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Abstract: Deformable image registration plays a fundamental role in many clinical applica-
tions. In this paper we investigate the use of graphical models in the context of a particular
type of image registration problem, known as slice-to-volume registration. We introduce a
scalable, modular and flexible formulation that can accommodate low-rank and high order
terms, that simultaneously selects the plane and estimates the in-plane deformation through
a single shot optimization approach. The proposed framework is instantiated into different
variants seeking either a compromise between computational efficiency (soft plane selection
constraints and approximate definition of the data similarity terms through pair-wise com-
ponents) or exact definition of the data terms and the constraints on the plane selection.
Simulated and real-data in the context of ultrasound and magnetic resonance registration
(where both framework instantiations as well as different optimization strategies are consid-
ered) demonstrate the potentials of our method.

Key-words: Slice-to-volume registration, graphical models, deformable registration, dis-
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Recalage déformable a l’aide de graphes de coupes 2D et
de volumes 3D

Résumé : Le recalage d’images déformable est un élément essentiel dans de nombreuses
applications cliniques. Dans ce rapport, nous nous intéressons aux modèles graphiques
utilisés dans un type de recalage particulier : volume 3D et coupe 2D. Nous établissons un
modèle modulaire, flexible et de taille variable qui intègre les potentiels d’ordres supérieurs
et résoud simultanément la sélection de plan et l’estimation des transformations intra-plan,
en une seule et même optimisation. Le cadre proposé peut être modifié selon plusieurs
variantes cherchant soit un compromis entre l’efficacité de calcul (contraintes douces de
sélection du plan et calcul approché du terme d’attache aux données par un potentiel à
deux nœuds) ou une définition exacte du terme d’attache aux données et des contraintes
de la sélection de plan. Nos expériences sur des données simulées et réelles pour des
images ultrasons et des IRM (où différentes instanciations et méthodes d’optimisation ont
été considérées) prouvent le potentiel de notre méthode.

Mots-clés : Slice-to-volume registration, modèles graphiques, recalage déformable, opti-
misation discrète
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1 Introduction

Slice-to-volume deformable registration is an important problem in the community of medi-
cal image computing, which has received considerable attention during the last decade. In
general terms, it seeks to determine the slice (corresponding to an arbitrary plane) from a
given target volume that corresponds to the deformed version of a source 2D image. This
slice is generally specified by a rigid transformation T̂ . The source 2D image is deformed by
a deformation field D̂ towards improving the matching consistency between the deformed
source image and the target slice.

Slice-to-volume registration is sometimes referred as 2D/3D registration, primarily due
to dimension of the images involved in the registration process. Note that this term de-
scribes two different problems depending on the technology used to capture the 2D image:
it might be a projective (e.g. x-ray) or sliced (e.g. ultrasound (US)) image. In this work we
only focus on the latter case. Projective images have to be treated in a different way (basi-
cally a pixel in the 2D image does not correspond only to a voxel from the target volume, but
to a projection of a set of them in certain perspective) and they are out of the scope of this
paper. This is principally due to the fact that conventional image similarity terms cannot be
used in the projective case. However, it should be noted that the proposed formulation with
an appropriate definition of the matching and regularization cost could also accommodate
a solution to this problem. We refer the reader to the comprehensive survey by [MTLP12]
for further information about this topic.

1.1 Motivation

A broad number of medical image computing applications benefit from slice-to-volume reg-
istration. One can cite, for example, image guided surgeries and therapies [FDB+03], biop-
sies [XLF+14], tracking of particular organs [GAV+08] and minimally-invasive procedures
[LZS+13, HMG+09]. In such a context, slice-to-volume registration is a key element for
bringing high resolution annotated data into the operating room. Generally, pre-operative
3D images such as computed tomography (CT) or magnetic resonance images (MRI) are
acquired for diagnosis and manually annotated by expert physicians prior to the operation.
During the procedure, 2D real time images are generated using different technologies (e.g.
fluoroCT, US or interventional MRI slices). These intra-operative images refer to challeng-
ing acquisition constraints and inherit lower resolution and quality than the pre-operative
ones. Moreover, tissue shift collapse as well as breathing and heart motion during the pro-
cedure, causes elastic deformation in the images. Non-rigid image registration is suitable
to address this issue. The alignment of intra-operative images with pre-operative volumes
augments the information that doctors have access to, and allows them to navigate the
volumetric annotation while performing the operation.

Another interesting application is motion correction for image reconstruction. Here, the
goal is to correct for misaligned slices when reconstructing a volume of a certain modal-
ity. A typical approach to solve it consists of mapping individual slices within a volume
onto another reference volume in order to correct the inter-slice misalignment. The popu-
lar map-slice-to-volume (MSV) method that introduced this idea in the context of functional
MRI (fMRI) was presented by [KBB+99]. More recently, applications of slice-to-volume reg-
istration to the same problem in different contexts like cardiac magnetic resonance (CMR)
[CPN+08], fetal images [SFC+13] and diffusion tensor imaging (DTI) [JXC+09] have shown

RR n° 8803



4 Ferrante & Paragios

promising results.
Although the goals of the motivating problems we have described are different, all of

them require to perform (to some extent) slice-to-volume registration. In this work, we focus
on the applications where we need to navigate a pre-operative volume using intra-operative
images. However, the method we present is modular enough to be adapted to different
image modalities and settings, and therefore can be applied to any of these problems.

1.2 Previous work

Several methods have been proposed during the recent years to deal with slice-to-volume
registration. Some of them deal only with rigid registration, and therefore they cannot
manage deformations due to tissue shift, breathing or heart motion. [SJEWV09], for ex-
ample, proposed a method to register endoscopic and laparoscopic ultrasound images with
pre-operative computed tomography volumes that potentially could work in real time. It is
based on a new phase correlation technique called LEPART and it handles rigid registration.
[GAV+08] tracks intra-operative MRI slices of prostate images with a pre-operative MRI vol-
ume. This monomodal registration is designed to provide patient tracking information for
prostate biopsy performed under MR guidance, but is also constrained to rigid transforma-
tions. More recently, [ELJ14] proposed a method that uses smart phone as a navigation
tool for initial slice alignment followed by an overlap invariant mutual information-based
refinement that estimates the rigid transformation.

Other methods tackle the challenging problem of non-rigid slice-to-volume registration
using nonlinear models. Among these, there is a sub-category of approaches that uses sev-
eral slices instead of a single one, in order to improve the quality of the results. Some
examples are [OBH+11] which uses a variational approach and [XLF+14] who designed a
two-step algorithm where initial rigid registration is followed by B-spline based deformable
registration. Using several slices restricts the potential applications to the ones where more
than one slice is available from the beginning. It also simplifies the problem by increasing
the amount of available information. Our method performs slice-to-volume registration us-
ing a single input slice. Consequently, it can be adapted to a broader range of applications
where just one slice is available at a time.

An important factor in medical image registration is the type of information that we use
to determine correspondences between images, the so-called matching criterion. Methods
can be classified according to this aspect in three main categories [SDP13]: geometric,
iconic and hybrid methods. In the first case, meaningful anatomical landmarks or features
are extracted from the images. After that, the optimal transformation is obtained by map-
ping the corresponding landmarks. [DA08] applied this idea to solve slice-to-volume reg-
istration combining landmark extraction based on phase congruency and Gabor wavelets
with Iterative Closest Point (ICP) optimization. One of the major disadvantages of this type
of methods is that results are highly dependent on the quality of the extracted/determined
landmarks. In the second case (iconic registration, also known as intensity based methods)
[GKT+08], image intensities are directly used to perform registration. A similarity measure
is used to evaluate how similar the images are. Depending on the modalities we are trying to
register, simple functions as sum of absolute differences (SAD) or more complex ones as mu-
tual information (MI) might be applied on the intensity domain. [YWK+10, FDB+03] applied
iconic registration using variations of the standard mutual information as similarity mea-
sure in the context of laparoscopic and iMRI-guided interventions, correspondingly. More
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complex domain specific similarity measures have also been defined to deal with specific
problems like [FWMN14], where the authors define a metric that can be used to perform
US to CT registration. Last but not least, hybrid methods combine both types of information
in an effort to get the best of both worlds. Our framework is intensity based and modu-
lar with respect to the similarity measure. Therefore, it can be adapted to various image
modalities by choosing different functions.

In this paper we extend our previous work presented in [FP13, FFP15b, FFP15a] through
the introduction of a single, mathematically rigorous and theoretically sound framework de-
rived as a discrete labeling problem on a graphical model. Graphical models and discrete
optimization are powerful formalisms that have been successfully used during the past years
in the field of computer vision [WKP13]. In particular, rigid as well as non-rigid image reg-
istration have been formulated as a minimal cost graph problem where the nodes of the
graph correspond to the deformation grid and the graph connectivity encodes regulariza-
tion constraints. However, this technique has been applied mainly to mono-dimensional
cases (2D-2D or 3D-3D). To the best of our knowledge, the only work that focuses on multi-
dimensional image registration (apart of our previous articles that have been referenced
at the beginning of this paragraph) using this type of techniques is [ZGK+10]. However, it
estimates only rigid transformations and works with projective images.

1.3 Contribution

This article contributes to enrich the standard graph-based deformable registration theory
by extending it to the case of slice-to-volume registration. We present three different models
to solve this challenging problem which vary in terms of graph topology, label space defi-
nition and energy construction. Our aim is to demonstrate how flexible and powerful the
graph theory is in terms of expressive potential of the modeling process, while solving a new
problem using graphical models. We analyze the strong and weak points of every model and
we perform comparative experiments. Validation is done using a monomodal MRI cardiac
dataset and a multimodal brain dataset [MDMP+12] including different inference methods.

2 Graph-based slice-to-volume deformable registration

An enormous variety of tasks in computer vision and medical image analysis can be ex-
pressed as discrete labeling problems. Low, mid and high-level vision tasks can be ad-
dressed within this framework. To this end, a visual perception task is addressed by speci-
fying a task-specific parametric model, associating it to the available observations (images)
through an objective function and optimizing the model parameters given both, the objective
and the observations [PK14].

In the context of graph-based discrete labeling problems, the model is composed by a
graph G = 〈V,E〉 where vertices in V correspond to the variables while E is a neighborhood
system (pair-wise & higher order cliques) that encodes the relationships among these vari-
ables. We also consider a discretized version of the search space that is represented by a
discrete set of labels l ∈ L. The aim is to assign to every variable v ∈ V a label lv ∈ L.
Each time we choose to assign a label, say, lv1 to a variable v1, we are forced to pay a price
according to the so-called energy function. This objective function is domain-specific and
associates the observations to the model. It is formulated as the sum of singleton terms
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6 Ferrante & Paragios

gv(lv) (which depend only on one label lv), pairwise terms fv1v2(lv1 , lv2) (which depend on
two variables lv1 , lv2) and high-order terms fv1...vn(lvi1 , . . . , lv|Ci|

i

) (which are associated to

high-order cliques Ci that depend on more than two variables). Our goal is then to choose
a labeling which will allow us to recover the solution corresponding to the minimal value of
the objective function. In other words, we want to choose a labeling that minimizes the sum
of all the energy potentials, or equivalently the energy P(g, f). This amounts to solving the
following optimization problem:

argmin
lp

P(g, f) =
∑
v∈V

gp(lv) +
∑

(v1,v2)∈E

fv1v2(lv1 , lv2) +
∑
Ci∈E

fv1...vn(lvi1 , . . . , lv|Ci|
i

), (1)

Performing parameter inference on this graphical model, could be an effective solution
to a big variety of problems in computational medicine. Note that we make a distinction
between singleton, pairwise and high-order terms, depending on the number of variables
jointly interacting. It should be noted that most part of the graph-based vision models
have explored mainly pairwise constraints (pairwise Conditional and Markov Random Field
(CRF/MRF) models), because in these cases exact or approximate efficient inference of
Maximum a Posteriori (MAP) solutions can be done. However, during the last few years,
more and more high-order models and inference algorithms have been developed which
offer higher modeling power and can lead to more accurate solutions of the problems [KR12,
KPT11]. Given such a general setting, let us now try to explore the expressive power of such
models in the context of slice-to-volume deformable registration.

The task of slice-to-volume deformable registration can be expressed mathematically as
follows. Given a 2D source image I and a 3D target volume J , we seek the 2D-2D in-plane
local deformation field T̂D and the plane π̂[J ] (i.e. a bi-dimensional slice from the volume J)
which in the most general case minimize the following objective function:

T̂D, π̂ = argmin
TD,π

M(I ◦ TD(x), π[J ](x)) + R(TD, π), (2)

where M represents the data similarity term and R the regularization term. The data term
M measures the matching quality between the deformed 2D source image and the corre-
sponding 3D slice. The regularization term R imposes certain constraints on the solution
that can be used to render the problem well posed. It also imposes certain expected ge-
ometric properties on the extended (plane selection and plane deformation) deformation
field. The plane π̂, that minimizes the equation, indicates the location of the 3D volume
slice that best matches the deformed source image. The deformation field T̂D represents
the in-plane deformations that must be applied to the source image in order to minimize the
energy function.

The fundamental idea behind our approaches is quite intuitive: we aim at deforming a
planar 2D grid in the 3D space, which encodes both the deformation field T̂D and the plane
π̂ at the same time. This grid is super-imposed to the 2D source image and consists of con-
trol points that jointly represent the in-plane deformation and the current position of the 2D
image into the 3D volume. The source image is positioned within the volume by applying
different displacement vectors with respect to the control points of the superimposed grid.
These displacements are chosen such that a given energy (see Eq. 2) is minimized to best
fit the matching criterion M. Since they can be moved without any restriction, geomet-
ric constraints are imposed through the regularization term R in order to keep a smooth

Inria
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Figure 1: Basic workflow to perform slice-to-volume registration based on graphical mod-
els. (1) A 2D input image I and a 3D target volume J are given as input data. (2) A grid is
superimposed to image I. The process is initialized using a 6-DOF rigid transformation T0

that specifies the initial position of the grid within the volume J . (3) The grid is deformed
by optimizing an energy function. (4) The plane π̂ and the deformation field T̂D are recon-
structed from the final state of the optimized grid. (5) T̂D is used to deform image I, and it
is provided as output together with the corresponding slice π̂[J ]

deformation field and a planar grid. Given that we impose a soft planar constraint, the
resulting grid is approximately planar. Therefore, we reconstruct the final solution by pro-
jecting all the points into a regression plane which is estimated out of the current position
of the points. The rigid transformation that indicates the position of the regression plane is
considered as π̂. Finally, the projected grid is interpreted as a 2D Free Form Deformation
model (FFD) [RSH+99] where each control point has local influence on the deformation and
is used to approximate the dense deformation field T̂D. Having said that, alternative control
point interpolation models can be used as well. Figure 1 illustrates this workflow.

This general formulation can be expressed through different discrete labeling problems
on a graph by changing its topology, the label space definition and the energy terms. As
we mentioned, in this work we propose three different approaches to derive slice-to-volume
registration as a discrete graph labeling problem. First, we propose the so-called overpa-
rameterized method, which combines linear and deformable parameters within a coupled
formulation on a 5-dimensional label space [FP13]. The main advantage of such a model is
the simplicity provided by its pairwise structure, while the main disadvantage is the dimen-
sionality of the label space which makes inference computationally inefficient and approx-
imate (limited sampling of search space). Motivated by the work of [SKH08], we present
a decoupled model where linear and deformable parameters are separated into two inter-
connected subgraphs which refer to lower dimensional label spaces [FFP15b]. It allows us
to reduce the dimensionality of the label space by increasing the number of edges and ver-
tices, while keeping a pairwise graph. Finally, in the high-order approach, we achieve this
dimensionality reduction by augmenting the order of the graphical model, using third-order
cliques which exploits the expression power of this type of variable interactions. Such a
model provides better satisfaction of the global deformation constraints at the expense of
quite challenging inference.

RR n° 8803



8 Ferrante & Paragios

Figure 2: (a) Connectivity structure of the graph for a grid of size 5x5. The gray edges
are standard 4-neighbor connections while the orange ones correspond to the extra cliques
introduced to improve the geometrical constraints propagation. (b) Displacement vectors
corresponding to the first three elements of a label from the overparameterized approach
di = (dx, dy, dz). (c) Unit vectors in spherical coordinates corresponding to the last two
coordinates of a label from the overparameterized approach Ni = (φ, θ). (d) Displacement
of the control points pi and pj when the corresponding labels li = (di,Ni) and lj = (dj ,Nj)

are applied. The planes πi and πj are those that contain the control points pi + di,pj + dj

and whose normals are Ni,Nj respectively.

2.1 Overparameterized approach

Let us consider an undirected pair-wise graph GO = 〈V,E〉 super-imposed to the 2D image
domain with a set of nodes V and a set of cliques E. The nodes V (a regular lattice) are
interpreted as control points of the bi-dimensional quasi-planar grid that we defined in the
previous section. The set of edges E is formed by regular 4-neighbors grid connections and
some extra edges introduced to improve the propagation of the geometrical constraints (see
Figure 2.a). The vertices vi ∈ V are moved by assigning them different labels ui ∈ L (where
L corresponds to the label space) until an optimal position is found.

In order to deform the graph, we need to define a label space able to describe the inplane
deformations and the plane selection variables. To this end, we consider a label space L

that consists of 5-tuples l = (dx, dy, dz, φ, θ), where the first three parameters (dx, dy, dz)

define a displacement vector di in the cartesian coordinate system (see Figure 2.b), and the
angles (φ, θ) define a vector Ni on a unit sphere, expressed using spherical coordinates (see
Figure 2.c). Let us say we have a control point pi = (pxi, pyi, pzi) and we assign the label
li = (dxi, dyi, dzi, φi, θi) to this point. So, the new point position p′

i after assigning the label
is calculated using the displacement vector as given by the following equation:

p′
i = (pxi + dxi,pyi + dyi,pzi + dzi). (3)

Additionally, we define a plane πi containing the displaced control point p′
i and whose

unit normal vector (expressed in spherical coordinates and with constant radius r = 1) is
Ni = (φi, θi). One of the most important constraints to be considered is that our transformed
graph should have a quasi-planar structure, i.e. it should be similar to a plane; the plane πi
associated with every control point pi is used by the energy term to take into account this
constraint. Figure 2.d shows how to interpret the labels for two given points pi and pj .

The energy to be optimized is formed by data terms G = {gi(·)} (or unary potentials)

Inria



Graph Based Slice-to-Volume Deformable Registration 9

Figure 3: Data term formulation for the overparameterized approach. The points x ∈ Ωi
are used to calculate the unary potential. π[J ](x) returns the intensity of the point in the
2D slice corresponding to the plane πi in the 3D image, whereas I(x) returns the 2D image
intensity. δ represents the similarity measure.

associated with each graph vertex and regularization terms F = {fij(·, ·)} (or pairwise po-
tentials) associated with the edges. As we described in section 2, the first ones are typically
used for encoding some sort of data likelihood, whereas the later ones act as regularizers
and thus play an important role in obtaining high-quality results [GSKP11]. The minimiza-
tion energy problem for the overparameterized formulaton is thus defined as:

PO(G,F ) = min
∑
i∈V

gi(li) + γ
∑

(i,j)∈E

fij(li, lj), (4)

where li, lj ∈ L are the labels assigned to the vertices vi, vj ∈ V respectively.

The formulation of the unary potentials that we propose is independent of the similarity
measure. It is calculated for each control point given any intensity based metric δ capable
of measuring the similarity between two bi-dimensional images (e.g sum of absolute differ-
ences, mutual information, normalized cross correlation). This calculation is done for each
control point pi, using its associated plane πi in the target image J and the source 2D image
I. An oriented patch Ωi over the plane πi (centered at pi) is extracted from the volume J ,
so that the metric δ can be calculated between that patch and the corresponding area from
the source 2D image (see Figure 3):

gi(li) =

∫
Ωi

δ(I(x), πi[J ](x))dx. (5)

One of the simplest and commonly used similarity measures is the Sum of Absolute
Differences (SAD) of the pixel intensity values. It is useful in the monomodal scenario, where
two images of the same modality are compared and, therefore, the grey intensity level itself
is discriminant enough to determine how related are the two images. Its formulation in our
framework is:

gSAD,i(li) =

∫
Ωi

| I(x)− πi[J ](x) | dx. (6)

In multimodal scenarios, where different modalities are compared (e.g. CT with Ultra-
sound images), statistical similarity measures such as Mutual Information (MI) are generally
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used since we can not assume that corresponding objects have the same intensities in the
two images. MI is defined using the joint intensity distribution p(i, j) and the marginal
intensity distribution p(i) and p(j) of the images as:

gMI ,i(li) = −
∫

Ωi

log
p(I(x), πi[J ](x))

p(I(x))p(πi[J ](x)))
dx. (7)

As we can see in the previous examples, our framework can encode any local similarity
measure defined over two two-dimensional images.

Let us now proceed with the definition of the regularization term. Generally, these terms
are used to impose smoothness on the displacement field. In our formulation, the pairwise
potentials are defined using a linear combination of two terms: the first (F1) controls the
grid deformation assuming that it is a plane, whereas the second (F2) maintains the plane
structure of the mesh. They are weighted by a coefficient α as indicates the following
equation:

fij(li, lj) = αF1i,j(li, lj) + (1− α)F2i,j(li, lj). (8)

The in-plane deformation is controlled using a distance preserving approach: it tries to
preserve the original distance between the control points of the grid. Since this metric is
based on the euclidean distance between the points, it assumes that they are coplanar. We
use a distance that is symmetric, based on the ratio between the current position of the
control points pi,pj and their original position po,i,po,j :

ψi,j(di,dj) =
|| (pi + di)− (pj + dj) ||
|| (po,i)− (po,j) ||

. (9)

Once we have defined ψij , the regularizer should fulfill two conditions: (i) it has to be
symmetric with respect to the displacement of the points, i.e. it must penalize equally when-
ever the control points are closer or more distant; (ii) the energy has to be zero when the
points are preserving distances and monotonically increasing with respect to the violation
of the constraint. The following regularization term fulfills both conditions for a couple of
nodes i, j ∈ V labeled with labels li, lj :

F1i,j(li, lj) = (1− ψi,j(di,dj))2 + (1− ψi,j(di,dj)−1)2, (10)

The plane preservation term is based on the average distance between a given control
point and the plane defined from the neighboring ones (see Figure 4.b). The aim is to
maintain the quasi-planar structure of the grid. Given that the distance between a point and
a plane is zero when the point lies on the plane, this term will be minimum when both of the
control points are on the same plane.

The distance between a point p = (px, py, pz) and a plane π defined by the normal vector
N = (nx, ny, nz) and the point q = (qx, qy, qz) is calculated as:

Dπ(p) =
| nx(px − qx) + ny(py − qy) + nz(pz − qz) |√

n2
x + n2

y + n2
z

. (11)

F2 is defined using this distance (Equation 11) and corresponds to the average ofDπj
(pi+

di) and Dπi
(pj + dj):

F2i,j(li, lj) =
1

2
(Dπj

(pi + di) +Dπi
(pj + dj)). (12)

Inria



Graph Based Slice-to-Volume Deformable Registration 11

Figure 4: (a) In plane regularization term: the dotted line represents the distance used in
F1, i.e. the distance between the points assuming they are coplanar. (b) Plane structure
regularization term: the dotted line represents the distance between one of the control
points and the plane corresponding to the other one. This information is used to compute
the term F2.

Recall that normal vectors in our label space are expressed using spherical coordinates
with a fixed radius r = 1 (unit sphere). However, the formulation that we presented uses
cartesian coordinates. Therefore, the mapping from one space to another is done as follows:

x = r sin(θ) cos(φ), y = s sin(θ) sin(φ), z = r cos(θ). (13)

Note that such pairwise terms are non submodular since we include the current position
of the points (which can be arbitrary) in their formulation and therefore the submodularity
constraint is not fulfilled. In this context, even if there is no energy bounding that guaran-
tees certain quality for the solution of the optimization problem, good empirical solutions
are feasible since we are in a pairwise scenario. Still, two issues do arise: (i) high dimension-
ality of the label space and consequently high computational cost, (ii) insufficient sampling
of the search space and therefore suboptimal solutions. In order to address these issues
while maintaining the pairwise nature of the methods, we propose the decoupled method
inspired by [SKH08]. We consider decoupling the label space into two different ones and
redefining the topology of the graph, so that we can still capture rigid plane displacements
and in-plane deformation.

2.2 Decoupled approach

We propose to overcome the limitations of the overparameterized method by decoupling
every node of the previous approach in two different ones: one modeling the in-plane defor-
mation and another the position of the plane. This is somewhat analogous to creating two
separated graphs of the same size and topology corresponding to different random variables
and label spaces. Once spaces have been decoupled, different sampling strategies can be
used for them. Another advantage of this approach is that we can define distinct regular-
ization terms for edges connecting deformation nodes or plane position nodes. It allows to
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12 Ferrante & Paragios

regularize in a different way the deformation and the plane position, imposing alternative
geometrical constraints for every case.

Since data term computation requires the exact location of the node, both position and
deformation labels are necessary. Both graphs can thus be connected through a pairwise
edge between every pair of corresponding nodes. Therefore, new pairwise potentials are
associated with these edges in order to encode the matching measure.

Formally, the decoupled formulation consists of an undirected pair-wise graph GD =

〈V,E〉 with a set of nodes V = VI ∪ VP and a set of cliques E = EI ∪ EP ∪ ED. VI and
VP have the same cardinality and 4-neighbor grid structure. Nodes in VI are labeled with
labels that model in-plane deformation, while labels used in VP model the plane position.
Edges from EI and EP correspond to classical grid connections for nodes in VI and VP
respectively; they are associated with regularization terms. Edges in ED link every node
from VI with its corresponding node from VP , creating a graph with a three dimensional
structure; those terms encode the matching similarity measure. Note that EI and EP can
be extended with the same type of extra edges defined in Section 2.1 (see Figure 2.a) to
improve the satisfaction of the desired geometrical constraints.

We define two different label spaces, one associated with VI and one associated with VP .
The first label space, LI , is a bidimensional space that models in-plane deformation using
displacement vectors lI = (dx, dy). The second label space, LP , indicates the plane in which
the corresponding control point is located and consists of labels lP representing different
planes. In order to specify the plane and the orientation of the grid on it, we consider an
orthonormal basis acting on a reference point in this plane. Using this information, we
can reconstruct the position of the control points of the grid. The planes parametrization is
given by lP = (φ, θ, λ), where angles φ and θ define a vector N over a unit sphere, expressed
through its spherical coordinates (see Figure 2.c). This value, together with parameter λ,
defines the position of the plane associated with the given control point. This is an important
advantage of our method: we could use prior knowledge to improve the way we explore the
plane space, just by changing the plane space sampling method.

As it concerns the considered plane sampling method, the final position of every control
point pk of the grid is determined using the pairwise term between two graph nodes (vIk ∈ VI
and vPk ∈ VP ) and their respective labels (lIk ∈ LI and lPk ∈ LP ). Imagine we have a plane πk
with normal vector N that contains the displaced control point pk + lIk. Parameter λ indi-
cates the magnitude of the translation we apply to πk in the direction given by N in order to
determine the plane’s final position (see Figure 5 for a complete explanation). Given that we
can associate different planes to different control points (by assigning them different labels
lP ), we need to impose constraints that will force the final solution to refer to a unique plane.

The energy that guides the optimization process involves three different pairwise terms,
which encode data consistency between the source and the target, smoothness of the defor-
mation and unique plane selection:

PD(I, P,D) = minα
∑

(i,j)∈EI

eIi,j(l
I
i , l

I
j ) + β

∑
(i,j)∈EP

ePi,j(l
P
i , lPj ) +

∑
(i,j)∈ED

eDi,j(l
I
i , l

P
j ), (14)

where α, β are scaling factors, eIi,j ∈ I are in-plane deformation regularizers (associated to
edges in EI), ePi,j ∈ P are plane consistency constraints (associated with edges in EP ) and
eDi,j ∈ D are data terms (associated with edges in ED). lIi , l

P
i are labels from label spaces LI

and LP respectively.
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Graph Based Slice-to-Volume Deformable Registration 13

Figure 5: Data term formulation for the decoupled approach. It is similar to the formulation
shown in Figure 3, but it combines labels from different label spaces. The points x ∈ Ωk
are used to calculate the unary potential. πk[J ](x) returns the intensity of the point in the
2D slice corresponding to the plane πk in the 3D image, whereas I(x) returns the 2D image
intensity. δ represents the similarity measure. In order to compute the final position of
the sampled patch in the volume, the in-plane deformation label lI = (dx, dy) is applied to
the corresponding imaginary grid point pk. Then, label lP = (N,λ) is used: the point is
translated in the direction given by vector N as indicates scalar λ. Finally, the patch Ωk is
sampled from plane πk with normal N , centered at the displaced point pk (in orange).

The data term is defined for every control point of the imaginary grid pk using the infor-
mation provided by two associated graph nodes. It is encoded in the pairwise term eD ∈ ED.
To this end, we extract an oriented patch Ωk over the plane πk (centered at pk) from the
volume J , so that the similarity measure δ can be calculated between that patch and the
corresponding area over the source 2D image (see Figure 5):

eDi,j(l
I
i , l

P
j ) =

∫
Ωk

δ(I(x), πk[J ](x))dx. (15)

We define two different regularization terms. The first controls the in-plane deformation;
it is defined on VI and corresponds to a symmetric distance preserving penalty:

eIi,j(l
I
i , l

I
j ) = (1− ψi,j(lIi , l

I
j ))2 + (1− ψi,j(lIi , l

I
j )−1)2, (16)

where ψi,j is the distance defined in Equation 9.
The second term penalizes inconsistencies in terms of plane selection, and is defined on

VP . We use the earlier defined (at is concerns the overparameterized model, in Equation
12) point-to-plane distance:

ePi,j(l
P
i , l

P
j ) =

1

2
(Dπj (pi

′) +Dπi(pj
′)). (17)

where pi
′ and pj

′ are the positions after applying label lPi , lPj to pi, pj respectively.
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14 Ferrante & Paragios

Note that these terms are similar to the ones of the former approach. However, there
is an important difference regarding the parameters they use. In case of the overparam-
eterized approach, parameters are always 5-dimensional labels. In the current approach,
parameters are at most 3-dimensional, thus reducing the complexity of the optimization
process while also allowing a denser sampling of the solution space. Conventional pair-
wise inference algorithms could be used to optimize the objective function corresponding to
the previously defined decoupled model. Such a model offers a good compromise between
expression power and computational efficiency. However, the pairwise nature of such an ap-
proach introduces limited expression power in terms of energy potentials. The smoothness
(regularization) terms with second order cliques are not invariant to linear transformations
such as rotation and scaling [GKPN09], while being approximate in the sense that plane con-
sistency is imposed in a rather soft manner. These concerns could be partially addressed
through a higher order formulation acting directly on the displacements of the 2D grid with
3D deformation labels. Furthermore, the data term is just a local approximation of the real
matching score between the deformed source 2D image and the corresponding target plane;
by introducing high-order terms we could define it more accurately.

2.3 High-order approach

The new formulation consists of an undirected graph GH = 〈V,E〉 with a set of nodes V
and a set of third-order potentials E = ED ∪ ER. The nodes are control points of our two-
dimensional quasi-planar grid and they are displaced using 3D vectors li ∈ LH . We define
two types of cliques in E. Cliques in ED are triplets of vertices with a triangular shape
and they are associated with data terms. Those in ER, are collinear horizontal and vertical
third-order cliques associated with regularization terms.

Unlike the previous methods, which require extra labels to explicitly model the plane
selection, high-order potentials explicitly encode them. Furthermore, third-order triangular
cliques can also explicitly encode data terms, since the corresponding plane can be pre-
cisely determined using the position of these 3 vertices. We use triplets of collinear points
for regularization terms. According to [KLYL08], this allows us to encode a smoothness
prior based on the discrete approximation of the second-order derivatives using only the
vertices’ position. Therefore, we define a simple three dimensional label space of displace-
ment vectors which is sampled as shown in Figure 2.b.

The energy to be minimized consists of data termsDijk associated with triangular triplets
of graph vertices (i, j, k) ∈ ED and regularization terms Rijk associated with collinear hori-
zontal and vertical triplets (i, j, k) ∈ ER. The minimization energy problem becomes:

PH(D,R) = min
∑

(i,j,k)∈ED

Dijk(li, lj, lk) + γ
∑

(i,j,k)∈ER

Rijk(li, lj, lk), (18)

where γ is a scaling factor and li is a label associated with a displacement vector (dx, dy, dz)

and assigned to the node i.

The data term is defined over a disjoint set of triangular cliques, covering the entire 2D
domain, as shown in Figure 6.a. Its formulation is independent of the similarity measure δ
and it is calculated for each clique c = (i, j, k) ∈ ED using the source 2D image I and the
corresponding plane πd[J ] extracted from the target volume J , defined by the three control

Inria



Graph Based Slice-to-Volume Deformable Registration 15

Figure 6: Different types of cliques used in the formulation. (a) Example of a triangular
clique used for data term computation. The green patch Ω corresponds to the clique (i, j, k)

and it is used to calculate the data term. (b) Examples of vertical (i1, j1, k1) and horizontal
(i2, j2, k2) collinear third-order cliques used to regularize the grid structure.

points of the clique. For a given similarity measure δ, the data term associated with the
clique c is thus defined as:

Dijk(li, lj, lk) =

∫
Ω(li,lj ,lk)

δ(I(x), πd[J ](x))dx, (19)

where x ∈ Ω(li,lj ,lk), and Ω(li,lj ,lk) corresponds to the triangular area defined by the control
points of clique c = (i, j, k) over the plane πd[J ], after applying the corresponding labels
li, lj, lk to the vertices.

Smoothness and plane consistency are also imposed using higher order cliques. We
define a clique for every set of three collinear and contiguous grid nodes (in horizontal and
vertical directions as depicts Figure 6.b). We also introduce extra cliques formed by nodes
that are collinear but not contiguous. The aim is to propagate the regularization so that the
planar structure is conserved. The regularization term, as previously, seeks to satisfy the
plane structure of the grid and the smoothness nature of the in-plane deformations.

Planar consistency can be easily enforced by propagating a null second-derivative con-
straint among collinear triplets of points. In fact, a null second-derivative for these cliques
does not impose just a planarity constraint but it also aims at regularizing the grid struc-
ture. Thanks to the third-order cliques, we can accurately approximate a discrete version
of the second-order derivative [KLYL08]. Given three contiguous control points (pi,pj ,pk)

and their corresponding displacement labels (li, lj , lk), it can be approximated as follows:
|| (pi + li) + (pk + lk)− 2 · (pj + lj) ||.

Based on this idea, we define the following energy term that is proportional to the second
derivative, and normalized with the original distance between the control points, d:

RAijk(li, lj, lk) =
|| (pi + li) + (pk + lk)− 2 · (pj + lj) ||

d2

2

, (20)

In-plane deformation smoothness is reinforced in the same manner as the previous mod-
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16 Ferrante & Paragios

Figure 7: Factor graph derivation for the overparameterized (A), decoupled (B) and high-
order (C) approaches. It shows the equivalence between cliques ci (unary, pairwise and
high-order, depending on the model) and the corresponding factors fi. In red, we observe
the cliques and factors associated with data terms, while in green and orange we represent
those associated with regularization terms.

els - through a symmetric distance preserving approach. For the sake of clarity, we redefine
Equation 10 as Ψij(li, lj) = (1 − ψi,j(li, lj))2 + (1 − ψi,j(li, lj)−1)2, and we apply it to both
pairs of contiguous points that form the clique (i, j, k):

RBijk(li, lj , lk) =
Ψij(li, lj) + Ψjk(lj , lk)

2
. (21)

The equation that regularizes the grid is a weighted combination of both terms RAijk and

RBijk:

Rijk(li, lj , lk) = (1− α)RAijk(li, lj , lk) + αRBijk(li, lj , lk), (22)

where α represents a weighting factor used to calibrate the regularization term.

3 Results and discussion

Let us now proceed with a systematic evaluation of the proposed methods. One of the main
aspects shared across methods is the inference algorithms used to produce the desired

Inria



Graph Based Slice-to-Volume Deformable Registration 17

solution.

3.1 Inference methods

Depending on their cardinality and regularity, objective functions can be optimized using
a variety of discrete optimization algorithms which offer different guaranties. It must be
noted that the regularization terms presented in our three models are non submodular, since
we include the current position of the points (which can be arbitrary) in their formulation.
Therefore, submodularity constraint is fulfilled neither in the pairwise nor in the high-order
terms (for a clear definition of submodularity in pairwise and high-order energies, we refer
the reader to the work of [RKAT08]).

In [FP13], the overparameterized approach was optimized using the FastPD algorithm
[KTP07] while for the decoupled [FFP15b] and the higher order models [FFP15a], we con-
sider loopy belief propagation networks. For the sake of fairness, in order to improve the
confidence of the comparison among the three methods, in this work we adapted it to be
optimized with the same algorithms. Therefore, results in this work can not be directly
compared with our previous works.

Given the variety of models presented in this work, we chose two different inference
methods that can deal with arbitrary graph topologies and clique orders, coming from
two standard inference algorithm classes: (i) Loopy Belief Propagation (LBP), a well know
message passing algorithm that has been extensively used in the literature; and (ii) the
Lazy Flipper (LF) by [AKB+12], a move-making algorithm which is a generalization of the
classical Iterated Conditional Modes (ICM) [Bes86] and has provided good approximations
for several non-submodular models in different benchmarks . Both are approximate infer-
ence methods that can accommodate arbitrary energy functions, graph topologies and label
spaces, and allow us to show how the three proposed approaches perform under different
optimization strategies.

We have adopted the OpenGM2 library [KAH+13] which implements both inference
methods, and makes it possible to perform fair comparisons. It requires construction of
a factor graph for every scheme (see Figure 7).

A factor graph G′ is a bipartite graph that factorizes a given global energy function, ex-
pressing which variables are arguments of which local functions [KFL01]. Given a graphical
model of any order G = 〈V,E〉 (like the ones described in this work), we can derive a factor
graph G′ = 〈V ′, F ′, E′〉. Here, V ′ is the set of variable nodes formed by the nodes of G, F ′

is a the set of all the factors f ∈ F ′ (where every f is associated to one clique G), and the
set E′ ⊂ V ′ × F ′ defines the relation between the nodes and the factors. Every factor f
has a function ϕf : V ′n → R associated with it, that might correspond to one of the data
or regularization terms defined in previous sections. The energy function of our discrete
labeling problem in the context of factor graphs is then given by:

E(x) =
∑
f∈F ′

ϕf (lf1 , ..., l
f
n), (23)

where x corresponds to a given labeling for the complete graph and lf1 ...l
f
n are labels given

to the variables in the neighborhood (or scope) of the factor f . Figure 7 shows a comparison
between the three models and the derivation of the corresponding factor graph in each case.
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3.2 Experimental validation

We computed results on two different datasets for the three methods, using the two infer-
ence algorithms (LBP and LF) in order to validate both the resulting 2D-2D deformation
field and the final plane estimation. The first one is a monomodal MRI heart dataset while
the second one corresponds to multimodal US-MRI brain images.

For every registration case, we run the inference algorithm several times (more precisely,
the inference method is executed a number of times equal to the product between grid
refinement levels and label refinement levels). For a single execution of both inference
methods, we used the same compound stopping criterion based on the energy gap between
iterations and maximum running time. The algorithms run until the energy improvement
between two iterations is smaller than a fraction of the current energy (we use ε = 0.01%)
or until a timeout is reached (we use 60 seconds as timeout). For LF we used a maximum
depth of 2 (for details about LF, we refer the reader to [KAH+13]).

In the following subsections we describe the datasets and present quantitative results.

3.2.1 Monomodal dataset experiment

The monomodal dataset was derived from a temporal series of 3D heart MRI volumes. It con-
sists of 10 sequences of 19 MRI slices which have to be registered with an initial volume. The
slices are extracted from random positions in the volumes while satisfying spatio-temporal
consistency. The ground truth associated with this dataset refers to the rigid transformation
used to extract every 2D slice of every sequence (it is used to validate the plane estimation
or rigid registration) and a segmentation mask of the left endocardium, that can be used to
validate the quality of the estimated deformation field.

The dataset was generated from a temporal series of 3D heart MRI volumes Mi as shown
in Figure 8. For a given sequence in the heart dataset, every 2D slice Ii was extracted
from the corresponding volume Mi at a position which is calculated as follows. Starting
from a random initial translation T0 = (Tx0

, Ty0 , Tz0) and rotation R0 = (Rx0
, Ry0 , Rz0), we

extract the first 2D slice I0 from the initial volume M0. Then, gaussian noise is added to
every parameter of the transformation in order to generate the position of the next slice
at the next volume. We used σr = 3◦ as rotation and σt = 5mm as translation parameters.
Those parameters generate maximum distances of about 25mm between the current and the
succeeding plane. In this way, we generated 2D sequences that correspond to trajectories
inside the volumes. Since the initial 3D series consists of temporally spaced volumes of the
heart, there are local deformations between them due to the heartbeat; therefore, extracted
slices are also deformed.

The resolution of the MRI volume is 192× 192× 11 voxels and the voxel size is 1.25mm×
1.25mm × 8mm. The slices of the 2D sequences are 120 × 120 pixels with a voxel size of
1.25mm× 1.25mm.

Experiments for the 3 methods were performed using equivalent configurations. In all
of them we used 3 grid refinement levels, 4 steps of label refinement per grid level, initial
grid size of 40mm and minimum patch size (for similarity measure calculation) of 20mm.
In case of the overparameterized approach we used α = 0.8, γ = 1 and 342 labels; for the
decoupled approach we used α = 0.8, β = 0.2, 25 labels in the 2D deformation space and
91 in the plane selection space; and finally, for the high-order approach we used α = 0.5,
γ = 1.10 and 19 labels. Parameters α, β, γ were chosen using cross-validation. The number

Inria
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Figure 8: Heart dataset construction. Given a series of 3D MRI volumes of a beating heart
(A), we extract ten different random trajectories (B). Every trajectory is composed of twenty
different positions from which we extract the 2D slices (C).

of labels in every label space was chosen to make the search spaces as similar as possible.
Results are reported (for every approach and every inference method) for 10 sequences

of 19 images, giving a total of 190 registration cases. We used SAD as similarity measure
given that we are dealing with monomodal registration. The idea is to register every 2D
slice Ii (which plays the role of an intra-operative image) to the same initial volume M0

(which acts as the pre-operative image). The resulting position of the slice Ii was used to
initialize the registration of slice Ii+1.

Figure 10 shows results in terms of rigid transformation estimation. We measured the
distance between the transformation parameters, and reported the average of the 190 reg-
istration cases. It resulted in less than 0.02rad (1.14◦) for rotation and less than 1.5mm
for translation parameters in all the approaches and optimization methods. The decoupled
method outperforms the other two by orders of magnitude in terms of reduction of the
standard deviation and the mean error.

To measure the influence of the deformation in the final results, we used the segmen-
tations being associated with the dataset. We computed statistics for the segmentation
overlapping at three different stages: before registration (i.e. between the source image
and the target volume slice corresponding to the initial transformation), after rigid regis-
tration (i.e. between the source image and the target volume slice corresponding to the
estimated transformation) and after deformable registration (i.e. between the deformed
source image and the target volume slice corresponding to the estimated transformation).
We evaluated accuracy computing DICE coefficient, Hausdorff distance and Contour Mean
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Figure 9: Slices extracted from three different sequences of the heart dataset before and
after registration. Input slice (a) is initialized in a position specified by a rigid transfor-
mation within the volume, whose slice corresponds to (b). After deformable registration, a
deformation field (c) is estimated. (d) shows the difference between initial images (a) and
(b), while (e) shows the difference between (a) and the corresponding slice extracted after
rigid registration. Finally, (f) corresponds to the results after deformable registration (i.e.,
the difference between the deformed version of slice (a) and the slice corresponding to the
estimated transformation). Red indicates bigger differences between the images. Note how
these values are changing before (d), after rigid (e) and after deformable (f) registration.

Distance (CMD). We also provided sensitivity (which measures how many pixels from the
reference image are correctly segmented in test image) and specificity (which measures
how many pixels outside the reference image are correctly excluded from the test image)
coefficients to complete the analysis. Results presented in Figure 11 show the mean and
standard deviation of the indicators at the three stages, for the three approaches and the
two inference methods. It can be seen that results improve at each stage, achieving DICE
coefficient of around 0.9 after deformation. Hausdorff distance and CMD decreased at each
stage until a total reduction of around 66%. Decoupled method still outperforms the others
after deformation in all the indicators, and presents a substantial improvement in terms
of standard deviation reduction with respect to them (it is consistent with the results we
showed in Figure 10 for the rigid parameters). Figure 12 complements these results by
showing DICE values disaggregated per sequence, while Figure 9 shows some qualitative
results before, after rigid and after deformable registration. Finally, in terms of running
time, Figure 13 presents the average value for the three approaches and the two inference
methods, together with the distribution with respect to data cost computation and optimiza-
tion time. As we can see, the decoupled method again outperforms the other two when
inference is performed using LBP. We run all the experiments (brain and heart datasets) on
an Intel Xeon W3670 with 6 Cores, 64bits and 16GB of RAM.
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Figure 10: Rigid transformation estimation error for the heart dataset. We measured the
distance for every one of the 6 rigid parameters, for the three approaches using LF and
LBP as inference methods. Independently of the inference method, the decoupled approach
outperforms the other two in terms of average and standard deviation of the estimated error,
for all the 6 parameters.

3.3 Multimodal experiment

Another dataset was used to test our approaches on multimodal image registration. The
dataset consists of a preoperative brain MRI volume (voxel size of 0.5mm× 0.5mm× 0.5mm

and resolution of 394× 466× 378 voxels) and 6 series of 9 US images extracted from the pa-
tient 01 of the database MNI BITE presented in [MDMP+12]. The intra-operative US images
were acquired using the prototype neuronavigation system IBIS NeuroNav. We generated
6 different sequences of 9 2D US images of the brain ventricles, with resolution around
161 × 126 pixels and pixel size of 0.3mm × 0.3mm. The brain ventricles were manually seg-
mented in both modalities. The estimated position of the slice n was used to initialize the
registration process of slice n+ 1. Slice 0 was initialized in a position near the ground truth
using the rigid transformation provided together with the dataset. We computed statistics
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Figure 11: Segmentation overlapping statistics computed before, after rigid and after de-
formable registration for both datasets (190 registration cases for the heart dataset and
54 for the brain dataset). In the case of deformable registration, the source segmentation
mask was deformed using the estimated deformation field. Results are reported for the
three methods (overparameterized, high-order and decoupled) using both inference strate-
gies (LBP and LF).

as we did in the previous experiment, but in this case based on the overlap between ven-
tricle segmentations. Since we registered different modalities, we used Mutual Information
as similarity measure instead of SAD.

Figure 11 summarizes the average DICE, specificity, sensibility, Hausdorff distance and
Contour Mean Distance coefficients for all the series, while Figure 13 reports the running
times. Figure 12 complements these results by showing DICE values disaggregated per
sequence. While the decoupled method does better in terms of computational time (inde-
pendently of the inference method), the high-order method achieves better results in terms
of segmentation statistics. It must be noted that, in this case, we are dealing with a more
complex problem than in the case of monomodal registration; consequently, the increment
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Figure 12: Final DICE (after deformation) comparison for every sequence (10 sequences in
the heart dataset and 6 sequences in the brain dataset). Results are shown for all three
approaches and two inference methods. In case of the heart dataset, decoupled method
outperforms the other two in most part of the sequences. In the brain dataset, the high-
order approach shows best performance in most cases. This is coherent with the aggregated
results shown in Figure 11.

obtained in terms of accuracy for both, rigid and deformable registration, is smaller. Given
that we are dealing with highly challenging images of low resolution being heavily corrupted
from speckle, those results are extremely promising. It is known to the medical imaging
community that explaining correspondences between different modalities is an extremely
difficult task.

In all brain experiments we used initial grid size of 8mm, minimum patch size of 13mm,
16 bins to construct the mutual information histograms, 3 grid levels and 4 steps of label
refinement per grid level. In case of the overparameterized approach we used α = 0.9,
γ = 0.1 and 342 labels; for the decoupled approach α = 0.015, β = 0.135, 25 labels in
the 2D deformation space and 91 in the plane selection space; finally, for the high-order
approach α = 0.7, γ = 0.05 and 19 labels. Parameters were chosen similarly as in the heart
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Figure 13: Average running time expressed in seconds, for one registration case, for the
three approaches running on the heart dataset (a) and the brain dataset (b), using LF and
LBP. Blue part corresponds to data cost computation while orange part corresponds to the
optimization time. As we can observe, data cost computation represents a bigger portion
of the total time in the brain dataset than in the heart dataset. This is due to the similarity
measure: while in the monomodal case (heart) we use a simple SAD, in the multimodal
case (brain) we need a more complex measure like mutual information. Note that data
cost computation time remains constant when we vary the inference method (with small
fluctuations due to operating system routines which ran during the experiment) but not
across different models.

experiments.

3.4 Comparative analysis

In this section, we aim at comparing different aspects of the three approaches we have pre-
sented in this paper, namely label spaces, graph topology and computational time. Without
loss of generality, some assumptions are made regarding the models. First, we consider only
square grids where N is the number of control points and consequently

√
N is the number

of nodes per side. Second, for the sake of simplicity we don’t consider the extra cliques in-
troduced to improve the geometrical constraints propagation, since they are contemplated
as an alternative strategy which may or may not be adopted.

Figure 14 shows a comparative analysis between the three approaches, using the two
proposed inference methods, in terms of optimization time and final energy. Table 1 presents
a compendium of the most critical parameters related to the proposed methods. Let us start
with the label spaces. We divide them into two types: displacement space (LD) and plane se-
lection space (LP ). The first one contains the displacement vectors (2D or 3D, depending on
the model) applied to the control points, while the second one contains the set of planes that
can be chosen. In terms of cardinality of the label spaces, the overparameterized approach
has the highest complexity, given by the cartesian product between the displacements and
all the possible planes, |LD × LP |. The decoupled model is dominated by the maximum of
the cardinality of both label spaces, max(|LD|, |LP |). Finally, for the high-order model it de-
pends only on |LD| since it is not necessary anymore to explicitly model which planes can
be chosen - the triangles defined by the triplets of points describe a plane (and even more, a
patch on this plane) by themselves. It clearly illustrates how we can reduce the complexity
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Figure 14: Comparison between total optimization time and final energy using two differ-
ent optimizers (LBP corresponds to circles and LF to crosses). Results are shown for the
overparameterized approach (in blue), the high-order approach (in orange) and the decou-
pled approach (in green). The gray lines connect data points corresponding to the same
registration case. As it can be observed with respect to the final energy, both methods are
equivalent in general (without considering the outliers). However, there are more impor-
tant differences in terms of computational time. In the high-order approach, where the
label space is small, LF outperforms LBP since convergence is achieved in a few seconds,
independently of the dataset. For bigger label spaces (like decoupled and overparameter-
ized approaches), LBP converges faster in case of the heart dataset, where SAD is used as
similarity measure and therefore the energy is smooth. The last case is when we use MI as
similarity measure (brain dataset) and we have big label spaces: there is no clear pattern in
this case.

of a given label space by making smart decisions in terms of energy definition and graph
topology.

But there is always a trade-off. This strong reduction in the size of the label space,
has an effect on other parameters like number of cliques and number of variables. In case
of the decoupled model, the main advantage is related to the fact that while the number
of variables and edges augment linearly (it goes from N to 2N in case of variables, and
from 2N − 2

√
N to 5N − 4

√
N in case of pairwise edges), the number of labels decreases
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Parameter Overparameterized Decoupled High-order
Label space |LD × LP | max(|LD|, |LP |) |LD|
# variables N 2N N

# 1st order cliques N - -

# 2nd order cliques 2N − 2
√
N 5N − 4

√
N -

# 3rd order cliques - - 4N − 6
√
N + 2

Table 1: Comparison among the three methods in terms of label space and graph topology.

quadratically (from |LD × LP | to max(|LD|, |LP |)). It results in better performance for the
decoupled method as can be observed in Figure 13. A consequence of the third-order cliques
in the high-order method is higher computation costs. Even then, judging from the running
times reported in Figure 13, we achieve good experimental computation time because of
the smaller label space.

4 Conclusion

We derived three new models from the standard graph-based deformable registration theory
for slice-to-volume registration. We have shown promising results in a monomodal and a
multimodal case, using different inference methods. The proposed framework inherits the
advantages of graph-based registration theory: modularity with respect to the similarity
measure, flexibility to incorporate new types of prior knowledge within the registration
process (through new energy terms) and scalability given by its parallelization potential.

The three methods we have presented aim at optimizing different types of energy func-
tions in order to get both, rigid and deformable transformations that can be applied inde-
pendently, according to the problem we are trying to solve. An extensive evaluation in terms
of different statistical indicators has been presented, together with a comparative analysis
of the algorithmic and computational complexity of each model. This work constitutes a
clear example of the modeling power of graphical models, and it pushes the limits of the
state-of-the-art by showing how a new problem can be solved not just in one, but in three
different ways.

Numerous future developments built upon the proposed framework can be imagined.
Alternative optimization methods and in particular second order methods in the context
of higher order inference could improve the quality of the obtained solution while de-
creasing the computational complexity. The integration of geometric information (land-
mark correspondences) combined with iconic similarity measures [SOG+10] could also be
an interesting additional component of the registration criterion. Last but not least, do-
main/problem specific parameter learning [BGK+13, KXP15] towards improving the pro-
posed models could have a positive influence on the obtained results.
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