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Abstract 

Rapid improvements in the detection and tracking of early-stage tumor progression 

aim to guide decisions regarding cancer treatments as well as predict metastatic 

recurrence in patients following surgery. Mathematical models may have the potential 

to further assist in estimating metastatic risk, particularly when paired with in vivo 

tumor data that faithfully represent all stages of disease progression. Herein we 

describe mathematical analysis that uses data from mouse models of spontaneous 

metastasis developing after surgical removal of orthotopically implanted primary 

tumors. Both presurgical (primary tumor) and postsurgical (metastatic) growth was 

quantified using bioluminescence and was then used to generate a mathematical 

formalism based on general laws of the disease (i.e. dissemination and growth). The 

model was able to fit and predict pre-/post-surgical data at the level of the individual 

as well as the population. Our approach also enabled retrospective analysis of clinical 

data describing the probability of metastatic relapse as a function of primary tumor 

size. In these data-based models, inter-individual variability was quantified by a key 

parameter of intrinsic metastatic potential. Critically, our analysis identified a highly 

nonlinear relationship between primary tumor size and postsurgical survival, 

suggesting possible threshold limits for the utility of tumor size as a predictor of 

metastatic recurrence. These findings represent a novel use of clinically relevant 

models to assess the impact of surgery on metastatic potential and may guide optimal 

timing of treatments in neoadjuvant (presurgical) and adjuvant (postsurgical) settings 

to maximize patient benefit.  
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Précis: A data-based mathematical model that assesses the impact of surgery on 

metastatic development may have clinical uses to individualize adjuvant therapies 

that can extend cancer remission.    
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Introduction 

Surgical removal of an early-stage localized tumor remains one of the most 

effective strategies in reducing the probability of systemic metastatic disease spread 

(1). Improved technologies of early cancer detection aim to classify primary tumor 

stage to identify whether potential treatment modalities – such as presurgical 

‘neoadjvuant’ or postsurgical ‘adjuvant’ – should be considered to complement 

surgery and reduce metastatic potential. However the relationship between primary 

tumor growth and eventual metastasis remains enigmatic (2). Metastatic seeding was 

initially thought to occur only during late stages of primary tumor growth and invasion 

(3), however, recent evidence suggests systemic dissemination is a much earlier 

event (4). Indeed even the direction of tumor spread, initially thought to occur uni-

directionally from primary to secondary sites, has been replaced by more complex 

and dynamic theories of interaction. These include models where primary and 

secondary lesions grow (and evolve) in parallel (2) and the possibility that cell seeding 

can be bi-directional, with metastasis potentially ‘re-seeding’ back to original primary 

location (5,6). 

To assist in understanding this complexity, mathematical modeling has been used 

to determine the relationship between primary (localized) and secondary (metastatic) 

tumor dissemination and growth. Early studies used statistical analyses only (7,8), 

while later work included experimentally-derived data to validate models using 

biological information that aimed to more faithfully represent the metastatic process 

(9). In 2000, Iwata and colleagues used imaging data from one patient with metastatic 

hepatocellular carcinoma to introduce a more formalistic and biologically-based 

approach that relied on the description of the temporal dynamics of a population of 

metastatic colonies, with equations written at the organ or organism scale (10). In 
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parallel, several studies have sought to include additional variables when modeling 

tumor growth, such as angiogenesis (11), stem cell behavior (12), tumor-immune 

interactions (13) and microenvironment influences (14), among numerous others. To 

date, the majority of mathematical studies in cancer modeling have focused on 

primary tumor and relatively few have investigated the metastatic development (15-

22). 

This dearth in metastatic data stems largely from the complexity of studying 

metastasis itself. Metastasis starts with localized primary tumor growth which then 

invades and intravasates into the bloodstream which, in turn, spreads systemically 

until extravating into tissue at a distant (hospitable) site (23,24). While clinical 

(retrospective) data has value (2,7,20,25,26), mouse tumor models have typically 

aimed to mimic (and distinguish between) several stages of the metastatic process. In 

certain mouse models, metastasis can derive from a tumor that is implanted 

ectopically or orthotopically into a primary or metastatic site (‘ectopic‘, ‘orthotopic’ or 

‘ortho-metastatic’ models, respectively (27)) and can involve various immune states 

(i.e., human xenograft or mouse isograft). Although more rarely performed, models 

can also include surgical resection of the primary tumor which allows for progression 

of clinically relevant spontaneous metastatic disease. These can include surgery 

following ectopic implantation (i.e., ‘ecto-surgical’, such as tumors grown in the ear or 

limb that are later amputated), or orthotopic implantation and resection (i.e., ‘ortho-

surgical’), which more faithfully represent patient disease. To date, no studies have 

utilized data from ortho-surgical metastasis models for mathematical analysis. 

Herein we describe a mathematical approach developed using data derived from 

two ortho-surgical metastasis models representing competent and incompetent 

immune systems with luciferase-tagged human breast (LM2-4LUC+) and mouse kidney 

(RENCALUC+) cell lines. We first defined a mathematical formalism from basic laws of 
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the disease (dissemination and growth). Then we confronted the mathematical 

outputs to longitudinal measurements of primary tumor size, metastatic burden and 

survival using a population approach (nonlinear mixed-effects) for statistical 

estimation of the parameters. Minimally parameterized models of each experimental 

system were generated and used to fit and predict pre-/post-surgical data at the 

individual and population levels. Next we used clinical datasets to assess metastatic 

relapse probability from primary tumor size and show that, in both cases (preclinical 

and clinical), one specific parameter (�) allowed quantification of inter-

animal/individual variability in metastatic propensity. Critically, our models confirm a 

strong dependence between presurgical primary tumor size and postsurgical 

metastatic growth and survival. However, quantitative analysis revealed a highly 

nonlinear pattern in this dependency and identified a range of tumor sizes (either 

large or small) where variation of tumor size did not significantly impact on survival. 

These represent potential threshold limits for the utility of primary size as a predictor 

of metastatic disease (i.e., if small, then surgical cure; if large, then surgical 

redundancy). These findings represent the first time clinically relevant surgical models 

have been integrated with data-based mathematical models to inform the quantitative 

impact of presurgical primary tumor size on subsequent metastatic disease. 
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Quick guide to equations and assumptions 

The metastatic modeling approach we employed follows the formalism initiated by 

Iwata et al. (10), which was further developed/expanded in recent works in two key 

ways: 1) effect of systemic therapies (28,29), and 2) use in a (non-surgical) in vivo 

human xenograft model involving orthotopic primary tumors (PTs) and metastasis 

(21). Metastatic development is reduced to two main components:  

1) Growth: includes presurgical primary (�!) and secondary (�) tumor growth rates 

2) Dissemination: includes metastatic dissemination rate (�).  

A schematic description of the model is depicted in Figure 1. More complex 

considerations on the biology (1,30) and modeling (31) of the metastatic process have 

been considered elsewhere. 

Growth dynamics 

The PT volume �! �  solves the following equations  

 
��!

��
= �!(�!)

�! � = 0 = �!

 (1)  

The initial condition for the PT, denoted by �!, was determined either by the number of 

injected cells (preclinical case) or the initial tumor size at inception (clinical case, 

�! = 1 cell). Metastases were assumed to start from one cell. For each case, the 

optimal structure resulting from our investigations was to assume the same structural 

law for the PT and the metastases, although with possibly different parameter values. 

Preclinical : Human breast (LM2-4LUC+) metastasis model 

Growth dynamics were defined by  

1) Gomp-Exp (32) growth model (see expression below) 



8 

2)  Growth parameters for PT and metastases treated identically (� = �!)  

In a previous study quantifying the descriptive power of several growth kinetics 

models using data from the same breast animal model (33), the Gompertz model 

accurately described primary tumor growth curves, in accordance with a large body of 

literature (see references in (33)). However, a limitation of this model is that the tumor 

doubling time could become arbitrarily small for small volumes, a feature that we 

considered biologically irrelevant for small volumes at metastatic initiation (of the 

order of the cell). A lower bound to this doubling time might be expressed by the in 

vitro doubling time of the cell line, which can be experimentally determined. 

Consequently, we adopted the Gomp-Exp model (32), defined by   

 �! � = � � = min ��, � − � ln
�

�!

�  (2)  

Under this model, growth is divided between two phases: an initial exponential 

phase, followed by a Gompertz growth phase. Parameter �  is the maximal 

proliferation rate, taken here to be equal to the value inferred from in vitro proliferation 

assays (see supplementary Figure 1A and Table 2). The second term in the min 

function is the Gompertz growth rate, defined by two parameters. Parameter � is the 

intrinsic relative (specific) growth rate at the size �! of one cell. Parameter � is the 

exponential decay rate of the relative (specific) growth rate.  

Preclinical : Mouse kidney (RENCALUC+) metastasis model 

Growth dynamics were defined by  

1) Exponential growth model. 

2) Growth parameters for PT and metastases treated differently.  

In mathematical terms, this is expressed by 
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 �! � = �!�, � � = �� (3)  

Clinical : Human metastatic breast data 

Growth dynamics were defined by 

1) Gompertz growth model 

2) Growth parameters for PT and metastases treated identically (�! = �) 

Metastatic dissemination 

The formation of new metastases was assumed to occur at a PT volume-

dependent rate �(�!) having the following parametric expression  

 � �! = ��! (4)  

where parameter � is an intrinsic parameter of metastatic aggressiveness. This critical 

coefficient is the daily probability for a given tumor cell to successfully establish a 

metastasis. Therefore it is the product of several probabilities: 1) the probability of 

having evolved the necessary genetic mutations to ensure the phenotypic abilities 

required at each step of the metastatic process, 2) the survival probability of all 

adverse events occurring in transit including survival in the blood or immune escape, 

among others, and 3) the probability to generate a functional colony at the distant site. 

Following reported observations (34), we assumed that all the metastases were 

growing at the same volume (�)-dependent rate �(�) and that they all started from the 

same volume corresponding to the volume of one cell. The population of metastases 

was then formalized by means of a time (t)-dependent volume distribution � �, �  

solving the following problem (10): 
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�!� �, � + �! � �, � � � = 0 � ∈ (0,+∞),   � ∈ (�!,+∞) 

� �! � �,�! = � �! � � ∈ (0,+∞)

� 0, � = 0 � ∈ (�!,+∞)

 

� � = � �, � �� = � �! � �� = � �! � ��

!

!

,

!

!

!∞

!!

 

� � = �� �, � ��

!∞

!!

= � �! � − � � � ��

!

!

 

(5)  

The first equation is a continuity equation expressing conservation of the number of 

metastases when they grow. The second equation is a Neumann boundary condition 

on the flux of entering metastases at size � = �!. The third equation describes the 

initial condition (no metastases at the initial time). From the solution of this problem 

two main macroscopic quantities can be derived, the metastatic burden �(�) and the 

number of metastases �(�). In the convolution formula for �(�) (35), � �  represents 

a solution to the Cauchy problem (1) with � instead of �! and �! as initial condition. 

This formula allows fast simulation of the model using the fast Fourier transform 

algorithm (35), which was essential for estimation of the parameters that required a 

very large number of model evaluations. 
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Materials and methods 

Preclinical Methodology 

Cell lines 

The human LM2-4LUC+ cells are a luciferase-expressing metastatic variant of the 

MDA-MB-231 breast cancer-cell line derived after multiple rounds of in vivo lung 

metastasis selection in mice, as previously described (see (36) (37)). Mouse kidney 

RENCALUC+ cells expressing luciferase were a kind gift from R.Pili, Roswell Park 

Cancer Institute and described previously (38). LM2-4LUC+ and RENCALUC+ were 

maintained in Dulbecco’s modified Eagle’s medium (Corning, Cat. #MT10-013-CV) 

and in RPMI (Roswell Park Memorial Institute) medium (Corning, Cat. #MT15-041-

CV), respectively, with 5% heat-inactivated fetal bovine serum (Corning, Cat. #MT35-

010-CV). Cells were authenticated by STR profile comparison to ATCC parental cell 

database (for LM2-4LUC+) or confirmation of species origin (for RENCALUC+) (DDC 

Medical, USA). All cells were incubated at 37°C and 5% CO2 in a humidified 

incubator. 

Cell Proliferation assay 

LM2-4LUC+ cells were plated in 35mm plates (5x105 cells per plate) and were 

manually counted using trypan blue staining every 24 hours for 72 hours total (cellgro, 

Cat. #25-900-CI). 

Photon-to-cell ratio 

LM2-4LUC+ cells were trypsinized and counted. 5x106 cells were serial diluted 2 fold 

down to 9.77x103 cells and processed with Bright-Glo Luciferase Assay System 

(Promega, Cat. #E2610) following manufacture’s protocol. 
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Ortho-surgical models of metastasis 

Animal tumor model studies were performed in strict accordance with the 

recommendations in the Guide for Care and Use of Laboratory Animals of the 

National Institutes of Health and according to guidelines of the institutional Animal 

Care and Use Committee (IACUC) at Roswell Park Cancer Institute (Protocol: 1227M, 

to JMLE). 

The optimization and use of animal models of breast and kidney metastasis 

orthotopic primary tumor implantation and surgical resection have been extensively 

detailed elsewhere (39). Briefly, LM2-4LUC+ cells (2x106 cells in 50µL) and RENCALUC+ 

(4x104 cells in 5µL) were implanted, respectively, into the right inguinal mammary fat 

pad (right flank) or kidney (subcapsular space) of 6-8 week old female CB-17 SCID or 

Balb/c mice(39). Primary breast tumor size was assessed regularly with Vernier 

calipers using the formula width2(length×0.5) and in both tumor models animals were 

monitored bi-weekly for bioluminescence to quantify tumor growth (40).  See 

Supplementary preclinical methodology section for more details.  

Mathematical Methodology: Fit procedures 

Preclinical data: primary tumor and metastatic burden dynamics 

Three fit procedures were investigated: 1) fitting the population average time 

series, 2) individual fits of each mouse’s primary tumor (PT) and metastatic burden 

(MB) kinetics and 3) a mixed-effect population approach. Due to the high variability in 

the data, the first approach was not considered relevant. The second approach 

showed that the model was able to describe individual dynamics but, due to the 

relative scarcity of the data in a given animal, led to very poor identifiability of the 

coefficients, in particular the metastatic dissemination parameter � . The third 

approach was considered the most appropriate to our case. Indeed, nonlinear mixed-

effect modeling (41) is a statistical technique specifically tailored for sparse serial 

measurements in a population. It assumes that inter-animal variability can be 
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described by a parametric distribution on the model’s parameters (here assumed to 

be lognormal, consistently with other works (20,42)). Multiple strategies were tested in 

order to find the appropriate formalism to fit the data. These included fitting PT and 

MB separately or together. The strategy fitting PT and MB was ultimately selected 

because it resulted in more accurate fits and allowed for possible correlations 

between the primary and secondary tumors growth parameters in a same animal. 

One of the model parameters for Gomp-Exp growth was the in vitro proliferation 

rate, which was determined by an exponential fit to an in vitro proliferation assay. 

Maximization of the likelihood function under nonlinear mixed-effect formalism was 

solved using the function nlmefitsa implemented in Matlab (43), which is based on the 

stochastic approximation of expectation maximization (SAEM) algorithm. Specific 

assumptions were: log-transformation of the parameters (i.e. log-normal population 

distribution), proportional error model and full covariance matrix. For individual fits, 

weighted least squares minimization corresponding to individual likelihood 

maximization was performed using the function fminsearch of Matlab (Nelder-Mead 

algorithm), following previously reported methods (33). 

Clinical data: Calculation of metastatic relapse probability 

Our methodology for fitting the clinical data followed the same format as (44), 

although here the model was simplified (only parameter � was allowed to vary among 

individuals) and PT size at diagnosis was considered to be uniformly distributed within 

each size range. Parameters for the growth of the primary and secondary tumors 

were fixed (not subject to optimization) and corresponded to a maximal volume of 

10
!" cells (≃ 1 kg) and a doubling time of 7.5 months at 1 g, consistently with clinical 

values reported in the literature (8,25).  

The data reported in (26) consisted of metastatic relapse probabilities during the 

next 20 years post-surgery, for patients stratified by PT size (see Table 1). Diameter 

data from PT sizes at diagnosis were converted into volumes under the assumption of 
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a spherical shape and then converted to number of cells using the conversion rule 1 

mm3  ≃ 106  cells (45). Parameter �  was assumed log-normally distributed in the 

population, with mean �! and standard deviation �!. 

The probability of having a metastatic relapse in the next 20 years for a primary 

tumor diagnosed with a given size was assumed to be equal to the probability of 

already having one distant tumor at the time of diagnosis. For a given volume range 

of PT sizes at diagnosis �! ,�!!! , � ∈ {1,⋯ ,7}, we considered the diagnosis volume 

�!
! as a random variable uniformly distributed in �! ,�!!! . Then, we computed the 

corresponding age of the tumor at diagnosis (i.e. the time elapsed from the first 

cancer cell) from the assumption of Gompertzian growth with the parameter values 

previously mentioned. This quantity was denoted �!(�!
!). Under our formalism, the 

probability of having a disseminated metastasis at time �!(�!
!) then writes  

 ℙ Met
!; �! , �! = ℙ � �! � �� > 1

!! !
!

!

!

 (6)  

where Met! stands for the event of having one metastasis at diagnosis when the PT 

volume is in �! ,�!!! . For any volume range and value of �! and �!, this formalism 

allowed us to compute a probability to be compared to the respective empirical 

proportion of relapsing patients reported in (26), by simulating the two random 

variables involved (�!
!  and � ). We then determined the best-fit parameters by 

minimizing the sum of squared errors to the data, using the function fminsearch from 

Matlab. 
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Results 

Quantitative and differential modeling of metastasis in ortho-

surgical models 

To mimic clinical progression of spontaneous systemic metastatic disease, two 

models involving orthotopic tumor implantation and surgical resection (ortho-surgical) 

were employed. These included a xenograft breast model (LM2-4LUC+ cells implanted 

into the mammary fat pad) and an isograft kidney model (RENCALUC+ implanted into 

the subcapsular kidney space) (38) (see Methods). Presurgical primary tumor (PT) 

and postsurgical metastatic burden (MB) were tracked by bioluminescence (BL) 

emission, expressed in photons/second (p/s) (Figure 2A).  

In the breast model, simultaneous BL and gross tumor volume measurements 

(caliper) were performed. The former only quantifies living cells whereas the latter 

computes a total volume indifferently of its composition. Volume and BL emission 

were significantly correlated (supplementary Figure 1B), as observed by others (46). 

Determination of the signal corresponding to one cell was required in our modeling for 

the value assigned to �!. Based on linear regression between BL emission and tumor 

volume, we established that BL = 2.19·106 V + 7.89·107, where BL is the 

bioluminescence in p/s and V is the volume in mm3. This relationship, evaluated at V 

= 10 mm3 ≃ 107 cells gives 1 cell ≃ 10.08 p/s, which was approximated to 10 p/s.  

Using this value gave reasonable fits to the PT growth data (supplementary Figure 2).  

Validation and calibration of the mathematical model 

We assessed the ability of the models to describe and predict the experimental 

data of postsurgical MB dynamics. Several model designs were evaluated to define 

the optimal structure and methodology that would allow accurate and reliable data 

description. Specifically, for each in vivo experimental system, multiple structural 

expressions and parametric dependences between the growth rate of the PT and MB 
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were tested. We refer to supplementary Figures 3 and 4 for direct comparison of 

goodness-of-fit and identifiability under different modeling setups. Population and 

individual fits of the best models to the data are shown in Figures 2B-C (and 

supplementary Figure 5), and Figure 3, respectively. The parameter values inferred 

from the population fits are reported in Table 2. The mathematical models – combined 

with the population distribution of the parameters inferred from the nonlinear mixed-

effects statistical procedure – were able to give reasonable descriptions of the 

presurgical PT and postsurgical MB growth. Importantly, these combinations could 

quantify the dynamics of the process as well as the inter-animal variability. The latter 

was better characterized by the metastatic potential parameter � (large coefficients of 

variation in Table 2). The models could also fit individual dynamics of longitudinal data 

of pre-surgical PT and post-surgical MB (see Figure 3 for some representative 

examples of growth dynamics in particular mice and supplementary Figures 6 and 7 

for fits of all mice). 

In addition to their descriptive power, the models were able to predict growth 

dynamics in external data sets that were not employed for estimation of the 

parameters (Figure 2D-E). These results emphasize the ability of our general 

modeling structure to capture MB growth dynamics. Additionally, the modeled post-

surgical MB could also be related to empirical survival by means of a lethal burden 

threshold, which was estimated to be 4×10! p/s (supplementary Figure 8).  

Qualitative and quantitative differences across ortho-surgical models 

Xenograft Model: Breast metastasis 

Using the same growth model (Gomp-Exp) and parameters for both presurgical PT 

and postsurgical MB, we were able to adequately fit the data, while ensuring 

reasonable standard errors on the parameters estimates (Table 2). Although more 

complex structures (e.g. models with one parameter differing between primary and 

secondary growth) provided marginally better fits, robustness in estimating �  was 
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impaired (supplementary Figure 3). Quantitative inference of �  revealed small 

metastatic potential (Table 2), which translated into late development of metastases 

following xenograft and growth of the MB mostly dominated by proliferation (Figures 

2B, 3A-C). 

Isograft Model: Kidney metastasis 

In contrast, the kidney model MB growth curves exhibited a different behavior, with 

a marked change of regimen at the time of surgery. In the context of the model, this 

means that most of the presurgical MB increase was driven by the dissemination 

process, and not by proliferation of the metastases themselves. This was reflected by 

a very large value of �  (Table 2), with nine orders of magnitude of difference 

compared to the breast model. This feature was not directly visible, nor quantifiable, 

by direct examination of the data, and reflects the large metastatic aggressiveness of 

isograft spontaneous metastasis animal models, since overpassing the immune 

surveillance is a major challenge in the metastatic process (4). When the PT was 

removed, dissemination stopped and only proliferation remained for further growth of 

the MB, which happened at a slower rate than at the primary site (Figures 2C and 3D-

F). In some cases, growth of the MB remained constant or even decreased after 

surgery (see supplementary Figure 7). This result reflects the fact that the competent 

immune status of the mice might have an important impact on the establishment of 

durable, fast-growing metastatic colonies at the secondary sites (47).  

Together, our data-based quantitative modeling analysis of presurgical PT and 

postsurgical MB growth kinetics demonstrated the descriptive power of the models, 

unraveled distinct growth patterns between the two animal models and emphasized 

the critical role of the parameter � for quantification of the inter-animal variability. 

Clinical data of metastatic relapse probability 

Clinical data reported in the literature generally do not provide detailed information 

about the untreated growth of the metastatic burden, either because the residual 
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disease is invisible, or because the patients benefit from adjuvant therapy after 

resection of their PT. Nevertheless, before the generalization of adjuvant therapy for 

breast cancer, Koscielny et al. (26) reported data from a cohort of 2648 patients 

followed for 20 years after surgery of the PT, without additional treatment. Their data 

(reproduced in Table 1) demonstrated that, despite a clear association between PT 

size at diagnosis and the probability of metastatic relapse, not all the patients having 

a given PT size were relapsing. For instance, only 42% of patients with a PT diameter 

at diagnosis between 2.5 and 3.5 centimeters developed metastasis. Based on this 

observation, we used our model to describe inter-individual variability by means of a 

limited number of parameters. We considered that the probability of developing a 

metastasis in the next 20 years was equal to the probability of already having one at 

the time of diagnosis (see Methods). Using a lognormal population distribution of 

parameter � we were able to obtain a significant fit to the data of metastatic relapse 

for all size ranges (Table 1, p = 0.023). Interestingly, the median value of � resulting 

from these human data was close to the value from the preclinical breast data, in 

comparison to the kidney model. 

These results demonstrated that, within our semi-mechanistic modeling approach, 

parameter � was able to capture the inter-individual metastatic variability, not only in 

animal models, but also for patient data.  

Assessing the impact of surgery on metastasis and survival: a 

simulation study 

When diagnosis detects only a localized primary tumor, distant occult disease 

might already be present. In our model, the extent of this invisible metastatic burden 

depends on: 1) the PT size at diagnosis and 2) the patient’s metastatic potential �. 

For instance, if the PT size (or �) is small then the occult MB might be negligible and 

surgery would substantially benefit to the patient in terms of metastatic reduction, by 

stopping further spread of new foci. Conversely, if the PT size (or �) is large, then the 



19 

occult MB might already be consequent and removing the PT might only have a 

marginal impact.  

Virtual simulation of two breast cancer patients 

We simulated the quantitative impact of PT surgery in two virtual breast cancer 

patients having a PT diagnosed at 4.32 cm and two values of � (median and 90th 

percentile within a population distributed according to our previous estimate). Results 

are reported in Figure 4 and supplementary movies 1 and 2. A discrete and stochastic 

version of the metastatic dissemination was employed here for the simulations (see 

supplementary methods for details). Interestingly, our simulation revealed that at the 

time of diagnosis, no metastasis was detectable (i.e. below the imaging detection 

limit, taken here to 10! cells), in both cases (Figure 4A-B). In clinical terms, this 

means that both patients would have been diagnosed with a localized disease. 

However, the two size distributions were very different, with a much larger residual 

burden in the “large �” case, illustrative of the increased metastatic potential.  

For the “median � ” case, our model predicted the presence of two small 

metastases, with respective sizes 6 and 278 cells. Not surprisingly, when no surgery 

was simulated, this number continued to increase, reaching 160 secondary lesions 

after 15 years (Figure 4C). However, most of the metastatic burden (126 tumors, i.e. 

78.8% of the total burden) was composed of lesions smaller than 109 cells (≃1g). 

Panels E and G of Figure 4 demonstrate that a substantial relative benefit (larger than 

10%) in MB reduction was eventually obtained, but only after 7.8 years. Nevertheless, 

at the end of the simulation (15 years after surgery), the predicted two occult 

metastases at diagnosis had reached substantial sizes (1.41×10!!  and 1.89×10!! 

cells). Therefore, for this patient with median metastatic potential, the model indicates 

an important benefit in using adjuvant therapy. 

For a patient with higher metastatic potential (at the level of the 90th percentile, 

see Figure 4 panels B, D, F and H, and supplementary movie 2), even with a PT 
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diagnosed at the same size, the predicted metastatic burden at diagnosis was 

considerably more important, with 76 lesions and the largest comprising 6.23×10! 

cells. This consequent occult burden translated into poor outcome and the metastatic 

mass would have reached a lethal burden of 10!" cells 9.3 years after the initial 

diagnosis if no therapy would have been administrated. 

These results illustrate the potential of the model as a diagnosis and prognosis 

numerical tool for assessment of the occult metastatic burden and post-surgery 

growth. In this, it could help to determine the extent of adjuvant therapy necessary to 

achieve a long-term control of the disease. 

Impact of tumor size on postsurgical survival 

To further examine the relationship between the PT size at surgery and survival, 

we performed simulations for 1) an individual with fixed value of � (the population 

median, see Figure 5A) or 2) an entire population (simulated survival curves in Figure 

5B), for three PT sizes. Numerical survival was defined by the time to reach a lethal 

burden of 1 kg (≃ 10
!" cells) (2) from the time of cancer inception. Interestingly, we 

observed a highly nonlinear relationship between the PT size and the survival, which 

suggested three size ranges delimited by two thresholds (Figure 5A). The lower 

threshold — termed ‘recurrence’ threshold (4 cm in Figure 5A) — was defined as the 

maximal limit whereupon no metastasis was present at surgery (number of 

metastases lower than 1). The upper size threshold — termed ‘benefit’ threshold 

(5.2 cm in Figure 5A) — was defined as the size above which surgery had a negligible 

(< 10%) impact on survival time. Above and below these ‘recurrence’ and ‘benefit’ 

thresholds, PT size had no important correlative value. Conversely, within the PT size 

range delimited by these two bounds, the relationship between presurgical PT and 

postsurgical MB/survival was highly correlative, with a large derivative and a sharp 

transition between the two extremes. The same qualitative PT size/survival 
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relationship was obtained for any value of � sampled within the population distribution 

(see supplementary Figure 9). 

In Figure 5C, we present quantitative estimates of the recurrence and benefit 

thresholds for various percentiles of �  within the population distribution (see also 

supplementary Figure 9). Our simulations predicted that for the first half of the 

population, surgery was almost always leading to negligible metastatic recurrence 

risk, with large values of the recurrence threshold (larger than the usual detection 

levels). On the other hand, the patients with large metastatic potential were predicted 

not to substantially benefit from the surgery, as far as reduction of future MB was 

concerned. For instance, a patient with � at the level of the 90th percentile and a PT 

diagnosed at 4 cm would have an increase in absolute survival time of only 1.9% 

following surgery (Figure 5C).  
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Discussion 

Using a formalism based on simple laws of metastatic development (including 

dissemination and proliferation), we derived mathematical models able to connect 

presurgical PT growth to postsurgical development of the MB in two ortho-surgical 

animal models (with two immune states) as well as one clinical data set. These 

quantitative models allowed identification of different metastatic growth patterns and 

characterization of the metastatic potential (and associated inter-animal/individual 

variability) as a critical parameter, �. Our results also revealed a nonlinear quantitative 

relationship between the PT size at diagnosis and post-surgical survival improvement. 

Previous studies have utilized experimental data derived from mouse metastasis 

models to inform mathematical analysis. For instance, Hartung and colleagues used 

human MDA-MB-231 breast cancer cells implanted orthotopically in mice in order to 

validate a mathematical model for longitudinal data of metastatic burden growth (21). 

This animal model was non-surgical and utilized severe immunocompromised Nod 

SCID � mice to improve the low metastatic potential observed in the MDA-MB-231, a 

phenomena recently reported elsewhere (47). In our studies, we utilized a variant of 

the MDA-MB-231 previously selected for increased metastatic potential by repeated 

orthotopic implantation and metastatic resection in SCID mice (36). Since the 

selection of cells and immune state could influence analysis, we also included an 

immunocompetent mouse kidney model to confirm (and compare) findings. While 

these and other modifications to the metastatic systems could significantly influence 

mathematical modeling (i.e., different mouse strain and cell line, different 

bioluminescence technique, etc…), the impact of surgery appears to be the most 
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significant factor. In this regard, several technical discrepancies likely impair a 

relevant comparison between surgical and non-surgical models presented by 

Hartung, et al. (21) and the current study. For instance, in surgical models we found it 

unnecessary to assume different growth between the primary and secondary lesions 

in surgical models. Additionally, we considered a less complex dissemination rate 

(expression � �! = ��!
!
 and � =

!

!
 was used in (21)). Notably, we could fit our data 

equally well with various values of � and thus concluded that it cannot be identified 

from combined PT growth and MB dynamics data alone (supplementary Figure 10). 

Future studies would require more data, especially on the number and size 

distribution of the secondary lesions, to precisely determine the shape of the 

dissemination coefficient. When using the dissemination and growth terms from (21) 

and fitting the resulting model to our surgical data, we found a much larger metastatic 

potential �  and a significantly faster metastatic growth kinetics parameter than 

computed  in the non-surgical model (21) (see supplementary text). While the former 

probably illustrates higher metastatic propensity due to a more permissive immune 

state, the latter possibly suggests post-surgery metastatic acceleration (48-50).  

In this regard, this raises another critical consideration of the impact of surgery on 

metastatic potential in mathematical modeling. Preclinical and clinical works have 

suggested that removal of the PT might provoke acceleration of metastatic growth 

(50,52). There are various biological rationales that could explain this, including 

inhibition of secondary growth by the presence of a primary neoplasm as a result of 

nutrient availability, concomitant immunity, or even systemic inhibition of angiogenesis 

(53). Such a theory could conceivably be assessed within the context of our model by 

defining different pre- and post-surgical metastatic growth rates �(�) and comparing 
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goodness of fit. However, this would add at least one degree of freedom (thus 

deteriorating the reliability of the estimation) and invalidate the convolution formula 

used for computation of the metastatic burden in a model with non-autonomous 

�(�, �)  (instead of �(�) ), and therefore was not considered here. Importantly, 

theoretical integration of higher order phenomena for the biological dynamics of 

metastatic development has been considered elsewhere (14,16,18,54) and recent 

findings in the organism-scale dynamics of metastases (such as the self-seeding 

phenomenon (5,6) or the influence of the (pre-) metastatic niche (55)) could be 

embedded within the general formalism developed in our model. This could lead to 

complex models, however, and given the amount of information contained in our 

present data, reliable identification of such dynamics was not realistic. Instead, we 

only considered metastatic dynamics as reduced to its most essential features: 

dissemination and proliferation. Future studies should examine the potential of 

metastases to metastasize, as has been extensively debated in the past (56-58), 

particularly with the recent demonstration that some metastases are able to re-seed 

the primary tumor (5,6). Although not included in this study, preliminary tests using 

our model suggest negligible differences in the simulations and no impact on our 

results, however a more extensive analysis is required. 

Our modeling philosophy elaborates on Fisher’s theory (59) of cancer as a 

systemic disease and relates also to the parallel progression model (2). The 

dissemination rate �, characterized by parameter �, quantifies the metastatic potential 

and allows for a continuum of possibilities between early and late dissemination. Our 

results seem to parallel clinical evidence of the impact (and importance) of early 

surgery – particularly in the case of breast cancer. For example, in a retrospective 

study of 2838 breast cancer patients, the post-surgical residual recurrence-free 
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survival rate at 5 years for Stage I disease was 7% (60). Consistently, our quantitative 

analysis demonstrates that in this case, for most patients, metastases that could have 

been shed before diagnosis would not develop into overt clinical disease during the 

remaining life history of the patient. For Stage IV breast cancer (that would 

correspond, in our formalism, to a large value of � ), our analysis predicts only 

negligible benefit of the surgery (if only considering reduction of metastatic shedding), 

in accordance with preliminary results of a recent clinical trial (61). In order to use our 

model as a practical diagnosis and prognosis tool that could help to refine and 

individualize adjuvant therapy, the critical next step is to find a way to estimate the 

parameter �, in a patient-specific manner. One of the main challenges will be to do so 

using data derived from the primary tumor only, since metastases are often 

undetectable at the time of diagnosis. While the value of � might very likely depend on 

the combination of several phenomena (including some genetic alterations or the 

immune status of the patient which could be linked to different biomarkers (62)), 

recent successes of genetic signatures as prognosis factors for metastasis might 

allow for patient-specific estimation of � (63). 

Any mathematical modeling attempt is limited by the intrinsic measurement error of 

the experimental technique. For monitoring the dynamics of total metastatic burden, 

bioluminescence imaging represents one of the best methods so far (51). However, 

measurement variability is hard to assess due to inherent issues, such as the long 

half-life of luciferin that prevents immediate replication of the measurements. 

Comparison of bioluminescence with caliper measurements showed large variance 

(supplementary Figure 1B), which increased with tumor size. This justified our 

assumption of a proportional measurement error model. Standard deviation of the 

relative error could in turn be estimated from the fit procedure and yielded a value of 
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0.72. This high degree of uncertainty should be taken into account as an inevitable 

limitation for quantitative modeling studies of bioluminescence data. We therefore put 

a strong emphasis on using a minimal number of parameters and assessed the 

robustness of our results on various assumptions, such as the shape of � and the 

value of �! (supplementary Figures 10 and 11).  

Together, our mathematical methodology provides a quantitative in silico 

framework that could be of valuable help for preclinical and clinical aims. Indeed, 

validation of our modeling methodology allows us to address in future works the 

differential effects of systemic therapies on primary tumor growth and metastases 

(39,40). Clinically, our methodology could be used to refine/optimize therapeutic 

strategies for patients diagnosed with a localized cancer and inform on the timing of 

surgery, extent of occult metastatic disease and probability of recurrence. In turn, this 

may impact decisions on duration and intensity of presurgical neoadjuvant or 

postsurgical adjuvant treatments (64).  
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Figure 4
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Figure 5
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Table 1: Descriptive power of the mathematical model: clinical data of metastatic relapse probability

Diameter (cm) No. patients Prop. of relapse (Data) Prop. of relapse
(Model)

1 ≤ D ≤ 2.5 317 27.1 25.5

2.5 < D ≤ 3.5 496 42.0 42.4

3.5 < D ≤ 4.5 544 56.7 56.3

4.5 < D ≤ 5.5 422 66.5 65.9

5.5 < D ≤ 6.5 329 72.8 74.3

6.5 < D ≤ 7.5 192 83.8 80.8

7.5 < D ≤ 8.5 136 81.3 85.7

Fit of the model was significant for Pearson’s χ2 test for goodness-of-fit (p = 0.023).



Table 2: Parameters inferred from the models

Data Growth model Location Par. Unit Estimate (CV) 95 % CI

In vitro (Breast) Exp. λ day−1 0.837 (-) (0.795 - 0.879)

Preclinical Breast Gomp-Exp.

PT

Vi cell 1.00 × 10
6 (-) -

α day−1 1.9 (5.73) (1.84 - 1.96)

β day−1 0.0893 (21.3) (0.0791 - 0.101)

Met
V0 p/s 10 (-) -

µ cell−1
· day−1

4.43 × 10
−11 (176) (2.70 × 10

−11 - 7.27 × 10
−11)

Preclinical Kidney Exp.

PT

Vi p/s 1.63 × 10
5 (45.5) (9.40 × 10

4 - 2.83 × 10
5)

αp day−1 0.21 (60.3) (0.151 - 0.292)

Met

V0 p/s 10 (-) -

α day−1 0.0307 (201) (0.0133 - 0.0707)

µ cell−1
· day−1 0.0415 (397) (0.0181 - 0.0948)

Clinical Breast Gomp.

PT
Vi cell 1 (-)

α day−1 0.013 (-)

β day−1 0.000471 (-)

Met
V0 cell 1 (-)

µ cell−1
· day−1

7.00 × 10
−12 (1.04 × 10

4)

Parameters corresponding to the preclinical data were obtained using nonlinear mixed-effects modeling. Inter-animal variability of each parameter is

captured by its respective coefficient of variation (CV). Parameter values for the clinical data are those that produced the fit to the clinical data of metastatic

relapse probability from (26), reported in Table 1. For these data, only parameter µ was allowed to vary between the individuals in this setting and

consequently it is the only parameter having a coefficient of variation (CV).

CV = Coefficient of Variation in percent = std
est

× 100, with std the standard deviation of the lognormal distribution of the parameter and est the population

estimate.

CI = Confidence Interval on the population estimate inferred from the standard errors on the fit.



Supplementary Figures

Supplementary Figure 1. In vitro fit and direct statistical analysis of the xenograft breast data

(LM2-4luc+)

Supplementary Figure 2. Population fit of the tumor growth data that were measured by BL, under

the Gomp-Exp model and initial volume V0 fixed by the conversion rule inferred from the correlation

between volume and BL (V0 = 10 p/s)

Supplementary Figure 3. Population fits of the breast xenograft data under different growth theories

Supplementary Figure 4. Population fits of the kidney isograft data under different growth theories

Supplementary Figure 5. Second kidney data set used for fitting the data (resection time = 23 days)

Supplementary Figure 6. Individual fits of primary tumor and metastatic burden kinetics. Breast

animal model

Supplementary Figure 7. Individual fits of primary tumor and metastatic burden kinetics. Kidney

animal model

Supplementary Figure 8. Link between experimental and model survival

Supplementary Figure 9: Surgery benefit on survival and metastatic burden reduction as a function

of resection size, for varying values of metastatic potential (parameter µ)

Supplementary Figure 10. Population fits of the ortho-surgical metastasis animal models for a

dissemination coefficient d(Vp) = µV
γ
p and various values of γ

Supplementary Figure 11. Population fits of the ortho-surgical metastasis animal models for vari-

ous values of the signal-to-cell ratio V0

Supplementary Movie 1: Simulation of the cancer history from the first cancer cell for a virtual

patient with median µ

Supplementary Movie 2: Simulation of the cancer history from the first cancer cell for a virtual

patient with large µ, at the 90th percentile.



Supplementary Figure 1. In vitro fit and direct statistical analysis of the xenograft

breast data (LM2-4luc+)
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A. In vitro proliferation kinetics and exponential fit of the LM2-4luc+ cell line. Three replicates

B. Correlation between bioluminescence emission and caliper-measured volume of the primary tumor

C. Correlation between PT volume at resection and final metastatic burden
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Supplementary Figure 2. Population fit of the tumor growth data that were mea-

sured by BL, under the Gomp-Exp model and initial volume V0 fixed by the con-

version rule inferred from the correlation between volume and BL (V0 = 10 p/s)
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Fit was performed using nonlinear mixed effects modeling (function nlmefitsa of Matlab). Plain line is the median

output from the model under the inferred population distribution and dashed lines are 10% and 90 % percentiles.

The good quality of the fit gives an a posteriori rationale for the relevance of our value of V0.



Supplementary Figure 3. Population fits of the breast xenograft data under differ-

ent growth theories
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Model Par. Unit Median value (CV) NSE (%)

Diff growth alpha fixed

αP day−1 0.605 (9.83) 3.57

βP day−1 0.0786 (12.2) 4.86

µ cell−1
· day−1 3.01e-09 (820) 72.1

β day−1 0.0816 (15.7) 5.06

Same growth

α day−1 0.664 (16.3) 4.76

β day−1 0.0893 (21.3) 6.21

µ cell−1
· day−1 4.43e-11 (176) 26.5

Fits of the breast xenograft data under two models.

A: Same growth = same Gompertz growth parameters (α and β) for primary and secondary tumors.

B: Different growth alpha fixed = for each animal, same value of parameter α was imposed while value of β was

allowed to vary between the PT and the secondary tumors.

C: Parameters estimates under the two different models.

With similar visual accuracy of the population fits (also observable in individual fits of particular mice, data not

shown), the second model generated substantially higher uncertainty on the parameter estimation, especially pa-

rameter µ, with respective normalized standard errors (NSE) of 26.5% for the “same growth” model and 72.1% for

the “different growth with alpha fixed” model. Additionally, probably due to sharper estimation of the parameters,

predictive performances were improved with the “same growth” model (results not shown).



Supplementary Figure 4. Population fits of the kidney isograft data under different

growth theories
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Model Par. Unit Median value (CV) NSE (%)

Diff growth exp

Vi p/s 1.63e+05 (45.5) 29.9

αP day−1 0.21 (60.3) 17.2

µ cell−1
· day−1 0.00415 (397) 48.4

α day−1 0.0307 (201) 48.9

Same growth exp

Vi p/s 8.05e+05 (779) 53.7

α day−1 0.0831 (325) 40.4

µ cell−1
· day−1 0.000892 (2.88e+03) 77.4

Fits of one of the datasets for the isograft kidney model (surgery at day 23) under two models for the growth of

secondary tumors in relationship to the PT. At the structural level, both growths were considered exponential.

A: Same growth rate between primary and secondary tumors.

B: Different growth rate between primary and secondary tumors.

C: Parameters estimates under the two different models.

We chose the second model to be best adapted because: 1) the population fit was more accurate, especially for

description of the inter-animal variability, 2) adding a parameter did not result in deterioration of the normalized

standard errors (NSE) of the parameters estimates and 3) the low descriptive power of the “same growth” model

was confirmed by a large inaccuracy in individual fits (results not shown)



Supplementary Figure 5. Second kidney data set used for fitting the data (resec-

tion time = 23 days)
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Supplementary Figure 6. Individual fits of primary tumor and metastatic burden

kinetics. Breast animal model
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Equivalent of Figure 3 with all the animals. Each animal was fitted separately.



Supplementary Figure 7. Individual fits of primary tumor and metastatic burden

kinetics. Kidney animal model
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Equivalent of Figure 3 with all the animals. Each animal was fitted separately.



Supplementary Figure 8. Link between experimental and model survival
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Predicted versus experimental survival. The model survival was defined as the time to reach a given lethal burden

of 1 · 1012 p/s, i.e. inf
{

t > 0;M(t) > 1 · 1012
}



Supplementary Figure 9: Surgery benefit on survival and metastatic burden re-

duction as a function of resection size, for varying values of metastatic potential

(parameter µ)
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Supplementary Figure 10. Population fits of the ortho-surgical metastasis animal

models for a dissemination coefficient d(Vp) = µVγ
p and various values of γ
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A - C: Xenograft breast model (LM2-4luc+)

D - E: Isograft kidney model (Rencaluc+). Only group with surgery at t = 23 days is shown.

Other intermediate values of γ between 0 and 1 produced similar, visually equivalent fits.



Supplementary Figure 11. Population fits of the ortho-surgical metastasis animal

models for various values of the signal-to-cell ratio V0

V0 = 1 V0 = 10 V0 = 100

LM2-4luc+

A

Time (days)
0 10 20 30 40 50 60 70

P
rim

ar
y 

tu
m

or
 s

iz
e 

(c
el

ls
)

104

106

108

1010

M
et

as
ta

tic
 b

ur
de

n 
(c

el
ls

)

104

106

108

1010

Orthotopic
implantation

Surgery
(t=34)

Pre-surgical

PT

Post-surgical

MB

B

Time (days)
0 10 20 30 40 50 60 70

P
rim

ar
y 

tu
m

or
 s

iz
e 

(c
el

ls
)

104

106

108

1010

M
et

as
ta

tic
 b

ur
de

n 
(c

el
ls

)

104

106

108

1010

Orthotopic
implantation

Surgery
(t=34)

Pre-surgical

PT

Post-surgical

MB

C

Time (days)
0 10 20 30 40 50 60 70

P
rim

ar
y 

tu
m

or
 s

iz
e 

(c
el

ls
)

104

106

108

1010

M
et

as
ta

tic
 b

ur
de

n 
(c

el
ls

)

104

106

108

1010

Orthotopic
implantation

Surgery
(t=34)

Pre-surgical

PT

Post-surgical

MB

Rencaluc+

D

Time (days)
0 20 40 60 80

P
rim

ar
y 

tu
m

or
 s

iz
e 

(c
el

ls
)

104

106

108

1010

M
et

as
ta

tic
 b

ur
de

n 
(c

el
ls

)

104

106

108

1010

Orthotopic
implantation

Surgery
(t=23)

Pre-surgical

PT

Post-surgical

MB

E

Time (days)
0 20 40 60 80

P
rim

ar
y 

tu
m

or
 s

iz
e 

(c
el

ls
)

104

106

108

1010

M
et

as
ta

tic
 b

ur
de

n 
(c

el
ls

)

104

106

108

1010

Orthotopic
implantation

Surgery
(t=23)

Pre-surgical

PT

Post-surgical

MB

F

Time (days)
0 20 40 60 80

P
rim

ar
y 

tu
m

or
 s

iz
e 

(c
el

ls
)

104

106

108

1010

M
et

as
ta

tic
 b

ur
de

n 
(c

el
ls

)

104

106

108

1010

Orthotopic
implantation

Surgery
(t=23)

Pre-surgical

PT

Post-surgical

MB

G
V0 (p/s) 1.0 10.0 100.0

LM2-4luc+ 4.43× 10−10 4.16× 10−11 4.50× 10−12

Rencaluc+ 0.0298 0.0348 0.0375

The relationship between BL and volume was far from perfectly linear in supplementary Figure 1B. This suggests

that, for detectable volumes, the number of living tumor cells might not be proportional to the tumor volume, consis-

tently with general laws of tumor growth (37). Hence, considering the relatively poor reliability of the extrapolated

value of V0, simulations were performed to test the robustness of the results with respect to the value of V0, by

varying V0 over two orders of magnitude. Similar fits were obtained for the metastatic burden (MB) (supplementary

Figure 10), showing that, for our concern here (the MB), different values of V0 were virtually equivalent.

A - C: Xenograft breast model (LM2-4luc+)

D - E: Isograft kidney model (Rencaluc+). Only group with surgery at t = 23 days is shown.

Goodness-of-fit performances were the same for each value of V0. The data is shifted along the y-axis because the

conversion rule was used to convert the bioluminescence data into cell numbers. For the breast data, primary tumor

volumes were measured in mm3 using calipers and then converted into cell numbers using the conversion rule 1

mm3
≃ 106 cells. Hence, the conversion did not depend on V0 and the data was not shifted when changing V0.

G: Population estimate of µ (in cell−1
· day−1) for the different values of V0.



Supplementary Movie 1: Simulation of the cancer history from the first cancer cell

for a virtual patient with median µ

Primary tumor (PT) was assumed to be detected when reaching the size of 4.32 cm in diameter. Post-diagnosis PT

growth and development of metastases in the case of no surgical intervention are indicated as dashed line in the left

plot and white bars in the histogram on the right, respectively.

Supplementary Movie 2: Simulation of the cancer history from the first cancer cell

for a virtual patient with large µ, at the 90th percentile.

Primary tumor (PT) was assumed to be detected when reaching the size of 4.32 cm in diameter. Post-diagnosis PT

growth and development of metastases in the case of no surgical intervention are indicated as dashed line in the left

plot and white bars in the histogram on the right, respectively.



Supplementary text

Using the model from [Hartung et al., 2014] on the LM2-4luc+ data

In [Hartung et al., 2014], Hartung, Mollard et al. had developed a similar modeling analysis on data from

breast cancer xenografts, however with no consideration of primary tumor surgery and in severely immune-

incompetent mice. Thus, it could have been interesting to see whether the modeling analysis brings any

insights on the differences between the cases with and without surgery. Unfortunately, quantitative compar-

ison was hampered by the following points: different number of cells injected, different mice strain (severe

combined immuno-deficient in our case versus Nod-scid gamma in their case), different bioluminescence

quantification method (2D versus 3D) that resulted in a different cell-to-signal ratio and integration of peri-

toneal metastases for them versus only pulmonary metastases for us. Keeping all these flaws in mind, we

nevertheless applied their model to our ortho-surgical data set of breast xenografts. This consisted in the use

of a dissemination coefficient with the form d(Vp) = µV
2/3
p , different growth rates for the primary tumor and

the metastases, and a different parameterization of the Gompertz growth rate, written as: g(V ) = aV ln
(

b
V

)

.

We obtained a significantly larger value of a in our data of 4.91×10−2 day−1
± 2.02×10−3 versus 7.9×10−3

day−1
± 2.5×10−3 in [Hartung et al., 2014] (population estimate ± standard error). This could suggest post-

surgery acceleration of metastases. On the other hand, the value of µ was also found significantly different,

with several order of magnitudes of difference. We computed µ = 7.24× 10−3
± 8.5× 10−3 cell−2/3

· day−1

versus µ = 6.31 × 10−1
± 4.42 × 10−1 cell−2/3

· day−1 in [Hartung et al., 2014]. Indeed, it was already

visible in the data without performing any quantitative analysis that they obtained a larger metastatic burden

for smaller primary tumor sizes.
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Supplementary methods 

 

Preclinical methodology 

Ortho-surgical models of metastasis 

For ortho-surgical metastasis models, we followed detailed experimental criteria to control 

for variable disease progression and model standardization as previously described [Ebos et 

al., 2014]. For example, in breast (LM2-4LUC+) and kidney (RENCALUC+) models, tumor 

invasion noted during surgery such as growth into peritoneal space (breast) or presentation 

of a non-encapsulated kidney tumor led to mouse exclusion from study. Additionally,  if no 

tumor was present at any time before and after surgery (determined by bioluminescence or 

visible macroscopically), mice were excluded from study so as not to give potential false 

positive or negative bias to results (see [Ebos et al., 2014]). Note: all animals used in this 

study represent vehicle-treated controls from published [Ebos et al., 2014] and unpublished 

studies involving sunitinib malate. Therefore all animals in this study were treated with 

10ml/kg vehicle for 7-14 days prior to tumor resection. Vehicle contained 

carboxymethylcellulose sodium (USP, 0.5% w/v), NaCl (USP, 1.8% w/v), Tween-80 (NF, 

0.4% w/v), benzyl alcohol (NF, 0.9% w/v), and reverse osmosis deionized water (added to 

final volume) and adjusted to pH 6 (see [Ebos et al., 2008]). Importantly, no difference in 

metastatic disease progression patterns or survival has been observed between vehicle and 

untreated animals ([Ebos et al., 2014] and data not shown). 

 

Bioluminescent imaging 

Quantification of local and disseminated tumor burden by bioluminescent imaging has 

been previously described in detail (see [Ebos et al., 2014] and [Ebos et al., 2008]). Briefly, 

mice were injected intraperitoneally with substrate D-luciferin at 150 mg/kg in Dulbecco’s 
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Phosphate Buffered Saline (Corning, Cat. #MT21-031-CV) and, after a 10 minute interval, 

anesthetized (4% isoflurane in oxygen for induction, 2% for maintenance) and placed onto 

the warmed stage inside the light-tight camera box (IVIS™ ; Xenogen, Alemeda, CA)  as 

previously described ([Ebos et al., 2009] and [Ebos et al., 2014]). Light emitted from 

bioluminescent cells after 1 minute was detected by the IVIS® camera system with images 

quantified for tumor burden using a log-scale color range set at 5×104 to 1×107 and 

measurement of total photon counts per second (p/s) using Living Image software (Xenogen) 



Mathematical methodology: Stochastic dynamics of metastasis formation

The formalism we employed to fit the model to the data was deterministic, because fast simulations were

required for the large number of computations of the model needed for fitting the data. However, when consid-

ering simulation of individual dynamics (Figure 4), stochastic dynamics were simulated. The stochasticity here

refers to intra-individual randomness in the metastatic dissemination. The stochastic version of the model was

the following. The formation of new metastatic foci was assumed to be a sequence of random events expo-

nentially distributed with rate d(Vp(t)). The number of metastases followed then a Poisson process N (t) with

intensity d(Vp(t)). The appearance time of the i-th metastasis was defined by

Ti = inf {t ≥ 0; N(t) ≥ i}

Adapting the methodology of [Iwata et al., 2000] to the case of randomly distributed dissemination times and

denoting ρ̃ the resulting random size distribution of metastases, ρ̃ was a sum of Dirac masses solving the

following problem































∂tρ̃(t, v) + ∂v(ρ̃(t, v)g(v)) = 0 t ∈]0,+∞[, v ∈]V0,+∞[

g(V0)ρ̃(t, V0) =
∑

+∞

i=1
δ (t = Ti) t ∈]0,+∞[

ρ̃(0, v) = 0 v ∈]V0,+∞[

(1)

Equivalently, denoting by Vi the volume of the i-th metastasis, we have















dVi

dt
= g(Vi(t))

Vi(Ti) = V0, Vi(t) = 0, for t ≤ Ti

From these considerations the stochastic total metastatic burden at time t, denoted by M(t) was defined by



the following expression

M(t) =

∫

+∞

V0

vρ̃(t, v)dv =
+∞
∑

i=1

Vi(t)

The two approaches (deterministic and stochastic) are in fact closely and consistently linked. It can be shown

[Hartung and Christophe, 2014] that the quantities M(t) and N(t) defined in the body text (section “quick

guide to equations and assumptions”) are the respective expectations of M(t) and N (t).
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