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Individual Differences in Optimization Problem Solving: 
Reconciling Confl icting Results

Edward P. Chronicle1, James N. MacGregor2, Michael Lee3,                        
 Thomas C. Ormerod4 and Peter Hughes5

Abstract

Results on human performance on the Traveling Salesman Problem (TSP) from different 

laboratories show high consistency. However, one exception is in the area of individual 

differences. While one research group has consistently failed to fi nd systematic individual 

differences across instances of TSPs (Chronicle, MacGregor and Ormerod), another group 

(Vickers, Lee and associates) has found individual differences both within TSP performance 

and between TSP performance and other cognitive tasks. Among possible reasons for 

the confl icting results are differences in procedure and differences in the problem in-

stances used. To try to resolve the discrepancy, we collected data on TSP performance by 

combining the procedure used by one group with problem instances used by the other. 

The comparison involved nine 30-node and nine 40-node TSP problems previously used 

by the Vickers group, using computer presentation. Here, we had the same problems 

completed by 112 participants using a paper-and-pencil mode of presentation. We ex-

amined the results in the form of distributions of correlations across individuals for each 

pair of problems of the same size. The distributions for the computer and paper forms of 

presentation were very similar, and centered between correlations of 0.20 and 0.30. The 

results indicated the presence of individual differences at a level that fell between those 

previously reported by the two laboratories. The pattern of results indicated that previ-

ous discrepancies did not arise because of differences in procedure. Instead, individual 

differences appeared to become more prevalent as the diffi culty of problems increased. 

The results are consistent with an explanation that performance on simpler instances is 
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dominated by lower-level processes, but that as instance diffi culty increases, higher-level 

functions become increasingly involved. 

Introduction

In the area of problem solving there is growing interest in how people perform on instances 

of combinatorial optimization tasks. An example is the classic Traveling Salesperson Problem 

(TSP), where the goal is to fi nd the shortest route through a set of points and return to the 

origin. The TSP is a member of a class of mathematical problems that have so far proven to 

be computationally intractable. That is, no general algorithmic procedure has been found 

that is guaranteed to solve in polynomial time. Instead, heuristic procedures have been 

developed that can produce very good solutions in reasonable computational time, but 

that cannot guarantee fi nding the optimum (Applegate, Bixby, Chvátal, & Cook, 2006). 

Interestingly, human solutions are often better than those of the simpler heuristic 

procedures (Graham, Joshi, & Pizlo, 2000; MacGregor & Ormerod, 1996). In addition, while 

the computational times per node for successful heuristic procedures typically increase as 

a function of the number of nodes, it seems that human solution times per node remain 

constant. In other words, human solution times per problem increase in proportion to the 

number of nodes (Graham et al., 2000; Dry, Lee, Vickers, & Hughes, 2006; Pizlo, Stefanov, 

Saalweachter, Li, Haxhimusa, & Kropatsch, 2006). Other generally agreed-upon fi ndings 

are that human solutions are typically close to optimal (Graham et al., 2000; MacGregor 

& Ormerod, 1996; van Rooij, Schactman, Kadlec, & Stege, 2006; Vickers, Butavicius, Lee, & 

Medvedev, 2001) and rarely self-intersect (MacGregor, Ormerod, & Chronicle, 2000; van 

Rooij, Stege, & Schactman, 2003; Vickers, Lee, Dry, & Hughes, 2003).

While the results from different laboratories show substantial agreement on several 

basic aspects of performance, there is one fundamental issue on which they diverge. This 

is the question of whether or not performance differs reliably across individuals. While 

Chronicle, MacGregor and Ormerod have consistently failed to fi nd individual differences 

in TSP performance (Chronicle, MacGregor & Ormerod, 2006; MacGregor & Ormerod, 1996), 

Lee, Vickers and colleagues have reported signifi cant differences, not only within TSP 

performance (Vickers, Bovet, Lee, & Hughes, 2003; Vickers et al., 2001), but between TSP 

performance and other cognitive tasks (Burns, Lee, & Vickers, 2006; Vickers, Mayo, Heitman, 

Lee, & Hughes, 2004).

Table 1 provides a representative sample of the relevant fi ndings. The table shows 

the source of data, the number of participants, the number of TSP problems employed (k), 

the number of nodes, and the average correlation between path lengths across all k(k-1)/2 

pairs of problems. As can be seen from the fi nal column, there is a striking difference in the 

results from the two laboratories.

Chronicle, MacGregor and Ormerod (2006) proposed that procedural differences 

might, in part, explain these apparent inconsistencies. They argued that features of the 
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Vickers, Bovet, et al. (2003) procedure, for example, may have allowed learning by provid-

ing feedback after each trial, and that the results may have refl ected individual differences 

in learning ability. However, while this could explain the results reported in Vickers, Bovet, 

et al. and Vickers, Lee, et al. (2003), it cannot explain those found in studies where feedback 

was not provided (Vickers et al., 2001; Vickers, Lee, Hughes, Dry & McMahon, 2006).In con-

trast, Vickers, Lee and colleagues have argued that the failure to fi nd individual differences 

by MacGregor and Ormerod (1996) and Ormerod and Chronicle (1999) is likely to have 

arisen from ceiling effects, due to the simple and highly constrained nature of the stimuli 

used (Vickers et al., 2001; Vickers et al., 2006). Again, however, while this conjecture may 

explain some fi ndings, it cannot explain them all. Chronicle et al. (2006), in Experiment 2, 

using unconstrained random stimuli, failed to fi nd individual differences. Also, while the 

problems were relatively small (15 nodes), there was no evidence of ceiling effects. In fact, 

mean path lengths were very similar to those reported in Vickers, Bovet et al., who used 

similar problems and found signifi cant individual differences. 

To try to resolve these puzzling discrepancies, the two laboratories decided to pool 

resources by conducting an empirical study using the procedures of Chronicle and col-

leagues combined with stimuli previously used by Vickers and colleagues and compare 

the results with those found by the Vickers group. The present article is a result of this 

collaboration.

Method

The comparison used nine 30-node and nine 40-node TSP problems. The data for the 

computer presentation mode came from previous experiments conducted by the Vickers 

group. Specifi cally, data for the 30-node problems came from Vickers, Bovet, et al. (2003), 

and for the 40-node problems, from Vickers, Lee, et al. (2003). Details of procedures may 

be found in the original publications. In both cases, participants were tested individually, 

Table 1. Individual differences in TSP performance reported by two different laboratories.
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problem stimuli were presented by computer and node-to-node connections were indi-

cated by participants through pointing-and-clicking. After completion of each problem, 

feedback was provided by visually displaying each participant’s solution with the optimal 

solution superimposed, and by displaying the participant’s versus the optimal path length. 

Eighty-one participants completed the 30-node problems. Ninety-three participants 

completed the 40-node problems.

The same problems were completed by 112 students of the University of Hawaii, 

working in a group setting. Problem stimuli were presented on paper and participants 

drew their solutions. No feedback was provided.

Results and Discussion

Because of the many uncontrolled differences between the computer presentation (CP) 

and paper presentation (PP) groups, we have adopted an exploratory, descriptive approach 

to the results. The main question of interest is whether there was greater evidence for reli-

able individual differences in performance in the computer presentation group than the 

paper presentation group. For both, performance was measured as the difference between 

the length of path produced by a participant and the optimal path length, expressed as 

a percentage of the optimal length (percentage above optimal, or PAO). We calculated 

the Pearson correlation coeffi cients in PAO between all pairs of 30-node problems for the 

computer group and for the paper group. That is, we calculated the 9x8/2 = 36 correlation 

coeffi cients corresponding to every possible combination of the 30-node problems for 

the computer group, and then did the same for the paper group. We repeated this for the 

40-node problems, again resulting in 36 correlation coeffi cients. The distributions of these 

sets of correlation coeffi cients are shown in Figure 1 below. The upper and lower panels 

show the results for the 30-node and 40-node problems, respectively.

Perhaps the most striking feature of the results displayed in Figure 1 is the similarity 

between the PP and CP groups. If the results were consistent with those shown in Table 1, 

we might expect the PP distributions to be centered around an r value of less than 0.10, 

and the CP distributions to be centered around a value greater than 0.50, with little or no 

overlap between the two distributions.. In contrast, all four of the distributions shown in 

Figure 1 have a central tendency between 0.20 and 0.30, and clearly overlap to a consid-

erable degree. 

The results provide little or no evidence that mode of presentation affected individual 

differences in performance. Instead, they seem to indicate higher levels of individual differ-

ences than previously found by the Chronicle group and lower levels than reported by the 

Vickers laboratory. The latter result is probably due to the fact that the present correlations 

were based on raw performance scores and not on the average of individual scores across 

problems of the same size. The raw-score method was typically used by the Chronicle 
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group. In contrast, the Vickers group typically obtained average scores for individuals 

and used these as the basis for calculating correlations, which would normally result in

higher correlation coeffi cients. The question remains as to why the correlations observed 

here are higher than those previously found by the Chronicle group. A possible explana-

tion is proposed below. 

Effects of problem diffi culty

For the paper presentation mode, the present problems were larger than previously used 

in testing for individual differences. This raised the possibility that individual differences 

in performance became more reliable as problem diffi culty increased. 

One approximate indicator of problem diffi culty is the number of nodes:  Other things 

being equal, the 40-node problems should be somewhat more diffi cult than the 30. Were 

individual differences in the paper group greater in the former case? The results suggest 

Figure 1. Frequency distributions of pair-wise correlation coeffi cients on 30-node (up-
per panel) and 40-node (lower panel) TSPs, for paper presentation (PP) versus computer 
presentation (CP). 
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that they may have been. The pair-wise correlations between 40-node problems ranged 

from 0.08 to 0.52 with a mean of 0.26. For 30-node problems, they ranged from 0.04 to 

0.45, with a mean of 0.22. (Fisher’s z-transform was used in averaging.)

A more sensitive measure of problem diffi culty is provided by the actual perfor-

mance scores. However, since these were used in the calculation of individual differences, 

a problem of lack of independence arises. To avoid this, we used the PAO scores from the 

computer group as the indicator of problem diffi culty.

First we divided the 18 problems into 3 groups of 6, in order of increasing PAO. (The 

groups had mean PAO of 5%, 7% and 8%, respectively). Next we used the results from the 

paper condition to calculate the pair-wise correlations between problems in each of the 

three groups. For the easiest group, the resulting correlations ranged from 0.04 to 0.40, 

with a mean of 0.20, for the next, from 0.06 to 0.40, with a mean of 0.25, and for the most 

diffi cult group, from 0.12 to 0.36, with a mean of 0.26. Again, the results were consistent 

with individual differences increasing with problem diffi culty.

Finally, we computed an individual differences index for each problem as the aver-

age pair-wise correlation between a problem and each of the other 17 problems. These 

ranged from 0.15 to 0.29. The correlation between this index and a problem’s mean PAO 

was 0.42, across the 18 problems. Again, the result was consistent with the hypothesis that 

individual differences become increasingly reliable as problem diffi culty increases.

General Discussion

The purpose of the research was to reconcile, if possible, confl icting results on individual 

differences in performance on TSPs. One laboratory, using relatively small problems and a 

paper-and-pencil approach, has consistently reported no, or small, individual differences 

in performance, while another, using a wider range of problem sizes combined with 

computer presentation, has consistently reported larger, reliable, individual differences. 

The present research combined moderately large problems generated and tested by the 

latter laboratory with the data-collection procedures of the former laboratory. The results 

indicated the presence of individual differences at a level that falls between those previ-

ously reported by the two laboratories. The pattern of results indicated that individual 

differences become more prevalent as problem diffi culty increases.

There are at least two possible explanations for this apparent relationship between 

problem diffi culty and individual differences. One is that it is an artifact, caused by ceiling 

effects. That is, at lower levels of diffi culty, range restrictions artifi cially constrain individual 

differences. If this is the case, then we would expect less variability in performance among 

the simpler group of problems than among the more diffi cult. The standard deviations 

in PAO for the three groups of problems examined here were 0.9%, 0.6% and 0.6%, from 

simplest to most diffi cult, respectively, showing no indication of greater range restriction 
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in the simpler group.

A second explanation is that the result refl ects differences in solution processes as 

problem diffi culty increases. A number of theoretical accounts have suggested that how 

people solve TSPs is, in part, based on perceptual processes (Graham et al., 2000; Mac-

Gregor et al., 2000). It seems plausible that, for very simple problems, perceptual process-

ing predominates but, as problem diffi culty increases, more analytical processes come 

into play. An analogous phenomenon might be the switch from subitizing to counting in 

enumerating object displays. With few objects, subitizing provides a quick and accurate 

enumeration but, as the number of objects increases, accurate enumeration requires 

algorithmic counting (Kaufman; Lord; Reese & Volkmann, 1949). 

The conclusion that performance on TSPs is determined both by perceptual and 

cognitive/analytical processes is consistent with the fi ndings of Burns et al. (2006) and van 

Rooij et al. (2006). Burns et al. tested 101 subjects on a battery of combinatorial optimization 

problems, including 30-, 60- and 90-node TSP problems, and on standard psychometric 

tests designed to measure various cognitive abilities. These authors found signifi cant cor-

relations between TSP performance and measures of both low-level perceptual abilities, 

particularly involving spatial relations, and more high-level cognitive abilities, particularly 

involving verbal analytic reasoning. While all correlations were signifi cant, those of verbal 

analytic reasoning with TSP performance were higher than those of visuospatial ability. 

Given the large sizes of the TSPs used, this appears to be consistent with the present 

explanation. Burns et al. advocated a structural equation model as a parsimonious ex-

planation of the intercorrelations between tests they observed. This structural equation 

model explained individual variation in TSP performance both in terms of a fl uid intel-

ligence factor and a visuospatial intelligence factor. Fluid intelligence can be thought of 

as a measure of abstract reasoning ability, and visuospatial intelligence can be regarded 

as a measure of the ability to manipulate mental representations of shapes, forms and 

positions of objects. The possibility raised by the current results, that solving TSP prob-

lems with lower levels of complexity will tend to rely on visuospatial ability, while solving 

problems of greater complexity will tend to rely on abstract reasoning ability, is entirely 

consistent with the mixture observed across a wide range of problem sizes considered 

in the Burns et al. study.

This conjecture is also consistent with the fi ndings of van Rooij et al. (2006), who 

compared the TSP performances of three age groups (adults, 12-year-olds and 7-year-olds) 

on 15 randomly generated problems, 5 each of n = 5, 10 and 15. They concluded that their 

results with the younger children indicated that high-level TSP performance is attainable 

with perceptual processing alone, but also noted that adult participants used cognitive-

analytic skills to improve upon what their perceptual systems provided.

The hypothesis that individual differences increase as TSP problems become more 

complex, because of a required shift from basic perceptual mechanisms to higher-order 
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cognitive or analytic mechanisms, is one that is open to empirical investigation. It raises 

the basic question of how the “complexity” of a TSP problem should be assessed. In our 

analysis, we have used the number of nodes as a crude index of complexity, but there 

are surely more sophisticated approaches that should be developed and explored. If 

complexity does depend in part on the structure of people’s perceptual and cognitive 

representations, then theories of perceptual organization and memory ought to play a 

leading role in understanding how people solve TSP problems, and when and why their 

solutions differ.
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