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Localisation of humans, objects and robots
interacting on load-sensing floors

Mihai Andries, Olivier Simonin, François Charpillet

Abstract—Localisation, tracking and recognition of objects and
humans are basic tasks that are of high value in applications of
ambient intelligence. Sensing floors were introduced to address
these tasks in a non-intrusive way. To recognize the humans
moving on the floor, they are usually first localized, and then
a set of gait features are extracted (stride length, cadence,
pressure profile over a footstep). However, recognition generally
fails when several people stand or walk together, preventing
successful tracking. This paper presents a detection, tracking
and recognition technique which uses objects’ weight. It con-
tinues working even when tracking individual persons becomes
impossible. Inspired by computer vision, this technique processes
the floor pressure-image by segmenting the blobs containing
objects, tracking them, and recognizing their contents through
a mix of inference and combinatorial search. The result lists
the probabilities of assignments of known objects to observed
blobs. The concept was successfully evaluated in daily life activity
scenarii, involving multi-object tracking and recognition on low
resolution sensors, crossing of user trajectories, and weight
ambiguity. This technique can be used to provide a probabilistic
input for multi-modal object tracking and recognition systems.

Index Terms—Intelligent systems, Ubiquitous computing, Am-
bient intelligence, Home automation, Force sensors, Sensor ar-
rays, Identification of persons

I. INTRODUCTION

Ambient intelligence is a domain of research that explores
how sensing environments can interact with their inhabitants. It
requires the reconstruction of a model of the environment that
is used for reasoning. In this context of model reconstruction,
the localisation, tracking and recognition of objects and human
beings in the supervised environment become important. Load-
sensing floors were introduced to solve this problem in a non-
intrusive manner [1] [2] [3]. The traditional way of recognizing
humans was by first tracking them, extracting gait features
and then identify them using clustering techniques [4] or
Hidden Markov Models (HMM) [1] [2]. However, this type of
recognition failed whenever the extraction of gait features be-
came impossible. This happened when multiple users walked
alongside, preventing the algorithm from correctly segmenting
and tracking each of them on the floor.

This paper presents an object recognition approach which
localizes and recognizes multiple objects simultaneously by
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analyzing the load they exert on the floor. As it does not
extract gait features for recognition, it does not require fine
tracking of individual persons inside a group. In contrast to
clustering and HMM techniques, this new approach is based on
the multiple knapsack problem [5], a combinatorial approach
which uses information about object weight and size. It can
be used to provide a probabilistic input for a multi-modal
object recognition and tracking system. This technique was
implemented in an ambient intelligence setting, where a non-
intrusive load-sensing floor was used. The main drawback of
this approach is its computational complexity, due to the sheer
number of possibilities of correlating known objects to the
observations made. However, this issue is classically solved
using dynamic programming.

For our research experiments, we have designed a sensing
floor prototype, which allows us to assess how this technology
can be used for more advanced applications than those avail-
able today on the market. This also allowed us to overcome
the drawback of the devices available off-the-shelf, which are
not open and not designed for integrating new sofware. The
floor has a modular design, being composed of load-sensing
tiles, whose concept was described in [6].

The rest of this paper is organised into 6 sections. Section
II presents the state of art in the domain of load-sensing
floors. Section III introduces the load-sensing equipment used
to experimentally evaluate our algorithm. In section IV, our
load-data processing approach is exposed, with an emphasis on
object detection, tracking, and recognition. Then, experimental
results for the proposed algorithm are presented and analysed
in section V. Finally, directions for future work are evoked in
section VI.

II. RELATED WORK

The use of floor-sensors in ambient intelligence contexts
began in the late 1990’s, with projects like the ORL active
floor [1] by Addlesee et al., the Magic carpet [24] by Par-
adiso et al., and the Smart floor [4] by Orr et al., where they
provided information for reasoning about the observed space.
These floors were later integrated into smart environments,
aimed at delivering assistance services like continuous diag-
nosis of users’ health. These smart environments also inte-
grated assistive robotic technologies with sensing networks.
Examples include the Gator Tech Smart House made by the
University of Florida [25], the Aware Home introduced by
the Georgia Institute of Technology [26] [4], and the Robotic-
Room system [27] [28] developed by the University of Tokyo.
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Table I: Methods for people identification using floor pressure

Scientific article Year Floor sensor Major features Classifier
Addlesee et al. [1] 1997 strain gauge load cells Pressure profile over a footstep Hidden Markov Model (HMM)
Orr et al. [4] 2000 strain gauge load cells Key points from pressure profile K-nearest neighbors (KNN)

Pirttikangas et al. [2] 2003 electro-mechanical film
(EMFi)

Pressure profile over the entire floor during
walking HMM

Pirttikangas et al. [7] 2003 EMFi Pressure profile over the entire floor during
walking

Learning Vector Quantization
(LVQ)

Yun et al. [8] 2003 pressure switch sensors Compensated foot centers over 5 consecu-
tive footsteps Multi-layer perceptron (MLP)

Jung et al. [9] 2003 pressure mats 2D trajectories of center of pressure (COP) HMM

Jung et al. [10] 2004 pressure mats 2D positional trajectories of COP Hidden Markov Model, Neural
Network (HMM-NN)

Suutala and Roning [11] 2004 EMFi Features from spatial, frequency domain
over a footstep

Distinction-sensitive Learning Vec-
tor Quantization (DSLVQ)

Suutala and Roning [12] 2005 EMFi Features from spatial, frequency domain
over a footsteps MLP, LVQ

Middleton et al. [13] 2005 force-sensing resistor
(FSR) mats

Stride length, stride cadence, heel-to-toe ra-
tio Not available (N/A)

Yun et al. [14] 2005 photo interrupter sensors
Compensated foot centers and heel-strike
and toe-off time over 5 consecutive foot-
steps

MLP

Yun et al. [15] 2008 photo interrupter sensors
The left footprint pattern and the array of
sampled transitional footprints over differ-
ent combinations of 2 or 4 footsteps

MLP

Suutala and Röning [16] 2008 EMFi, same as [2] Pressure and time features extracted from
pressure profile over a footstep

MLP, Support Vector Machine
(SVM)

Suutala et al. [17] 2008 pressure switch sensors

Single footstep: length, width, duration,
number of pixels in the binary map, (min,
max, mean, std) from the gray-level dura-
tion map; Between footsteps: stride, length,
stride cadence

Gaussian Process

Qian et al. [18] 2008 FSR mats 2D trajectories of the Center of pressure,
Pressure profile over time Fisher linear discriminant (FLD)

Vera-Rodriguez et al. [19] 2009 piezoelectric force sensors Geometric and holistic footstep data SVM
Qian et al. [20] 2010 FSR mats Mean pressure, stride length FLD
Vera-Rodriguez et al. [21] 2010 piezoelectric sensor mat Holistic pressure-time info SVM

Yun et al. [22] 2011 photo interrupter sensors Foot centers, heel-to-toe time, footprint ge-
ometric data MLP

Vera-Rodriguez et al. [23] 2013 piezoelectric sensor mat Fusion of time and holistic pressure info SVM
Proposed method 2015 strain gauge load cells Weight over time Knapsack algorithm

Table I lists the floor sensing technologies capable of
identifying people, updating the lists previously presented
in [20] and [23]. The current main types of floor pressure
sensing technologies are: capacitive sensors, piezoelectric sen-
sors, piezoresistive sensors, strain gauge load cells, and photo
interrupter sensors.

Being installed inside or under the floor, the load sensors
perceive only a projection of the forces involved in human
daily activities. This leaves space for ambiguities in tracking
and recognition. Thus, whenever floor sensors seemed to be
insufficient for any of the three tasks (localisation, tracking
and identification), additional sensors were used in a multi-
modal perspective to solve emerging data ambiguities. Sensing
floors have been combined with radio-frequency identification
(RFID) systems [29], pyroelectric infrared sensors [30], wear-
able accelerometers [31] [32], audio capture systems [33] and
multiple cameras [34].

Load-sensing surfaces are also employed in biomechanical
and medical laboratories. Examples include the GAITRite gait
analysis system [35], which is an electronic walkway, and
the Kistler force plates [36], which are used for sports and
performance diagnostics, as well as for gait and balance anal-
ysis. Heller et al. used a force-measuring floor to investigate
dynamic balance in humans [37], which is correlated to sport

performance according to previous studies. Rajalingham et al.
[38] used in-floor force-sensing to track the 3d body posture
of pedestrians using Bayesian filters.

All the presented floors that are capable of human recogni-
tion extract a set of features for their tracking and identification
task. Addlesee et al. [1] recognise humans using their pressure
profile over a footstep as data, and using Hidden Markov
Models as classifiers. They also mention the problem of
interpretation of spread loads, when objects span several tiles
on a modular floor. Orr et al. [4] use the vertical ground
reaction force profile, as well as its derivates. These include the
maximal load value during heel strike and during toe push-off,
and the minimal load value recorded during the weight transfer
from heel to toe.

Pirttikangas et al. [2] recognise individual persons walking
on the floor using the pressure pattern of their gait and
HMMs. Similarly, Middleton et al. [13] use the stride length,
stride cadence, and time-on-toe to time-on-heel ratio and then
recognise the subjects using a standard distance metric of
similarity.

Qian et al. presented an approach to identify people based
on features extracted from their gait [18]. They used a large
area (180 square feet), high resolution (1 sensor per cm2), net-
worked pressure sensing floor which employed force-sensing
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resistors [39].
Schmidt et al. [3] queried a database of known objects

whenever a change was detected in the total weight of a scene,
to see if there exists an entry that has the same weight as the
absolute difference in weight detected. However, this process
was neither probabilistic, nor could it detect simultaneous
introductions or removals of objects from the scene.

Morishita et al. in [40] presented a high-resolution floor
sensor composed of pressure switches, which provided binary
information about the presence or absence of load on them. Its
high resolution allowed to obtain sharp images of the surfaces
in contact with the floor, such as footprints or shoe soles. It was
suggested that an image processing software could regonize
footprints.

Murakita et al. [41] performed multi-user human tracking
on the VS-SS-F InfoFloor system using the Markov Chain
Monte Carlo method. However, the employed floor sensors
gave only a binary information about the occupation of its
constituent tiles. Tracking would fail whenever two or more
targets crossed their paths, generating tracking ambiguity.
Attempts were made to solve this problem by fusing the
information from the floor sensors with that from on-body
acceleration sensors [32].

Savio et al. [42] identified footsteps on a smart carpet
with integrated binary capacitive sensors, using clustering
algorithms based on Maximum Likelihood Estimation and
Rank Regression analysis. This allowed the extraction of user’s
trajectory.

Valtonen et al [43] presented a 2D human positioning and
tracking system, which used a low-frequency electric field to
locate humans on the floor. The system could only detect
conductive objects, and did not provide information about the
weight of objects.

Similarly, capacitive sensing floor mats capable of detecting
and tracking objects in the environment were used by Braun
et al. [44]. However, as this floor did not measure load forces,
it could not recognize objects on its surface by their pressure
profile.

Lombardi et al. [45] developed a tiled sensing floor, with
tiles containing sensing stripes, and which was capable of
tracking a walking human. They used a Randomized tree clas-
sifier to identify footsteps from the pressure signal. However,
the floor did not implement any human recognition abilities.
It is worth mentioning that they treated the floor pressure data
as if it were an image.

Shen and Shin [46] developed a floor that uses an optical
fiber sensor. It employs Brillouin Optical Correlation Domain
Analysis (BOCDA) to calculate the location and the stress on
the sensor. The floor was able to track two persons simultane-
ously. However, no identification abilities were developed or
reported.

Yun et al. worked on several sensing floor prototypes [8]
[14] [15]. Their latest prototype, the UbiFloorII [22], uses an
array of tiles equipped with photo interrupter sensors. It uses
multilayer perceptron networks to identify individuals based
on the extracted features (stride length, foot angle, heel strike
time, etc.).

Vera-Rodriguez et al. described a high-resolution pressure-

sensing floor, which employs piezoelectric sensors mounted
on a printed circuit board, and placed under a conventional
mat [21]. The authors extracted the ground reaction force of
footsteps [21] and their footprints [19], and performed human
recognition using a Support Vector Machine. Recognition was
performed using a database of 120 known people, the largest
database to that date.

Lee et al. [47] presented a network of force-sensing resistors
that can track users and allow them to interact with the
smart environment by tapping the floor, onto which a visual
interface is projected. Similarly, Visell et al. [48] used a tiled
load-sensing floor as a human-computer interface, where an
image of the interface is overlayed on the floor, on which
users can press virtual buttons with their feet. The Active
Gaming company proposed the pressure sensitive Lightspace
Floor [49], which is an interactive gaming platform combining
pressure sensors with LEDs for visual feedback.

More recently, sensing floors products like the Sens-
Floor [50] (a floor network of capacitive proximity sensors),
Capfloor [44] (a network of capacitive sensors), and Floor-
InMotion [51] started being commercialised by companies,
mainly for the senior care industry. An innovative energy
harvesting sensing floor has also been proposed in [52].

Concerning object tracking on sensing floors, inspiration can
be sought in the field of computer vision, where techniques
such as Bayesian Filtering [53], Joint Particle Filtering [54],
Probabilistic Multi-Hypothesis Tracking [55], and Joint Prob-
abilistic Data Association Filtering [56] have been applied for
tracking multiple targets. Challa et al. provided an overview
of these techniques in Fundamentals of object tracking [57].
Suutala et al. [58] used Gaussian Process Joint Particle Fil-
tering to track humans on a tiled floor equipped with binary
switch sensors. However, their algorithm did not use weight
information to improve object tracking, as this information
was not provided by their hardware. In the case of pressure-
sensing floors, we can also exploit the weight information to
evaluate the generated tracking hypotheses.

In this paper we present an algorithm that detects, tracks
and recognizes objects by using only the information about
their size and weight. It offers a solution to the problem
of interpretation of spread loads, when objects span several
tiles on a modular floor. In comparison to the aforementioned
tracking techniques, which exploit only binary data about the
presence or absence of objects, our tracking algorithm also
exploits the weight data provided by load-sensing floors, as
detailed in Section IV-B. As it tracks and recognizes objects
individually or in groups, it is more fault tolerant as opposed
to algorithms that extract gait features, which require fine
segmentation and tracking of targets. This technique can boost
recognition when used complementarily with algorithms that
extract features from the human gait, but can also serve as a
gracefully degraded recognition mode whenever these fail.

III. LOAD SENSING EQUIPMENT

We have implemented our object recognition algorithm
on the SmartTiles platform [6], which is installed in our
ambient intelligence prototype apartment (see Fig. 4). This
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load-sensing floor is composed of square tiles, each equipped
with 4 pressure sensors (strain gauge load cells), two ARM
processors (Cortex m3 and a8), and a wired connection to the
four neighbouring cells (see Fig. 1). The processing units were
manufactured by Hikob1. The tiles’ architecture is presented
in Fig. 2. As shown in the diagram, both centralized and
decentralized applications can be supported, thanks to the
computing units embedded in the tiles. The tiles form a
network of load-sensors, as represented in Fig. 5.

(a) Underside of a load-sensing
tile. The load sensors are in the
corners of the tile.

(b) The SparkFun SEN-10245
load sensor used. Source:
www.sparkfun.com/products/
10245

Figure 1: An image of a tile and a load-sensor.
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Figure 2: Tile architecture. Low-level firmware is the violet
block, blue blocks form the middleware, while high-level
software blocks are in yellow.

1http://www.hikob.com/

This prototype was originally designed as a medium of
interaction for robots with distributed control, in an ant-like
fashion. The computing unit available on each tile can register
a virtual pheromone trace, that can then be transmitted to other
robots, using either wired or wireless communication.

In a different perspective, the sensing-floor acts as a sensor
for an ambient intelligence. It can measure pressure forces
with the load sensors installed under the tiles, measuring static
weights with a precision of up to ± 2 kg. The floor can also
detect disturbances in the surrounding magnetic field caused
by the presence of robots, using magnetometers embedded on
the processing units of the tiles.

Each tile also has an embedded accelerometer, that allows
it to detect shocks that can be caused by objects or humans
falling on the ground. Floor devices of similar functionality,
such as the SensFloor [50] that can detect people lying on
the ground are already employed in nursing homes in France.
Each tile has 16 light-emitting diodes which provide visual
feedback.

The floor can localize the exerted punctual pressures, with
an accuracy beyond the size of a tile. Punctual pressures can
be located through a calculation of the center of pressures
measured by the load sensors. The precision is influenced by
the signal to noise ratio, as visible in Fig. 3.

Several functionalities have already been implemented on
this prototype floor, including weight measurement, fall de-
tection, and footstep tracking. The floor’s ability to perform
high resolution pressure sensing by shifting the objects on the
sensing tiles has been demonstrated in [59].

This type of tiled sensing floor also has its inconvenients:
• it is incapable of distinguishing between objects of equal

weight;
• its resolution depends on the size of the tiles, which are

usually quite large (30 cm x 30 cm or bigger);
• its sensitivity depends on the sensitivity of its sensors;
• perception of forces is limited to the floor plane;
This floor is also capable of detecting and measuring foot-

steps with high accuracy, extracting them using the variations
in the translation speed of the center of pressure, as described
in [60]. We also implemented heuristic real-time multi-user
localisation (without user identification) in an indoor setting
using this prototype floor. This paper focuses on the object
detection, tracking and recognition capability of such a load-
sensing tiled floor.

IV. METHODOLOGY: LOAD DATA PROCESSING FLOW

Parallels can be drawn between data processing in the
context of computer vision and that of load-sensing floors. The
field of view of a camera is analagous to the surface covered
by a sensing floor. The light-intensity bitmap image generated
by a camera is analagous to the load image generated by a
load-sensing floor. This hints that traditional image processing
techniques can be employed to solve similar problems in the
context of load-sensing floors.

The traditional data processing flow in computer vision usu-
ally consists of the following steps: background subtraction,
blob detection, blob tracking, and blob recognition. The data

www.sparkfun.com/products/10245
www.sparkfun.com/products/10245
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flow processing that we propose for load-sensing floors is
similar, and has the following structure: background subtrac-
tion, blob detection using connected-component labeling, and
a feedback loop perfoming blob tracking and localisation of
objects (see Fig. 6). The algorithm receives as input:

• the force values registered by the sensors composing the
floor when there is nothing on it (i.e. the zero values used
for background subtraction);

• the values of forces recorded at time t, together with the
coordinates of the load sensors that sensed them;

• a list containing the models of objects known to the floor.
The object models have the following structure: object

name, mass (in kilograms), and length (in meters).

A. Object detection

Objects are detected on the floor by background sub-
traction and subsequent connected-component labeling. The
background subtraction allows to process the data from sen-
sors that perceived force values above zero, filtering out all
other sensors. Then, connected-component labeling [61] links
together all sensors that are potentially supporting the same
object, thereby forming blobs. It uses the length of the largest
known object as a proximity threshold: if two sensors detected
pressures over the noise threshold, and if the distance between
the sensors is smaller than the size of the biggest known object,
these are linked together, forming a connected component.

The size of the largest known object is calculated from
the list of known object models. After this phase, any object
present on the floor is guaranteed to be contained by one blob
at most. On the other hand, a blob may contain one or several
objects.

For simplicity reasons, we will consider that there is no oc-
clusion in our system, which occurs when a tile malfunctions
and stops sending load data.

In our implementation, the set of sensors is represented as
a graph (see Fig. 6). Blobs are formed by the sensors left after
background subtraction, which are linked using connected-
component labeling. The blobs correspond to the connected

components present in this graph. Figure 6 shows the set of
load sensors embedded into the floor, where each sensor is
represented as a dot. The blobs detected by the floor were
then overlayed onto this image.

B. Object tracking

After the detection of blobs on the floor, we can try to
infer the objects located in these blobs by using their weight.
However, the load force detected by the sensors oscillates
during activities such as walking or squatting and standing
up (see Fig. 7 for an example). Thus, the value of this force
cannot be directly converted into an estimation of an object’s
mass. Nevertheless, the value of this force oscillates around the
weight of the object or person, as mentioned in [1]. Therefore,
it is possible to approximate the total weight of objects inside
a blob, by calculating the blob’s average weight over a sliding
window of time. This requires blob tracking.

An adequate solution to this problem is to use a tracking
technique that takes into consideration the different ways in
which blobs can evolve. A blob can appear in the scene,
disappear, remain constant, merge with other blobs, split into
several blobs, or it can exchange contents with another blob.
We propose a method that explores the entire search space
of joint blob evolution hypotheses (except for remote content
exchange between blobs, rarely encountered in practice), and
sorts these hypotheses according to a given criterion. Intu-
itively, the optimal solution should minimize the total distance
travelled by the blobs inside the scene between two instants of
time, as well as minimize the weight difference between the
correlated blobs in two neighboring time frames. We define
penalties for each type of blob evolution, which are used for
ranking the tracking hypotheses (see Table II).

An appear evolution penalizes the weight of the appeared
blob, as well as the distance between the new blob and
the entry/exit location of the environment. Symmetrically, a
disappear evolution penalizes the weight of the disappeared
blob, and the distance to the exit point. A split evolution
penalizes the difference between the weight of the parent blob

Figure 3: The scattering of the calculated center of pressure, caused by the sensor noise. The thick black square represents
the load-sensing tile. Scattering is shown for 3 different loads (7kg, 12kg and 20kg) at 16 different locations of the exerted
punctual pressure, marked by black circles. The higher is the ratio of signal to noise, the less scattering is observed. The
indicated load does not include the weight of the tile itself, which is 10.7 kg.
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and the total weight of the child blobs. A merge evolution
penalizes the differences between the total weight of the parent
blobs, and the weight of the (unified) child blob. In terms of
distance, both split and merge penalize the euclidean distance
between parent and child blobs. However, this distance penalty
is considered nil for the parent and child blobs that overlap
and occupy the same surface tiles (e.g. all the split child blobs
that are contained within the surface of the parent blob; all the
merged parent blobs that are contained within the surface of
the unified child blob).

The final score of a hypothesis is obtained by first dividing
the distance penalty and the weight penalty by their corre-
sponding average noise values, squaring the results, and then
summing them up to obtain the mixed final score. The joint
blob evolution hypothesis with the lowest penalty is considered
to be the most probable one.

C. Object recognition

Object recognition on load sensing surfaces can be per-
formed by using the weight of objects, or by using their
surface of contact with the floor [59]. Recognition by weight is
trivial when tracking single objects or when performed on high
resolution pressure sensors, that can easily segment objects on
the floor. However, the problem is less trivial when tracking
multiple entities, each with multiple points of support, and
which interact on noisy, low-resolution sensors.

Background subtraction, connected-component labeling,
and blob tracking, described in the previous sections IV-A
and IV-B, reduce the problem to recognizing the contents of
blobs of known weight, which support the weight of one or
more objects in their entirety. This allows us to model the
recognition task as an instance of a Multiple Knapsack Prob-
lem, interpreting the weights of detected blobs as knapsacks’
volumes, that have to be optimally filled with known objects’
weights. This is based on the hypothesis that the average
weight of a blob is optimally matched by the weights of the
objects it contains (see Fig. 8).

This can be formalised as follows:
• O is the set of known objects;
• P(O) is the set of all combinations of known objects (it

is the power set of O);
• C = {blob1, . . . , blobn} is the set of all blobs observed

at a given time t. Each blob is defined by its location and
weight.

All the possible assignments of objects to blobs are con-
sidered and ranked in ascending order, by using the total

mismatch in weight between the blobs and the objects assigned
to them (see Fig. 9). For each hypothetical assignment of
objects to blobs, these mismatches are squared and then
summed, so as to give preference to small mismatches, rather
than large ones. The weight mismatch (or the penalty) of an
assignment of objects to blobs is given by:

total blobs∑
id=1

(
weight

(
blobid

)
− weight

(
contents (blobid)

))2
(1)

The size of the search space, that is the number of possible
assignments to analyse, is given by:

(number of blobs + 1)(number of known objects) (2)

As highlighted by eq. 2, there is a risk of a combinatorial
explosion when performing this exhaustive search. This can be
dealt with using traditional techniques like branch and bound,
and dynamic progamming.

Given the contents of blobs in the previous timestep, and
given a hypothesis on how the blobs have evolved inside the
scene from the previous to the current timestep, we can infer
the contents of blobs at the current timestep. However, this
requires bootstrapping the knowledge about the contents of
blobs at some initial time tstart.

As the blobs inside the scene evolve, the candidate recogni-
tion solutions will cumulate penalties over time. The candidate
solution with the minimal total penalty over time is considered
to be the best guess (see Fig. 10).

The result of the recognition algorithm is a list of as-
signments of objects to blobs, ordered according to their
cumulated penalties. Intuitively, the assignment having the
minimal penalty is considered to be the most probable one.

For probabilistic reasoning algorithms, a measure describing
the probability for an assignment of not being the correct solu-
tion can be introduced: this is the penalty of the assignment,
normalized using the sum of all assignments’ penalties (see
eq. 3).

P (¬Assignmentk) =
Penalty(Assignmentk)

total assignments∑
id=1

Penalty(Assignmentid)

(3)

V. EXPERIMENTS

We evaluate our approach by running experiments with
humans performing daily life activities: doing the morning
routine (waking up in the bed, using the toilet, having break-
fast), and receiving a visitor (opening the door, leading the

Appear / Disappear Merge Split

Distance penalty
(
distanceTo(entrance/exit)
avg COP scattering noise

)2 non-overlapping
parents∑(

distanceTo(childBlob)
average COP scattering noise

)2 non-overlapping
children∑(

distanceTo(parentBlob)
average COP scattering noise

)2

Weight penalty
[

weight(blob)
avg pressure noise

]2

( parents∑

weight(blob)

)
−weight(childBlob)

average pressure noise


2 weight(parentBlob)−

(
children∑

weight(blob)

)
average pressure noise


2

Table II: Calculation of penalties for each type of blob evolution
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Figure 4: 3D model of the intelligent apartment prototype,
with the load-sensing floor.

Figure 5: 2D image of the tiles composing the floor, with the
sensors highlighted in red. Gray tiles are not equipped with
sensors.

94.3 kg (avg) avg94.3 kg (avg)

57.60 kg (avg)57.60 kg (avg)
AliceAlice

Bob, ChairBob, Chair

Figure 6: Object recognition sample. The floor load sensors
are represented as little black dots. The detected blobs are
colored in green. The numbers in black show the average blob
weight, calculated over a time window. The red dots show the
position of blobs’ centers of mass. The text in red shows the
recognition guess.
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Figure 7: The load profile of a person squatting and jumping on
a load-sensing tile. Notice that the load oscillation is centered
around the mass of the person, which is 60 kg.

30 kg65 kg

Bob (90 kg)

Bookcase (30 kg)

Chair (5 kg)

Alice (60 kg)

Figure 8: Object recognition modeled as a Multiple Knapsack
Problem.

Assignment1
Object1 → ∅
Object2 → ∅
...
Objectn → ∅

...

Assignmenti
Object1 → Blob2
Object2 → ∅
...
Objectn → Blobk

...

Assignment(blobs+1)objects

Object1 → Blobk
Object2 → Blobk
...
Objectn → Blobk

Figure 9: All the possible assignments of known objects to
blobs are evaluated and ordered according to how well the
blobs are matched in terms of weight by their contents. The
assignment having the minimal weight mismatch is considered
as most probable.

30 kg60 kg 90 kg

Bookcase (30 kg)

Alice (60 kg)

Bob (90 kg)

Figure 10: The optimal assignment of objects to blobs cumu-
lates the minimal penalty over time.
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(a) The bedroom and living room.

(b) The living room, the bathroom and the kitchen.

Figure 11: The prototype apartment with the tiled sensing
floor.

visitor into the living room, having a chat while seated,
eating a cake, leading the visitor to the exit). All scenarii
involve multi-object detection, tracking and localisation. The
experiments took place in our prototype apartment (Fig. 11).

During the whole duration of these activities, the sensing
floor had to localize the persons and objects inside the scene.
The center of pressure (COP) of a blob was considered
as the location of all the objects contained by this blob.
An approximation of the ground truth was provided by a
Qualisys 2 motion tracking system (tracking error below 1
mm), which recorded the vertical projection of markers placed
on objects’ approximate centers of mass. Each human had a
reflector placed on his waist, so that its vertical projection
onto the ground plane would approximately correspond to
his COP (fig. 13a and 14a). The experimental results are
presented as measurements of the localisation precision. These
measurements were made only when both localisation data
were available: the approximate ground truth given by the
motion tracking system, and the localisation provided by the
floor. This explains the interruptions in the curves showing the
localisation precision.

A. Baseline precision

To gain an understanding of the baseline precision of
the floor sensor, we performed an experiment with a non-
holonomic 4-wheeled robot (robuLAB-10 by Robosoft3)
rolling on the floor of the apartment. The idea was to track the
fluid movement of an autonomous robot, as compared to the

2http://www.qualisys.com/
3http://www.robosoft.com/

saccadic movements of the COP which are characteristic for
the human gait. As we had no ground truth for the localisation
of robot’s center of pressure, we used an approximation using
the data from the motion tracking system. Considering that
the robot is rigid, we could estimate the position of its COP
using the least squares method, by calculating the point which
minimized the quadratic distance error between itself and the
center of pressure calculated by the sensing floor.

The robot was localised by the sensing floor with an average
precision of 8 cm for free movement, and a standard deviation
of 5 cm, as shown in Fig. 12.

B. Morning routine scenario

The morning routine scenario involved a person performing
a set of daily life activities, such as: sleeping in bed, using
the toilet, having breakfast, and leaving the house (see Fig.
13). The challenges of this scenario included tracking multiple
interacting entities on a low resolution sensor, as well as the
presence of ambiguity between objects of similar weight.

As we had no system to provide us with the ground truth for
the localisation of a person’s COP, the measured localisation
error obtained using the COP approximation given by the
motion tracking system is expected to be higher than the
real localisation error. In contrast to rigid robots, humans are
flexible. This did not allow us to calculate an approximation
of the COP using the least squares method, as we had done
in the baseline case with a rigid robot.

The localisation errors for the human (average error 13
cm) and the bed (average error 19 cm) are shown in Fig.
13b. When the person interacts with the bed, the two are
segmented together in a single blob, with the COP closer to
the heavier human, which explains his better localisation. The
localisation error is the biggest at the beginning and end of
each interaction, when the two entities begin approaching each
other, forming an elongated blob. The localisation error is at
its lowest during the close interactions between objects, when
the blob regrouping the interacting objects is compact. We
observe 15 cm of localisation error for the bed when it is at
rest, and a higher error during interactions, which depends on
the proximity with the interacting entity and its relative weight.

Fig. 13c shows the localisation errors for lightweight ob-
jects, such as the chair (5.5 kg) and the dish with the breakfast
(4.9 kg). A heavy plate was chosen to overcome the noise
threshold of the floor sensor. We observe the same effects as
previously described: the localisation error increases in the
proximity of humans, due to their segmentation in a common
blob, with the COP closer to the human.

C. Receiving a visitor scenario

The receiving a visitor scenario involved a person hosting
someone in his house. The guest would be greeted at the door
by the host, enter the living room of the apartment, take a seat,
wait for the host to bring something to eat, have a chat with
the host, and then leave the house. The challenge was to track
and locate multiple interacting persons with a low resultion
sensor.
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(a) A robuLAB-10 robot navigating on the
sensing floor.
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(b) The robot trajectory (red), and the
localisation given by the floor (blue). The
average localisation error is 8 cm, with a
standard deviation of 5 cm.
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(c) Tukey box plot presenting an analysis
of the floor’s localisation error, depending
on the number of tiles supporting the robot
at the time of localisation.

Figure 12: The robotic navigation scenario

The localisation results are shown in Fig. 14b. The average
localisation error for interacting persons is around 20 cm. The
drop in the localisation precision occurs when the two persons
walk or stand nearby, occupying a contiguous space in terms
of tiles, which prevents them from being segmented separately.
Again, the measured localisation error for humans is expected
to be higher than the real localisation error, as we could not
approximate the position of the human’s COP with the least
squares method, as we did it with a rigid robot in section V-A.

D. Discussion

The presented algorithm works independently of the floor
resolution (i.e. density of sensors per m2, size of the floor
tiles). However, the bigger the tiles are (the lesser the floor-
image resolution is), the coarser the results of the object
detection algorithm will be. Also, coarser object detection
results introduce more ambiguity in object recognition and
localisation. Therefore, it would be interesting to have a
prototype with a higher sensor density (smaller tiles in our
case), as well as less noisy sensors.

The use of these tiles dictates their smallest practical size:
for footstep tracking applications, tiles having the size of a
foot are sufficient. For more fine-grained details, as required
by biometrical applications, other types of sensing floors may
be more adequate (e.g. pressure mats), if judged by price per
unit of sensing surface, or by their fabrication complexity.
It would also be interesting to have sensors that capture the
xyz components of the ground force. This would allow the
reconstruction of the human body posture, given a model of
the human body and of its constraints.

VI. CONCLUSION AND PERSPECTIVES

This paper presents a technique for detecting, tracking
and recognising objects on load-sensing floors, using objects’
weight as discriminative feature. The proposed object seg-
mentation algorithm is a variation of connected-component
labeling, inspired by the computer vision community, with the

additional property of having entire objects segmented into
blobs. This allows the interpretation of spread loads, when
objects span several tiles on a modular floor. The proposed
tracking algorithm considers the different ways in which blobs
can interact, identifying the most probable hypotheses for
the way the blobs have evolved between two timesteps. This
allows to infer the objects contained in the segmented blobs,
given their contents at the previous timestep, and given a
hypothesis on the evolution of blobs. The resulting possible
assignments of objects to blobs are ranked by the mismatch
between the weight of blobs and of objects assigned to them.
This is reminiscent of the multiple knapsack problem, with
blobs acting as containers that have to be optimally filled
with known objects, identifying the optimal solution using
Least Squares. The whole localisation algorithm was evaluated
in experiments with humans performing daily life activities:
executing the morning routine, and receiving a visitor. Chal-
lenges included the segmentation, tracking and recognition
of multiple interacting entities using a low resolution sensor,
as well as disambiguation between combinations of objects
of similar weight. The average error for human localisation
was approximately 20 cm. The result of this algorithm can
be modelled as a probability distribution over all possible
assignments of objects to the blobs detected on the floor.
This allows for easy integration of this algorithm into a
multi-modal object recognition architecture. This technique
can boost recognition when used complementarily with algo-
rithms that extract features from gait, but can also serve as a
gracefully degraded recognition mode whenever these fail.

Future work will include fine-grained tracking, obtained by
assigning each detected object to a separate layer. This should
allow to continuously update the set of objects composing the
background, and would consequently improve segmentation.
We are also working on labeling the interactions between
humans and objects, which can be roughly observed using
this technique. We also plan to use this data to generate logs
detailing the activities performed by a person during the day:
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(a) An image from the Morning routine scenario.
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(b) Localisation error for the Morning routine scenario. During
each interaction between the person and the bed, the center
of pressure is located between the interacting entities, closer
to the heaviest one (the human, in this case). The spikes
between 10-30s, and between 62-68s are caused by the human
approaching and leaving the bed during the interactions.
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(c) Localisation error for the lightweight objects in the Morn-
ing routine scenario. Occasional, short-time errors in the
correct assignment of objects to blobs generate the thin spikes
in the localisation error. These are due to ambiguities between
objects of similar weight. The spikes in the chair localisation
error are due to the human proximity, having as effect the
segmentation of the two in a single blob.

Figure 13: The Morning routine scenario

(a) An image from the scenario Receiving a visitor.
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(b) Localisation error for the scenario with a person hosting
a visitor in his house. The drop in the localisation precision
occurs when the two persons walk or stand nearby, occupying
a contiguous space in terms of tiles, which prevents them from
being segmented separately. Average human localisation error:
20 cm.

Figure 14: The Visitor scenario

how many times a person got out of bed, how many steps did
he make, how many persons are there in the room, etc. These
activity plots are useful in hospitals and retirement homes, as
they allow to trace the overall health state of a patient.
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