access function).

Thus, at the end of the algorithm (when we check the coherency of the ratio by examining the equa-
tions of the variables which already had their ratio decided), the ratio of the right hand side of every
equations must divide the ratio of the equation variable. If this condition is not satisfied, it exists at least a
divisor of the ratio of the right hand side of the equation which cannot be eliminated and we cannot avoid
the modulo condition. �

We remark that, for an arbitrary subexpression, the set of valid ratio must be a multiple of the minimal
ratio we find. In the case where the compiler framework allows modulo constraints, we can technically
take whatever aspect ratio we want. However, if we want to minimize the number of generated case, we
should still avoid modulo conditions as much as possible.

6 General monoparametric partitioning
In Sections 4 and 5, we only considered canonic monoparametric partitioning, i.e., hyperrectangular
shapes for the partitions. We now show that this theory can be extended to any polyhedral tile shape
(hexagonal [20], diamond [4], etc).

First of all, let us describe what a general monoparametric partitioning is. Let us start from a general
fixed size partitioning. We need 3 objects to describe it:

• A non-parametric bounded convex polyhedron P

• A non-parametric integer lattice L of the tile origins (which admits a basis L) and,

• A function T which decomposes any point~i in the following way:

T (~i) = (~ib, ~il)⇔~i = L.~ib + ~il where (L.~ib) ∈ L and ~il ∈ P

Notice that if the decomposition is not unique, then we have overlapping tiles. If the decomposition is
unique, this partitioning defines a partition of the space. Some partitioning do not have an integral lattice
of tile origins (such as diamond partitioning with non-unimodular hyperplanes). We do not consider
partitioning with overlapped tiles or with non-integral tile origins in this thesis.

A homothetic transformation a×D, where a is a constant andD is a set, is the set a×D = {~z |~z/a ∈ D}.

Definition 6.1. A general monoparametric partitioning is a partitioning whose tile shape is the homoth-
etic scaling of a fixed size partitioning, by a factor of b: Pb = b × P. The new lattice of tile origins is
Lb = b × L and we can obtain the new partitioning function Tb from T .

6.1 General monoparametric partitionning of polyhedra

Let us consider a n-dimensional polyhedron D = {~i | Q.~i + Q(p).~p + ~q ≥ ~0} where ~p are the program
parameters. As in Section 4, we want to replace~i by the block indices ~ib and the local indices ~il, such that
~i = Tb(~ib, ~il) (cf Figure 8). We still assume that all parameters ~p can be decomposed into block and local
parameters.
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i

j

il

jl

(ib, jb)

4b

2b

Figure 8: Example of hexagonal monoparametric blocking in the 2D case. The red arrows correspond to
a basis of the lattice of tile origins

Let us start from a constraint of D, say Qc.~i + Q(p)
c .~p + qc ≥ 0. We can replace~i by b.L.~ib + ~il where

~il ∈ Pb. By doing exactly the same operations as in the proof of Theorem 4.1, we obtain the following
expression:

Qc.L.~ib + Q(p)
c . ~pb +

Qc.~il + Q(p)
c . ~pl + qc

b

 ≥ ~0
We define kc(~il) =

⌊
Qc.~il+Q(p)

c . ~pl+qc
b

⌋
. Because ~il ∈ Pb andPb = b×PwhereP is bounded, kc(~il) can only

take a finite number of values. Because the shape of the tile is more complex as a rectangle, we cannot
simply look at the sign of the coefficient to find the extremal values of kc(~il). Because kc is an affine
function and because ~il belongs to Pb, we can use linear programming solvers (such as PIP [14]) to find
the extremal values of kc(~il). The rest of the proof caries on exactly in the same way as for Theorem 4.1.

Therefore, we obtain a union of polyhedron having the same properties as the rectangular case, for a
general form of tiles:

Theorem 6.1. The image of a polyhedron D = {~i | Q.~i + Q(p).~p + ~q ≥ ~0} by a general monoparametric
partitioning transformation is:

∆ =
m⋂

c=1

[ ⊎
kmin

c <kc≤kmax
c

~ib, ~il
∣∣∣∣ Qc.L.~ib + Q(p)

c . ~pb + kc = 0
b.kc ≤ Qc.~il + Q(p)

c . ~pl + qc
~il ∈ Pb


]

{
~ib, ~il

∣∣∣∣ Qc.L.~ib + Q(p)
c . ~pb + kmin

c ≥ 0
~il ∈ Pb

} ]
where ~k enumerates the possible values of

⌊
Q.~il+Q(p). ~pl+~q

b

⌋
.

After distributing the intersection across the unions and eliminating the empty polyhedral, we obtain
as many polyhedra than the number of different tile shapes of the partitioned version of D (which is, at
most the number of different values of ~k).

Example 6.2. Let us consider the following polyhedron: {i, j | j − i ≤ N ∧ i + j ≤ N ∧ 0 < j} and the
following partitioning:

• Pb = {i, j | − b < j ≤ b ∧ −2b < i + j ≤ 2b ∧ −2b < j − i ≤ 2b}
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Figure 9: Polyhedron and tiling of Example 6.2. The dots correspond to the tile origins of the tiles
contributing to the polyhedron

• Lb = L.b.Z2 where L =

[
3 3
1 −1

]
For simplicity, we assume that N = 6.b.Nb + 2b, where Nb is a positive integer. A graphical represen-

tation of the polyhedron and of the tiling is shown in Figure 9.
Let us start with the first constraint of the polyhedron.

j − i ≤ N ⇔ 0 ≤ 6.b.Nb + 2.b + b.(3.ib + 3. jb) + il − b.(ib − jb) − jl
⇔ 0 ≤ 6.Nb + 2 + 2.ib + 4. jb +

⌊
il− jl

b

⌋
where −2b ≤ il − jl < 2b. Therefore k1 =

⌊
il− jl

b

⌋
∈ [| − 2, 1|]. For k1 = −1 and 1, the equality constraint

6.Nb + 2.ib + 4. jb + 2 + k1 is not satisfied (because of the parity of its terms), thus the corresponding
polyhedron are empty.

Let us examine the second constraint of the polyhedron.

i + j ≤ N ⇔ 0 ≤ 6.b.Nb + 2.b − b.(3.ib + 3. jb) − il − L.b.(ib − jb) − jl
⇔ 0 ≤ 6.Nb + 2 − 4.ib − 4. jb +

⌊
−il− jl

b

⌋
where −2b ≤ −il − jl < 2b. Therefore k2 =

⌊
−il− jl

b

⌋
∈ [| − 2, 1|]. For the same reason as the previous

constraints, k2 = −1 and 1 leads to empty polyhedra.
Let us examine the third constraint of the polyhedron.

0 ≤ j − 1 ⇔ 0 ≤ b.(ib − jb) + jl − 1
⇔ 0 ≤ ib − jb +

⌊
jl−1

b

⌋
where −b ≤ jl − 1 < b. Therefore k3 =

⌊
jl−1

b

⌋
∈ [| − 1, 0|]

Therefore, we obtain a union of 2 × 2 × 2 = 8 polyhedra, which are the result of the following
intersection: [

{ib, jb, il, jl|0 ≤ 6.Nb + 2.ib + 4. jb ∧ (il, jl) ∈ Tb}

]{ib, jb, il, jl|0 = 6.Nb + 2.ib + 4. jb + 2 ∧ (il, jl) ∈ Tb ∧ 0 ≤ il − jl}

]
∩

[
{ib, jb, il, jl|0 ≤ 6.Nb − 4.ib − 4. jb ∧ (il, jl) ∈ Tb}

]{ib, jb, il, jl|0 = 6.Nb − 4.ib − 4. jb + 2 ∧ (il, jl) ∈ Tb ∧ 0 ≤ −il − jl}

]
∩

[
{ib, jb, il, jl|0 ≤ ib − jb − 1 ∧ (il, jl) ∈ Tb}

]{ib, jb, il, jl|0 = ib − jb ∧ (il, jl) ∈ Tb ∧ 0 ≤ jl − 1}

]
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6.2 General monoparametric partitionning of affine functions

Let us consider an affine function f : (~i 7→ Q.~i + Q(p).~p + ~q) and two partitionings: one for the input
indices and one for the output indices (denoted with primes). Note that the “tile shapes” in the source
and destination dimensions, Pb and P′b might be different. Let us show how to adapt the derivation of
Theorem 4.4 to these general partitioning.

Theorem 6.3. Given two general monoparametric partitioning transformations (Tb and T ′b) and any
affine function ( f (~i) = Q.~i+ Q(p).~p+~q) the composition T ′b ◦ f ◦T −1

b is a piecewise affine function, whose
branches are of the form:

φ(~ib, ~il) =

L′−1.Q.D.~ib + L′−1.Q(p). ~pb + ~k − ~k′

Q.~il + Q(p). ~pl + ~q + b.L′(~k′ − ~k)


if


b.~k ≤ L′−1.Q.~il + L′−1.Q(p). ~pl + L′−1.~q < b.(~k + ~1)
Q.~il + Q(p). ~pl + ~q + b.L′(~k′ − ~k) ∈ P′b
~il ∈ Pb

for each ~k ∈ [|~kmin;~kmax|], for each ~k′ ∈ [|~k′
min

; ~k′
max
|], where L, L′ are basis of the lattice of tile origins of

respectively T and T ′, and assuming that (L′−1.Q.L) and (L′−1.Q(p)) are integer matrices.

Proof. Starting from the definition of f , we can perform the same manipulation as in the proof of Theo-
rem 4.4 to obtain:

~ib
′
+

⌊L′−1.~il
′

b

⌋
=

⌊
L′−1.Q.L.~ib + L′−1.Q(p). ~pb +

L′−1.(Q.~il + Q(p). ~pl + ~q)
b

⌋
However, in the case of a non-rectangular partitioning, ~k′(~il

′
) =

⌊
L′−1.~il

′

b

⌋
is not always equal to 0, so

we cannot eliminate it, as in the rectangular case 2. However, because ~il
′
∈ P′b, ~k′(~il

′
) only takes a finite

number of values, whose extremal values can be determined through a linear programming solver.
For each value ~k′ of ~k′(~il

′
), we can perform the same analysis as in Theorem 4.4. The new necessary

and sufficient condition to avoid modulo functions is that the matrices L′−1.Q.L and L′−1.Q(p) are integral.
After defining ~k(~il) =

⌊
L′−1.(Q.~il+Q(p). ~pl+~q)

b

⌋
, we obtain a piecewise affine function in which each branch

corresponds to a different value of ~k(~il).
Now, we gather the constraints for each branches. From the definition of ~k, we obtain the following

constraint:
b.~k ≤ L′−1.Q.~il + L′−1.Q(p). ~pl + L′−1.~q < b.(~k + ~1)

From the definition of ~k′ and after substituting ~il
′

by its value, we obtain the following constraint

b.~k′ ≤ L′−1.(Q.~il + Q(p). ~pl + ~q − b.L′.~k) < b.(~k′ + ~1)

However, after simplification, we obtain exactly (and surprisingly) the same constraint than we got from
the definition of ~k. The two remaining constraints are ~il ∈ Pb and ~i′l ∈ P

′
b (in which ~i′l can be substituted

by its value).
Finally, we regroup all the branches derived for every ~k′ to form the partitioned piecewise affine

function corresponding to f . �

2Intuitively, ~k′ = ~0 means that ~il
′

belongs to the parallelepiped {L′.~z|~0 ≤ ~z < ~1}. For a rectangle tile, this is always the case, but
for the hexagonal tile shown in Figure 9, it only corresponds to the portion of the hexagon between the two red arrows
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Note that the new condition to avoid modulo is now that (L′−1.Q.L and L′−1.Q(p) are integral. The
main reason behind our generalization is that this condition depends only on the lattices of tile origins,
and the coefficient matrix of the polyhedron, but does not involve any symbolic values.

Example 6.4. Let us consider the identity affine function (i, j 7→ i, j), and let us consider the two following
partitionings:

• For the antecedent space, we choose an hexagonal tiling:

– Tb = {i, j | − b < j ≤ b ∧ −2b < i + j ≤ 2b ∧ −2b < j − i ≤ 2b}

– Lb = L.b.Z2 where L =

[
3 3
1 −1

]
• For the image space, we choose a rectangular tiling, with the same lattice:

– T ′b = {i, j | 0 ≤ i < 3b ∧ 0 ≤ j < 2b}

– L′b = L′.b.Z2 where L′ =

[
3 3
1 −1

]
The derivation goes as follow: [

i′

j′

]
=

[
i
j

]
⇔ L′.b.

[
i′b
j′b

]
+

[
i′l
j′l

]
= L.b.

[
ib
jb

]
+

[
il
jl

]
⇔

[
i′b
j′b

]
+ L′−1. 1b .

[
i′l
j′l

]
=

[
ib
jb

]
+ L′−1. 1b .

[
il
jl

]

Because L′−1 = 1
6 .

[
1 3
1 −3

]
, then the constraints become:

 i′b +
i′l +3. j′l

6b = ib +
il+3. jl

6b

j′b +
i′l−3. j′l

6b = jb +
il−3. jl

6b

After taking the floor of these constraints: i′b +
⌊ i′l +3. j′l

6b

⌋
= ib +

⌊
il+3. jl

6b

⌋
j′b +

⌊ i′l−3. j′l
6b

⌋
= jb +

⌊
il−3. jl

6b

⌋
We define k′1 =

⌊ i′l +3. j′l
6b

⌋
, k1 =

⌊
il+3. jl

6b

⌋
, k′2 =

⌊ i′l−3. j′l
6b

⌋
and k2 =

⌊
il−3. jl

6b

⌋
. After analysis of the extremal

values of these quantities, we obtain:

• k1 ∈ [| − 1; 0|] and k2 ∈ [| − 1; 0|]

• k′1 ∈ [|0; 1|] and k′2 ∈ [| − 1; 0|]

Therefore, we obtain a piecewise affine function with 16 branches (one for each value of (k1, k′1, k2, k′2)).
Each branch have the following form:(

ib + k1 − k′1, jb + k2 − k′2, il + 3b(k′1 + k′2 − k1 − k2), jl + b(k′1 + k2 − k1 − k′2)
)

when 0 ≤ il + 3b(k′1 + k′2 − k1 − k2) < 3b ∧ 0 ≤ jl + b(k′1 + k2 − k1 − k′2) < 2b
k1.b ≤ il + 3 jl < (k1 + 1).b ∧ k2.b ≤ il − 3 jl < (k2 + 1).b
−b < jl ≤ b ∧ −2b < il + jl ≤ 2b ∧ −2b < jl − il ≤ 2b
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6.3 General monoparametric partitionning program transformation
Now that we have extended the closure properties for the polyhedron and affine function, we can apply in
a similar way the general monoparametric partitioning transformation to a complete polyhedral program.
We now show how to extend the compatibility algorithm to such case of general tiles.

In Section 5, we have manipulated rectangular tile sizes D.b, which correspond to a special case of
the lattice of tile origins, were the vector of the basis are canonic. In the general case, we manipulate
lattice bases, whose vectors are the columns of an invertible matrix L. The constraints to avoid modulo
conditions are of the form “the matrix L′−1.Q.L is integral,” which is the same as saying that the antecedent
lattice Q.L.Zn is a subset of the image lattice L′.Zm. For similar reasons as in the canonic case, we want
to select the lattice of minimal basis, i.e., to minimize the size of the considered tiles.

The same derivation algorithm can be adapted to affine lattices:

• For a normal edge in the PRDG, corresponding to 〈S ,~i〉 = g(〈T1, f1(. . . , 〈Tk, fk(~i) . . . 〉), and assum-
ing fk is of the form fk : (~i 7→ Qk.~i + Q(p)

k .~p + ~qk), the constraints that must be satisfied by the lattice
of tile origins of S are: {

(∀1 ≤ k ≤ d) L−1
Tk
.Qk.LS is integer

(∀1 ≤ k ≤ d) L−1
Tk
.Q(p)

k is integer

One again, we can drop the second constraint. The first constraint means that all the lattices
L−1

Tk
Qk.LS .Z

n are subsets of the lattice Zm. Therefore, the lattices Qk.LS .Z
n are a subset of the

lattices LTk .Z
m, 1 ≤ k ≤ d. Let us define the affine functions uk : (~z 7→ Qk.~z). The lattices uk(LS .Z

n)
are a subset of the lattices LTk .Z

m, 1 ≤ k ≤ d. Because [u(A) ⊂ B ⇒ A ⊂ u−1(B)], this constraints
means that the lattice LS .Z

n is a subset of all the preimage of the lattice LTk .Z
m by the affine function

uk. Therefore, we have:
LS .Z

n ⊂
⋂

1≤k≤d

u−1
k (LTk .Z

m)

We can compute the right affine lattice, then take any of its basis as the value of LS . There is no
constraints on the tile shape for S , thus we can select any one we want.

• If the statement is a reduction:

〈S ,~i〉 =
⊕
~i = π(~j)
~j ∈ D

g(〈T0, f0(~j)〉, . . . , 〈Td, fd(~j)〉).

For similar reasons as developed in Section 5, we assume that the projection function is canonic.
When we tile the projection function, if the result is a piecewise affine function, the affine function
inside a branch might not admit an integer right inverse. One way, to be sure that the resulting
projection function will be correct, is to force the tile shape of the subexpression of the reduction
to be hyperrectangular. Indeed, for such a form, projecting along a canonic dimension is trivial, but
this forces the tile shape of statement S to be a rectangle. A more general way is to force the shape
of the subexpression to be an orthogonal prism, whose base is the tile shape of S and which spans
across the projected dimensions.

7 From Blocking to Tiling: Applying the Theory
In this section we illustrate how the theory we developed can be used to cleanly separate the concerns that
in the past have all been addressed in an ad hoc, combined manner. Note that with nearly thirty years of
research on tiling, our goal is not to reinvent the wheel and propose new tiling strategies, nor to develop
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Figure 10: Iteration space of a Jacobi 1D computation with a hexagonal tiling. The border cases of the
computation are underlined in red. The tile coordinates (ibl, jbl) are in blue.

sophisticated parallelization algorithms. Rather, we illustrate the flexibility of our approach by applying
monoparametric partitioning on a simple example.

Note that partitioning is not a tiling, it is a simple re-indexing transformation that does not change the
semantics of the original program. This allowed us to ignore the issue of legality. Indeed, partitioning
transformations could also be applied to a program description that does not include any schedule or
memory information such as that of a program in the polyhedral equational language, Alpha [32, 31]
used in our system, AlphaZ. This provides a legal program representation, in the sense that its equaltional
semantics are unchanged. Evidently, itsinterpretation as a tiled imperative program would be illegal.

The original Jacobi 1D computation can be described as follows.

Out[i] = temp[i,T ];

temp[i, t] =


In[i] if t = 0
temp[i, t − 1] if i = 0 or N
(temp[i − 1, t − 1] + temp[i, t − 1] otherwise

+temp[i + 1, t − 1])/3

Let us tile this computation using hexagonal tiling, say, as suggested by Grosser et al. [21] and as
shown in Figure 10. The tile shape is the following:

Pb =

il, tl
∣∣∣∣ −b < tl ≤ b

tl ≤ il < tl + 4b
−tl < il ≤ 4b − tl


7.1 Wavefront Parallelization of the “Outer” Program
Once the tile shape is chosen, applying our monoparametric partitioning will provide us with two sepa-
rate polyhedral program descriptions, one for the computations within each tile (there are finitely many
of them, corresponding to the interior tiles and the different kinds of boundary tiles). We also have an-
other polyhedral program describing the set of tiles, and the dependences between the tiles. We call this
the outer polyhedral program, and now analyze this, without concerning ourselves, for now, with how
individual tiles are compiled, and parallelized. Since it is now clear from the context, we also drop the
subscripts on the indices, but use Nb and Tb to denote the size parameters, N

b and T
b . The iteration space

of the outer polyhedral program is

{i, j | −3 ≤ 3i + 3 j ≤ Nb ∧ −1 ≤ j − i ≤ Tb}
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j
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−1
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••

(a) Original tile space
i′

j′

•
• •
•

(b) After wavefront selection and skewing
i′

j′

•
• •
•

(c) After monoparametric partitioning for
the multipass strategy

Figure 11: Tile space of the hexagonal J1D computation, skewing transformation and monoparametric
partitioning for the multipass strategy

and the inter-tile dependences are as follows: tile (i, j), depends on the three tiles (i, j − 1), (i + 1, j − 1)
and (i + 1, j). This is illustrated in Figure 11a.

A classical analysis performed after tiling is the wavefront selection, which aims at finding a parallel
schedule between tiles. Indeed, one of the touted advantages of hexagonal tiling of J1D is that it enables
concurrent start. For example, in Figure 11a, we can use (−1, 1) as the (normal vector of the) scheduling
wavefront, i.e., we use t(i, j) = j − i as the time stamp for tile (i, j), executing the tiles in bottom-right
to top-left sweeps. To implement this schedule, we can apply a skewing transformation (i, j 7→ i, j − i))
so that the new vertical axis j′ can be interpreted as the time. The transformed domain is showed in
Figure 11b and is described by the following set.

{i′, j′ | −3 ≤ 6.i′ + 3. j′ ≤ Nb ∧ −1 ≤ j′ ≤ Tb}

Notice that this wavefront selection and the corresponding skewing transformation works exactly in
the same way for fixed size tiling.

7.2 Multipass Parallelization: Improving Energy Efficiency
Zou and Rajopadhye proposed a strategy for energy optimization of stencil computations [50]. They
suggest that by parallelizing the tiles with multiple passes, a large fraction of the memory footprint of
the computation can be retained in the last level of cache. We seek to apply this strategy, but with our
hexagonal tiling, since we do not want to lose the advantages of concurrent start. So we start with the
computations described in Figure 11b.

A pass is a tiling where all but one of the dimensions is tiled, thereby dividing the domain in to bands
or passes, that are typically executed in sequence. So we seek to apply a second level of monoparametric
partitioning. The pass boundary must be legal tiling hyperplanes, and we choose i′ + j′ = const, the blue
solid lines in Figure 11c. However, we cannot monoparametrically block this single dimension, because
the tile space has a constraint involving both i′ and j′.

However, tiling is not the same as partitioning. We first apply a second level of monoparametric
partitioning on the whole space (see the blue solid lines and the horizontal, dashed lines in Figure 11c),
which is possible because we block all the dimensions. Then, we use just one of these dimensions to
describe the tiling into passes: if the newly introduced indexes are i′b, i′l , j′b and j′l , we use i′b as the pass
dimension. Then, a pass will simply be a column of blocks and will be living in the 3 dimensional space
corresponding to (i′l , j′b, j′l).

Finally, note that whatever strategy we choose, we use a single polyhedral code generator, e.g.,
CLooG [6] to produce the final codes.
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7.3 Revisiting Legality Conditions

As we have seen, monoparametric blocking is (merely) a blocking, replacing the original indices by
corresponding block and local indices. Unlike tiling, it does not, in and of itself, modify the schedule
of a program. For example if (i, j 7→ i, j) was a valid schedule of a statement before transformation,
and we apply monoparametric blocking to it, obtaining the new indices, ib, jb, il, jl, then the schedule
(ib, jb, il, jl 7→ ib, il, jb, jl) to is exactly the same schedule, but expressed with the new indices. This would
be like doing strip mining of each of the original loops. We have already seen how keeping this view, for
a subset of the indices allowed us to obtain the multipass parallelization.

In general, if we want to go beyond blocking and actually tile the program with atomic tiles, we need
to select a multidimensional schedule whose first (outer) dimensions use only block indices, and whose
inner dimensions use the local indexes (e.g., (ib, jb, il, jl 7→ ib, jb, il, jl) ). In that case, we need to check
for the tiling legality conditions, similar to conventional tiling transformations.

We emphasize the fact that, even though monoparametric blocking requires that we block all dimen-
sions, but we do not need to tile all of them. For example, if we want to tile only across the i dimension,
we can choose the following schedule: (ib, jb, il, jl 7→ ib, il, jb, jl) and consider that the ibth tile is in the
three dimensions (il, jb, jl).

Legality condition of tiling Because tiles are executed atomically, we need to check that there is no
cycle between them. In our program representation, dependence functions are explicit. Thus, when
we apply monoparametric blocking to a dependence function, because we introduce the block and local
indexes for the image space of this function, the tiles which might be accessed by this dependence function
appear explicitly. Thus, after blocking a statement, we know precisely, the inter-tile dependences.

Consider the so called “tile graph”, i.e., the dependence graph of the “outer program”. The legality
condition of tiling is satisfied iff the tile graph has no cycles. Thus, the legality condition of tiling is
equivalent to the existence of a valid schedule for the outer program. Therefore, we can check for legality
by using a scheduler [16, 8]: if a schedule is found, then the tiling is legal. Moreover, we obtain informa-
tion about the parallelism across tiles, which might be needed to generate efficient code. Of course there
are often more efficient methods.

Tile groups, reduction and mostly-tileable loops Note that the monoparametric blocking as we have
defined it, is applied on a per-statement basis. For many applications, tiling multiple statements together
is useful. Indeed, if they are interdependent and create cycles between tiles if they are tiled separately,
they must be tiled together. Hence, we define the notion of a tile group, as a collection of statements that
should be tiled together. All statements of a tile group must be of the same dimension (so that the tile
space is common), which might require to “massage” the domain of some statements beforehand.

We also note that reductions introduce new dimensions in their body, which do not exist at the level
of the statement. These dimensions are also blocked by our transformation, along with the projection
function. Thus, a reduction is summing across multiple tiles, along its projected direction. For example,
if we consider a matrix multiplication statement: C[i,j] =

∑
k
A[i,k] * B[k,j], after applying the

monoparametric blocking transformation, we obtain the following statement:

C[ib, jb, il, jl] =
∑
kb,kl

A[ib, kb, il, kl] ∗ B[kb, jb, kl, jl]

To differentiate the different blocks summed by this reduction, we introduce a new variable called
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TempRed, defined as the intermediate result of the reduction on each block. In our example:

C[ib, jb, il, jl] =
∑
kb

TempRed[ib, jb, kb, il, jl]

TempRed[ib, jb, kb, il, jl] =∑
kl

A[ib, kb, il, kl] ∗ B[kb, jb, kl, jl]

Because we just have introduce a new variable, we should decide if we should include them in an
already existing tile group, or to form a new tile group. A possible strategy consists to create as many
tiles as possible, while satisfying the tiling legality conditions. Thus, we form a new tile group composed
of all the tiles of TempRed which do not have a cyclic dependence with existing tiles (and, in particular,
its originating tile group).

A similar problem was studied for fixed size tiling by Wonnacott [12] on Nussinov’s algorithm. This
algorithm has the following pattern:

N[i, j] = maxi≤k< j(N[i, k] + N[k + 1, j])

where “max” is the reduction operator. After applying a monoparametric transformation on this program
using square blocks, we can remark that, among the tiles which are reduced together, the two extremal
tiles depend on the tile of N currently computed, and all the middle tiles can be executed independently.
It is possible to retrieve this information automatically by analyzing the part of the dependences corre-
sponding to the blocked dimensions, and deduce that the only tiles of the reduction which have a cyclic
dependence are the two extremal tiles.

8 Discussions

Blocking all dimensions Notice that we also have to block everything in all the dimensions. Indeed, as
soon as an index interacts with another one which is blocked (inside an index expression of a polyhedron
or an affine function), then we have to block both of them. In some situations, the indexes are separated
and we can block only a subset of the indexes (for example, for matrix multiplication, we can only tile
one dimension on the three). Another possibility is to block each non-interacting group of dimensions
with a different block size parameter (for example, we can have blocks of size b1 × b2 × b3 for matrix
multiplication, because there is no constraints or affine function in the program which involves more than
one index).

Data layout When applying the monoparametric transformation to a program, the number of dimension
of all spaces are doubled. In particular, if we have inputs and outputs to our program, their number of
dimensions is changed. For example, for matrix multiplication, C[i,j] is originally a 2D array which
becomes a 4D array Cbl[ibl, jbl, iloc, jloc] after blocking. So that we keep the same number
of dimensions than the original program, we can use a non-affine macro Cbl[ibl, jbl, iloc, jloc]
= C[ibl * d1*b + iloc, jbl * d2*b + jloc] where d1.b×d2.b are the block sizes of the variable
C.

Fixed-size partitionning It is possible to obtain a fixed-size partitionned code by using the same pro-
cess than monoparametric tiling. For example, if we want to apply a rectangular partitionning with
constant tile sizes t1× t2× · · ·× tn, we can take b = gcd(t1, t2, . . . , tn) and the ratio D = Diag( t1

b ,
t2
b , . . . ,

tn
b ).
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Adaptation between different tiling Let us consider an identity function (~i 7→ ~i), with different tiling
in both side of the function. By computing the monoparametric partionned version of this function, we
obtain a piecewise affine function which can be used to adapt the indexes of two statements with two
different tiling. For example, we can theoreticaly mix hexagonal and rectangular tiling in a program, if
each one of them is best suited for the part of the program they manage.

Separation of block and local indices In the union of polyhedra and piecewise affine functions we
compute through our transformation, the constraints on the block and local indexes are separated, i.e., no
constraints involve both kind of indexes. Using this property, we can normalize the program such that the
conditions on the block indexes are gathered at the top of the program in a single switch. This is useful to
produce efficient code later, because it reduces the control flow inside a program [19]. Moreover, it allows
us to “type” the blocks of the program, i.e., to distinguish which set of blocks are performing the same
computations. There is, by construction, only a finite number of computation which might be performed
by a block.

Benefit of monoparametric partitionning Monoparametric tiling is a polyhedral transformation which
offers a restricted form of parametrization of the tile sizes. Compared to fixed-size tiling, we claim that
there is no drawback of using monoparametric tiling instead of a fixed-size tiling. Indeed, because we
remain also inside the polyhedral model, we can obtain the same informations than for the fixed-size
tiling transformation, and perform the same kind of optimizations. Thus, theoretically, any code obtain-
able through fixed-size tiling should also be obtainable through monoparametric tiling, with an additional
parameter for the block sizes.

Compared to parametric tiling, monoparametric tiling is more restricted in the kind of tile size a single
code can explore. Indeed, the shape of the tiles is fixed at compile time, and we are forced to regenerate
the code if we want to change it. Moreover, the machinary required to apply the monoparametric tiling
is heavier than a classical parametric tiling. However, because this transformation is polyhedral, we gain
in modularity of the code generation strategies, and we do not need to embed this transformation inside a
code generator.

Extension to parametric tiling We notice that if a group of indices is isolated from the indices we
need to partition, we do not need to partition them. For example, in the classic matrix multiplication
computation (which is a 3D computation), we can partition only one computation without having to
partition the other ones, because the different dimensions do not interact with each other.

Using a similar reasoning, it is possible to use different tile size parameters b1, b2, . . . for groups of
indices which do not interact with each other. Thus, we are able to obtain a fully parametrized tiled
code through CART, while staying polyhedral. However, as soon as two indices with different tile size
parameter interact with each other, when we try to apply CART, we obtain terms of the form

⌊
b1
b2

⌋
, which

is impossible to manage.
To have an intuition of why it cannot work, let us consider a polyhedron containing only the constraint

i + j ≤ 0, and let us see what happens when we try to tile it with a parametric tile size b1 × b2. As shown
by Figure 12, there are two reasons why the result cannot be expressed in the polyhedral model:

• Let us estimate the number of different tile shapes on the diagonal. The constraints i ≤ j goes
through the integer point (0, 0), and we can show that the next integer point it is going through is
(lcm(b1, b2), lcm(b1, b2)) where lcm(x, y) is the least common multiple of x and y. Thus, we have
O(lcm(b1, b2)/b1) ≈ O(b1 + b2) different type of tiles.

• If we consider the shape of the diagonal tile (ib, jb) = (0,−1), this shape happens for every tile
(ib, jb) such that b1.ib + b2( jb + 1) = 0, which is not an affine constraint.
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b1

b2

lcm(b1, b2)

lcm(b1, b2)

(0,-1)

Figure 12: Parametric tiling with b1 × b2 rectangular tile sizes on the polyhedron i + j ≤ 0

Also note that the constraints of the shapes themselves are polyhedral (ex: ii + j j ≤ b2 for the diagonal
tile (ib, jb) = (0,−1)). Therefore, it is not possible to express this union as a polyhedral union, even if it
might be possible to exploit the fact that each shape is polyhedral.

Because the general parametric tiling transformation is not linear, the current polyhedral compilers
hard-code this transformation in their code generator. Thus, they lose in flexibility and cannot apply
polyhedral analysis and transformations afterward. Because CART remains in the polyhedral model, we
are still able to perform these optimizations afterward. For example, after applying CART once, we can
tile the local indices again (which are separated from the blocked indices) to introduce a new level of
parametric tiling for free. Or we can devise a new code generation strategy which fits a new architecture
without having to redesign and reimplement a full code generator.

9 Conclusion

In this paper, we introduce mono-parametric tiling, a parametric tiling transformation in which tile sizes
are multiple of the same block parameter. We first consider the hyperrectangular blocks, and show that
the underlying blocking is a polyhedral transformation, before showing how to apply it to complete
programs. Then, we extend this blocking transformation to any block shape that is a homothethic scalling
of a fixed size tile shape. Finally, we demonstrate the flexibility of code generation strategy after the
monoparametric tiling transformation, by showing different polyhedral transformation and analysis which
can be easily applied afterward.

The mono-parametric tiling transformation is more general than fixed size tiling, because of the addi-
tional parameter for the tile sizes. Compared to parametric tiling, this transformation is less general (the
tile shape cannot be changed) and requires a more complicated mathematical machinery, but we are much
more flexible in the kind of analysis and transformations we can apply after tiling.
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