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ABSTRACT
Remote sensing has been proposed as a method for implementing an in-
season spring wheat (Triticum aestivum) nitrogen (N) fertilization program. 
However, in fields where yields are influenced by both water and N stress, 
accurate N recommendations require that that the N and water stress signals 
be separated from each other. The objective of this study was to determine 
the impact of water and N stress on canopy reflectance and the ability of veg-
etation (NDVI, GNDVI, and BNDVI), and chlorophyll (CGreen and CRedEdge) 
indices to separate water and N stress. A split-plot experiment containing 
four blocks was conducted in 2002, 2003, and 2005 at Aurora South Dakota. 
The treatments were two soil moisture regimes and four N rates. Canopy re-
flectance was measured with a handheld multispectral radiometer at Haun 2, 
4-4.5, 6, and 10-10.2. Canopy reflectance was measured in 16 different bands. 
Remote sensing-based prediction models for yield, yield loss due to N stress, 
yield loss for water stress, and protein were developed. Yield loss due to N 
stress decreased with increasing N, while yield loss to water stress had the 
opposite relationship. Protein concentration generally increased with N. The 
remote sensing models for protein and yield loss due to N stress explained 
more of the variability than the yield model at Haun 4-4.5 and Haun 6. These 
data suggest that canopy reflectance can be used to separate N and water 
stress signals in hard red spring wheat. 
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INTRODUCTION
In the Great Plains, wheat (Triticum aestivum L.) yields can be reduced by both 
too much and too little N and water that can vary extensively across landscapes. 
Because N requirements increase with water (Thomas and Oerther, 1972; Sinclair 
and Horie, 1989), misdiagnosing crop water stress as N deficiency can result in 
over-fertilization and reduced yields in summit areas (Reese et al., 2002). Remote 
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sensing may provide the information needed for simultaneous management of 
water and N stress across highly variable production fields (Shanahan et al., 2007; 
Raun et al., 2002), although different wavebands and indices may be better suited 
for assessing one stress or the other. 

One of the most common remote sensing-based approaches for assessing crop 
health is the Normalized Difference Vegetation Index (NDVI; Rouse et al., 1973). 
NDVI contrasts the reflectance in the chlorophyll-absorbing red wavelengths with 
reflectance in the near infrared (NIR) wave lengths. In North Carolina, Flowers 
et al. (2003) used the NDVI to estimate the early-season N status of wheat and di-
rect in-season N application between tillering and stem elongation when biomass 
was > 1000 kg ha-1. Raun et al. (2001 and 2002) used NDVI as a basis for in-season 
N recommendations for wheat grown in eastern Oklahoma. In spite of these suc-
cesses, several problems have been reported. First, NDVI may be better at predict-
ing water than N stress (Clay et al., 2006), and second, the index value can become 
saturated, reducing its sensitivity (Gitelson and Merzylak, 1996; Daughtry et al., 
2000). Saturation occurs because as biomass increases, canopy reflectance in the 
red band decreases, resulting in the difference between NIR and red approaching 
the value of the canopy reflectance in the NIR band. 

Chlorophyll indices were developed on the assumption that a greener crop 
(i.e., more chlorophyll) is a healthier crop and to overcome the problems described 
above (Gitelson and Merzlyak, 1994a, 1994b, 1996; Penuelas et al., 1994, 1995; Gi-
telson et al., 1996, 2003, 2005). For example, Penuelas et al. (1994) used the nor-
malized pigment chlorophyll index (NPCI) to determine chlorophyll content of 
sunflower (Helianthus annuus). Gitelson et al. (2005) reported that the CRedEdge 
index was highly correlated to the chlorophyll content in both maize (Zea mays) 
and soybean (Glycine max), and Perry and Roberts (2008) reported better predic-
tion of N stress using CRedEdge than indices that relied on visible and NIR canopy 
reflectance. Clay et al. (2006) reported that in corn, the green normalized difference 
vegetation index (GNDVI) was better at predicting N stress than NDVI, which was 
better at predicting water stress. 

Combinations of indices have also been used to overcome problems associated 
with NDVI (Daughtry et al., 2000). For example, Rodriquez et al. (2006) reported 
that the Normalized Difference Red Edge Index (NDRE) divided by NDVI (Barnes 
et al., 2000) is correlated to the foliar N content in dryland wheat. Haboudane et 
al. (2004) reported that the Transformed Chlorophyll in Absorption Ratio Index 
(TCARI) divided by the Optimized Soil Adjusted Vegetation Index (OSAVI) can 
be used to enhance chlorophyll sensitivity and reduce soil background noise. Eitel 
et al. (2007) reported that the ratio between the Modified Chlorophyll in Absorp-
tion Ratio Index (MCARI; Daughtry et al., 2000) and second Modified Triangular 
Vegetation Index (MTV12; Haboudane et al., 2004) can be used to predict flag leaf 
N concentration of dryland wheat. 

The objective of this study was to determine the impact of water and N stress 
in combination and alone on canopy reflectance. The ability of vegetation (NDVI, 
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GNDVI, and BNDVI), and chlorophyll (CGreen and CRedEdge) indices were as-
sessed to separate water and N stresses. 

Materials and Methods

Experimental Design and Cultural Practices
This study was conducted on a Brandt silty clay loam (fine-silty, mixed, superac-
tive, frigid calcic Hapludoll) at a site located near Aurora, South Dakota (96o40’W, 
44o18’N) in 2002, 2003, and 2005. Previous crops were soybean (Glycine max) in 
2001 and 2002 and flax (Linum usitatissimum) in 2004. The field was no-tilled in 
2002 and 2003, and chisel-plowed and disked in 2005. Composite soil samples 
(0-15 cm and 15-60 cm), consisting of 15 to 20 individual cores, were collected in 
spring prior to urea application. Samples were air dried and analyzed for NH

4
-N 

and NO
3
-N after extraction with 1.0 M KCl (Clay et al., 2006) (Table 1). Phospho-

rus and potassium fertilizers were applied in accordance with university fertilizer 
guidelines. Hard red spring wheat cultivars “Russ” and “NorPro” were planted at 
a rate of 100 kg ha-1 on 15 April 2002 and 2003 and 7 April 2005. Russ is an awned, 
medium-height variety that has early-midseason maturity whereas NorPro is an 
awned, short semi-dwarf wheat variety that has midseason maturity. 

The two water treatments were rainfed (Table 1) or rainfed and supplemental 
irrigation and were split within plots. Irrigation was applied with a lateral-move ir-
rigation system with drop nozzles. Randomization was achieved across the areas by 
plugging adjacent nozzles along different sections of the lateral-move irrigator. The 
four N rates were 0-, 56-, 140-, and 224-kg urea-N ha-1, applied pre-emergence. A 
randomized split-plot design was used with water as the main treatment and N rates 
randomized within each plot. Blocks were replicated four times. Individual plot size 
was 12.2 m wide and 24.4 m long in 2002 and 12.2 m long in 2003 and 2005. 

Growing degree days (GDD, base 4.4oC, Table 1) were calculated based on 
the equation:

 							              (1)
( )

C4.4-
2

eTemperatur +eTemperatur
 = GDD ominmax

Table 1. Water, preseason inorganic N, and growing degree days in 2002, 2003, 
and 2005
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Canopy Reflectance Measurements
Canopy reflectance was measured at Haun 6 and 10-10.2 in 2002; Haun 2, 4, and 
10-10.2 in 2003; and Haun 4.5 and 6.0 in 2005 (Haun, 1973). The Haun scale for 
wheat was used because the scale is sensitive to early leaf growth. 

The Cropscan Multispectral radiometer (Cropscan Inc., Rochester, Min-
nesota), factory-calibrated each season, was held 2 m above the canopy with the 
sensor receptor oriented parallel to the canopy surface. Based on the height of the 
sensor, data were collected from a 1-m diameter circle. Irradiance and canopy re-
flectance readings were collected simultaneously between 11:00 a.m. and 3:00 p.m. 
Central Standard Time. Canopy reflectance values in 5 broad bands [blue, 485 ± 
45 nm; green, 560± 40 nm; red, 660 ± 30 nm; NIR, 830 ± 70 nm; and mid infra-
red (MIR), 1650 ± 100 nm] and 11 narrow bands (510 ± 3.65, 566 ±5, 610 ± 5.15, 
661 ± 5.8, 710 ±6.2, 760 ± 5.3, 810 ± 5.7, 840 ± 6, 870 ± 6 nm, 905 ± 5, and 1050 ± 
5 nm) were measured. 

Spectral Indices Calculations
The percentage canopy reflectance was calculated from readings taken by the ra-
diometer using the equation:

			                                                                       (2)

Canopy reflectance values among years were compared by growth stage.
In addition to canopy reflectance, seven different spectral indices were cal-

culated (Table 2) using various combinations of values from different bands. Nor-
malized difference vegetation indices, NDVI

w
 and NDVI

n
, were calculated using 

either the wide (w) or narrow (n) red and NIR canopy reflectance, respectively. 
Green normalized difference vegetation indices, GNDVI

w
 and GNDVI

n
, were de-

veloped using the wide (w) or narrow (n) green band and NIR canopy reflectance, 
respectively. The narrowband indices (NDVI

n
 or GNDVI

n
) are based on canopy 

reflectance in similar regions of the electromagnetic spectrum as commercially 
available two-sensor systems that measure canopy reflectance values from a light 
emitting diode source. The wide bands of blue and NIR were used to create a blue 
normalized vegetation index, BNDVI

w
. The BNDVI

w
 index was selected due to 

overlap in the green area of the electromagnetic spectrum and due to previous 
successes by Yang et al. (2004) and Hancock and Dougherty (2007) to estimate 
biomass in cotton and alfalfa, respectively. CGreen and CRedEdge were calculated 
by dividing the narrow NIR by either the narrow green or narrow red reflectance 
bands, respectively, and subtracting 1. These indices were selected due to reported 
increased sensitivity to plant chlorophyll (Gitelson et al., 2005). 
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Table 2. Spectral indices computed from the actual Cropscan bands. Formulas 
to derive the index are provided in the column titled “Cropscan Bands Used to 
Calculate Indices”

Yield and Grain Measurements
Wheat was harvested with a Massey Ferguson model MF8 combine (AGCO, Bloom-
ington, Minnesota) at physiological maturity in late July (2002 and 2005) or early 
August (2003). Yield was determined at 13.5% moisture. Grain protein (12% mois-
ture) was determined using a Foss Tecator Infratec™ 1241 Grain Analyzer (Eden 
Prairie, Minnesota). Grain samples were dried at 60o C to constant weight, ground 
to flour, and analyzed on a Europa Ratio Mass Spectrometer (Europa Scientific Ltd., 
United Kingdom) for total N, carbon (C), 13C, and 15N. The 13C natural abundance 
approach was used to calculate yield loss to N stress (YLNS) and yield loss to water 
stress (YLWS) (Clay et al., 2001, 2005, and 2006). 

Methods and Calculations to Determine Yield Loss Due to Water 
or N Stress 

Yield loss due to N and water stress was determined based on isotopic discrimina-
tion measured in grain samples and based on calculations described by Clay et al. 
(2001, 2005). The grain gives a season-long integrated look at these stresses in the 
plant environment as N and water stress have differential impacts on the relative 
amounts of 13C and 12C fixed during photosynthesis. 

Wheat is a C3 plant where the enzyme RuBisCo takes carbon dioxide (CO
2
) 

in the stomata to make the three carbon sugar phosphoglycerate (3-PGA). RuBisCo 
prefers 12CO

2
, and therefore when the stomata are open the relative proportion of 

12CO
2
 fixed is high. When the plant experiences water stress, the stomata close, 

resulting in more 13CO
2
 being fixed. N impacts the relative amount of 13C that is 

fixed by influencing the amount of chlorophyll contained in the plant. Reducing 
chlorophyll reduces the potential of the plant to fix CO

2
, which in turn impacts the 



72	 |  C.L. Reese, D.S. Long, D.E. Clay, S.A. Clay, and D.L. Beck

The Journal of Terrestrial Observation  |  Volume 2 Number 1 (Winter 2010)

	 Nitrogen and Water Stress  |	 73	 Nitrogen and Water Stress  |	 73
relative amounts of 13C and 12C fixed by the plant. The relative proportions of 13C 
and 12C contained in the plant are reported as either δ13C or Δ values. These values 
are defined with the equations, 

δ13C = [R(sample)/R(standard)-1] x 1000‰			   (3)

∆ = (δ 13Ca - δ
 13Cp )/(1+ δ 13 Cp/1000)				    (4)

where R(sample) is the 13C/12C ratio of the grain sample, and R(standard) is 
the 13C/12C ratio of PDB, a limestone from the Pee Dee formation in South Caro-
lina (O’Leary, 1993; Farquhar and Lloyd, 1993), δ13C

a
 is the δ13C value of air (-8‰) 

and δ13C
 p
 is the measured value of plant material. Yield losses due to water and N 

stress as described by Clay et al. (2001, 2005) are calculated by solving the follow-
ing equations, 

Yieldmaximum - Yieldmeasured = YLNS + YLWS			   (5)

d∆N, water = YLWS d∆water stress + YLNS d∆N stress 		  (6)

d∆water stress = mwater stress *(dYield) + bwater stress			   (7)

d∆nitrogen stress = mnitrogen stress * (dYield) + b nitrogen stress		  (8)
Solving these equations requires that values for d∆

water stress
 and d∆

N stress
 be 

calculated from the dataset. The boundary line technique is used to calculate both 
these values. The boundary line approach is graphically shown in Figure 1. These 
d∆

water stress
 and d∆

N stress
 values are the slopes for two boundary conditions. The d∆

water 

stress 
value is the slope on the lower boundary line, while d∆

N stress
 is the slope on the 

line that intersects the lower boundary line (Figure 1). 

Statistical Analysis
Yield parameters were analyzed using PROC GLM of SAS ver. 9.1 (SAS Institute, 
Cary, NC) for main treatment effects of year, N, water, and interactions. Values 
from F tests were used to calculate P values. Pearson correlation coefficients (r) 
were computed using PROC CORR of SAS to determine strength of relationships 
between each of the seven spectral index and yield parameters. The SAS procedure 
MAXR was used to develop predictive equations for each yield parameter using 
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the spectral indices as regression estimators. The MAXR method selects regres-
sion models that provide the highest degree of correlation with the least number of 
variables and is an improvement over the STEPWISE method in that many more 
models are evaluated. 

Results and Discussion

Wheat Yield and Quality 
Grain yields were highest in 2003 and lowest in 2002, whereas protein was lowest 
in 2003 and highest in 2002 (Table 3). The inverse relationship between yield and 
protein has been reported by others (Clay et al., 2001; Kim et al., 2008; Norword, 
1995). The high yields in 2003 were attributed to consistently lower seasonal tem-
peratures, as observed by 11% fewer GDD, as contrasted with lower yields in 2002 
and 2005, when seasonal GDD was higher. (Table 1). 

Protein contents were much more sensitive to N in 2003 than 2005 (Figure 2). 
The small response to N in 2005 was attributed to chisel plowing the field prior to 
planting that caused high soil N mineralization rates that could be observed in high 
protein content (14.8%) of grain from unfertilized plants. The lack of a response in 
2005 was not attributed to high inorganic N levels at the beginning of the season. 
For example, in 2003 a protein response to N fertilizer was observed when spring 

Figure 1. Boundary line technique for determining yield loss to nitrogen stress 
(YLNS) and yield loss to water stress (YLWS)
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soil test total N (NO

3
-N and NH

4
-N) was 96 kg-N ha-1, which was slightly higher 

than the 2005 spring soil test total N (83 kg-N ha-1) (Table 1). 
As expected, YLNS was greater than YLWS under conditions of relatively 

infrequent water stress that are typical of eastern South Dakota. In all three years, 
YLNS decreased as N rate increased. For example, the highest N rate alleviated 
78% of the calculated YLNS of the 0N rate in 2002, 48% in 2003, and 16% in 2005. 
The YLWS increased as N rate increased in 2002 and 2003 and did not vary with 
N in 2005 (Table 3). An N rate × water interaction also was observed for the YLWS 

Figure 2. Hard red spring wheat protein response function to increasing N rates 
in 2002, 2003, and 2005

data and generally was lower under irrigated conditions and at higher N rates. In 
the 0N treatment, YLWS was reduced by 34% in the irrigated compared with the 
rainfed treatment. In corn, Kim et al. (2008) reported that water alleviated some N 
stress due to higher soil mineralization rates under irrigation and the subsequent 
replacement of fertilizer N (δ15N value = -1 to 0) with soil-derived N (δ15N value 
>1) (Bateman and Kelly, 2007). Calculated values for YLNS were not influenced by 
water in this study. However, the N rate × year and water main effect influenced 
δ15N values. The δ15N values were greatest in the 0N for all years and decreased 
from 1.23 in 0N to -0.825 in the highest N treatments, indicating more soil-derived 
N in the 0N treatment. Applying irrigation influenced the δ15N value with values 
of -0.167‰ (more fertilizer-derived N used) in rainfed and 0.046‰ (more soil N 
used) in irrigated conditions. 	  
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Canopy Reflectance: Individual Bands
At Haun 2 (leaf 2 emerged), there were generally poor relationships among canopy 
reflectance and end of the season yield parameters (Table 4). The poor relation-
ships were attributed to confounding of reflectance values by bare soil (Daughtry, 
2001; Hong et al., 2006). 

At Haun 4-4.5 (leaf 4 emerged, tillering), the correlation coefficients among 
end-of-season crop measurements and canopy reflectance improved. At this stage, 
canopy reflectance in the blue, red, NIR, and MIR bands was correlated with yield, 
YLNS, and YLWS. Yield and YLWS were correlated positively with blue and red 
bands and correlated negatively with NIR and MIR bands. YLNS was correlated 
negatively with blue and red, and correlated positively with NIR and MIR (YLWS 
only). Grain protein was correlated negatively to blue, green, red, and NIR canopy 
reflectance. Grain δ15N values were correlated positively with canopy reflectance 
in the green and MIR bands.

At Haun 6 (leaf 6, tillering), yield and YLNS were correlated negatively to 
canopy reflectance in the blue, green, red, and MIR bands and correlated positively 
with NIR. YLWS also was correlated with all bands, but was correlated positively 
to blue, green, red, and MIR bands, and correlated negatively with NIR, which was 
just the opposite of yield and YLNS. Grain protein had mixed results. In 2002 pro-
tein was correlated negatively with blue, green, red, and MIR canopy reflectance 
and positively with NIR canopy reflectance, whereas in 2005 protein was not cor-
related with canopy reflectance. 

At Haun 10-10.2, the correlation coefficients among canopy reflectance and 
yield parameters were lower than those observed for Haun 6. At this growth stage, 
the canopy reflectance surface was a mixed environment of flag leaf and emerging 
awns. The lower correlation coefficients at Haun 10-10.2 were attributed to wheat 
starting to head, which confounded canopy reflectance measurements. 

Canopy Reflectance: Indices
Stronger relationships among canopy reflectance indices values and end of the sea-
son measurements were observed at Haun 4-4.5 and 6 than at Haun 2 (Table 5). 
These results were similar to those observed for the individual bands (Table 4). At 
Haun 4-4.5 and Haun 6, grain protein and YLNS were correlated positively to all 
indices whereas YLWS was correlated negatively to the indices. Degree of correla-
tion was stronger for YLNS and YLWS at Haun 4-4.5 and stronger for protein at 
Haun 6. Yield was correlated negatively to all indices at Haun 4-4.5 but correlated 
positively at Haun 6. These differences were a consequence of averaging years with 
different response functions and datasets. For example, Haun 4 contained data from 
2003 and 2005, whereas Haun 6 contained data from 2002 and 2005. 

The chlorophyll indices of CGreen and CRedEdge at Haun 4-4.5 and Haun 6 
generally had higher positive correlation to YLNS than most of the vegetation indi-
ces. These results suggest that the chlorophyll indices provided more reliable infor-
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Table 3. The influence water regime, N rate, and year on wheat yield, protein 
content, yield from N stress (YLNS), yield loss from water stress (YLWS), and 
grain δ15N
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Table 4. Correlation coefficient (r) values for relationships between canopy 
reflectance in individual wideband [blue (BW), green (GW), red (RW), near 
infrared (NIRW), and mid infrared (MIRW)] and yield, protein YLNS, YLWS, 
or δ15N at different Haun growth stages. Data were aggregated (n = 64) for Haun 
4-4.5, Haun 6, and Haun 10-10.2 between dates presented. Correlation coef-
ficient values for Haun 2 are for 2003 only (n = 32). Values of (+) 0.250 and (+) 
0.325 represent significance at P = 0.05 and 0.01, respectively.
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Table 5. Correlation coefficient (r) values between yield, protein, yield loss due 
to N stress (YLNS), yield loss due to water stress (YLWS), δ15N, and 7 indices at 
hard red spring wheat growth stages Haun 2, Haun 4-4.5, Haun 6, and Haun 10-
10.2. Data were aggregated (n = 64) for Haun 4-4.5, Haun 6, and Haun 10-10.2 
between dates presented. Correlation coefficient values for Haun 2 are for 2003 
only (n = 32). Values of (+) 0.250 and (+) 0.325 represent significance at P = 0.05 
and 0.01, respectively. 
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mation about N stress than vegetation indices. In addition, these two chlorophyll 
indices were correlated negatively to YLWS at these two growth stages, indicating 
that N stress and water stress differentially influenced canopy reflectance. 

Predicting N and Water Stress 
Regression models for predicting yield, grain protein, grain δ15N, YLNS, and YLWS 
were developed using spectral bands and selected indices as predictors (Table 6). 
Index BNDVI

w
 was not significant in any model and is not discussed further. Over-

all, models explained from 26 to 93 % of the variance in the parameters. Models 
for Haun 2 explained 46% of the variance in yield, which was similar with yield 
models at other growth stages. However at Haun 2, less variance was explained 
for the YLNS, YLWS, protein, or δ15N parameters compared with models at later 
growth stages. These results were expected at this growth stage because of a large 
percentage of soil that was still exposed. 

At later growth stages (Haun 4-4.5, 6, and 10-10.2), regression modeling 
became more effective in predicting all variables except yield. Scatter plots of ob-
served versus predicted values for grain yield (Figure 3), YLNS (Figure 4), and grain 
protein (Figure 5) reveal slopes near unity and similar intercepts across these three 
growth stages. At Haun 6, the models explained 93%, 70%, and 57% of the vari-
ability observed in the YLNS, protein, and YLWS data, respectively. The CGreen 
and CRedEdge were the only parameters used in the models for prediction of all 
three, although the coefficients for YLNS were positive values for CGreen and nega-
tive values for CRedEdge, compared with negative values of CGreen and positive 
values of CRedEdge for YLWS and protein. These results suggest that in-season 
remote sensing fairly early in wheat growth can provide reasonable estimates of 
N and water stress. 

Summary and Conclusions
Yield losses due to N stress (YLNS) decreased with increased fertilizer application 
that also increased yield. Yield loss to water stress (YLWS) was alleviated but not 
eliminated with irrigation and generally increased as fertilizer rate increased. Multi-
variate regression prediction models explained more variance in protein and YLNS 
at Haun 6 than at Haun 4-4.5 and Haun 10-10.2. Wavebands most used often in 
developing the prediction models for YLNS and protein at Haun 4-4.5 were wide-
band canopy reflectance in green (560 nm) and NIR (830 nm) and narrow band 
canopy reflectance in red edge (710 nm) and NIR (810 nm) for CRedEdge (grain 
protein only). At Haun 6, YLNS and grain protein were predicted using narrow 
band canopy reflectance at red edge (710 nm) and NIR (810 nm) for CRedEdge, 
and green (568) and NIR (810 nm) for CGreen. At Haun 10-10.2 (heading), canopy 
reflectance in the wide blue band (440-530 nm) was a component in prediction 
models for all end of season parameters. 

The results from this study are sufficiently promising to suggest that spectral 



80	 |  C.L. Reese, D.S. Long, D.E. Clay, S.A. Clay, and D.L. Beck

The Journal of Terrestrial Observation  |  Volume 2 Number 1 (Winter 2010)

	 Nitrogen and Water Stress  |	 81	 Nitrogen and Water Stress  |	 81

Ta
bl

e 
6.

 G
ro

w
th

 st
ag

e 
de

pe
nd

en
t r

em
ot

e 
se

ns
in

g 
m

ul
tip

le
 re

gr
es

sio
n 

m
od

el
s f

or
 p

re
di

ct
in

g 
yi

el
d,

 y
ie

ld
 lo

ss
 d

ue
 to

N
 st

re
ss

  (
Y

LN
S)

, y
ie

ld
 lo

ss
 d

ue
 to

 w
at

er
 st

re
ss

 (Y
LW

S)
, g

ra
in

 p
ro

te
in

, a
nd

 g
ra

in
 δ

15
N

 

bands together with chlorophyll indices, which do not saturate as readily as vegeta-
tion indices, may be good regression estimators of YLNS and grain protein. This 
remote sensing information may be used for determination of wheat N status early 
in the growing season and applying in-season N topdress applications to improve 
yield and grain protein. 
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Figure 3. Relationship between the predicted and observed yield at Haun 4-4.5, 
Haun 6, and Haun 10-10.2 using the models presented in Table 6
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Figure 4. Relationship between the predicted and observed YLNS at Haun 
4-4.5, Haun 6, and Haun 10-10.2 using the models presented in Table 6
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Figure 5. Relationship between the predicted and observed grain protein at 
Haun 4-4.5, Haun 6, and Haun 10-10.2 using the models presented in Table 6 
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