
HAL Id: hal-01223141
https://hal.inria.fr/hal-01223141

Preprint submitted on 5 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an automatic tool for multi-scale model
derivation

Walid Belkhir, Nicolas Ratier, Duy Duc Nguyen, Bin Yang, Michel Lenczner,
Frédéric Zamkotsian, Horatiu Cirstea

To cite this version:
Walid Belkhir, Nicolas Ratier, Duy Duc Nguyen, Bin Yang, Michel Lenczner, et al.. Towards an
automatic tool for multi-scale model derivation. 2015. �hal-01223141�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49463029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01223141
https://hal.archives-ouvertes.fr

Towards an automatic tool for multi-scale model derivation

Walid Belkhir1,2, Nicolas Ratier3, Duy Duc Nguyen1, Bin Yang1, Michel
Lenczner1, Frédéric Zamkotsian4 and Horatiu Cirstea 5

1FEMTO-ST, Time and Frequency Department, University of Franche-Comté,
25000, Besançon, France

2INRIA Nancy - Grand Est, CASSIS project, 54600 Villers-lès-Nancy,France.
3FEMTO-ST, Time and Frequency Department, Technical University of

Belfort-Monbéliard, 90010 Belfort, France.
4LAM-CNRS, 38 rue Frédéric Joliot-Curie 13388, Marseille, France.

5University of Lorraine - LORIA, Campus scientifique - BP 239 - 54506
Vandœuvre-lès-Nancy, France.

November 2, 2015

Abstract

This paper reports recent advances in the development of a symbolic asymptotic mod-
eling software package, called MEMSALab, which will be used for automatic generation of
asymptotic models for arrays of micro and nanosystems. More precisely, a model is a partial
differential equation and an asymptotic method approximate it by another partial differential
equation which can be numerically simulated in a reasonable time. The challenge consists
in taking into account a wide range of different physical features and geometries e.g. thin
structures, periodic structures, multiple nested scales etc. The main purpose of this software
is to construct models incrementally so that model features can be included step by step.
This idea, conceptualized under the name "by-extension-combination", is presented in detail
for the first time.

1 Introduction
Many systems encountered in micro or nano-technologies are governed by differential or partial
differential equations (PDEs) that are too complex to be directly simulated with general software.
In a number of cases, the complexity of the simulation is due to a combination of many factors
as several space scales or time scales, large coefficient heterogeneity or large aspect ratios. Many
methods have been developed to overcome these difficulties, and in particular the asymptotic meth-
ods, also called perturbation techniques, constitute an active field of research in all fields of physics
and mathematics for more than a century. Their application is based on a case-by-case approach so
they are implemented only in specialized software. We adopt an alternate approach by developing
a software package called MEMSALab (for MEMS Array Lab) whose aim is to incrementally derive

1

Figure 1: Flow of a MEMSALab Application.

asymptotic models for input equations by taking into account their own features e.g. the scalar
valued or vector valued solution, different estimates on the solutions and sources, thin structures,
periodic structures, multiple nested scales etc. The resulting model can be directly exploited in
simulation software.

Our approach of the software development is two-fold. On one hand we develop computer
science concepts and tools allowing the software implementation and on the other hand we derive
and implement asymptotic models to anticipate the introduction of related modeling concepts in
the software library. This paper is written in this spirit, it reports our latest advances in the
development of the kernel of MEMSALab. The technique of model derivation relies on an asymptotic
method taking into account the small ratio between the sizes of a cell and of the whole array
[LS07]. It is not detailed since it is relatively long and technical, however we present some key
facts giving an idea of the features playing a role in the derivation.

In [BGL14] we presented a transformation language implemented as a Maple package. It relies
on the paradigm of rule-based programming and rewriting strategies as well as their combination
with standard Maple code. We used this language to encode "by hand" the homogenized model of
the stationary heat equation with periodic coefficients. Then, in [YBL14b] we introduced a theo-
retical framework for computer-aided derivation of multi-scale models. It relies on a combination
of an asymptotic method with term rewriting techniques. In the framework [YBL14b] a multi-scale
model derivation is characterized by the features taken into account in the asymptotic analysis.
Its formulation consists in a derivation of a reference proof associated to a reference model, and
in a set of extensions to be applied to this proof until it takes into account the wanted features.
The reference model covers a very simple case i.e. the periodic homogenization model of a scalar
second-order elliptic equation posed in a one-dimensional domain. The related reference proof is
a series of derivations that turn a partial differential equation into another one. An extension
transforms the tree structure of the proof as long as the corresponding feature is taken into ac-
count, and many extensions are composed to generate a new extension. The composition of several
existing elementary extensions instead of the development of new extension transformations has
the advantage of reducing the development effort by avoiding doing complex changes manually.
This method has been applied to generate a family of homogenized models for second order el-
liptic equations with periodic coefficients that could be posed in multi-dimensional domains, with
possibly multi-domains and/or thin domains. However, it is limited to extension not operating on
the same positions of the three.

This limitation is due to an unsufficient formalization of the concept of extension. The present
paper fills the gap, so the "by-extension-combination" method specifies what is meant by exten-
sion, also called generalization, and how it is implemented in terms of added context and/or
parametrization. The clear statement allows defining rigorously the combination of extensions.
Some key implementation aspects are discussed. The symbolic transformation language, also
called "Processing Language", previously written in the Maple package is now in Ocaml to gain in

2

development flexibility, to reduce the programming errors and to take advantage of a free environ-
ment. A "User Language" is now available for the specification of the proofs and the extensions
but is not detailed here since it is not a key ingredient of the by-extension-combination method.

The general picture of the approach is shown in Figure 2.

At the level 1 there is the input PDE that corresponds to the reference model.

At the level 2 there is the proof of reference that, when applied to the input PDE gives an
approximated model, which is another PDE.

At the level 3 there are extensions of proofs. The application of an extension to a proof gives
a new proof that captures a new feature. The application of the resulting new proof to the
input PDE gives another approximated PDE that covers the new feature.

At the level 4 Two (or many) extensions, each of which comes with a new feature, can be com-
bined to generate a new extension that covers the new feature. Then, the resulting extension
is applied to the reference proof, and the resulting proof is applied to the input PDE.

Figure 2: General picture of the extension-combination approach in MEMSALab.

Finally, we mention that our purpose is not to fully formalize the multi-scale model proofs
as with a proof assistant e.g. Coq [BCHPM04], but to devise a methodology for an incremental
construction of complex model proofs, as well as a tool that comes with such methodology. It
is worth mentioning that the concept of proof reuse by means of abstraction/generalization and
modification of formal proofs was investigated in many works e.g. [BL04]. Although the notion
of unification is at the heart of our formalism as well as the works on the reuse of formal proofs
by generalization, these works do not consider the combination of proofs. Finally, this approach
is new at least in the community of multi-scale methods where asymptotic models are not derived
by computer-aided combinations.

1.1 Organization of the paper
The paper is organized as follows: Section 2 introduces preliminary definitions. Namely, term
rewriting and strategies. In section 3 we introduce the ideas behinds the by-extension-combination
method. We formalize the extension as a transformation that preserves the mathematical seman-
tics. In section 4 we show how to implement the extension operators as rudimentary operations,
namely adding contexts at some positions of the input term, and parametrisation which consists in

3

replacing some subterms by rewriting variables. We call this class of extension the position-based
extensions. Then, we show how to combine position-based extensions. In section 5 we show how
to implement the extension operators as rewriting strategies and we define their combination. In
other words we define a subclass of rewriting strategies which is closed under combination. In
section ?? we explain the principles of the user language in which one writes its proofs and exten-
sions. In section 6 we present the reference proof and its extension model as well as the scripts
written in the user language and the outputs.

4

Contents
1 Introduction 1

1.1 Organization of the paper . 3

2 Preliminaries 7
2.1 Term Rewriting . 7

2.1.1 A Rewriting Strategy Language . 10
2.1.2 The processing language . 11

3 Principle of the Extension-Combination Method 12
3.1 Extensions as Second Order Strategies . 14
3.2 Position-based extensions and their combination . 15

4 Position-based extensions and their combination 15

5 Strategy-based extensions and their combination 19
5.1 Positive and negative patterns . 19
5.2 Extension operators as strategies . 21

5.2.1 Combination of strategy-based extension . 23
5.3 A correction criterion of the combination of strategy-based extension operators . . . 26

6 Mathematical proofs 28
6.1 The Reference Proof . 28

6.1.1 Notations, Definitions and Propositions . 28
6.1.2 Two-Scale Approximation of a Derivative 32
6.1.3 Homogenized Model Derivation . 36

6.2 Extension to n-dimensional Regions . 38
6.2.1 Notations, Definitions and Propositions . 39
6.2.2 Two-Scale Approximation of a Derivative 41
6.2.3 Homogenized Model Derivation . 42

7 Implementation of the reference proof in the User Language 44
7.1 Usual mathematical rules . 45
7.2 Propositions specialized to two-scale approximation 51
7.3 First Block . 58
7.4 Second Block . 62
7.5 Third Block . 66
7.6 Fourth Block . 72
7.7 Fifth Block . 76
7.8 Sixth Block . 81
7.9 Seventh Block . 85

8 Implementation of extensions 89
8.1 Implementation of extension to n-dimensional regions 89
8.2 Extension to vector-valued solution . 90

5

9 Latex outputs 91
9.1 Green rule extensions . 91

9.1.1 Reference Green rule . 91
9.1.2 Green rule extension to n-dimensional regions 92
9.1.3 Green rule extension to vector valued functions 92
9.1.4 Combination of the two extensions . 93

6

2 Preliminaries
In this section we introduce concepts which will be used to formulate the extension mechanisms for
the multi-scale model derivations. Precisely, we define the notion of term rewriting together with
its underlying concepts: terms over a first order (many-sorted) signature, substitutions, rewriting
rules and strategies. Then, we describe the concept of second-order rules and strategies operating
on first order rewriting rules and strategies, and finally a grammar of mathematical expressions
and proofs used in examples in the rest of the paper.

2.1 Term Rewriting
Definition 1 (Terms) Let F = ∪n≥0Fn be a set of symbols called function symbols, each symbol
f in Fn has an arity which is the index of the set Fn it belongs to, it is denoted arity(f). Elements
of arity zero are called constants and often denoted by the letters a, b, c, . . . It is always assumed
that there is at least one constant. Occasionally, prefix or postfix notation for F1 and infix notation
for F2 may be used. F is often called a set of ranked function symbols or a (unsorted or mono-
sorted) signature. Given a (denumerable) set X of variable symbols, the set of (first-order) terms
T (F ,X) is the smallest set containing X and such that f(t1, . . . , tn) is in T (F ,X) whenever
arity(f) = n and ti ∈ T (F ,X) for i ∈ [1..n]. Let the function symbol � 6∈ F with arity zero, the
set T�(F ,X) of "contexts", denoted simply by T�, is made with terms with symbols in F ∪X ∪{�}
which includes exactly one occurence of �. Evidently, T�(F ,X) and T (F ,X) are two disjoint sets.

We denote by Var (t) the set of variables occurring in t. The set of variable-free terms, called
ground terms, is denoted T (F). Terms that contain variables are said open.

Notice that the set of Var (t) variables of a term t as well as the notion of ground term depends
on the set of variables the terms are defined on. For example, Reg(Ω, d) is open if X = {Ω} and
F = {Reg, d}. It is closed if X = ∅ and F = {Ω, Reg, d}.

Example 2 Let X = ∅ and F = F0 ∪ F1 ∪ F2 where F0 = {x,Ω}, F1 = f and F3 = Integral.
Then, Integral(Ω, f(x), x) is a term in in T (F) and thus in T (F ,X). It corresponds to the
mathematical expression

∫
Ω f(x) dx. Notice that both x and Ω are function symbols of arity zero,

i.e. they are constants in the rewriting sense while x is a variable in the mathematical sense.

To make clear the distinction between the various types of variables, the mathematical variables
will be denoted by the letters x, y, z, . . . however the rewriting variables will be denoted by the
capital letters X, Y, Z,

Definition 3 Let t be a term in T (F ,X).

1. The set of positions of the term t, denoted by Pos (t) , is a set of strings1 of positive integers
such that:

• If t = X ∈ X , then Pos (t) = {ε} , where ε denotes the empty string.
1A string is an element of Nω = {ε} ∪ N ∪ (N × N) ∪ (N × N × N) ∪ · · · . Given two strings p = p1p2 . . . pn and

q = q1q2 . . . qm, the concatenation of p and q, denoted by p · q or simply pq, is the string p1p2 . . . pnq1q2 . . . qm.
Notice that (Nω, ·) is a monoid with ε as the identity element.

7

• If t = f (t1, ..., tn) then

Pos (t) = {ε} ∪
n⋃
i=1
{ip | p ∈ Pos (ti)} .

We denote the set of the positions of a subterm r in a term t by Pos (t, r) . The position ε
is called the root position of term t, and the function or variable symbol at this position is
called root symbol of t.

2. The prefix order defined as

p ≤ q iff there exists p′ such that pp′ = q (1)

is a partial order on positions. If p′ 6= ε then we obtain the strict order p < q. We write
(p ‖ q) iff p and q are incomparable with respect to ≤. The binary relations defined by

p @ q iff
(
p < q or p ‖ q

)
(2)

p v q iff
(
p ≤ q or p ‖ q

)
(3)

are total relations on positions.

3. For any p ∈ Pos (t) we denote by t|p the subterm of t at position p:

t|ε = t,

f (t1, ..., tn) |iq = ti|q.

4. For any p ∈ Pos (t) we denote by t [s]p the term obtained by replacing the subterm of t at
position p by s:

t [s]ε = s,

f (t1, ..., tn) [s] |iq = f
(
t1, ..., ti [s]q , ..., tn

)
We sometimes use the notation t [s]p just to emphasizes that the term t contains s as subterm
at position p.

5. For any u ∈ T (F ,X) and τ ∈ T�(F ,X) ∪ T (F ,X), the notation τ [u] has two different
meanings depending on τ ,

τ [u] = τ [u]Pos(t,�) for τ ∈ T�(F ,X)
= τ for τ ∈ T (F ,X).

Definition 4 (Substitution) A substitution is a mapping σ : X → T (F ,X) such that σ (X) 6=
X for only finitely many Xs. The (finite) set of variables that σ does not map to themselves is
called the domain of σ:

Dom (σ) def= {X ∈ X | σ (X) 6= X} .
If Dom (σ) = {X1, ..., Xn} then we write σ as:

σ = {X1 7→ σ (X1) , ..., Xn 7→ σ (Xn)} .

The range of σ is Ran (σ) := {σ (X) | X ∈ Dom (σ)}
A substitution σ : X → T (F ,X)) uniquely extends to an endomorphism σ̂ : T (F ,X) →

T (F ,X) defined by:

8

1. σ̂(X) = σ(X) for all X ∈ Dom(σ),

2. σ̂(X) = X for all X 6∈ Dom(σ),

3. σ̂(f(t1, . . . , tn)) = f(σ̂(t1), . . . , σ̂(tn)) for f ∈ F .

In what follows we do not distinguish between a substitution and its extension.
The composition σγ of two substitutions σ and γ is defined by σγ (X) def= σ (γ (X)), for all

X ∈ Dom(γ).

Definition 5 A term u is subsumed by a term t if there is a substitution σ s.t. σ(t) = u. A
substitution σ is subsumed by a substitution γ, where Dom(σ) = Dom(γ), iff for every variable
X ∈ Dom(σ), the term σ(X) is subsumed by the term γ(X).

Definition 6 (Rewrite rule) A T (F ,X) rewrite rule over a signature F is a a pair (l, r) ∈
T (F ,X)× T (F ,X), denoted by l _ r or l⇒ r, such that Var (r) ⊆ Var (l). Usually, l 6= X with
X ∈ X . l is called the left-hand side (lhs) of the rewrite rule and r the right-hand side (rhs). A
term rewriting system (TRS) is a set of rewrite rules.

We simply say rewrite rule when X and F are clear from the context.

Definition 7 (Term rewriting) We say that u ∈ T (F) rewrites into a term v ∈ T (F) w.r.t. a
rewrite rule l _ r, which is also denoted u −→ v, iff there exist (i) a position p ∈ Pos(u) and (ii)
a ground substitution σ with Dom(σ) = Var (l) such that u|p = σ(l) and v = u [σ(r)]p. We can use
the notation u

l_r,σ,p−→ v to make explicit the corresponding rewrite rule, position and substitution
respectively.

We say that u ∈ T (F) rewrites into a term v ∈ T (F) w.r.t. a rewrite system R, which is also
denoted u −→R v, iff there exist (i) a position p, (ii) a ground substitution σ, and (iii) a rewrite
rule l _ r ∈ R such that u l_r,σ,p−→ v.
−→∗R denotes the reflexive transitive closure of the relation −→R.

Example 8
sin(X)2 → 1− cos(X)2, and 1− cos(X)2 → sin(X)2,

where sin, cos, 1, and ’−’ ∈ F and X ∈ X .

Definition 9 (Unification problem, unifier, complete and minimal set of unifiers) Let ti, ui
for i = 1, ..., n be sorted terms.

• A unification problem is a finite set of potential equations E = {t1 .= u1, . . . , tn
.= un}.

• A unifier of E is a substitution σ which is a solution of E, i.e. of σ(ti) = σ(ui) and
sort(ti) = sort(ui) for all i. If E admits a solution, then it is called solvable.

• For a given unification problem E, a (possibly infinite) set {σ1, σ2, . . .} of unifiers of E is
complete iff each solution of E is subsumed by some unifiers σi. The set of unifiers is minimal
if none of its substitutions subsumes another one.

The existence of a complete and minimal solution of a unification problem is ensured by the
following proposition.

9

Proposition 10 (See [BN99]) Each solvable unification problem E has a complete and minimal
singleton solution set {σ}. The solution σ is called the most general unifier of E, and it is denoted
by mgu(E).

For the sake of completness of the presentation, we recall an algorithm of unification.

Algorithm 11 (Unification)

E ∪ {t .= t} E

E ∪ {f(t1, . . . , tn) .= f(u1, . . . , un)} E ∪ {t1
.= u1, . . . , tn

.= un}
E ∪ {f(t1, . . . , tn) .= g(u1, . . . , um)} fail if g 6= f

E ∪ {f(t1, . . . , tn) .= X} E ∪ {X .= f(t1, . . . , tn)}
E ∪ {X .= t} E[X := t] ∪ {X .= t}

if X /∈ Var(t) and X ∈ Var(E) and
E ∪ {X .= f(X1, . . . , Xn)} fail

if X ∈ Var(f(X1, . . . , Xn)) or

2.1.1 A Rewriting Strategy Language

We define the syntax of our strategy language as well as its semantics.

Definition 12 (strategies) The syntax of a (first order) strategy s over terms in T (F ,X) is
given by

s ::= l→ r | η(s) | s; s | s⊕ s | s? | Some(s) |

where l, r, u, w,m, v are terms in T (F ,X).

The strategy (i.e. the rewriting rule) l → r consists in the application of l → r to the top.
While applied to a given term t, we compute a substitution σ such that t = σ(l). Either there is
no such substitution, and in this case the application of l→ r to t fails. Or, there exists a unique
substitution σ, and in this case the result of the application of l→ r to t is the term σ(r).

The strategy constructor η stands for the identity as fail. That is, for a given strategy s, when
the strategy η(s) is applied to an input term t, then the strategy s is applied to s and if this
application fails, then the final result is t. That is, in case of failure, η behaves like the identity
strategy.

The strategy constructor ; stands for the composition of two strategies. That is, the strategy
s1; s2 consists of the application of s1 followed by the application of s2.

The strategy constructor ⊕ stands for left choice. The strategy s1 ⊕ s2 applied s1. If this
application fails then s2 is applied. Hence, s1 ⊕ s2 fails when applied to a given term t iff both s1
and s2 fail when applied to t. Notice that the constructor ⊕ is associative.

The strategy constructor ? stands for the iteration. The strategy s? consists in the iteration of
the application of s until a fixed-point is reached.

The strategy Some(s) applied s to all the immediate subterms of the input term, it fails iff s
fails on all the subterms. This strategy will be used to build more complex traversal strategies.

10

The semantics of a strategy is a mapping from T (F ,X)∪F→ T (F ,X)∪F, where F /∈ F ∪X
is a particular constant that denotes the failure of the application of a strategy to a term.

(l→ r)(t)def=

σ(r) if ∃σ s.t. σ(l) = t,

F otherwise.

(η(s))(t)def=

s(t) if s(t) 6= F
t otherwise.

(s1; s2)(t)def=

s2(s1(t)) if s1(t) 6= F
F otherwise.

(s1 ⊕ s2)(t)def=

s1(t) if s1(t) 6= F
s2(t) otherwise.

s?(t)def= sn(t) where n is the least integer s.t. sn+1(t) = sn(t)
and sn(t) = s(s(. . . s(t)))︸ ︷︷ ︸

n times

(Some(s))(t)def=

F if t = f(t1, . . . , tn) and ∀i ∈ [n] s(ti) = F
f(η(s)(t1), . . . , η(s)(tn)) if t = f(t1, . . . , tn) and ∃i ∈ [n] s(ti) 6= F
F if ar(t) = 0

Besides, we need some traversal strategies. They explore the structure of the term they are
applied on. We provide next two traversal strategies: InnerMost and BottomUp.

The strategy InnerMost(s) is very common in symbolic computation. It applies the strategy
s once to all the inner most redexes of t for s, i.e. to the largest number subterms of t that are far
from the root and on which s succeeds. In other words the strategy InnerMost traverses the term
t up from its root and tries to apply s to each traversed subterm once. If the strategy s succeeds
on some subterm t′ of t, then it is not applied to t. As a consequence, InnerMost(s) fails if and
only if s fails on all the subterms of t.

The strategy BottomUp(s) tries to apply the strategy s to all the subterms of any term t, at
any depth, by starting from the leaves of t and going up to the root of t.

The strategies InnerMost and BottomUp are defined as follows:

InnerMost(s)def= Some(InnerMost(s)) ⊕ s

BottomUp(s)def= Some(BottomUp(s)) ; s

2.1.2 The processing language

We describe the grammar of expressions in which the problem is processed leaving out other
structures as proofs, lemmas, propositions, etc.

11

E ::= Plus(E,E) | Mult(E,E) |
Minus(E) | Inverse(E) | Power(E,E) | F

F ::= Fun(f, [I; . . . ; I], [V; . . . ;V], [(R,E); . . . ; (R,E)], K) |
Oper(A, [I; . . . ; I], [E; . . . ;E], [V; . . . ;V], [V; . . . ;V]

[d; . . . ; d]) |
V | MathCst(d) | Nil

V ::= MathVar(x, [I; . . . ; I],R)
R ::= Reg(Ω, [I; . . . ; I], [d, . . . , d], [R; . . . ;R],R,E) | Nil,
I ::= Ind(i, [d, . . . , d])

It describes mathematical expressions built up by the arithmetic operations "+" (Plus), "·" (Prod),
etc as well as the mathematical function constructor Fun and the operator constructor Oper. The
latter allows one to build expressions for mathematical operators such as the integration operator∫
, the derivative operator ∂, the summation operator ∑, the multi-scale operators T,B, etc.

Besides, a mathematical expression can contain mathematical variables (MathVar), regions (Reg)
and discrete variables (Ind).

We shall sometimes write and depict lists in the prefix notation using the constructor list and
nil (empty list). For instance, if e1 and e2 are two expressions, we shall write list(e1, list(e2, nil))
instead of [e1; e2]. The symbol Nil in the grammar above represents an "empty expression".

The user language is based on shortcuts avoiding the repetitions. Examples of the short-cut
terms are given bellow.

Ω ≡ Reg(Ω, d), ui(x) ≡ Fun(u, [i], (u(x), i),
x ≡ Var(x, [],Ω), uij(x) ≡ Fun(u, [i, j], (u(x), i),
y ≡ Var(y, [],Ω), ∂u(x)

∂x
≡ Oper(Deriv, u(x), [x]),

i ≡ Index(i, Set(I, {1 : n})),
∂ui(x)
∂xj

≡ Oper(Deriv, u(x), [x]),
j ≡ Index(i, Set(I, {1 : n})),

∫
u(x) dx ≡ Oper(Integral, u(x), [x]),

u(x) ≡ Fun(u, [], [x], unknown),
∫
u(x, y) dx ≡ Oper(Integral, u(x, y), [x]),

u(x, y) ≡ Fun(u, [], [x, y], unknown), ∑
i ui(x) ≡ Oper

(
Sum, ui(x), [i]

)
,

v(x) ≡ Fun(v[], [], [x], test), ∑
i uij(x) ≡ Oper

(
Sum, uij(x), [i]

)
.

3 Principle of the Extension-Combination Method
In this section we introduce the ideas behind the notion of the extension-combination method.

The idea of the extension can be viewed as a generalization of a proof. It is based on two
concepts: mathematical equivalence and parametrisation. Consider the expression ∂xv that we
want to generalize to ∂xiv where i ∈ {1, . . . , n}. We proceed in two steps. First a mathematical
equivalence consists in introduction a discrete variable i, ranging from 1 to 1, to the expression
∂xv, yielding the expression ∂xiv, where i ∈ {1, . . . , 1}. Notice that this transformation does not
change the mathematical meaning. Secondly, the step of parametrisation consists in replacing the
upper bound 1 by a variable n, yielding the expression ∂xiv, where i ∈ {1, . . . , n}. We propose

12

Figure 3: By-extension-combination principle illustrated on a reference proof (top). Left: a one-
layer periodic problem. Right: a thin layer with homogeneous coefficients. The combination of
these two extensions yields a thin layer with periodic coefficients (bottom).

next an implementation of the notion of generalization by the by-extension-combination method,
where for the moment we do not distinguish between the two phases of mathematical equivalence
and parametrisation. This method relies on three key principles. Firstly, we introduce a reference
model together with its derivation. This derivation is called the reference proof, it is depicted on
the top of Figure 3. It is based on the derivation approach of [LS07] and was implemented and
presented in details in [YBL14b]. Although the reference model covers a very simple case, its proof
is expressed in a sufficiently general way. A number of basic algebraic properties are formulated as
rewriting rules, they are considered as the building blocks of the proofs. The full derivation of the
model is formulated as a sequence of applications of these rules. The proof of some properties is
also performed by a sequence of applications of mathematical rules when the others are admitted
e.g. the Green rule.

Then, an elementary extension is obtained by an application of an elementary transformation,
called also an extension operator, to the reference proof. In Figure 3 the extension operators are
Π1 and Π2. They respectively cover the extension to the 3-D setting and the thinness setting. We
notice that, in practice, when a single feature is taken into account, only a small change occurs
in a relatively long proof. In other words, while considering an elementary extension, most of the
existing rules could be reused by operating a small change on them, and, on the other hand, only
a small number of new rules has to be manually introduced.

Finally, we make possible the combination of two extension operators to produce a new exten-
sion operator that takes into account the features covered by each initial extension operator. In
the example of Figure 3, the combination of the extension operators Π1 and Π2 is the extension
operator Π1 � Π2. By iterating this process, many extension operators can be combined together
giving rise to complex extensions that cover many features.

13

(1-Dim) ∂u
∂x

Extension //

Semantic conservation
x→x1

&&

∂u
∂xi

(n-Dim)

∂u
∂x1

x1→xi
Parametrisation

88

∂

u x

Semantic−−−−−−−→
conservation

∂

u Indexed

x 1

Parametrization−−−−−−−−−→ ∂

u Indexed

x i

Figure 5: Schematic description of the notion of extension

∫
Ω u

∂v
∂x
dx

∫
Ω u

∂v
∂xj
dx

∫
Ω ui

∂vi
∂x
dx

∫
Ω ui

∂vi
∂xj
dx

Π1�Π2

Π1

��

Π2

��

��

Figure 4: An example of the by-extension-combination method applied to the mathematical ex-
pression

∫
Ω u

∂v
∂x
dx that corresponds to the left hand side of Green formula Eq. (74), where Π1 stands

for the extension operator of the multi-dimension setting, Π2 stands for the extension operator to
the vector-valued setting, and Π1 � Π2 stands for the combination of Π1 and Π2.

Figure 4 shows how the extension operators and their combination operate on the mathematical
expression

∫
Ω u

∂v
∂x
dx, which is the left hand side of Green formula Eq. (74).

3.1 Extensions as Second Order Strategies
The mathematical equivalence between FO-strategies is defined through an equational system R
made with a set of SO-rules and a list of position where to apply it. In the example, R is made
with the single SO-rule R := x⇒

∑1
i=1 xi for the equivalence between two different expressions of

a variable. In general, we say that two FO-strategies s1 and s2 are mathematically equivalent with
respect to R, written s1 'R s2, if they are syntactically equal2 modulo application of R at a set of

2The syntactic equality between rewriting rules has always to be done modulo α-equivalence. Two rewriting
rules are α-equivalent if they are syntactically identical up to a renaming of their variables. For instance, the rules
f(x)→ g(x) and f(y)→ g(y), where x and y are variables, are α-equivalent. Two strategies are α-equivalent if they
are syntactically identical up to a renaming of the variables of their rewriting rules. For instance, the strategies
BottomUp(f(x)→ g(x)) and BottomUp(f(y)→ g(y)) are α-equivalent.

14

positions and that a SO-strategy S conserves this mathematical equivalence if for all FO-strategy
s, S(s) 'R s.

Next, a SO-strategy S ′ is parametrized if the right-hand side part of some of its rewriting rules
contains FO-variables which are not in its left-hand side part as for instance the rule S ′ := ∑1

i=1 ⇒∑n
i=1 where n is a FO-variable and therefore a parameter of S ′. The idea behind parametrization

is to transform FO-strategies with additional FO-variables, so that they represent more general
properties. The set of these FO-variables is the set of parameters of S.

Definition 13 (Strategy of extension) A SO extension strategy S with respect to an equational
system R of mathematical equivalences is a combination S;S ′ where S is a SO-strategy conserving
the mathematical equivalences and S ′ a parametrized SO-strategy. When two FO-strategies s1, s2
satisfy

s1 = S(s0)

we say that s1 generalize s0 through S.

In the above example, the SO-rule R consists in replacing x by Oper (Sum, x, [i])) and inserting
τ 1 := 1 : 1 in the empty list of x. The replacement is seen as another insertion of the term
τ 2 := Oper (Sum,⊥, [i])) between the root and x, the latter being positionned in place of ⊥. The
SO-strategy S consists in the insertion of the terms τ 1 and τ 2 at all positions of [] in x and of x
respectively. The operation of adding terms at some positions is the key operation for extensions
and is defined rigorously in the next subsection.

3.2 Position-based extensions and their combination
In sections 4 and 5 we show how to implement the extension operators. In fact there are two
equivalent implementations of the extension operators. The first one is in terms of adding contexts
at a certain positions of the input term. Despite the fact that this implementation is not practical,
it captures the idea of an extension. This implementation will be presented in section 4.

The second implementation consists in implementing an extension operator as a rewriting
strategy that searches for patterns then adds contexts at certain positions. This implementation
will be presented in section 5. The second implementation is clearly more general than the first
but it is equivalent to the first in the sense that, for every input term and a strategy extension
operator, we can construct an equivalent position-based extension operator. We shall argue that
the operation of combination of strategy-based extensions is sound and complete by relating it to
the operation of combination of position-based extensions.

Beside, in both cases we define the operation ♦ of combination of extension operators in such
way, in each case, the class of extension operators is closed under combination. In other words, we
define a class of rewriting strategies that comes with an internal combination operation.

4 Position-based extensions and their combination
An extension operator consist in the operation that adds contexts or replace terms by rewriting
variables for parametrization at given positions of a term. For the sake of shortness, we do not take
term replacement into account in the rest of the paper. The context τ = list(�, j) depicted in
Figure 6 captures the idea that the extension would add a discrete variable to an expression. The
application of Π(p,τ) to the term t = ∂xv(x) at the position of p of the variable x (the parameter

15

of the derivative operator ∂) yields the term Π(p,τ)(t) = ∂xjv(x). Similarly, Figure 7 illustrates the
extension operator Π(q,τ ′) and its application to the term t = ∂xv(x) at the position of the function
v which yields the term Π(q,τ ′)(t) = ∂xvi(x).

t

∂

v

x nil

x

nil
q p

τ

list

� j

Π(p,τ)(t)

∂

v

x nil

x

list

nil j

q p

Figure 6: Application of the extension operator Π(p,τ) (with the extension constructor τ) to the
term t = ∂xv(x) at the position p, yielding the term ∂xjv(x).

t

∂

v

x nil

x

nil
q p

τ ′

list

� i

Π(q,τ ′)(t)

∂

v

x list

nil i

x

nil
q p

Figure 7: Application of the extension operator Π(q,τ ′) (with the extension constructor τ ′) to the
term t = ∂xv(x) at the position q, yielding the term ∂xvi(x).

When an extension operator Π(p,τ), where p is a position, is applied to a term t at the position
p, the context τ is inserted at the position p of t, and the subterm of t at the position p is inserted
at �. The general schema of the application of an extension operator is depicted in Figure 8.

Figure 9 shows the combination of the two extension operators Π(p,τ) and Π(q,τ ′). In what
follows Pos stands for the set of positions, t|p stands for the subterm of t at the position p, and
t[t′]p stands for the replacement of the subterm of t at the position p with the term t′. If τ is a
context, we shall denote by τ [t] the term obtained from τ by replacing the � by t. In particular,
if τ and τ ′ are contexts, we call τ [τ ′] the composition of τ and τ ′.

16

t τ

�

Π(p,τ)(t)

t

τ

t

t1

t2

τ

�

Π(p,τ)(t)

t1

τ

t2

p p

Figure 8: Schematic diagram of the application of an extension operator Π(p,τ) (with a context τ)
to a term t at the positon p.

Π(p,τ)(t)

∂

v

x nil

x

list

nil j

q p

Π(q,τ ′)(t)

∂

v

x list

nil i

x

nil
q p

(Π(p,τ) � Π(q,τ ′))(t)

∂

v

x list

nil i

x

list

nil j

q p

Figure 9: The extension operator Π(q,τ) � Π(q,τ ′) which is the combination of the two extension
operators Π(p,τ) and Π(q,τ ′), and its application to the term t.

Formally,

Definition 14 (Position-based extension) A parameter of a position-based extension operator
is of the form

P = [(p1, τ 1), . . . , (pn, τn)],

where pi are positions and each τ i is either a context in T
�

or a term in T . The empty list
parameter will be denoted by ∅.

Moreover, we impose that the parameters satisfy some constraints to avoid conflicts in the
simultaneous operations of insertions and replacements.

Definition 15 (Well-founded position-based extension) The parameter P = [(p1, τ 1), ..., (pn, τn)]
of a position-based extension is well founded iff

i.) a position occurs at most one time in P, i.e. pi 6= pj for all i 6= j.

ii.) if pi is a position of term insertion (i.e. (pi, τ i) is such that τ i ∈ T�) and if pj is a position
of term replacement (i.e. (pj, τ j) is such that τ j ∈ T), we have that pi @ pj,

iii.) any two positions pi and pj of replacement are not comparable, i.e. p ‖ p′.

17

In all what follows we assume that the parameters are well-founded. Let Θ(P) to be the set of
positions at the root of P if P is viewed as a tree. For a parameter P , we next define its semantics
denoted by ΠP which is called an extension operator.

Definition 16 (Position-based extension operator) The extension operator ΠP , where P is
a parameter, is inductively defined by:

Π∅
def= F

Π(p,τ)
def= λu.u 7→ u[τ [u|p]]p

Π[(p1,τ1),...,(pn,τn)]
def= Π(p1,τ1); . . . ; Π(pn,τn)

In what follows the combination of two extension operators ΠP and ΠP ′ , where P ,P ′ are
position-based extension, will be denoted by ♦, amounts to combine their parameters P and P ′:

ΠP♦ΠP
def= ΠP♦P ′

and thus we shall only define the combination of the parameters of extensions.

Definition 17 (Combination of two position-based extensions) Let P = [(p1, τ 1), . . . , (pn, τn)]
and P ′ = [(p′1, τ ′1), . . . , (p′m, τ ′m)]. Let (p′′1, τ ′′1), . . . , (p′′r , τ ′′r) be such that, for all i, either

i.) p′′i = pj, for some j, and in this case τ ′′i = τ j, or

ii.) p′′i = p′j and τ ′′i = τ ′j, or

iii.) p′′i = pj = p′k, for some j, k, and in this case

τ ′′i =

τ ′k[τ j] if τ ′k ∈ T�
τ j if ∈ τ ′k, τ j ∈ T and τ ′k = τ j

(4)

We define the combination P � P ′ by

P � P ′ =

[(p′′1, τ ′′1), . . . , (p′′r , τ ′′r)], if [(p′′1, τ ′′1), . . . , (p′′r , τ ′′r)] is Well-founded,
∅ otherwise

Remark 18 The following hold.

1. The combination of position-based extensions is non commutative since τ ′j[τ i] 6= τ i[τ ′j] and is
non associative due to the condition τ i = τ ′j, e.g.

(Π(p,f(�))♦Π(p,f(�)))♦Π(p,f(f(�))) = Π(p,f(f(�)))♦Π(p,f(f(�))) = Π(p,f(f(�)))

Π(p,f(�))♦(Π(p,f(�))♦Π(p,f(f(�)))) = Π(p,f(�))♦Π(p,f(f(f(�)))) = Π(p,f(f(f(f(�))))).

2. The neutral element of the combination operation is Π(ε,�). i.e. For every extension param-
eter P, we have that

Π(ε,�)♦ΠP = ΠP♦Π(ε,�) = ΠP .

3. The extension operator Π(ε,�) plays the role of the identity. i.e. for every term t ∈ T , we
have that

Π(ε,�)(t) = t.

18

5 Strategy-based extensions and their combination
The definitions of position-based extensions and of their combination are satisfactory from the
theoritical point of view. However, they are not useful for practical applications, since the posi-
tions are generally not accessible and cannot be used on a regular basis for operations. So, these
principles are translated into a framework of classical strategies to form a subclass of extensions
that is closed by combination. Extensions are built starting from three kinds of simple strate-
gies of navigation and then using inductive definitions yields strategy-based extensions, or simply,
extensions. The two formulations are in fact equivalent. We extend the definition of the combina-
tion operator ♦ from position-based extensions to strategy-based extensions. The subsection 5.1
completes Section 2 by introducing the key concept of anti-patterns.

5.1 Positive and negative patterns
In order to carry on the combination of extensions we need to consider negative patterns. For
instance, the negative patter ¬a, where a is a constant, represents all the closed terms which are
different than a. The reason of the consideration of negative patterns follows naturally when one
wants to combine two strategies, say s1 and s2:

s1 = (u1 → u1) ; s′1
s2 = (u2 → u2) ; s′2

where u1, u2 are (positive) patterns and s′1, s′2 are strategies. The wanted combination consists of
three elements. (i.) either u1 and u2 can be unified, yielding the pattern denoted by u1 ∧ u2, and
in this case combine s′1 and s′2. (ii.) either we have u1 but not u2 and is this case we consider s′1,
(iii.) either we have u2 but not u1 and is this case we consider s′2. Formally, the resulting strategy
can be written as

s1♦s2 =(u1 ∧ u2 → u1 ∧ u2) ; s′1♦s′2 ⊕ (5)
(u1 ∧ ¬u2 → u1 ∧ ¬u2) ; s′1 ⊕ (6)
(u2 ∧ ¬u1 → u2 ∧ ¬u1) ; s′2 ⊕ (7)

Definition 19 (Positive and negative patterns) A pattern is defined by the following gram-
mar:

U ::= x | f(U, . . . ,U) | ¬U | U ∧ U | U ∨ U (8)

where x ∈ X is a variable and f is a functional symbol from F . The set of patterns is denoted
by T (X ,F) or simply by T . A positive pattern (resp. negative pattern) is a pattern that does not
contains (resp. that contains) the symbol ¬. The set of positive patterns (resp. negative patterns)
is denoted by T + or simply T +(X ,F) (resp. T − or simply T −(X ,F)).

If u is a positive pattern in T + and u′ is a pattern in T and p is a position in u, we shall denote
by u[u′]||p the pattern u[u′ ∧ u|p]|p, i.e. we “add” u′ at the position p of u, or more precisely, we
insert the conjunction u|p ∧ u′ at the position p of u.

The semantics of a pattern is given by its unfolding. The unfolding of a pattern t, denoted by
[[t]], is the set of all terms that can be obtained from t by instantiating the variables:

19

Definition 20 (Unfolding of a pattern) The unfolding of a pattern is a function [[·]] : T → 2T +

that associates to each pattern a (possibly empty) set of positive patterns, it is inductively defined
by

[[u]] def=
⋃
σ

{σ(u)} if u ∈ X ∪ F0 (9)

[[f(t1, . . . , tn)]] def=
⋃
{f(t′1, . . . , t′n) | t′i ∈ [[ti]]} if f ∈ Fn (10)

[[f(t1, . . . , tn)]] def= ∅ if ∃i ∈ [1, n] s.t. [[ti]] = ∅, where f ∈ Fn (11)

[[u ∧ v]] def= [[u]] ∩ [[v]] (12)

[[u ∨ v]] def= [[u]] ∪ [[v]] (13)

[[¬u]] def= T + \ [[u]] (14)

Remark 21 Notice that

1. If x is a variable in X and f is a functional symbol, then [[x]] = T + and [[¬x]] = ∅ and
[[f(¬x)]] = ∅.

2. [[t]] = ∅ iff t contains ¬x where x is a variable.

3. [[¬f(a)]] 6= [[f(¬a)]].

4. If t ∈ T + then | [[t]] | ≥ 1.

5. | [[t]] | = 1 iff t ∈ T + and V ar(t) = ∅.

6. If t ∈ T − and t does not contain double negations (i.e. subterms of the form ¬¬u), then
either [[t]] = ∅ or | [[t]] | =∞.

7. There is a linear time algorithm that checks whether [[u]] = ∅, for any pattern u.

8. If the set of constants and functional symbols is finite (|F| ≤ ∞), then a negative pattern in
T − can be equivalent to a positive disjunction of patterns from T + e.g.

[[¬a]] = [[
∨

gi∈Fn

x
j
i

∈X

gi(x1
i , . . . , x

n
i) ∨

∨
bi∈F0\{a}

bi]] (15)

[[¬f(a)]] = [[
∨

gi∈Fn\{f}

x
j
i

∈X

gi(x1
i , . . . , x

n
i) ∨

∨
bi∈F0\{a}

f(bi) ∨
∨

bi∈F0

bi]] (16)

9.

[[f(u1, . . . , un) ∧ f(v1, . . . , vn)]] = [[f(u1 ∧ v1, . . . , un ∧ vn)]] (17)

The DeMorgan laws can be proved:

20

Lemma 22 For every patterns u, v ∈ T , we have that

[[¬¬u]] = [[u]] (18)
[[¬(u ∧ v)]] = [[¬u ∨ ¬v]] (19)
[[¬(u ∨ v)]] = [[¬u ∧ ¬v]] (20)

Proof. Immediate from the De Morgan laws in set theory since ¬ is interpreted as the complement.

Lemma 23 For any positive patterns u, u′ ∈ T + we have that

[[u ∧ u′]] = [[δ(u)]], where δ = mgu(u, u′) (21)

Proof. On the one hand we have that

[[u ∧ u′]] def= [[u]] ∩ [[u′]] (22)
def= {σ(u) | σ ∈ ξ} ∩ {σ′(u′) | σ′ ∈ ξ} (23)
=
⋃
σ,σ′
{t ∈ T + | t = σ(u) = σ′(u′)} (24)

=
⋃
σ

{t ∈ T + | t = σ(u) = σ(u′)} (25)

On the other hand, we have that

[[δ(u)]] def=
⋃
λ∈ξ
{λ(δ(u)) | δ = mgu(u, u′)} (26)

The inclusion (25) ⊆ (26) follows from the fact that δ is the most general unifier of u and u′

and hence, if σ(u) = σ(u′), then σ is subsumed by δ (See Definition 5) in the sense that exists a
substitution λ such that λ ◦ δ = σ, i.e. λ(δ(u)) = σ(u).

5.2 Extension operators as strategies
Instead of considering only positions, we can enrich the definition of the extension operators to
incorporate both positions and nested searching patterns. The grammar of the parameters of
(strategy-based) extension operators follows.

Definition 24

(I)

P ::= (θ, τ) | (θ,P) | [P , . . . ,P] |IM(P)
θ ::= p | u

where p is a position, τ is a context in T� or a positive term in T +, u is a pattern in T , and IM
is an unary constructor.

21

The semantics of P , denoted by ΠP , is formally given in definition 26. The semantics of the
position based extensions, i.e. extension whose parameter is of the form [(p1, τ 1), . . . , (pn, τn)]
where pi are positions, was already given in section 4. Intuitively, the semantics of (u,P), is a
strategy that checks if the pattern u matches with the input term, if it is the case we apply ΠP
to the input term, otherwise, it fails. The semantics of IM(u,P) is a strategy that locates all the
subterms of the input term that match with u by the InnerMost strategy, and at each subterms
we apply the strategy ΠP . The semantics of [(u1,P1), . . . , (un,Pn)] is the left choice between the
strategies Π(u1,P1), . . . ,Π(un,Pn).

We generalize next the condition of well-foundedness to strategy-based extensions.

Definition 25 (Well-founded (strategy-based) extensions) A an extension is well-founded
iff

i.) all its list subparameters are either of the form

(a) [(p1,P1), . . . , (pn,Pn)], where all pi are positions,
(b) or [(u1,P1), . . . , (un,Pn)], where all ui are patterns,
(c) or [IM(u1,P1), . . . , IM(un,Pn)], where all ui are patterns.

ii.) all its subparameters of the form [(p1, τ 1), . . . , (pn, τn)], are well-founded according to defini-
tion 15, where pi are positions and τ i are terms in T + ∪ T�. And,

iii.) for all its subparameters of the form [(u1,P1), . . . , (un,Pn)], where each ui is a pattern in T
and Pi is either an extension or a term in T + ∪ T�, we have that ui is of the form u′i or
u′i ∧ U ′i where u′i ∈ T + and U ′i ∈ T −. And,

iv.) for all its subparameters of the form [(u1 ∧ U1,P1), . . . , (un ∧ Un,Pn)], where each ui is a
positive pattern in T +, ui is a negative pattern in T − and Pi is either an extension or a term
in T + ∪ T�, we have that for every i, j = 1, . . . , n with i 6= j,

∀p ∈ Pos(ui), [[ui[uj ∧ Uj]||p ∧ Ui]] = ∅.

In what follows we assume that the extensions are well-founded. The semantics of the an
extension as a strategy follows.

Definition 26 The semantics of an extension P, denoted by ΠP , is defined inductively on P as

22

follows.

Π(θ,τ)
def=

λt.t 7→ t[τ [t|θ]]θ if θ ∈ Pos
u→ τ [u] if θ = u ∈ T

Π(θ,P)
def=

λt.t 7→ t[t′]θ if θ ∈ Pos
where t′ = Π

P

(
t|θ
)

(u→ u); Π
P

if θ = u ∈ T

Π[P1,...,Pn]
def=

ΠP1 ; . . . ; ΠPn if Θ(Pn) 6= ∅
ΠP1 ⊕ . . .⊕ ΠPn otherwise

ΠIM(P)

def= InnerMost(ΠP)

We shall write P ≡ Q iff ΠP = ΠQ.
The following properties are immediate from the definition of the semantics of extension oper-

ators. For any positions p, p′, any patterns U , U ′ and any parameter P , we have that

(ε,P) ≡ P ,
(p, (p′,P)) ≡ (pp′,P),

(U , (U ′,P)) ≡ (U ∧ U ′,P),
IM(U , (U ′,P)) ≡ IM(U ∧ U ′,P)

5.2.1 Combination of strategy-based extension

In this section we define the operation of combination of extensions. Before that we give the
definition of the depth of an extension, which corresponds its longest path starting from the root
if it is viewed as a tree; and the definition of its width.

Definition 27 (Depth of an extension) The depth of an extension operator ΠP , denoted by
∆(ΠP) is the depth of tree-like structure of P, denoted simply by ∆(P), that is,

∆(P) =

0 if P = (θ, τ)
1 + ∆(P ′) if P = (θ,P ′)
1 +max(∆(P1), . . . ,∆(Pn)) if P = (θ, [P1, . . . ,Pn])

Definition 28 (Width of an extension) The width of an extension ΠP , denoted by |ΠP |, or
simply by |P|, is defined by

|P| =

1 if P = (θ, τ) or P = (θ,P ′) or P = IM(P ′), where θ ∈ T ∪ Pos, τ ∈ T� ∪ T +

n if P = [P1, . . . ,Pn]

23

Definition 29 (Combination of extensions) The combination of two extension, ΠP and ΠP ′

as follows.

ΠP♦ΠP ′ = ΠP♦P ′ (27)

where the combination P♦P ′ of parameters is inductively defined by:

∆(P) = ∆(P ′) = 0 and |P| = |P ′| = 1. We disinguihs three cases depending on the type of P and
P ′.
Case (i). If the symbol at the root of P and P ′ is a position, i.e. Θ(P) 6= ∅ and Θ(P ′) 6= ∅,
i.e. P = (p, τ) and P ′ = (p′, τ ′) then this case is similar to the combination given in
Definition 17 for position-based extensions.
Case (ii). If the symbol at the root of P and P ′ is a pattern, i.e. P = (U, τ) and P ′ =
(U ′, τ ′), then

(U, τ)♦(U ′, τ ′) def=
[

(U ∧ U ′, τ ′[τ]) , (28)
(U ∧ ¬U ′, τ) , (29)
(¬U ∧ U ′, τ ′)

]
(30)
(31)

Case (iii). If the symbol at the root of P and P ′ is IM, i.e. P = IM(u ∧ U, τ) and
P ′ = IM(u′ ∧ U ′, τ ′), then

P♦P ′ def= (32)

IM
[(
u [u′ ∧ U ′]|p ∧ U, [(ε, τ), (p, τ ′)]

)
,(

u [¬ (u′ ∧ U ′)]|p ∧ U, [(ε, τ)]
)
, if ∃!p s.t. [[u [u′ ∧ U ′]|p ∧ U]] 6= ∅

(¬(u ∧ U), IM (u′ ∧ U ′, τ ′))
]

and u|p /∈ X

IM
(
u [u′ ∧ U ′]|p ∧ U, [(ε, τ), (p, IM(u′ ∧ U ′, τ ′))]

)
if ∀p[[u [u′ ∧ U ′]|p ∧ U]] 6= ∅
and u|p ∈ X

"Symmetric cases"

IM ([P ,P ′]) if ∃p s.t. [[u [u′ ∧ U ′]|p ∧ U]] 6= ∅
and ∃q s.t. [[u [u′ ∧ U ′]|q ∧ U]] 6= ∅

∅ otherwise
(33)

∆(P) = ∆(P ′) ≥ 1 and |P| = |P ′| = 1. Again, we disinguihs three cases depending on the symbol
at the root of P and P ′.
Case (i). If the symbol at the root of P and P ′ is a position, i.e. P = (p,Q) and P =

24

(p′,Q′), then

(p,Q) ♦ (p′,Q′) def=

[(p,Q) , (p′,Q′)] if p′ < p

[(p′,Q′) , (p,Q)] if p < p′

(p,Q♦Q′) if p = p′
(34)

Case (ii). If the symbol at the root of P and P ′ is a pattern, i.e. P = (U,Q) and
P ′ = (U ′,Q′), then

(U,Q)♦(U ′,Q′) def=
[

(U ∧ U ′,Q♦Q′) , (35)
(U ∧ ¬U ′,Q) , (36)
(¬U ∧ U ′,Q′)

]
(37)
(38)

Case (iii). If the symbol at the root of P and P ′ is IM, i.e.

P = IM(u ∧ U,Q), and
P ′ = IM(u′ ∧ U ′,Q′),

then

P♦P ′ def= (39)

IM
[(
u [u′ ∧ U ′]|p ∧ U, (ε,Q)♦(p,Q′)

)
,(

u [¬ (u′ ∧ U ′)]|p ∧ U,Q
)
, if ∃!p s.t. [[u [u′ ∧ U ′]|p ∧ U]] 6= ∅

(¬(u ∧ U), IM (u′ ∧ U ′,Q′))
]

and u|p /∈ X

IM
(
u [u′ ∧ U ′]|p ∧ U, (ε,Q)♦(p, IM(u′ ∧ U ′,Q′))

)
if ∃!p s.t. [[u [u′ ∧ U ′]|p ∧ U]] 6= ∅
and u|p ∈ X

"Symmetric cases"

IM ([P ,P ′]) if ∀p[[u [u′ ∧ U ′]|p ∧ U]] 6= ∅
and ∀q[[u [u′ ∧ U ′]|q ∧ U]] 6= ∅

∅ otherwise

(40)

∆(P) = ∆(P ′) ≥ 0 and (|P| ≥ 2 or |P ′| ≥ 2). The definition is by induction on |P ′|.

[Q1, . . . ,Qn]⊗Q =

[Q1, . . . ,Qi♦Q, . . . ,Qn] if ∃i s.t. Qi♦Q 6= ∅
[Q1, . . . ,Q♦Qi, . . . ,Qn] if ∃i s.t. Q♦Qi 6= ∅
[Q1, . . . ,Qn,Q] otherwise

(41)

25

and,

P♦ ([Q′1, . . . ,Q′n]) = (P♦Q′1)♦[Q′2, . . . ,Q′n] (42)

Remark 30 The following is not hard to prove.

• If ΠP and ΠQ are well-founded, so is ΠP♦ΠQ.

• The neutral element of the combination operation is Π(ε,�). i.e. for every extension parameter
P, we have that

Π(ε,�)♦ΠP = ΠP♦Π(ε,�) = ΠP .

• For every extension parameter P, we have that

ΠP♦ΠP = ΠP

5.3 A correction criterion of the combination of strategy-based exten-
sion operators

The expressions of the combinations of strategy based extensions have been given without jus-
tification. Since a same extension can be expressed in different ways, it is mandatory that the
combination of two extensions, whatever their forms, yields equivalent extensions. The combina-
tion of position-based extensions are defined in a clear and nonambiguous manner, so we choose it
as the reference. The first lemma of this section shows that any strategy-based extension can be
expressed as a position-based extension. Then, we introduce a correction criteria of the combina-
tion rules of strategy-based combinations, its application to the above rules being left for a future
work.

Lemma 31 (Strategy-based extensions as position-based extensions) Then there exists a
function Ψ : ζ × T + → ζ? that associates to each extension operator P in ζ and positive pattern t
in T + a pattern-free extension operator Q in ζ?, denoted by Ψ(P,t), such that

ΠP(t) = ΠQ(t) (43)

Proof. Out of P and t, we shall construct a pattern-free extension operator Q of the form

Q = [(p1, τ 1), . . . , (pn, τn)] (44)

where pi are positions in t and τ i are contexts with n ≥ 0, such that ΠP(t) = ΠQ(t). The proof is
by induction ∆(P), the depth of P .

Basic case: ∆(P) = 0. We distinguish three cases depending on the type of P .
Case (i). η(P) = Posi. In this case we define

Q def= P (45)

Case (ii). η(P) = Patt. In this case P is of the form

P = [(u1 ∧ U1, τ 1), . . . , (un ∧ Un, τn)] (46)

26

where ui (resp. Ui) are positive (resp. negative) patterns and τ i are contexts. Thus, according
to definition ?? of the semantics of extension operators, we have that

ΠP =
⊕
i

(ui → τ i[ui] if Ui) (47)

And since there is a unique k ∈ [1, n] such that the conditional rule uk → τ k[uk] if Uk can
be applied to t, then

ΠP(t) = (uk → τ k[uk] if Uk) (t) (48)
= τ k[σ(uk)] where σ(uk) = t and σ ∈ [[Uk]] (49)
= τ k[t] (50)

On the other hand, we define Q as follows:

Q def= [(ε, τ k)] (51)

Therefore,

ΠQ(t) = τ k[t] (52)
= ΠP(t) (53)

Case (iii). η(P) = IM. In this case P is of the form

P = IM[(U1, τ 1), . . . , (Un, τn)] (54)

where [[Ui]] ∩ [[Uj]] = ∅ for all i 6= j. Let[pi1, . . . , pini] = λ?(Ui), and
φ(pi1) = τ i

(55)

for all i ∈ [n]. And let

[q1, . . . , qm] = Max
⋃
i∈[n]
{λ∗(Ui)} (56)

We define Q by

Q = [(q1, τ
′
1), . . . , (qm, τ ′m)] (57)

where τ ′j = φ(qj), for all j ∈ [m].
Finally, the proof for ∆(P) ≥ 1 is simply made by induction which does not involve any
additional difficulty.

Criterion 32 (Correctness of combinations of strategy-based extensions) The combina-
tion of two extension operators P and P ′ is correct iff

Ψ(P♦P ′, t) = Ψ(P , t)♦Ψ(P ′, t) (58)

for any positive term t ∈ T +.

27

6 Mathematical proofs
This section presents the reference proof, already published in [YBL14a], following the technique
of [LS07] and applied to a second order elliptic equation posed in a one-dimensional domain. It is
made with propositions, that are accepted without proof, and of Lemmas which are proven. Then,
an extension of the proof to a multi-dimensional domain is written in the spirit of strategy-based
extensions to serve as an illustration of the concept of extension.

6.1 The Reference Proof
This section presents the model derivation used as a reference for the extensions. We recall the
framework of the two-scale convergence as presented in [LS07]. The presentation is divided into
three subsections. The first one is devoted to basic definitions and properties, stated as Propo-
sitions. The latter are admitted without proof because they are assumed to be prerequisites, or
building blocks, in the proofs. They are used as elementary steps in the two other sections detail-
ing the proof of the convergence of the two-scale transform of a derivative, and the homogenized
model derivation. The main statements of these two subsections are also stated as Propositions
and their proofs are split into numbered blocks called lemmas. Each lemma is decomposed into
steps referring to the definitions and propositions. All components of the reference model deriva-
tion, namely the definitions, the propositions, the lemmas and the proof steps are designed so that
to be easily implemented but also to be generalized for more complex models. We quote that a
number of trivial mathematical properties are used in the proofs but are not explicitly stated nor
cited. However an implementation must take them into account.

6.1.1 Notations, Definitions and Propositions

Note that the functional framework used in this section is not as precise as it should be for a usual
mathematical work. The reason is that the complete functional analysis is not covered by our
symbolic computation. So fine and precise mathematical statements and justifications cannot be
in the focus of this work.

In the sequel, A ⊂ Rn is a bounded open set, with measure |A|, having a "sufficiently" regular
boundary ∂A and with unit outward normal denoted by n∂A. We shall use the set L1(A) of
integrable functions and the set Lp(A), for any p > 0, of functions f such that fp ∈ L1(A), with
norm ||v||Lp(A) = (

∫
A |v|p dx)1/p. The Sobolev space H1(A) is the set of functions f ∈ L2(A) which

gradient ∇f ∈ L2(A)n. The set of p times differentiable functions on A is denoted by Cp(A), where
p can be any integer or∞. Its subset Cp0(A) is composed of functions which partial derivatives are
vanishing on the boundary ∂A of A until the order p. For any integers p and q, Cq(A) ⊂ Lp(A).
When A = (0, a1)× ...× (0, an) is a cuboid (or rectangular parallelepiped) we say that a function
v defined in Rn is A-periodic if for any ` ∈ Zn, v(y +∑n

i=1 `iaiei) = v(y) where ei is the ith vector
of the canonical basis of Rn. The set of A-periodic functions which are C∞ is denoted by C∞] (A)
and those which are in H1(A) is denoted by H1

] (A). The operator tr (we say trace) can be defined
as the restriction operator from functions defined on the closure of A to functions defined on its
boundary ∂A. Finally, we say that a sequence (uε)ε>0 ∈ L2(A) converges strongly in L2(A) towards
u0 ∈ L2(A) when ε tends to zero if limε→0 ||uε−u0||L2(A) = 0. The convergence is said to be weak if
limε→0

∫
A(uε−u0)v dx = 0 for all v ∈ L2(A). We write uε = u0 +Os(ε) (respectively Ow(ε)), where

Os(ε) (respectively Ow(ε)) represents a sequence tending to zero strongly (respectively weakly) in

28

L2(A). Moreover, the simple notation O(ε) refers to a sequence of numbers which simply tends to
zero. We do not detail the related usual computation rules.
Let uε, the solution of a linear boundary value problem posed in Ω, −

d

dx
(aε(x)du

ε(x)
dx

) = f in Ω
uε = 0 on Γ,

(59)

where the right-hand side
||f ||L2(Ω) ≤ C, (60)

the coefficient aε ∈ C∞(Ω) is εΩ1-periodic, and there exist two positive constants α and β inde-
pendent ε such that

0 < α ≤ aε(x) ≤ β. (61)
The weak formulation is obtained by multiplication of the differential equation by a test function
v ∈ C∞Γ (Ω) and application of the Green formula,

κ0
∫

Ω
aε(x)du

ε

dx

dv

dx
dx = κ0

∫
Ω
f(x)v(x) dx. (62)

Proposition 33 [Interpretation of a weak equality] For u ∈ L2(A) and for any v ∈ C∞0 (A),

if
∫
A
u(x) v(x) dx = 0 then u = 0

in the sense of L2(A) functions.

Proposition 34 [Interpretation of a periodic boundary condition] For u ∈ H1(A) and
for any v ∈ C∞# (A),

if
∫
∂A
u(x) v(x) n∂A(x) dx = 0 then u ∈ H1

] (A) .

In the remainder of this section, only the dimension n = 1 is considered, the general definitions
being used for the elementary extensions.

Notation 35 [Physical and microscopic Domains] We consider an interval Ω =
N(ε)⋃
c=1

Ω1,ε
c ⊂

R divided into N(ε) periodic cells (or intervals) Ω1,ε
c , of size ε > 0, indexed by c, and with center

xc. The translation and magnification (Ω1,ε
c − xc)/ε is called the unit cell and is denoted by Ω1.

The variables in Ω and in Ω1 are denoted by xε and x1.

The two-scale transform T is an operator mapping functions defined in the physical domain Ω to
functions defined in the two-scale domain Ω] × Ω1 where for the reference model Ω] = Ω. In the
following, we shall denote by Γ, Γ] and Γ1 the boundaries of Ω, Ω] and Ω1.

Definition 36 [Two-Scale Transform] The two-scale transform T is the linear operator de-
fined by

(Tu)(xc, x1) = u(xc + εx1) (63)
and then by extension T (u)(x], x1) = u(xc + εx1) for all x] ∈ Ω1,ε

c and each c in 1, .., N(ε).

29

Notation 37 [Measure of Domains] κ0 = 1
|Ω| and κ

1 = 1
|Ω]×Ω1| .

The operator T enjoys the following properties.

Proposition 38 [Product Rule] For two functions u, v defined in Ω,

T (uv) = (Tu)(Tv). (64)

Proposition 39 [Derivative Rule] If u and its derivative are defined in Ω then

T

(
du

dx

)
= 1
ε

∂(Tu)
∂x1 . (65)

Proposition 40 [Integral Rule] If a function u ∈ L1(Ω) then Tu ∈ L1(Ω] × Ω1) and

κ0
∫

Ω
u dx = κ1

∫
Ω]×Ω1

(Tu) dx]dx1. (66)

The next two properties are corollaries of the previous ones.

Proposition 41 [Inner Product Rule] For two functions u, v ∈ L2(Ω),

κ0
∫

Ω
u v dx = κ1

∫
Ω]×Ω1

(Tu) (Tv) dx]dx1. (67)

Proposition 42 [Norm Rule] For a function u ∈ L2(Ω),

κ0 ‖u‖2
L2(Ω) = κ1 ‖Tu‖2

L2(Ω]×Ω1) . (68)

Definition 43 [Two-Scale Convergence] A sequence uε ∈ L2(Ω) is said to be two-scale strongly
(respect. weakly) convergent in L2(Ω]×Ω1) to a limit u0(x], x1) if Tuε is strongly (respect. weakly)
convergent towards u0 in L2(Ω] × Ω1).

Definition 44 [Adjoint or Dual of T] As T is a linear operator from L2(Ω) to L2(Ω] × Ω1),
its adjoint T ∗ is a linear operator from L2(Ω] × Ω1) to L2(Ω) defined by

κ0
∫

Ω
T ∗v u dx = κ1

∫
Ω]×Ω1

v Tu dx]dx1. (69)

The expression of T ∗ can be detailed, it maps regular functions in Ω] × Ω1 to piecewise-constant
functions in Ω. The next definition introduce an operator used as a smooth approximation of T ∗.

Definition 45 [Regularization of T∗] The operator B is the linear continuous operator defined
from L2(Ω] × Ω1) to L2(Ω) by

Bv = v(x, x
ε

). (70)

The nullity condition of a function v(x], x1) on the boundary ∂Ω] ×Ω1 is transferred to the range
Bv as follows.

Proposition 46 [Boundary Conditions of Bv] If v ∈ C∞Γ](Ω]; C∞(Ω1)) then Bv ∈ C∞Γ (Ω).

30

Proposition 47 [Derivation Rule for B] If v and its partial derivatives are defined on Ω]×Ω1

then
d(Bv)
dx

= B(∂v
∂x]

) + ε−1B(∂v
∂x1). (71)

The next proposition states that the operator B is actually an approximation of the operator T ∗
for Ω1-periodic functions.

Proposition 48 [Approximation between T∗ and B] If v(x], x1) is continuous, continuously
differentiable in x] and Ω1-periodic in x1 then

T ∗v = Bv − εB(x1 ∂v

∂x]
) + εOs(ε) = B

1∑
`=0

ε`[v,−x1 ∂v

∂x]
]` + εOs(ε). (72)

Conversely,

Bv = T ∗(v) + εT ∗(x1 ∂v

∂x]
) + εOs(ε) = T ∗

1∑
`=0

ε`[v, x1 ∂v

∂x]
]` + εOs(ε). (73)

Next, the formula of integration by parts is stated in a form compatible with the Green formula
used in some extensions. The boundary Γ is composed of the two end points of the interval Ω, and
the unit outward normal nΓ defined on Γ is equal to −1 and +1 at the left- and right-endpoints
respectively.

Proposition 49 [Green Rule] If u, v ∈ H1(Ω) then the traces of u and v on Γ are well defined
and ∫

Ω
u
dv

dx
dx =

∫
Γ
tr(u) tr(v) nΓ ds(x)−

∫
Ω
v
du

dx
dx. (74)

The last proposition is stated as a building block of the homogenized model derivation.

Proposition 50 [The linear operator associated to the Microscopic problem] For µ ∈
R, there exist θµ ∈ H1

] (Ω1) solutions to the linear weak formulation
∫

Ω1
a0∂θ

µ

∂x1
∂w

∂x1 dx1 = −µ
∫

Ω1
a0 ∂w

∂x1 dx1 for all w ∈ C∞] (Ω1), (75)

and ∂θµ

∂x1 is unique. Since the mapping µ 7→ ∂θµ

∂x1 from R to L2(Ω1) is linear,

∂θµ

∂x1 = µ
∂θ1

∂x1 , (76)

where θ1 is solution to (75) for µ = 1,
∫

Ω1
a0 ∂θ

1

∂x1
∂w

∂x1 dx1 = −
∫

Ω1
a0 ∂w

∂x1 dx1 for all w ∈ C∞] (Ω1). (77)

Moreover, the relation (76) can be extended to any µ ∈ L2(Ω]).

For d = [v, x1 ∂v
∂x]

] and d∗ = [v,−x1 ∂v
∂x]

] the next proposition states that d∗ is adjoint of d for
functions vanishing on Γ].

31

Definition 51 [Adjoint of di] For u, v ∈ C∞Γ](Ω]; C∞(Ω1)),∫
Ω]×Ω1

u div dx
]dx1 =

∫
Ω]×Ω1

d∗iu v dx
]dx1 for i ∈ {0, 1}.

The next propositions are required for extensions only.
For n-dim extension.

Proposition 52 [Introduction of a Kronecker symbol] For any functions u and θ,

∂u

∂x
+ ∂u

∂x

∂v

∂y
= (1 + ∂v

∂y
)∂u
∂x

.

For n-dim extension, Fifth block-step 2.1.

Proposition 53 [decomposition of a sum over a union]

f = f.

For ScalSol extension, First Block-step 5.1.

Proposition 54 [Renumbering a Double Sum]

c = c.

For ScalSol extension, First Block-step 6.1.

Proposition 55 [Identification of an Asymptotic Expansion]

c = O(ε) =⇒ c = 0.

For ScalSol extension, Sixth Block-step 1.1.

Proposition 56 [Interpretation of the Constraints] If v0 is defined in Ω] × Ω1 satisfies
∂v0

∂x1 = 0 then there exists a function λ0 independent of x1 such that v0 = λ0.

6.1.2 Two-Scale Approximation of a Derivative

Here we detail the reference computation of the weak two-scale limit η = limε→0 T (duε
dx

) in L2(Ω]×
Ω1) when

‖uε‖L2(Ω) and
∥∥∥∥∥duεdx

∥∥∥∥∥
L2(Ω)

≤ C, (78)

C being a constant independent of ε. To simplify the proof, we further do the following assumption.

Assumption 57 [Approximation of Tu]There exist u0, u1 ∈ L2(Ω] × Ω1) such that for any
k ∈ {0, 1}

T (uε) =
k∑
j=0

εjuj + εkOw(ε),

in particular for k = 1,
T (uε) = u0 + εu1 + εOw(ε)

32

i.e. ∫
Ω]×Ω1

(T (uε)−
k∑
j=0

εjuj)v dx]dx1 = εkOw(ε) for all v ∈ L2(Ω] × Ω1)

and in particular for k = 1,∫
Ω]×Ω1

(T (uε)− u0 − εu1)v dx]dx1 = εO(ε) for all v ∈ L2(Ω] × Ω1). (79)

We quote that Assumption (79) is not mandatory, it is introduced to simplify the proof since it
avoids some non-equational steps. The statement proved in the remaining of the subsection is the
following.

Proposition 58 [Two-scale Limit of a Derivative] If uε is a sequence bounded as in (78)
and satisfying (79), then u0 is independent of x1,

ũ1 = u1 − x1∂x]u
0 (80)

defined in Ω] × Ω1 is Ω1-periodic and

η = ∂u0

∂x]
+ ∂ũ1

∂x1 . (81)

Moreover, if uε = 0 on Γ then u0 = 0 on Γ].

The proof is split into four Lemmas.

Lemma 59 [First Block: Constraint on u0] u0 is independent of x1.

Proof. Source term. The weak formulation (62) is transformed into

Ψ = εκ0
∫

Ω

duε

dx
Bv dx

with v ∈ C∞Γ](Ω]; C∞Γ1(Ω1)). From the Cauchy-Schwartz inequality and (78), limε→0 Ψ = 0.

• Step 1. Propositions 49 and 46 =⇒

Ψ = −εκ0
∫

Ω
uε
d(Bv)
dx

dx.

• Step 2. Proposition 47 and the boundness (78) =⇒

Ψ = κ0
∫

Ω
uεB(∂v

∂x1) dx+O(ε).

• Step 3. Proposition 48 =⇒

Ψ = κ0
∫

Ω
uεT ∗(∂v

∂x1) dx+O(ε).

33

• Step 4. Definition 44 =⇒

Ψ = κ1
∫

Ω]×Ω1
T (uε) ∂v

∂x1 dx+O(ε).

• Step 5. Assumption (79)

κ1
∫

Ω]×Ω1
(u0 +O(ε)) ∂v

∂x1 dx = 0.

Passing to the limit when ε→ 0 =⇒

κ1
∫

Ω]×Ω1
u0 ∂v

∂x1 dx = 0.

• Step 6.
Proposition 49 and v = 0 on Ω] × Γ1 =⇒

κ1
∫

Ω]×Ω1

∂u0

∂x1 v dx = 0.

• Step 7. Proposition 33 =⇒
∂u0

∂x1 = 0.

Lemma 60 [Second Block: Two-Scale Limit of the Derivative] η = ∂u0

∂x]
+ ∂ũ1

∂x1 .

Proof. Source term. The weak formulation (62) is transformed into

Ψ = κ1
∫

Ω]×Ω1
T (du

ε

dx
)v dx]dx1 (82)

with v ∈ C∞Γ](Ω]; C∞Γ1(Ω1)).

• Step 1. Definition 44 =⇒
Ψ = κ0

∫
Ω

duε

dx
T ∗v dx.

• Step 2. Proposition 48 (to approximate T ∗ by B), the Green formula (74), Proposition 47,
the linearity of integrals, and again Proposition 48 (to approximate B by T ∗) =⇒

Ψ = −κ0
∫

Ω
uεT ∗(∂v

∂x]
) dx− κ0

ε

∫
Ω
uεT ∗(∂v

∂x1) dx− κ0
∫

Ω
uεT ∗(x1 ∂

∂x]
(∂v
∂x1)) dx+O(ε).

• Step 3. Definition 44 =⇒

Ψ = −κ1
∫

Ω]×Ω1
T (uε) ∂v

∂x]
dx]dx1 − κ1

ε

∫
Ω]×Ω1

T (uε) ∂v
∂x1 dx

]dx1

−κ1
∫

Ω]×Ω1
T (uε)d1(∂v

∂x1) dx]dx1 +O(ε).

34

• Step 4. Assumption (79) =⇒

Ψ = −κ1
∫

Ω]×Ω1
u0 ∂v

∂x]
dx]dx1 − κ1

ε

∫
Ω]×Ω1

u0 ∂v

∂x1 dx
]dx1 − κ1

∫
Ω]×Ω1

u1 ∂v

∂x1 dx
]dx1

−κ1
∫

Ω]×Ω1
u0d1(∂v

∂x1) +O(ε).

• Step 5. Proposition 51 of the adjoint of d =⇒

Ψ = −κ1
∫

Ω]×Ω1
u0 ∂v

∂x]
dx]dx1 − κ1

ε

∫
Ω]×Ω1

u0 ∂v

∂x1 dx
]dx1

−κ1
∫

Ω]×Ω1
(d∗1u0 + u1) ∂v

∂x1 dx
]dx1 +O(ε).

• Step 6. The Green formula (74) =⇒

Ψ = κ1
∫

Ω]×Ω1

∂u0

∂x]
v dx]dx1 + κ1

ε

∫
Ω]×Ω1

∂u0

∂x1 v dx
]dx1

+κ1
∫

Ω]×Ω1

∂(d∗1u0 + u1)
∂x1 v dx]dx1 +O(ε).

• Step 7. Factoring the common powers in ε =⇒

Ψ = κ1
∫

Ω]×Ω1
(∂u

0

∂x]
+ ∂(d∗1u0 + u1)

∂x1)v dx]dx1 + κ1

ε

∫
Ω]×Ω1

∂u0

∂x1 v dx
]dx1 +O(ε).

• Step 8. The definition (80) of ũ1 =⇒

Ψ = κ1
∫

Ω]×Ω1
(∂u

0

∂x]
+ ∂ũ1

∂x1)v dx]dx1 + κ1

ε

∫
Ω]×Ω1

∂u0

∂x1 v dx
]dx1 +O(ε).

• Step 9. Lemma 59, and passing to the limit when ε→ 0 =⇒

κ1
∫

Ω]×Ω1
η v dx]dx1 = κ1

∫
Ω]×Ω1

(∂u
0

∂x]
+ ∂ũ1

∂x1)v dx]dx1.

• Step 10. Proposition 33 =⇒
η = ∂u0

∂x]
+ ∂ũ1

∂x1 .

Lemma 61 [Third Block: Microscopic Boundary Condition] ũ1 is Ω1-periodic.

Proof. Source term. In (82), we choose v ∈ C∞Γ](Ω]; C∞] (Ω1)).

• Step 1. The steps 1-8 of the second block =⇒

κ1
∫

Ω]×Ω1
ηv dx]dx1 − κ1

∫
Ω]×Γ1

(u1 − x1∂u
0

∂x]
)v nΓ1 dx]dx1 − κ1

∫
Ω]×Ω1

∂u1

∂x1 v dx
]dx1 = O(ε).

35

• Step 2. Lemma 60 =⇒ ∫
Ω]×Γ1

(u1 − x1∂u
0

∂x]
)v nΓ1 dx]ds(x1) = O(ε). (83)

• Step 3.
Definition (80) of ũ1 and Proposition 34 =⇒

ũ1 is Ω1-periodic. (84)

Lemma 62 [Fourth Block: Macroscopic Boundary Condition] u0 vanishes on Γ].

Proof. Source term. In (82), we choose v ∈ C∞(Ω]),

• Step 1. The steps 1-5 of the second block and uε = 0 on Γ =⇒

κ1
∫

Ω]×Ω1
η v dx]dx1 = κ1

∫
Ω]×Ω1

∂u0

∂x0 v dx
]dx1 − κ1

∫
Γ]×Ω1

u0vnx] ds(x])dx1.

• Step 2. Proposition 33 applied two times =⇒∫
Ω1
η dx1 = |Ω1|∂u

0

∂x0 and u0 = 0 on Γ].

6.1.3 Homogenized Model Derivation

Here we provide the reference proof of the homogenized model derivation. It uses Proposition 58
as an intermediary result.

Proposition 63 [Boundness of the Solution] The solution uε of (62) satisfies the boundness
(78).

Moreover, we assume that for some functions a0(x1) and f 0(x]),

T (aε) = a0 and T (f) = f 0(x]) +Ow(ε). (85)

The next proposition states the homogenized model and is the main result of the reference proof.
For θ1 a solution to the microscopic problem (75) with µ = 1, the homogenized coefficient and
right-hand side are defined by

aH =
∫

Ω1
a0
(

1 + ∂θ1

∂x1

)2

dx1 and fH =
∫

Ω1
f 0 dx1. (86)

Proposition 64 [Homogenized Model] The limit u0 is solution to the weak formulation∫
Ω]
aH

du0

dx]
dv0

dx]
dx] =

∫
Ω]
fHv0 dx] (87)

for all v0 ∈ C∞Γ](Ω]).

36

The proof is split into three lemmas.

Lemma 65 [Fifth Block: Two-Scale Model] The couple (u0, ũ1) is solution to the two-scale
weak formulation∫

Ω]×Ω1
a0
(
∂u0

∂x]
+ ∂ũ1

∂x1

)(
∂v0

∂x]
+ ∂v1

∂x1

)
dx]dx1 =

∫
Ω]×Ω1

f 0v0 dx]dx1 (88)

for any (vi)i=0,1 ∈ C∞Γ](Ω], C∞] (Ω1)) such that

∂v0

∂x1 = 0. (89)

Proof. Source term. We choose test functions v0 ∈ C∞Γ](Ω]), v1 ∈ C∞Γ](Ω], C∞] (Ω1)).

• Step 1 Posing v = B(v0 + εv1) in (62) and Proposition 46 =⇒

Bv ∈ C∞Γ (Ω) and κ0
∫

Ω
aε
duε

dx

dB(v0 + εv1)
dx

dx = κ0
∫

Ω
f B(v0 + εv1) dx.

• Step 2
Propositions 47 =⇒

κ0
∫

Ω
aε
duε

dx
B

(
∂v0

∂x]
+ ∂v1

∂x1

)
dx = κ0

∫
Ω
f B(v0)dx+O(ε).

Proposition 48 =⇒

κ0
∫

Ω
aε
duε

dx
T ∗
(
∂v0

∂x]
+ ∂v1

∂x1

)
dx = κ0

∫
Ω
f T ∗(v0)dx+O(ε).

• Step 3 Definition 44 and Proposition 38 =⇒

κ1
∫

Ω]×Ω1
T (aε)T (du

ε

dx
)
(
∂v0

∂x]
+ ∂v1

∂x1

)
dx]dx1 = κ1

∫
Ω]×Ω1

T (f) v0 dx]dx1 +O(ε). (90)

• Step 4
Definitions (85), Lemma 58, and passing to the limit when ε→ 0 =⇒∫

Ω]×Ω1
a0
(
∂u0

∂x]
+ ∂ũ1

∂x1

)(
∂v0

∂x]
+ ∂v1

∂x1

)
dx]dx1 =

∫
Ω]×Ω1

f 0v0 dx]dx1

which is the expected result.

Lemma 66 [Sixth Block: Microscopic Problem] ũ1 is solution to (75) with µ = ∂u0

∂x]
and

∂ũ1

∂x1 = ∂u0

∂x]
∂θ1

∂x1 .

37

Proof. Source term. We choose v0 = 0 and v1(x], x1) = w(x1)ϕ(x]) in (88) with ϕ ∈ C∞(Ω])
and w1 ∈ C∞] (Ω1).

• Step 1 Proposition 33, Lemma 59, and the linearity of the integral =⇒∫
Ω1
a0∂ũ

1

∂x1
∂w1

∂x1 dx1 = −∂u
0

∂x]

∫
Ω1
a0∂w

1

∂x1 dx1. (91)

• Step 2 Proposition 50 with µ = ∂u0

∂x]
=⇒

∂ũ1

∂x1 = ∂u0

∂x]
∂θ1

∂x1

as announced.

Lemma 67 [Seventh Block: Macroscopic Problem] u0 is solution to (87).

Proof. Source term. We choose v0 ∈ C∞Γ](Ω]) and v1 = ∂v0

∂x]
∂θ1

∂x1 ∈ C
∞(Ω], C∞] (Ω1)) in (88).

• Step 1 Lemma 66 =⇒∫
Ω]×Ω1

a0
(
∂u0

∂x]
+ ∂θ1

∂x1
∂u0

∂x]

)(
∂v0

∂x]
+ ∂θ1

∂x1
∂v0

∂x]

)
dx]dx1 =

∫
Ω]×Ω1

f 0v0 dx]dx1. (92)

• Step 2
Substep 2.1-n-dim Proposition 52∫

Ω]×Ω1
a0
(

1 + ∂θ1

∂x1

)(
1 + ∂θ1

∂x1

)
∂u0

∂x]
∂v0

∂x]
dx]dx1 =

∫
Ω]×Ω1

f 0v0 dx]dx1.

• Step 3 Factoring and definitions (86) =⇒∫
Ω]
aH

∂u0

∂x]
∂v0

∂x]
dx] =

∫
Ω]
fHv0 dx].

6.2 Extension to n-dimensional Regions
The concept of extension is illustrated, from the mathematical point of view when the dimension
of the physical domain Ω is changed from 1 to any positive integer n and the variables x ∈ Ω are
indexed as xi with i ∈ I a subset of integers with |I| = n.

We detail the extensions of the reference proof for each proposition that require a change and
eventually add new substeps in the proof of lemmas. All required added contexts τ including a
symbol � are detailed but also the research patterns θ for each proposition. Insertion positions in
matching terms are represented by a tilde over the root of the subterm to be moved. For instance,
the term τ = h(a,�) is added in g(a, f̃(b, c)) yielding g(a, h(a, f(b, c))). Same added terms are
often used in many propositions. We do not specify the precise strategies of extensions that are
left to the programmer.

38

6.2.1 Notations, Definitions and Propositions

The boundary value problem (59) is replaced with −
∑
i∈I

∑
j∈I

∂

∂xi
(aεij(x)∂u

ε(x)
∂xj

) = f in Ω

uε = 0 on Γ.
(93)

The coefficients aεij satisfy the same regularity and periodicity as the coefficient aε in (59). They
are also uniformly bounded and positive in the matrix sense,

0 < α|ξ|2 ≤
∑
i∈I

∑
j∈I

aεij(x)ξiξj ≤ β|ξ|2 for all ξ ∈ Rn. (94)

The derivation of the weak formulation follows the same lines and yields,

κ0∑
i∈I

∑
j∈I

∫
Ω
aεij
∂uε

∂xj

∂v

∂xi
dx = κ0

∫
Ω
f v dx. (95)

The added terms are

τMultidim = {�i, �j,�`,
∑
`∈I
�,�k, δkj ∗�,

∑
k∈I
�,
∑
i∈I
�}.

In the Derivative Rule, τ = {τ 1} is used with two matching terms θ = (x, x1) resulting into xi and
x1
i .

Proposition 68 [Derivative Rule] If u and its derivative are defined in Ω then

T

(
∂u

∂xi

)
= 1
ε

∂(Tu)
∂x1

i

for any i ∈ I. (96)

In the Derivation Rule for B, τ = τ 1 is used with three matching terms θ = (x, x], x1) that are
changed into xi, x]i and x1

i .

Proposition 69 [Derivation Rule for B] If v and its partial derivatives are defined on Ω]×Ω1

then for i ∈ I,
∂(Bv)
∂xi

= B(∂v
∂x]i

) + ε−1B(∂v
∂x1

i

). (97)

In the Approximation between B and T ∗, τ = (�i,�i,
∑
i∈I �) and θ = (x1 ∗ ∂v

∂x̃]
, x̃1 ∗ ∂v

∂x]
, x1∗̃ ∂v

∂x]
)

yielding ∑i∈I x
1
i ∗ ∂v

∂x]i
instead of x1 ∂v

∂x]
.

Proposition 70 [Approximation between T∗ and B] If v(x], x1) is continuous, continuously
differentiable in x] and Ω1-periodic in x1 then

T ∗v = Bv − εB(
∑
i∈I

x1
i

∂v

∂x]i
) + εOs(ε) = B

1∑
`=0

ε`[v,−
∑
i∈I

x1
i

∂v

∂x]i
]` + εOs(ε). (98)

Conversely,

Bv = T ∗(v) + εT ∗(
∑
i∈I

x1
i

∂v

∂x]i
) + εOs(ε) = T ∗

1∑
`=0

ε`[v,−
∑
i∈I

x1
i

∂v

∂x]i
]` + εOs(ε). (99)

39

In the Green Rule, τ = τ 1 so θ = (x, nΓ) is changed into (xi,nΓi).

Proposition 71 [Green Rule] If u, v ∈ H1(Ω) then the traces of u and v on Γ are well defined
and ∫

Ω
u
∂v

∂xi
dx =

∫
Γ
tr(u) tr(v) nΓi ds(x)−

∫
Ω
v
∂u

∂xi
dx. (100)

In the definition of the linear operator associated to the Microscopic problem, x1 is replaced by a
vector (xi)i∈I , µ ∈ R is replaced by a vector µ ∈ R|I| and the microscopic problem is transformed
accordingly. Its solution θµ is replaced by a function Θµ indexed by a vector. The special solution
θ1 is replaced by a family (θ`)`=1,...,n solution to the problem with µ = en, the nth unit vector of

the canonical basis, and the equality ∂θµ

∂x1 = µ
∂θ1

∂x1 is replaced by ∂Θµ

∂x1
j

= ∑
`∈I µ`

∂θ`

∂x1
j

.

Proposition 72 [The linear operator associated to the Microscopic problem] For µ ∈
Rn, there exist Θµ ∈ H1

] (Ω1) solutions to the linear weak formulation

∑
i∈I

∑
j∈I

∫
Ω1
a0
ij

∂Θµ

∂x1
j

∂w

∂x1
i

dx1 = −
∑
i∈I

∑
j∈I

µj

∫
Ω1
a0
ij

∂w

∂x1
i

dx1 for all w ∈ C∞] (Ω1), (101)

and the vector (∂Θµ

∂x1
j

)j∈I is unique. Since the mapping µ 7→ ∂Θµ

∂x1
j

from Rn to L2(Ω1) is linear then

∂Θµ

∂x1
j

=
∑
`∈I

µ`
∂θ`

∂x1
j

for all j ∈ I (102)

where θ` is solution to (101) for µ = e` (so µj = δ`j)

∑
i∈I

∑
j∈I

∫
Ω1
a0
ij

∂θ`

∂x1
j

∂w

∂x1
i

dx1 = −
∑
i∈I

∫
Ω1
a0
i`

∂w

∂x1
i

dx1 for all w ∈ C∞] (Ω1). (103)

Moreover, the relation (102) can be extended to any µ ∈ (L2(Ω]))n.

In Introduction of a Kronecker symbol, using τ = (�i,�i,�k, δkj ∗ �,
∑
k∈I �), the matching

terms θ = (∂u
∂x̃

+ ∂u
∂x

∂θ
∂y
, ∂u
∂x

+ ∂u
∂x

∂θ
∂ỹ
, ∂u
∂x̃

∂θ
∂y
, ∂u
∂x

+̃∂u
∂x

∂θ
∂y
, u+̃v) with u, v, x, y ∈ X 1 are changed into (∂u

∂xj
+

∂u
∂x

∂θ
∂y
, ∂u
∂x

+ ∂u
∂x

∂θ
∂yj
, ∂u
∂xk

∂θ
∂y
, δkj

∂u
∂x

+ ∂u
∂x

∂θ
∂y
,
∑
k∈I u+∑

k∈I v).

Proposition 73 [Introduction of a Kronecker symbol] For any functions u and θ and any
indices k, j varying in I,

∂u

∂xj
+
∑
k∈I

∂u

∂xk

∂v

∂yj
=
∑
k∈I

(δkj + ∂v

∂yj
) ∂u
∂xk

.

40

6.2.2 Two-Scale Approximation of a Derivative

Here we seek the limit of the components ηi = limε→0 T (∂uε
∂xi

) in L2(Ω] × Ω1) for i ∈ I when

‖uε‖L2(Ω) and
∥∥∥∥∥∂uε∂xi

∥∥∥∥∥
L2(Ω)

≤ C, (104)

C being a constant independent of ε.

Proposition 74 [Two-scale Limit of a Derivative] If uε is a sequence bounded as in (104)
and satisfying (79), then u0 is independent of x1,

ũ1 = u1 −
∑
i∈I

x1
i

∂u0

∂x]i
(105)

defined in Ω] × Ω1 is Ω1-periodic, and

ηi = ∂u0

∂x]i
+ ∂ũ1

∂x1
i

for all i ∈ I. (106)

Moreover, if uε = 0 on Γ then u0 = 0 on Γ].

Lemma 75 [First Block: Constraint on u0] u0 is independent of x1.

Proof extension. Source term. Using τ = τ 1, θ = ∂uε

∂x̃
and the source term (95) instead of

(62) yields a rule creating the source term

Ψ = εκ0
∫

Ω

∂uε

∂xi
Bv dx for each i ∈ I.

• Step 1-7 are unchanged replacing Propositions 48 and 49 with Propositions 70 and 71 =⇒

∂u0

∂x1
i

= 0.

Lemma 76 [Second Block: Two-Scale Limit of the Derivative] ηi = ∂u1

∂x1
i
for all i ∈ I.

Proof extension. The initial term is replaced by

Ψ = κ1
∫

Ω]×Ω1
T (∂u

ε

∂xi
)v dx]dx1 for each i ∈ I. (107)

• Step 1 and Step 3-6 are unchanged. In Step 2 Propositions 48 and 49 are replaced with
Propositions 70 and 71 =⇒

ηi = ∂u1

∂x1
i

.

Lemma 77 [Third Block: Microscopic Boundary Condition] ũ1 is Ω1-periodic.

41

Proof extension. The initial term is replaced by (107). Then, the steps are the same except
that Lemma ?? replaces Lemma 76 and Definition (??) of ũ1 replaces Definition (105).

Lemma 78 [Fourth Block: Macroscopic Boundary Condition] u0 vanishes on Γ].

Proof extension.

• Step 1. The steps 1-5 of the proof of Lemma 60 are replaced with those of Lemma 76 =⇒∫
Γ]×Ω1

u0v nΓ]i ds(x])dx1 = 0.

• Step 2 is unchanged =⇒
u0 = 0 on Γ].

6.2.3 Homogenized Model Derivation

Proposition 79 [Boundness of the Solution] The solution uε of (95) satisfies the boundness
(104).

Moreover, we assume that there exists a0(x1) and f 0(x]) such that

T (aε) = a0 and T (f) = f 0 +Ow(ε). (108)

In the statement of the homogenized model, the expression of the homogenized coefficients (86) is
extended on the form of the matrix of coefficients,

aHk` =
∑
i∈I

∑
j∈I

∫
Ω1
a0
ij

(
δkj + ∂θek

∂x1
j

)(
δ`i + ∂θe`

∂x1
i

)
dx1 (109)

where δ is the Kronecker symbol.

Proposition 80 [Homogenized Model] The limit u0 is solution to the weak formulation

∑
k∈I

∑
`∈I

∫
Ω]
aHk`

∂u0

∂x]k

∂v0

∂x]`
dx] =

∫
Ω]
fHv0 dx] (110)

for all v0 ∈ C∞Γ](Ω]).

The extension of its derivation consists in extensions of Lemma 65-67.

Lemma 81 [Fifth Block: Two-Scale Model] The couple (u0, ũ1) is solution to the two-scale
weak formulation

∑
i∈I

∑
j∈I

∫
Ω]×Ω1

a0
ij

∂u0

∂x]j
+ ∂ũ1

∂x1
j

(∂v0

∂x]i
+ ∂v1

∂x1
i

)
dx]dx1 =

∫
Ω]×Ω1

f 0v0 dx]dx1 (111)

for any (vi)i=0,1 ∈ C∞Γ](Ω], C∞] (Ω1)) such that

∂v0

∂x1 = 0. (112)

42

Proof extension. Source term. Unchanged.

• Step 1 The initial term i.e. the weak formulation (62) is replaced by (95) =⇒

Bv ∈ C∞Γ (Ω) and κ0∑
i∈I

∑
j∈I

∫
Ω
aεij
∂uε

∂xj

∂B(v0 + εv1)
∂xi

dx = κ0
∫

Ω
f B(v0 + εv1) dx.

• Step 2
Proposition 69 instead of 47

κ0∑
i∈I

∑
j∈I

∫
Ω
aεij
∂uε

∂xj
B

(
∂v0

∂x]i
+ ∂v1

∂x1
i

)
dx = κ0

∫
Ω
f T ∗(v0)dx+O(ε).

Proposition 70 instead of48 =⇒

κ0∑
i∈I

∑
j∈I

∫
Ω
aεij
∂uε

∂xj
T ∗
(
∂v0

∂x]i
+ ∂v1

∂x1
i

)
dx = κ0

∫
Ω
f T ∗(v0)dx+O(ε).

• Step 3 is unchanged =⇒

κ1∑
i∈I

∑
j∈I

∫
Ω]×Ω1

T (aεij)T (∂u
ε

∂xj
)
(
∂v0

∂x]i
+ ∂v1

∂x1
i

)
dx]dx1 = κ1

∫
Ω]×Ω1

T (f) v0 dx]dx1 +O(ε).

(113)

• Step 4
Lemma 58 is replaced with its extension i.e. Lemma 74 =⇒

∑
i∈I

∑
j∈I

∫
Ω]×Ω1

a0
ij

∂u0

∂x]j
+ ∂ũ1

∂x1
j

(∂v0

∂x]i
+ ∂v1

∂x1
i

)
dx]dx1 =

∫
Ω]×Ω1

f 0v0 dx]dx1.

Lemma 82 [Sixth Block: Microscopic Problem] ũ1 is solution to (101) with µj = ∂u0

∂x]j
and

∂ũ1

∂x1
j

=
∑
`∈I

∂u0

∂x]`

∂θe`

∂x1
j

.

Proof extension. Source term. The initial term (88) is replaced by (111).

• Step 1 Using Lemma 75 the extension of Lemma 59 =⇒

∑
i∈I

∑
j∈I

∫
Ω1
a0
ij

∂ũ1

∂x1
j

∂w1

∂x1
i

dx1 = −
∑
i∈I

∑
j∈I

∂u0

∂x]j

∫
Ω1
a0
ij

∂w1

∂x1
i

dx1. (114)

43

• Step 2 Proposition 72 the extension of Proposition 50 with µj = ∂u0

∂x]j
instead of µ = ∂u0

∂x]
=⇒

∂ũ1

∂x1
j

=
∑
k∈I

∂u0

∂x]k

∂θek

∂x1
j

.

Lemma 83 [Seventh Block: Macroscopic Problem] u0 is solution to (110).

Proof extension. Source termUsing τ = {τ 3, τ 1, τ 4}, θ = (∂v
∂x̃]

,
∂v

∂x̃1
, θ1, x∗̃y) with v, x, y ∈

X 0 in the extension, the test function v1 = ∂v0

∂x]
∂θ1

∂x1 is replaced with v1 = ∑
`∈I

∂v0

∂x]`

∂θe`

∂x1
i

in the

extension (111) of (88).

• Step 1 Lemma 82 as an extension of Lemma 66 =⇒

∑
i∈I

∑
j∈I

∫
Ω]×Ω1

a0
ij

∂u0

∂x]j
+
∑
k∈I

∂u0

∂x]k

∂θek

∂x1
j

∂v0

∂x]i
+
∑
`∈I

∂v0

∂x]`

∂θe`

∂x1
i

 dx]dx1 =
∫

Ω]×Ω1
f 0v0 dx]dx1.

(115)

• Step 2
Substep 2.1-n-dim Proposition 73 and factoring the sums ∑k∈I

∑
`∈I =⇒

∑
i∈I

∑
j∈I

∑
k∈I

∑
`∈I

∫
Ω]×Ω1

a0
ij

(
δkj + ∂θek

∂x1
j

)(
δ`i + ∂θe`

∂x1
i

)
∂u0

∂x]k

∂v0

∂x]`
dx1dx] =

∫
Ω]×Ω1

f 0 v0 dx]dx1.

• Step 3 the sums ∑i∈I
∑
j∈I are permuted with the integral

∫
Ω] and Definition (109) of aH is

used instead of (86) =⇒

∑
k∈I

∑
`∈I

∫
Ω]
aHk`

∂u0

∂x]k

∂v0

∂x]`
dx] =

∫
Ω]
fHv0 dx].

7 Implementation of the reference proof in the User Lan-
guage

The implementation of the reference proof in the User Language follows the mathematical formula-
tion in Section 6.1. However, it starts with usual mathematical rules as expansions or factorizations
in Section 7.1. The implementations of the propositions is in Section 7.2 when the seven lemma
proofs, called blocks, are in Sections 7.3-7.9. Each proof is made with rule definitions and with a
list of steps using these rules as well as predefined general rules. In addition, each proof operates
on a so-called "input source term" specified in the mathematical part of the document.

44

7.1 Usual mathematical rules
The following code represents the mathematical properties used to simplify formula. For example
a term t = a+ 0 is simplified into t = a by application of the strategy simplify_math.

Rule
% ==
% "simplify_minus" : remove a - a in an expression
% ==

simplify_minus1 : a_ - a_ + b_ → b_
simplify_minus2 : a_ - a_ → 0

% ==
% "mult_with_inverse" : remove a/a in an expression
% ==

mult_with_inverse1 : a_/a_ → 1 if a_ 6= 0
mult_with_inverse2 : -a_/a_ → -1 if a_ 6= 0
mult_with_inverse3 : a_/-a_ → -1 if a_ 6= 0
mult_with_inverse4 : -a_/-a_ → 1 if a_ 6= 0
mult_with_inverse5 : a_•b_/a_ → b_ if a_ 6= 0
mult_with_inverse6 : -a_•b_/a_ → -1•b_ if a_ 6= 0
mult_with_inverse7 : a_•b_/-a_ → -1•b_ if a_ 6= 0
mult_with_inverse8 : -a_•b_/-a_ → b_ if a_ 6= 0

% ==
% "mult_with_inv_power" : remove a•a^(-1) in an expression
% ==

mult_with_inv_power1 : a_•a_^(-1) → 1 if a_ 6= 0
mult_with_inv_power2 : -a_•a_^(-1) → -1 if a_ 6= 0
mult_with_inv_power3 : a_•-a_^(-1) → -1 if a_ 6= 0
mult_with_inv_power4 : -a_•-a_^(-1) → 1 if a_ 6= 0
mult_with_inv_power5 : a_•a_^(-1)•b_ → b_ if a_ 6= 0

% ==
% "simplify_math" : 1. Plus with 0
% 2. Multiply with 0
% 3. Integrate of 0
% 4. Multiply with inverse
% 5. Simplify minus
% % 6. Multiply with a^(-1)
% ==

plus_0 : 0 + a_ → a_
mult_0 : 0•a_ → 0

% ==
% "simplify_sign" : 1.
% 2.
% 3.
% "expan_sign" :
% ==

simplify_sign1 : -(-(a_)) → a_
simplify_sign2 :

∫
-a_ đx_ → -

∫
a_ đx_

45

simplify_sign2 :
∫

-a_ đx_ → -
∫

a_ đx_
simplify_sign3 : 0 = -a_ → 0 = a_
simplify_sign4 : -a_ = 0 → a_ = 0
simplify_sign5 : -(b_•-(a_)) → b_•a_

mult_minus_1a : -1•-1 → 1
mult_minus_1b : -1•-1•a_ → a_

% ==
% "minus_to_minus_1" : change -a into -1•a
% "minus_1_to_minus" :
% ==

minus_to_minus_1 : -a_ → -1•a_
minus_1_to_minus : -1•a_ → -a_

% ==
% "expansion" :
% "inverse_expansion" :
% ==

expansion1 : a_•(b_+c_) → a_•b_ + a_•c_
expansion2 : a_•-(b_+c_) → -a_•b_-a_•c_
inverse_expansion1 : a_•b_ + a_•c_ → a_•(b_ + c_)
inverse_expansion2 : -a_•b_ + a_•c_ → a_•(-b_ + c_)
inverse_expansion3 : a_•b_ - (a_)•c_ → a_•(b_ + -c_)
inverse_expansion4 : a_•b_ + -a_•(c_+d_) → a_•(b_ - c_ + d_)

% ==
% "mult_with_1" :
% ==

mult_with_1a : a_•1 → a_
mult_with_1b : a_•1•b_ → a_•b_

sim_diva : c_•a_/a_ → c_
sim_divb : c_•-a_/a_ → -c_
sim_divc : c_•b_/a_ → b_•c_/a_

% ==
% "integral_linearity" :
% "inverse_integral_linearity" :
% "integral_1" :
% "integral_0" :
% ==

integral_linearity :
∫

a_ + b_ đx_ →
∫

a_ đx_ +
∫

b_ đx_
inverse_integral_linearity :

∫
a_ đx_ +

∫
b_ đx_ →

∫
a_+b_ đx_

integral_1 :
∫
1 đx_ → meas_xReg

integral_0 :
∫

0 đx_ → 0
% ==
% "pretty_integral" : 1. Put intergral behind other termss
% ==

pretty_integral1 : a_•
∫
b_ đx_ → a_•

∫
b_ đx_ if theta(a_) = ∅

% ==

46

% "take_constant_out_of_integral" : not only constant, but also
% variable that is considered as a constant
% ==

take_constant_out_of_integral0 :
∫

y_•a_ đx_ → y_•
∫

a_ đx_
if not(x_ ∈ theta(y_))

take_constant_out_of_integral1 :
∫

const_•a_ đx_ → const_•
∫

a_ đx_
if (theta(const_) = ∅) or (const_ = eps)
or (const_ = 1/eps)

take_constant_out_of_integral2 :
∫
1/const_•a_ đx_ → 1/const_•

∫
a_ đx_

if theta(const_) = ∅ or const_ = eps
take_constant_out_of_integral3 :

∫
const_•a_•b_ đx_ → const_•

∫
a_•b_ đx_

if theta(const_) = ∅ or const_ = eps
take_constant_out_of_integral4 :

∫ ∫
a_•b_•c_ đx_ đy_ →

∫
(
∫

a_•c_ đx_)•b_đy_
if not(x_ ∈ theta(b_)) or const_ = eps

take_constant_out_of_integral5 :
∫
∂u0/∂y_•b_ đx_ → ∂u0/∂y_•

∫
b_ đx_

take_constant_out_of_integral6 :
∫
∂u_/∂xs•b_ đx1 → (

∫
b_ đx1)•∂u_/∂xs

% ==
% "remove_constant_from_equation_equal_0" : simplify the equation = 0
% ==

remove_constant_from_equation_equal_0_v1 : 0 = a_•b_ → 0 = b_ if theta(a_) = ∅
remove_constant_from_equation_equal_0_v2 : a_•b_ = 0 → b_ = 0 if theta(a_) = ∅

% ==
% "pretty_meas" : 1.
% ==

pretty_meas1 : 1/meas_rw_•
∫
b_ đx_ → 1/meas_rw_•

∫
b_ đx_

pretty_meas2 : -1/meas_rw_•
∫
b_ đx_ → -1/meas_rw_•

∫
b_ đx_

pretty_meas3 : b_/meas_rw_ → 1/meas_rw_•b_
pretty_meas4 : a_/meas_rw_ → 1/meas_rw_•a_
pretty_meas5 : -(a_•1)/meas_rw_ → -(a_)•1/meas_rw_

% ==
% "simplify_derivative" : 1. derivative of ∂f(x)/∂y = 0
% 2. derivative of a constant
% "derivative_product_rule" : ∂f•g/∂x = ∂f/∂x•g + ∂g/∂x•f
% "derivative_change_order" :
% "linearity_derivative" :
% "take_constant_out_of_derivative" :
% ==

simplify_derivative1 : ∂v_/∂x_ → 0 if (v_.Variable(1) 6= x_)
and (v_.Variable(2) 6= x_)

simplify_derivative2 : ∂v_/∂x_ → 0 if (v_.Variable 6= x_) and (v_ 6= ut1)
simplify_derivative3 : ∂0/∂x_ → 0
simplify_derivative4 : ∂v_/∂x_ → 0 if (v_.Variable 6= x_) and (v_ 6= v1)
derivative_product_rule : ∂(a_•b_)/∂x_ → ∂a_/∂x_•b_ + ∂b_/∂x_•a_
derivative_change_order : ∂(∂a_/∂y_)/∂x_ → ∂(∂a_/∂x_)/∂y_
linearity_derivative : ∂(a_ + b_)/∂x_ → ∂a_/∂x_ + ∂b_/∂x_
take_constant_out_of_derivative1 : ∂(const_•a_)/∂x_ → const_•∂a_/∂x_

if theta(const_)= ∅

47

take_constant_out_of_derivative2 : ∂(a_•b_)/∂x_ → b_•∂a_/∂x_
if not(x_ ∈ theta(b_))

% ==
% "simplify_equation" :
% ==

simplify_equation1 : a_•b_ = a_•c_ → b_ = c_
simplify_equation2 : a_ + b_ = a_ + c_ → b_ = c_
simplify_equation3 : a_ = a_ + c_ → 0 = c_
simplify_equation4 : a_•b_ = 0 → b_ = 0 if theta(a_) = ∅
simplify_equation5 : -a_ = -b_ → a_ = b_

change_side_left : a_ = b_ → a_ - b_ = 0
change_side_right : a_ + b_ = 0 → b_ = -a_

Strategy
sim_div : sim_diva
| sim_divb
| sim_divc

simplify_sign : simplify_sign1
| simplify_sign2
| simplify_sign3
| simplify_sign4
| simplify_sign5
| mult_minus_1a
| mult_minus_1b

simplify_minus : simplify_minus1
| simplify_minus2

mult_with_inverse : mult_with_inverse1
| mult_with_inverse2
| mult_with_inverse3
| mult_with_inverse4
| mult_with_inverse5
| mult_with_inverse6
| mult_with_inverse7
| mult_with_inverse8

mult_with_1 : mult_with_1a
| mult_with_1b s

expansion : expansion1
| expansion2

simplify_math :
plus_0
| mult_0
| integral_0

48

| mult_with_inverse
| simplify_minus

take_constant_out_of_integral : take_constant_out_of_integral1
| take_constant_out_of_integral2
| take_constant_out_of_integral3

remove_constant_from_equation_equal_0 :
remove_constant_from_equation_equal_0_v1

| remove_constant_from_equation_equal_0_v2

pretty_integral : pretty_integral1

pretty_meas : pretty_meas1
| pretty_meas2
| pretty_meas3
| pretty_meas4
| pretty_meas5

inverse_expansion : inverse_expansion1
| inverse_expansion2
| inverse_expansion3
| inverse_expansion4

simplify_derivative : simplify_derivative1
| simplify_derivative2
| simplify_derivative3

take_constant_out_of_derivative : take_constant_out_of_derivative1
| take_constant_out_of_derivative2

simplify_equation : simplify_equation1
| simplify_equation2
| simplify_equation3
| simplify_equation4
| simplify_equation5

Rule % (O(epsilon))
% ==
% "mult_with_oe" : any term multiply with oe = oe
% ==

mult_with_oe1 : a_•oe_eps → oe_eps
mult_with_oe2 : a_•-oe_eps → oe_eps
mult_with_oe3 : -oe_eps → oe_eps

% ==
% "eps_to_oe" : replace eps by O(eps)
% ==

49

eps_to_oe1 : a_/eps → a_/eps
eps_to_oe2 : a_ + eps → a_ + oe_eps
eps_to_oe3 : a_•eps → a_•oe_eps

% ==
% "change_side_oe" :
% ==

change_side_oe1 : oe_eps = oe_eps + a_ → oe_eps = a_
change_side_oe2 : oe_eps + a_ = oe_eps + b_ → a_ = b_ + oe_eps

% ==
% "plus_oe" :
% ==

plus_oe1 : oe_eps + oe_eps → oe_eps
plus_oe2 : a_ + oe_eps + oe_eps → a_ + oe_eps

% ==
% "pretty_oe" : simplify oe from both side of an equation
% ==

pretty_oe1 : oe_eps = -a_ → oe_eps = a_
pretty_oe2 : oe_eps = -a_•b_ → oe_eps = a_•b_
pretty_oe3 : oe_eps = -1•a_ → oe_eps = a_

% ==
% "simplify_multi_scale" : 1. Multiply with oe
% 2. Integral of oe
% 3. Plus oe
% 4. Change side oe
% 5. Pretty oe
% ==

integral_of_oe :
∫
oe_eps đx_ → oe_eps

oe_pass_eps_to_0_rule : oe_eps → 0

% ==
% "remove_oe" :
% ==

remove_oe_from_addition : a_ + oe_eps → a_
Strategy % (multiscale)

mult_with_oe : mult_with_oe1
| mult_with_oe2
| mult_with_oe3

eps_to_oe : eps_to_oe1
| eps_to_oe2
| eps_to_oe3

change_side_oe : change_side_oe1

50

| change_side_oe2

pretty_oe : pretty_oe1
| pretty_oe2
| pretty_oe3

simplify_multi_scale : mult_with_oe
| integral_of_oe
| plus_oe
| change_side_oe
| pretty_oe

7.2 Propositions specialized to two-scale approximation
All implementations of the propositions in Subsection 6.1.1 are grouped in this section.

Operator % (GENERAL DEFINITION)
opB_rw_ : "B" [opB_rw_Ind_] [opB_rw_Fun_] [opB_rw_InV1_,opB_rw_InV2_]

[opB_rw_OutV_] [opB_rw_Pa_]
% B() : L2(Ω#xΩ1) → L2(Ωε)

opT_rw_ : "T" [opT_rw_Ind_] [opT_rw_Fun_] [opT_rw_InV_]
[opT_rw_OutV1_,opT_rw_OutV2_] [opT_rw_Pa_]

% T() : L2(Ωε) → L2(Ω#xΩ1)

opTS_rw_ : "TS" [opTS_rw_Ind_] [opTS_rw_Fun_] [opTS_rw_InV1_, opTS_rw_InV2_]
[opTS_rw_OutV_] [opTS_rw_Pa_]

% TS(): L2(Ω#xΩ1) → L2(Ωε)

trace_rw_: "Trace" [trace_rw_Ind_] [trace_rw_Fun_] [trace_rw_InV_]
[trace_rw_OutV_] [trace_rw_Pa_]

Function
oe_rw_TS_Pa : "oe" [oe_rw_Ind_] [eps] [] "Given"
% O(epsTS)

% ==
% "interpretation_of_a_weak_equality"
% P72 :
% ==
Rule

interpretation_of_a_weak_equality_v1 :
∫ ∫

u_•v_ đx_ đy_ = 0 →
∫

u_•v_ đx_ = 0
if v_.Type = "Test"

interpretation_of_a_weak_equality_v2 :
∫

u_•v_ đx_ = 0 → u_ = 0
if v_.Type = "Test"

interpretation_of_a_weak_equality_v3 : 0 =
∫ ∫

u_•v_ đx_ đy_ → 0 =
∫

u_•v_ đx_
if v_.Type = "Test"

51

interpretation_of_a_weak_equality_v4 : 0 =
∫

u_•v_ đx_ → 0 = u_
if v_.Type = "Test"

interpretation_of_a_weak_equality_v5 :
∫ ∫

u_•v_ đx_ đy_ = 0 →
∫

u_•v_ đx_ = 0
if u_.Type = "Test"

interpretation_of_a_weak_equality_v6 :
∫

u_•v_ đx_ = 0 → v_ = 0
if u_.Type = "Test"

interpretation_of_a_weak_equality_v7 : 0 =
∫ ∫

u_•v_ đx_ đy_ → 0 =
∫

u_•v_ đx_
if u_.Type = "Test"

interpretation_of_a_weak_equality_v8 : 0 =
∫

u_•v_ đx_ → 0 = v_
if u_.Type = "Test"

interpretation_of_a_weak_equality_v9 :
∫ ∫

u_•v_ đx_ đy_ =
∫ ∫

h_•v_ đx_ đy_ →∫
u_•v_ đx_ =

∫
h_•v_ đx_ if v_.Type="Test"

interpretation_of_a_weak_equality_v10 :
∫

u_•v_ đx_ =
∫

h_•v_ đx_ → u_ = h_
if v_.Type = "Test"

% ==
% "adjoint_or_dual_of_TS"
% D83 :
% ==
Operator

opT_expr : "T" [opTS_rw_.Index] [expr_] [opTS_rw_.Outputvar]
[opTS_rw_.Inputvar(1),opTS_rw_.Inputvar(2)] [opTS_rw_.Parameter]

% T(Expr)

opTS_expr : "TS" [opT_rw_.Index] [expr_]
[opT_rw_.Outputvar(1),opT_rw_.Outputvar(2)] [opT_rw_.Inputvar]
[opT_rw_.Parameter]

% TS(Expr)

Rule
adjoint_or_dual_of_TS_v1 :
kappa0•

∫
expr_•opTS_rw_ đx_ →

kappa1•
∫ ∫

opT_expr•opTS_rw_.Expr đopTS_rw_.Inputvar(1) đopTS_rw_.Inputvar(2)

adjoint_or_dual_of_TS_v2 :
-(kappa0)•

∫
expr_•opTS_rw_ đx_ →

-(kappa1)•
∫ ∫

opT_expr•opTS_rw_.Expr đopTS_rw_.Inputvar(1) đopTS_rw_.Inputvar(2)

adjoint_or_dual_of_TS_v3 :
kappa0•a_•

∫
expr_•opTS_rw_ đx_ →

kappa1•a_•
∫ ∫

opT_expr•opTS_rw_.Expr đopTS_rw_.Inputvar(1) đopTS_rw_.Inputvar(2)

adjoint_or_dual_of_TS_v4 :
-kappa0•a_•

∫
expr_•opTS_rw_ đx_ →

-kappa1•a_•
∫ ∫

opT_expr•opTS_rw_.Expr đopTS_rw_.Inputvar(1) đopTS_rw_.Inputvar(2)

adjoint_or_dual_of_T :

52

kappa1•
∫ ∫

opT_rw_•expr_ đx_ đy_ →
kappa0•

∫
opT_rw_.Expr•opTS_expr đopT_rw_.Inputvar

% ==
% "boundary_condition_of_Bv" : if v ∈ Cinf[Γ#](Ω#;Cinf(Ω1)) then
% B(v) ∈ Cinf[Γ](Ωε)
% P85 :
% ==
Operator

trace_opB_rw_ : "Trace" [trace_rw_Ind_] [opB_rw_] [trace_rw_InV_]
[trace_rw_OutV_] [trace_rw_Pa_]

Rule
boundary_condition_of_Bv : trace_opB_rw_ → 0

% ==
% "derivation_rule_for_B"
% P86 : ∂B(Expr(xs,x1))/∂x → B(∂Expr(xs,x1)/∂xs) + 1/eps•B(∂Expr(xs,x1)/∂x1)
% ==
Expression

dB_Expr_dInVar_1 : ∂opB_rw_.Expr/∂opB_rw_.Inputvar(1)
dB_Expr_dInVar_2 : ∂opB_rw_.Expr/∂opB_rw_.Inputvar(2)

Operator
opB_dB_Expr_dInVar_1 : "B" [opB_rw_.Index] [dB_Expr_dInVar_1]
[opB_rw_.Inputvar(1),opB_rw_.Inputvar(2)] [opB_rw_.Outputvar]
[opB_rw_.Parameter]
% B(∂B.Expr(xs,x1)/∂xs)

opB_dB_Expr_dInVar_2 : "B" [opB_rw_.Index] [dB_Expr_dInVar_2]
[opB_rw_.Inputvar(1),opB_rw_.Inputvar(2)] [opB_rw_.Outputvar]
[opB_rw_.Parameter]
% B(∂B.Expr(xs,x1)/∂x1)

Rule
derivation_rule_for_B : ∂opB_rw_/∂x_ → opB_dB_Expr_dInVar_1

+ 1/opB_rw_.Parameter•opB_dB_Expr_dInVar_2 if x_ = opB_rw_.Outputvar
% Expr.Var1 = xs, Expr.Var2 = x1

% ==
% "approximation_between_B_and_TS"
% P87
% ==
Function

oe_BPa : "oe" [oe_rw_Ind_] [opB_rw_.Parameter] [] "Given"
% O(opB.Parameter)

53

Expression
x1_dBExpr_dxs : opB_rw_.Inputvar(2)•∂opB_rw_.Expr/∂opB_rw_.Inputvar(1)
% x1.∂BExpr/∂xs

x1_dTSExpr_dxs : opTS_rw_.Inputvar(2)•∂opTS_rw_.Expr/∂opTS_rw_.Inputvar(1)
% x1.∂ExprTS/∂xs

Operator
opTS_BExpr : "TS" [opB_rw_.Index] [opB_rw_.Expr]
[opB_rw_.Inputvar(1),opB_rw_.Inputvar(2)] [opB_rw_.Outputvar]
[opB_rw_.Parameter]
% TS(B.Expr)

opTS_x1_dBExpr_dxs : "TS" [opB_rw_.Index] [x1_dBExpr_dxs]
[opB_rw_.Inputvar(1),opB_rw_.Inputvar(2)] [opB_rw_.Outputvar]
[opB_rw_.Parameter]
% TS(x1.∂Expr/∂xs)

opB_TSExpr : "B" [opTS_rw_.Index] [opTS_rw_.Expr]
[opTS_rw_.Inputvar(1),opTS_rw_.Inputvar(2)] [opTS_rw_.Outputvar]
[opTS_rw_.Parameter]
% B(TSExpr)

opB_x1_dTSExpr_dxs : "B" [opTS_rw_.Index] [x1_dTSExpr_dxs]
[opTS_rw_.Inputvar(1),opTS_rw_.Inputvar(2)] [opTS_rw_.Outputvar]
[opTS_rw_.Parameter]
% B(x1.∂ExprTS/∂xs)

Rule
approximation_between_B_and_TS_l1 : opB_rw_ → opTS_BExpr
+ opB_rw_.Parameter•oe_eps
approximation_between_B_and_TS : opB_rw_ → opTS_BExpr
+ opB_rw_.Parameter•opTS_x1_dBExpr_dxs + opB_rw_.Parameter•oe_eps
approximation_between_TS_and_B : opTS_rw_ → opB_TSExpr
- opTS_rw_.Parameter•opB_x1_dTSExpr_dxs + opTS_rw_.Parameter•oe_eps

% ==
% "green_rule"
% P88 :

∫
∂u/∂x•v đx →

∫
trace(u)•trace(v)•nΓ đxg -

∫
u(x)•∂v(x)/∂x đx

% ==
Variable

xg : "xg" [xg_Ind_] x_.Region.Boundary

Operator
trace_a : "Trace" [trace_Ind_] [a_] [x_] [xg] [trace_Pa_]
trace_b : "Trace" [trace_Ind_] [b_] [x_] [xg] [trace_Pa_]

54

Rule
green_rule :

∫
∂a_/∂x_•b_ đx_ → -

∫
a_•∂b_/∂x_ đx_

+
∫

trace_a•trace_b•x_.Region.Boundary.Normal đtrace_a.Outputvar

% ==
% "the_linear_operator_associated_to_the_microscopic_problem"
% P89 :
% ==
Rule

the_linear_operator_associated_to_the_microscopic_problem :∫
a0•a_•∂w1/∂x1 đx1 = -mu_•

∫
a0•∂w1/∂x1 đx1 → a_ = mu_•∂theta1/∂x1

% P89

% ==
% "introduction_of_a_kronecker_symbol"
% P91 :
% ==
Rule

introduction_of_a_kronecker_symbol1 : ∂u_/∂x_ + ∂u_/∂x_•∂v_/∂y_ →
(1 + ∂v_/∂y_)•∂u_/∂x_

introduction_of_a_kronecker_symbol2 : ∂u_/∂x_ + ∂v_/∂y_•∂u_/∂x_ →
(1 + ∂v_/∂y_)•∂u_/∂x_

% P91

% ==
% "two_scale_limit_of_a_derivative"
% P97 :
% ==
Rule

two_scale_limit_of_a_derivative : u1-x1•∂u0/∂xs → ut1
% P97

% ==
% "product_rule_of_opT"
% ==
Expression

expr1expr2 : expr1_•expr2_

Operator
opT_Expr1Expr2_ : "T" [opT_Expr1Expr2_Ind_] [expr1expr2] [opT_Expr1Expr2_InV_]
[opT_Expr1Expr2_OutV1_,opT_Expr1Expr2_OutV2_] [opT_Expr1Expr2_Pa_]

opT_Expr1 : "T" [opT_Expr1Expr2_.Index] [expr1_] [opT_Expr1Expr2_.Inputvar]
[opT_Expr1Expr2_.Outputvar(1),opT_Expr1Expr2_.Outputvar(2)]
[opT_Expr1Expr2_.Parameter]

opT_Expr2 : "T" [opT_Expr1Expr2_.Index] [expr2_] [opT_Expr1Expr2_.Inputvar]

55

[opT_Expr1Expr2_.Outputvar(1),opT_Expr1Expr2_.Outputvar(2)]
[opT_Expr1Expr2_.Parameter]

Rule
product_rule_of_opT : opT_Expr1Expr2_ → opT_Expr1•opT_Expr2
% P77 : T(a•b) → T(a)•T(b)

% ==
% "simplify_opB" : change the order of integral
% "linearity_opB" :
% "inverse_linearity_opB" :
% "take_const_out_of_opB" :
% ==
Operator

opB_rw1_ : "B" [opB_rw1_Ind_] [opB_rw1_Fun_] [opB_rw1_InV1_,opB_rw1_InV2_]
[opB_rw1_OutV_] [opB_rw1_Pa_]

% B() : L2(Ω#xΩ1) → L2(Ωε)

Expression
opB_opB1_Expr : opB_rw_.Expr + opB_rw1_.Expr
linearity_opB_Expr : expr1_ + expr2_
constExpr : const_•expr_
expr1expr2 : expr1_•expr2_

Operator
opB_opB1 : "B" [opB_rw_.Index] [opB_opB1_Expr]
[opB_rw_.Inputvar(1),opB_rw_.Inputvar(2)] [opB_rw_.Outputvar]
[opB_rw_.Parameter]

opB_Expr1_plus_Expr2_ : "B" [opB_rw_Ind_] [linearity_opB_Expr]
[opB_rw_Invar1_,opB_rw_Invar2_]
[opB_rw_Outvar_] [opB_rw_Pa_]

opB_Expr1 : "B" [opB_Expr1_plus_Expr2_.Index] [expr1_]
[opB_Expr1_plus_Expr2_.Inputvar(1),opB_Expr1_plus_Expr2_.Inputvar(2)]
[opB_Expr1_plus_Expr2_.Outputvar] [opB_Expr1_plus_Expr2_.Parameter]

opB_Expr2 : "B" [opB_Expr1_plus_Expr2_.Index] [expr2_]
[opB_Expr1_plus_Expr2_.Inputvar(1),opB_Expr1_plus_Expr2_.Inputvar(2)]
[opB_Expr1_plus_Expr2_.Outputvar] [opB_Expr1_plus_Expr2_.Parameter]

opB_constExpr_ : "B" [opB_rw_Ind_] [constExpr]
[opB_rw_Invar1_,opB_rw_Invar2_] [opB_rw_Outvar_] [opB_rw_Pa_]

opB_Expr : "B" [opB_constExpr_.Index] [expr_]
[opB_constExpr_.Inputvar(1),opB_constExpr_.Inputvar(2)]
[opB_constExpr_.Outputvar] [opB_constExpr_.Parameter]

56

Rule
simplify_opB : opB_rw_ → 0 if opB_rw_.Expr = 0

linearity_opB : opB_Expr1_plus_Expr2_ → opB_Expr1 + opB_Expr2
% B(a+b) → B(a) + B(b)

inverse_linearity_opB : opB_rw_ + opB_rw1_ → opB_opB1
% B(a) + B(b) → B(a+b)

take_const_out_of_opB : opB_constExpr_ → const_•opB_Expr
if theta(const_) = ∅

% B(const•expr) → const•B(expr)

% ==
% "simplify_trace" gives value of its functions on the boundary
% ==
Operator

trace_Expr1_ : "Trace" [trace_Ind_] [expr1_] [trace_Expr1_Invar_]
[trace_Expr1_Outvar_] [trace_Pa_]

trace_Expr2_ : "Trace" [trace_Ind_] [expr2_] [trace_Expr2_Invar_]
[trace_Expr1_Outvar_] [trace_Pa_]

Rule
simplify_trace_v1 :

∫
trace_Expr1_•trace_Expr2_•n_ đx_ →∫

trace_Expr1_.Expr.BCLhsExpr•trace_Expr2_•n_ đx_

% ==
% "fubini_theorem" change the order of integral
% ==
Rule

fubini_theorem :
∫ ∫

a_ đx_ đy_ →
∫ ∫

a_ đy_ đx_

% ==
% "adjoint_of_d"
% ==
Rule

adjoint_of_d :
∫ ∫

x1•u_•∂v_/∂xs_ đx_ đy_ → -
∫ ∫

x1•v_•∂u_/∂xs_ đx_ đy_
% D90 :

∫ ∫
u(xs,x1)•x1•∂v(xs,x1)/∂xs đxs đx1 →

-
∫ ∫

v(xs,x1)•x1•∂u(xs,x1)/∂xs đxs đx1

Strategy
interpretation_of_a_weak_equality : interpretation_of_a_weak_equality_v1
| interpretation_of_a_weak_equality_v2
| interpretation_of_a_weak_equality_v3
| interpretation_of_a_weak_equality_v4
| interpretation_of_a_weak_equality_v5

57

| interpretation_of_a_weak_equality_v6
| interpretation_of_a_weak_equality_v7
| interpretation_of_a_weak_equality_v8
| interpretation_of_a_weak_equality_v9
| interpretation_of_a_weak_equality_v10

adjoint_or_dual_of_TS : adjoint_or_dual_of_TS_v1
| adjoint_or_dual_of_TS_v2
| adjoint_or_dual_of_TS_v3
| adjoint_or_dual_of_TS_v4

green_rule_strategy : green_rule
| fubini_theorem

introduction_of_a_kronecker_symbol : introduction_of_a_kronecker_symbol1
| introduction_of_a_kronecker_symbol2

7.3 First Block
The code includes the source term and the proof itself corresponding to Lemma 59 in Section 6.1.

First block source term:

PDE "l98_source_term"
Constant

psi : "psi"
gammae_NorVec : "gammae_NorVec"
gamma1_NorVec : "gamma1_NorVec"
gammas_NorVec : "gammas_NorVec"
omegae_NorVec : "omegae_NorVec"
omega1_NorVec : "omega1_NorVec"
omegas_NorVec : "omegas_NorVec"
norvec : "norvec"

Region
gammae : "gammae" [gamma_Ind_] [gamma_Dim_] [] gammae_Bou_ gammae_NorVec
% Γε

gamma1 : "gamma1" [gamma1_Ind_] [gamma1_Dim_] [] gamma1_Bou_ gamma1_NorVec
% Γ1

gammas : "gammas" [gammas_Ind_] [gammas_Dim_] [] gammas_Bou_ gammas_NorVec
% Γ#

omegae : "omegae" [omegae_Ind_] [1] [] gammae omegae_NorVec
% Ωε(Γε)

58

omega1 : "omega1" [omega1_Ind_] [1] [] gamma1 omega1_NorVec
% Ω1(Γ1)

omegas : "omegas" [omegas_Ind_] [1] [] gammas omegas_NorVec
% Ω#(Γ#)

gammav : "gammav" [gammav_Ind_] [1] [gammas,gamma1] gammav_Bou_ gammav_NorVec_
% Γv = Γ#∪Γ1

eps_reg : "eps_reg" [eps_reg_Ind_] [1] [0,1] eps_reg_Bou_ eps_reg_NorVec_

Expression % use in source term
o1xos : omega1•omegas
% Ω1xΩ# !!!

Function % use in source term
meas_rw_ : "Measure" [meas_Ind_] [meas_Var_] [] "Given"
% Measure function
meas_omegae : "Measure" [meas_Ind_] [omegae] [] "Given"
% |Ωε| !!! meas_Var =
meas_o1xos : "Measure" [meas_Ind_] [o1xos] [] "Given"
% |Ω1xΩ#|

Expression % use in source term
kappa0 : 1/meas_omegae
kappa1 : 1/meas_o1xos
null : 0

Variable
x : "x" [] omegae
x1 : "x1" [] omega1
xs : "xs" [] omegas
eps : "eps" [] eps_reg

Function
ue : "ue" [] [x] [(gammae ue_ null)] "Unknown"
% uε : Ωε, uε = 0

v : "v" [] [xs,x1] [(gammas v_ null),(gamma1 v_ null)] "Test"
% v ∈ CΓ#(Ω#,CΓ1(Ω1)), v = 0 on Γ#, v = 0 on Γ1, Test function

ae : "ae" [] [x] [] "Unknown"

f : "f" [] [x] [] "Unknown"

Expression % USE IN SOURCE TERM
dv_dx1 : ∂v/∂x1

59

due_dx : ∂ue/∂x

Operator % USE IN SOURCE TERM
% opB_v : "B" [opB_Ind_] [v] [xs,x1] [x] [eps]
% B(v)

opB_v_rw : "B" [opB_Ind_] [v_] [v_.Variable(1),v_.Variable(2)] [ue_.Variable] [eps]

opT_ue : "T" [opT_Ind_] [ue] [x] [xs,x1] [eps]
% T(ue)

Expression % USE TO TEST
x1_ddv_dx1_dxs : x1•∂(∂v/∂x1)/∂xs

Operator % USE TO TEST
opB_dv_dx1 : "B" [opB_Ind_] [dv_dx1] [xs,x1] [x] [eps]
opTS_dv_dx1 : "TS" [opB_Ind_] [dv_dx1] [xs,x1] [x] [eps]
opTS_x1_ddv_dx1_dxs : "TS" [opB_Ind_] [x1_ddv_dx1_dxs] [xs,x1] [x] [eps]

PDE
l98_source_term : kappa0•

∫
ae•∂ue/∂x•∂v/∂x đx = kappa0•

∫
f•v đx

First block in the reference proof:

Model "l98ref" % Lemma 98, First Block
Function

oe_eps : "oe" [oe_Ind_] [eps] [] "Given"

oe_rw_ : "oe" [oe_Ind_] [oe_Var_] [] "Given"
% O() tend to zero as ε->0 !

u0 : "u0" [u0_Ind_] [xs] [] "Unknown"

u1 : "u1" [u1_Ind_] [xs,x1] [] "Unknown"

ut1 : "ut1" [ut1_Ind_] [xs,x1] [] "Unknown"

a0 : "a0" [a0_Ind_] [x] [] "Unknown"

w1 : "w1" [w1_Ind_] [x1] [] "Unknown"
% w1 ∈ C#(Ω1)

theta1 : "theta1" [theta1_Ind_] [x1] [] "Unknown"

v1 : "v1" [v1_Ind_] [xs,x1] [(gammas v1_ null)] "Test"
% v1 ∈ CΓ#(Ω#,CΓ#(Ω1)), Test function

60

#Include "basic_math_rule.proof"
#Include "math_rule.proof"

Rule
mult_equality_by_eps : a_ = b_ → eps•a_ = eps•b_

approximation_of_Tu : opT_ue → u0 + oe_eps
% Assumption : eq47

create_source_term : kappa0•
∫

ae_•∂ue_/∂x_•∂v_/∂x_ đx_ = k_→
psi = kappa0•

∫
∂ue_/∂x_•opB_v_rw đx_

temporary_1 :
∫

a_•b_•c_ đx_ → 0

Step
step_cst : create_source_term ↑ % Create Source Term (cst) % Correct Source Term
step0 : mult_equality_by_eps ↑
step1 : green_rule ↑

; boundary_condition_of_Bv ↑
; simplify_math ↑

step2 : derivation_rule_for_B ↑
; expansion ↑
; integral_linearity ↑
; expansion ↑
; take_constant_out_of_integral1 ↑
; minus_to_minus_1 ↑
; simplify_math ↑
; mult_with_1 ↑
; eps_to_oe ↑
; simplify_multi_scale ↑

step3 : approximation_between_B_and_TS_l1 ↑
; simplify_multi_scale ↑
; remove_oe_from_addition ↑

step4 : adjoint_or_dual_of_TS_v1 ↑
step5 : approximation_of_Tu ↑

; remove_oe_from_addition ↑
step6 : fubini_theorem ↑

; green_rule ↑
; temporary_1 ↑
; simplify_math ↑
; oe_pass_eps_to_0_rule ↑
; remove_constant_from_equation_equal_0 ↑
; mult_with_1 ↓ ; mult_with_1 ↓
; simplify_sign ↑

step7 : interpretation_of_a_weak_equality ↑
; interpretation_of_a_weak_equality ↑

Model l98ref : step_cst; step0; step1; step2; step3; step4; sep5;step6; step7

61

7.4 Second Block
The code includes the source term and the proof itself corresponding to Lemma 60 in Section 6.1.

Second block source term:

PDE "l99_source_term"
Constant

psi : "psi"
gammae_NorVec : "gammae_NorVec"
gamma1_NorVec : "gamma1_NorVec"
gammas_NorVec : "gammas_NorVec"
omegae_NorVec : "omegae_NorVec"
omega1_NorVec : "omega1_NorVec"
omegas_NorVec : "omegas_NorVec"
norvec : "norvec"

Region
gammae : "gammae" [gamma_Ind_] [gamma_Dim_] [] gammae_Bou_ gammae_NorVec
% Γε

gamma1 : "gamma1" [gamma1_Ind_] [gamma1_Dim_] [] gamma1_Bou_ gamma1_NorVec
% Γ1

gammas : "gammas" [gammas_Ind_] [gammas_Dim_] [] gammas_Bou_ gammas_NorVec
% Γ#

omegae : "omegae" [omegae_Ind_] [1] [] gammae omegae_NorVec
% Ωε(Γε)

omega1 : "omega1" [omega1_Ind_] [1] [] gamma1 omega1_NorVec
% Ω1(Γ1)

omegas : "omegas" [omegas_Ind_] [1] [] gammas omegas_NorVec
% Ω#(Γ#)

gammav : "gammav" [gammav_Ind_] [1] [gammas,gamma1] gammav_Bou_ gammav_NorVec_
% Γv = Γ#∪Γ1

eps_reg : "eps_reg" [eps_reg_Ind_] [1] [0,1] eps_reg_Bou_ eps_reg_NorVec_

Expression % use in source term
o1xos : omega1•omegas

Function % use in source term
meas_rw_ : "Measure" [meas_Ind_] [meas_Var_] [] "Given"
% Measure function
meas_omegae : "Measure" [meas_Ind_] [omegae] [] "Given"

62

% |Ωε| !!! meas_Var =
meas_o1xos : "Measure" [meas_Ind_] [o1xos] [] "Given"
% |Ω1xΩ#|

Expression % use in source term
kappa0 : 1/meas_omegae
kappa1 : 1/meas_o1xos
null : 0

Variable
x : "x" [x_Ind_] omegae
x1 : "x1" [x1_Ind_] omega1
xs : "xs" [xs_Ind_] omegas
xg : "xg" [xg_Ind_] gammae
eps : "eps" [eps_Ind_] eps_reg

Function
ue : "ue" [ue_Ind_] [x] [(gammae ue_ null)] "Unknown"
% uε : Ωε, uε = 0

v : "v" [v_Ind_] [xs,x1] [(gammav v_ null)] "Test"
% v ∈ CΓ#(Ω#,CΓ1(Ω1)), v = 0 on Γ#, v = 0 on Γ1, Test function

ae : "ae" [ae_Ind_] [x] [] "Unknown"

f : "f" [f_Ind_] [x] [] "Unknown"

Expression % USE IN SOURCE TERM
dv_dx1 : ∂v/∂x1

PDE
l99_source_term : kappa0•

∫
ae•∂ue/∂x•∂v/∂x đx = kappa0•

∫
f•v đx

Second block in the reference proof:

Model "l99ref"
Function

oe_eps : "oe" [oe_Ind_] [eps] [] "Given"

oe_rw : "oe" [oe_Ind_] [oe_Var_] [] "Given"

u0 : "u0" [u0_Ind_] [xs] [] "Unknown"

u1 : "u1" [u1_Ind_] [xs,x1] [] "Unknown"

v1 : "v1" [v1_Ind_] [xs,x1] [(gammas v1_ null)] "Test"
% v1 ∈ CΓ#(Ω#,CΓ#(Ω1)), Test function

63

ut1 : "ut1" [ut1_Ind_] [xs,x1] [] "Unknown"
% u~1

a0 : "a0" [a0_Ind_] [x] [] "Unknown"

w1 : "w1" [w1_Ind_] [x1] [] "Unknown"
% w1 ∈ C#(Ω1)

eta : "eta" [eta_Ind_] [xs,x1] [] "Unknown"

theta1 : "theta1" [theta1_Ind_] [x1] [] "Unknown"

#Include "basic_math_rule.proof"
#Include "math_rule.proof"

Operator
opT_ue : "T" [opT_Ind_] [ue] [x] [xs,x1] [eps]
% T(ue)

trace_ue : "Trace" [trace_Ind_] [ue] [x] [xg_rw_] [trace_Pa_]
% trace(ue)

Rule
ue_on_gamma : trace_ue → 0
% ue = 0 on Γ check

approximation_of_Tu : opT_ue → u0 + oe_eps
% Assumption : eq47

assumption_L99 : opT_ue → u0 + eps•u1
% T(ue) → u0 + eps•u1

two_scale_limit_of_a_derivative : u1-x1•∂u0/∂xs → ut1

special1 : kappa1•e_ + (-kappa1)•d_ + (-kappa1)•a_•c_ + (-kappa1)•b_ + oe_eps →
kappa1•(e_ - d_ - a_•c_ - b_) + oe_eps

special2 : kappa1•-1•a_ + kappa1•-1•b_•c_ + kappa1•-1•
∫ ∫

d_•∂v/∂x1 đx_ đy_
+ kappa1•

∫ ∫
e_•∂v/∂x1 đx_ đy_ + oe_eps → -1•kappa1•a_ + -1•kappa1•b_•c_

+ -1•kappa1•
∫ ∫

(d_-e_)•∂v/∂x1 đx_ đy_ + oe_eps

special3 : kappa1•
∫ ∫

k_•a_ đx_ đy_ + kappa1•b_•c_ + kappa1•
∫ ∫

k_•d_ đx_ đy_
+ oe_eps → kappa1•

∫ ∫
(a_ + d_)•k_ đx_ đy_ + kappa1•b_•c_ + oe_eps

% ==
% CREATE SOURCE TERM FROM WEAK FORM (PDE)

64

% ==
Expression

due_dx_rw : ∂ue_/∂x_
Operator

opT_due_dx_rw : "T" [opT_Ind_] [due_dx_rw] [x_]
[v_.Variable(1),v_.Variable(2)] [eps]
% T(∂ue/∂x)

Rule
source_term : kappa0•

∫
ae_•∂ue_/∂x_•∂v_/∂x_ đx_ = k_→

psi = kappa1•
∫ ∫

opT_due_dx_rw•v_ đv_.Variable(1) đv_.Variable(2)

Step
step_sc : source_term ↑
step1 : adjoint_or_dual_of_T ↑
step2 : approximation_between_TS_and_B ↑
; eps_to_oe ↑
; expansion ↓
; simplify_multi_scale ↑
; integral_linearity ↑
; expansion ↓
; simplify_multi_scale ↑
step3 : green_rule ↑
; simplify_math ↑
step4 : derivation_rule_for_B ↑
; expansion ↓
; integral_linearity ↑
; take_constant_out_of_integral ↑
; expansion ↑
step5 : approximation_between_B_and_TS ↑
; expansion ↓
; integral_linearity ↓
; expansion ↓
; take_constant_out_of_integral1 ↑
; simplify_math ↑
; eps_to_oe ↑
; expan_sign ↓
; simplify_multi_scale ↑
; minus_to_minus_1 ↑

step6 : adjoint_or_dual_of_TS3 ↑
step7 : assumption_L99 ↑
; expansion ↓
; integral_linearity ↑
; take_constant_out_of_integral ↑
; expansion ↓
; simplify_math ↑
; eps_to_oe ↑
; simplify_multi_scale ↑

65

; simplify_multi_scale ↑
step8 : adjoint_of_d ↑

; minus_to_minus_1 ↑
; simplify_sign ↓
step9 : special2 ↑
step10 : green_rule ↑

; simplify_math ↑
; simplify_sign ↑
; simplify_sign ↑
; fubini_theorem ↑
step11 : green_rule ↑

; simplify_math ↑
; simplify_sign ↑
; simplify_sign ↑
step12 : special3 ↑
step13 : two_scale_limit_of_a_derivative ↑

; simplify_derivative2 ↑
; simplify_math ↑
; oe_pass_eps_to_0_rule ↑
step14 :% weak_limit_of_T ↑

simplify_math ↑
; simplify_equation ↑
; interpretation_of_a_weak_equality ↑
; interpretation_of_a_weak_equality ↑

Model
l99ref : step_sc; step1; step2; step3; step4

; step5; step6; step7; step8; step9; step10; step11
; step12; step13; step14

7.5 Third Block
The code includes the source term and the proof itself corresponding to Lemma 61 in Section 6.1.

Third block source term:

PDE "l100_source_term"
Constant

eps : "eps"
psi : "psi"
gammae_NorVec : "gammae_NorVec"
gamma1_NorVec : "gamma1_NorVec"
gammas_NorVec : "gammas_NorVec"
omegae_NorVec : "omegae_NorVec"
omega1_NorVec : "omega1_NorVec"
omegas_NorVec : "omegas_NorVec"
norvec : "norvec"

66

Region
gammae : "gammae" [] [] [] gammae_Bou_ gammae_NorVec
% Γε

gamma1 : "gamma1" [] [] [] gamma1_Bou_ gamma1_NorVec
% Γ1

gammas : "gammas" [] [] [] gammas_Bou_ gammas_NorVec
% Γ#

omegae : "omegae" [omegae_Ind_] [1] [] gammae omegae_NorVec
% Ωε(Γε)

omega1 : "omega1" [omega1_Ind_] [1] [] gamma1 omega1_NorVec
% Ω1(Γ1)

omegas : "omegas" [omegas_Ind_] [1] [] gammas omegas_NorVec
% Ω#(Γ#)

gammav : "gammav" [gammav_Ind_] [1] [gammas,gamma1] gammav_Bou_ gammav_NorVec_
% Γv = Γ#∪Γ1

eps_reg : "eps_reg" [eps_reg_Ind_] [1] [0,1] eps_reg_Bou_ eps_reg_NorVec_

Expression % use in source term
o1xos : omega1•omegas

Function % use in source term
meas_rw_ : "Measure" [meas_Ind_] [meas_Var_] [] "Given"
% Measure function
meas_omegae : "Measure" [meas_Ind_] [omegae] [] "Given"
% |Ωε|
meas_o1xos : "Measure" [meas_Ind_] [o1xos] [] "Given"
% |Ω1xΩ#|

Expression % use in source term
kappa0 : 1/meas_omegae
kappa1 : 1/meas_o1xos
null : 0

Variable
x : "x" [x_Ind_] omegae
x1 : "x1" [x1_Ind_] omega1
xs : "xs" [xs_Ind_] omegas
xg : "xg"[xg_Ind_] gammae
eps : "eps" [eps_Ind_] eps_reg

67

Function
ue : "ue" [ue_Ind_] [x] [(gammae ue_ null)] "Unknown"
% uε : Ωε, uε = 0

v : "v" [v_Ind_] [xs,x1] [(gammas v_ null)] "Test"
% v ∈ CΓ#(Ω#,C#(Ω1)), v = 0 on Γ#, Test function

ae : "ae" [ae_Ind_] [x] [] "Unknown"

f : "f" [f_Ind_] [x] [] "Unknown"

u0 : "u0" [u0_Ind_] [xs] [] "Unknown"

Expression % USE IN SOURCE TERM
dv_dx1 : ∂v/∂x1

PDE
l100_source_term : kappa0•

∫
ae•∂ue/∂x•∂v/∂x đx = kappa0•

∫
f•v đx

Third block in the reference proof:

Model "l100ref"
Function

oe_eps : "oe" [oe_Ind_] [eps] [] "Bigo"

oe_rw_ : "oe" [oe_Ind_] [oe_Var_] [] "Bigo"
% O() tend to zero as ε->0 !

v1 : "v1" [v1_Ind_] [xs,x1] [(gammas v1_ null)] "Test"
% v1 ∈ CΓ#(Ω#,CΓ#(Ω1)), Test function

ut1 : "ut1" [ut1_Ind_] [xs,x1] [] "Unknown"
% u~1

a0 : "a0" [a0_Ind_] [x] [] "Unknown"

w1 : "w1" [w1_Ind_] [x1] [] "Unknown"
% w1 ∈ C#(Ω1)

eta : "eta" [eta_Ind_] [xs,x1] [] "Unknown"

theta1 : "theta1" [theta1_Ind_] [x1] [] "Unknown"

u1 : "u1" [u1_Ind_] [xs,x1] [] "Unknown"

#Include "basic_math_rule.proof"
#Include "math_rule.proof"

68

% ==
% RULES USED IN STEP
% ==
Operator

opB_v : "B" [opB_Ind_] [v] [xs,x1] [x] [eps]
% B(v)

opT_ue : "T" [opT_Ind_] [ue] [x] [xs,x1] [eps]
% T(ue)

trace_ue : "Trace" [trace_Ind_] [ue] [x] [xg_rw_] [trace_Pa_]
% trace(ue)

trace_v : "Trace" [trace_Ind_] [v] [x1] [gamma1] [trace_Pa_]
% trace(v)

opB_dv_dx1 : "B" [opB_Ind_] [dv_dx1] [xs,x1] [x] [eps]
% B(∂v/∂x1)

opTS_dv_dx1 : "TS" [opTS_Ind_] [dv_dx1] [xs,x1] [x] [eps]
% TS(∂v/∂x1)

trace_u0 : "Trace" [trace_Ind_] [u0] [x1] [gamma1] [trace_Pa_]
% trace(ue)

Rule
ue_on_gamma : trace_ue → 0
% ue = 0 on Γ check

approximation_of_Tu : opT_ue → u0 + oe_eps
% Assumption : eq47

v_on_gamma1 : trace_v → 0
% v = 0 on Γ1

assumption_L99 : opT_ue → u0 + eps•u1
% T(ue) → u0 + eps•u1

two_scale_limit_of_a_derivative : u1-x1•∂u0/∂xs → ut1

test : a_ - a_ + b_ → b_

special1 : kappa1•e_ + (-kappa1)•d_ + (-kappa1)•a_•c_
+ (-kappa1)•b_ + oe_eps → kappa1•(e_ - d_ - a_•c_ - b_) + oe_eps

special2 : (-kappa1)•a_ + (-kappa1)•b_•c_ + (-kappa1)•
∫ ∫

d_•∂v/∂x1 đx_ đy_

69

+ kappa1•
∫ ∫

∂v/∂x1•e_ đx_ đy_ + oe_eps → (-kappa1)•a_ + (-kappa1)•b_•c_
+ (-kappa1)•

∫ ∫
(d_ - e_)•∂v/∂x1 đx_ đy_ + oe_eps

special3 : kappa1•
∫ ∫

k_•a_ đx_ đy_ + kappa1•b_•c_ + kappa1•
∫ ∫

k_•d_ đx_ đy_
+ oe_eps → kappa1•

∫ ∫
(a_ + d_)•k_ đx_ đy_ + kappa1•b_•c_ + oe_eps

v_periodic_on_gamma1 :
∫
trace_v•trace_u0•gamma1_NorVec đgamma1 → 0

result_of_l99 : eta → ∂u0/∂xs + ∂ut1/∂x1

% ==
% CREATE SOURCE TERM FROM WEAK FORM (PDE)
% ==

Rule
source_term : kappa0•

∫
ae_•∂ue_/∂x_•∂v_/∂x_ đx_ = k_→ psi = 1

Step
step_sc : source_term ↑
step1 : adjoint_or_dual_of_T ↑
step2 : approximation_between_TS_and_B ↑
; eps_to_oe ↑
; expansion ↓
; simplify_multi_scale ↑
; integral_linearity ↑
; expansion ↓
; simplify_multi_scale ↑
step3 : green_rule ↑
; simplify_math ↑
step4 : derivation_rule_for_B ↑
; expansion ↓
; integral_linearity ↑
; take_constant_out_of_integral ↑
; expansion ↑
step5 : approximation_between_B_and_TS ↑
; expansion ↓
; integral_linearity ↓
; expansion ↓
; take_constant_out_of_integral ↑
; simplify_math ↑
; eps_to_oe ↑
; simplify_sign ↓
; simplify_multi_scale ↑
; mult_with_1 ↑
; pretty_integral ↑
step6 : adjoint_or_dual_of_TS ↑
step7 : assumption_L99 ↑
; expansion ↓

70

; integral_linearity ↑
; take_constant_out_of_integral ↑
; expansion ↓
; simplify_math ↑
; eps_to_oe ↑
; simplify_sign ↓
; simplify_multi_scale ↑
; simplify_multi_scale ↑
; pretty_integral ↑
step8 : adjoint_of_d ↑
; simplify_sign ↓
step9 : special2 ↑
step10 : green_rule ↑
; simplify_math ↑
; simplify_sign ↑
; simplify_sign ↑
; fubini_theorem ↑
step11 : green_rule ↑
; simplify_sign ↑
; simplify_sign ↑
; v_periodic_on_gamma1 ↑
; simplify_math ↑
; integral_linearity ↑
; expansion ↑
; simplify_sign ↑
; simplify_sign ↑
step12 : two_scale_limit_of_a_derivative ↑
; simplify_derivative2 ↑
; simplify_math ↑
; oe_pass_eps_to_0_rule ↑
; simplify_math ↑
step13 : result_of_l99 ↑
; expansion ↑
; integral_linearity ↑
; expansion ↑
; change_side_left ↑
; expan_sign ↑
; expan_sign ↑
; simplify_math ↑
; simplify_math ↑
; simplify_sign ↑
; simplify_sign ↑

Model l100ref : step_sc; step1; step2; step3; step4; step5
; step6; step7; step8; step9; step10; step11; step12; step13

71

7.6 Fourth Block
The code includes the source term and the proof itself corresponding to Lemma 62 in Section 6.1.

Fourth block source term:

PDE "l101_source_term"
Constant

psi : "psi"
gammae_NorVec : "gammae_NorVec"
gamma1_NorVec : "gamma1_NorVec"
gammas_NorVec : "gammas_NorVec"
omegae_NorVec : "omegae_NorVec"
omega1_NorVec : "omega1_NorVec"
omegas_NorVec : "omegas_NorVec"
norvec : "norvec"

Region
gammae : "gammae" [gamma_Ind_] [gamma_Dim_] [] gammae_Bou_ gammae_NorVec
% Γε

gamma1 : "gamma1" [gamma1_Ind_] [gamma1_Dim_] [] gamma1_Bou_ gamma1_NorVec
% Γ1

gammas : "gammas" [gammas_Ind_] [gammas_Dim_] [] gammas_Bou_ gammas_NorVec
% Γ#

omegae : "omegae" [omegae_Ind_] [1] [] gammae omegae_NorVec
% Ωε(Γε)

omega1 : "omega1" [omega1_Ind_] [1] [] gamma1 omega1_NorVec
% Ω1(Γ1)

omegas : "omegas" [omegas_Ind_] [1] [] gammas omegas_NorVec
% Ω#(Γ#)

gammav : "gammav" [gammav_Ind_] [1] [gammas,gamma1] gammav_Bou_ gammav_NorVec_
% Γv = Γ#∪Γ1

eps_reg : "eps_reg" [eps_reg_Ind_] [1] [0,1] eps_reg_Bou_ eps_reg_NorVec_

Expression % use in source term
o1xos : omega1•omegas % Ω1xΩ# !!!

Function % use in source term
meas_rw_ : "Measure" [meas_Ind_] [meas_Var_] [] "Given"
% Measure function
meas_omegae : "Measure" [meas_Ind_] [omegae] [] "Given"

72

% |Ωε| !!! meas_Var =
meas_o1xos : "Measure" [meas_Ind_] [o1xos] [] "Given"
% |Ω1xΩ#|

Expression % use in source term
kappa0 : 1/meas_omegae
kappa1 : 1/meas_o1xos
null : 0

Variable
x : "x" [x_Ind_] omegae
x1 : "x1" [x1_Ind_] omega1
xs : "xs" [xs_Ind_] omegas
xg : "xg"[xg_Ind_] gammae
eps : "eps" [eps_Ind_] eps_reg

Function
ue : "ue" [ue_Ind_] [x] [(gammae ue_ null)] "Unknown"
% uε : Ωε, uε = 0

v : "v" [v_Ind_] [xs] [] "Test"
% v ∈ C(Ω#), Test function

Expression % USE IN SOURCE TERM
dv_dx1 : ∂v/∂x1
due_dx : ∂ue/∂x

Operator % USE IN SOURCE TERM
opB_v : "B" [opB_Ind_] [v] [xs,x1] [x] [eps]
% B(v)

opT_ue : "T" [opT_Ind_] [ue] [x] [xs,x1] [eps]
% T(ue)

trace_ue : "Trace" [trace_Ind_] [ue] [x] [xg_rw_] [trace_Pa_]
% trace(ue)

trace_v : "Trace" [trace_Ind_] [v] [trace_invar_] [xg_rw_] [trace_Pa_]
% trace(v)

opB_dv_dx1 : "B" [opB_Ind_] [dv_dx1] [xs,x1] [x] [eps]
% B(∂v/∂x1)

opT_due_dx : "T" [opT_Ind_] [due_dx] [x] [xs,x1] [eps]
% T(∂ue/∂x)

opTS_dv_dx1 : "TS" [opTS_Ind_] [dv_dx1] [xs,x1] [x] [eps]

73

% TS(∂v/∂x1)

Operator % USE TO TEST
opB_dv_dx1 : "B" [opB_Ind_] [dv_dx1] [xs,x1] [x] [eps]
opTS_dv_dx1 : "TS" [opB_Ind_] [dv_dx1] [xs,x1] [x] [eps]

PDE
l101_source_term : psi = kappa1•

∫ ∫
opT_due_dx•v đx1 đxs % WORKING SOURCE TERM

The Fourth

Fourth block in the reference proof:

Model "l101ref"
Function

oe_eps : "oe" [oe_Ind_] [eps] [] "Given"

oe_rw_ : "oe" [oe_Ind_] [oe_Var_] [] "Given"

u0 : "u0" [u0_Ind_] [xs] [] "Unknown"

u1 : "u1" [u1_Ind_] [xs,x1] [] "Unknown"

v1 : "v1" [v1_Ind_] [xs,x1] [(gammas v1_ null)] "Test"
% v1 ∈ CΓ#(Ω#,CΓ#(Ω1)), Test function

ut1 : "ut1" [ut1_Ind_] [xs,x1] [] "Unknown"
% u~1

eta : "eta" [eta_Ind_] [xs,x1] [] "Unknown"

a0 : "a0" [a0_Ind_] [x] [] "Unknown"

w1 : "w1" [w1_Ind_] [x1] [] "Unknown"
% w1 ∈ C#(Ω1)

phi : "phi" [phi_Ind_] [xs] [] "Test"
% w1 ∈ C(Ω#)

theta1 : "theta1" [theta1_Ind_] [x1] [] "Unknown"

#Include "basic_math_rule.proof"
#Include "math_rule.proof"

Rule
ue_on_gamma : trace_ue → 0
% ue = 0 on Γ check

74

approximation_of_Tu : opT_ue → u0 + oe_eps
% Assumption : eq47

chose_v_on_gammas : trace_v → 0
% v = 0 on Γs

assumption_L99 : opT_ue → u0 + eps•u1
% T(ue) → u0 + eps•u1

two_scale_limit_of_a_derivative : u1-x1•∂u0/∂xs → ut1

substitue_psi : psi → kappa1•
∫ ∫

opT_due_dx•v đx1 đxs

psi_pass_eps_to_0 : kappa1•
∫ ∫

opT_due_dx•v đx1 đxs →
kappa1•

∫ ∫
eta•v đx1 đxs

test : a_ + (b_ + c_) → a_ + b_ + c_

pretty_oe_eps : a_ + oe_eps → a_ - oe_eps

make_clear_intergral1 :
∫ ∫

a_•b_ đx_ đy_ →
∫
(
∫

a_ đx_)•b_ đy_
if a_ = eta

make_clear_intergral2 :
∫ ∫

a_•b_ đx_ đy_ →
∫
1 đy_•

∫
a_•b_ đx_

if a_ = v

special1 : kappa1•
∫
a_•v đxs_ - kappa1•c_•

∫
b_•v đxs_ = 0

→ kappa1•
∫
(a_ - b_)•v đxs_ = 0

Step
step1 : adjoint_or_dual_of_T ↑
step2 : approximation_between_TS_and_B ↑
; eps_to_oe ↑
; expansion ↓
; simplify_multi_scale ↑
; integral_linearity ↑
; expansion ↓
; simplify_multi_scale ↑
step3 : green_rule ↑
; simplify_trace ↑
; simplify_math ↑
step4 : derivation_rule_for_B ↑
; simplify_derivative2 ↑
; simplify_opB ↑
; simplify_math ↑
step5 : approximation_between_B_and_TS ↑
; expansion ↓

75

; integral_linearity ↓
; expansion ↓
; take_constant_out_of_integral ↑
; simplify_math ↑
; eps_to_oe ↑
; simplify_sign ↓
; simplify_multi_scale ↑
step6 : adjoint_or_dual_of_TS ↑
step7 : assumption_L99 ↑
; expansion ↓
; integral_linearity ↑
; take_constant_out_of_integral ↑
; expansion ↓
; simplify_math ↑
; eps_to_oe ↑
; simplify_multi_scale ↑
step8 : green_rule ↑
; integral_linearity ↓
; expansion ↑
; simplify_sign ↑
; simplify_sign ↑
step9 : substitue_psi ↑
; psi_pass_eps_to_0 ↑
; oe_pass_eps_to_0_rule ↑
; simplify_math ↑
step10 : chose_v_on_gammas ↑
; simplify_math ↑
; change_side_left ↑
; make_clear_intergral1 ↑
; make_clear_intergral2 ↑
; integral_1 ↑
step11 : special1 ↑
; simplify_equation ↑
step12 : interpretation_of_a_weak_equality ↑
; change_side_right ↑
; simplify_equation ↑

Model l101ref : step1; step2; step3; step4; step5; step6; step7
; step8; step9; step10; step11; step12

7.7 Fifth Block
The code includes the source term and the proof itself corresponding to Lemma 65 in Section 6.1.

Fifth block source term:

PDE "l104_source_term"

76

Constant
psi : "psi"
gammae_NorVec : "gammae_NorVec"
gamma1_NorVec : "gamma1_NorVec"
gammas_NorVec : "gammas_NorVec"
omegae_NorVec : "omegae_NorVec"
omega1_NorVec : "omega1_NorVec"
omegas_NorVec : "omegas_NorVec"
norvec : "norvec"
block1 : "block1"

Region
gammae : "gammae" [gamma_Ind_] [gamma_Dim_] [] gammae_Bou_ gammae_NorVec
% Γε

gamma1 : "gamma1" [gamma1_Ind_] [gamma1_Dim_] [] gamma1_Bou_ gamma1_NorVec
% Γ1

gammas : "gammas" [gammas_Ind_] [gammas_Dim_] [] gammas_Bou_ gammas_NorVec
% Γ#

omegae : "omegae" [omegae_Ind_] [1] [] gammae omegae_NorVec
% Ωε(Γε)

omega1 : "omega1" [omega1_Ind_] [1] [] gamma1 omega1_NorVec
% Ω1(Γ1)

omegas : "omegas" [omegas_Ind_] [1] [] gammas omegas_NorVec
% Ω#(Γ#)

gammav : "gammav" [gammav_Ind_] [1] [gammas,gamma1] gammav_Bou_ gammav_NorVec_
% Γv = Γ#∪Γ1

eps_reg : "eps_reg" [eps_reg_Ind_] [1] [0,1000] eps_reg_Bou_ eps_reg_NorVec_

Expression % use in source term
o1xos : omega1•omegas % Ω1xΩ# !!!

Function % use in source term
meas_rw_ : "Measure" [meas_Ind_] [meas_Var_] [] "Given"
% Measure function
meas_omegae : "Measure" [meas_Ind_] [omegae] [] "Given"
% |Ωε| !!! meas_Var =
meas_o1xos : "Measure" [meas_Ind_] [o1xos] [] "Given"
% |Ω1xΩ#|

Expression % use in source term

77

kappa0 : 1/meas_omegae
kappa1 : 1/meas_o1xos
null : 0

Variable
x : "x" [x_Ind_] omegae
x1 : "x1" [x1_Ind_] omega1
xs : "xs" [xs_Ind_] omegas
xg : "xg"[xg_Ind_] gammae
eps : "eps" [eps_Ind_] eps_reg

Function
ue : "ue" [ue_Ind_] [x] [(gammae ue_ null)] "Unknown"
% uε : Ωε, uε = 0

v : "v" [v_Ind_] [x] [(gammas v_ null)] "Test"

ae : "ae" [ae_Ind_] [x] [] "Unknown"

f : "f" [f_Ind_] [x] [] "Unknown"

Expression % USE IN SOURCE TERM
dv_dx : ∂v/∂x
due_dx : ∂ue/∂x

Operator % USE IN SOURCE TERM
opB_v : "B" [opB_Ind_] [v] [xs,x1] [x] [eps]
% B(v)

opT_ue : "T" [opT_Ind_] [ue] [x] [xs,x1] [eps]
% T(ue)

trace_ue : "Trace" [trace_Ind_] [ue] [x] [xg_rw_] [trace_Pa_]
% trace(ue)

trace_v : "Trace" [trace_Ind_] [v] [xs,x1] [xg_rw_] [trace_Pa_]
% trace(v)

opT_due_dx : "T" [opT_Ind_] [due_dx] [x] [xs,x1] [eps]
% T(∂ue/∂x)

PDE
l104_source_term : kappa0•

∫
ae•due_dx•dv_dx đx = kappa0•

∫
f•v đx % WORKING SOURCE TERM

Fifth block in the reference proof:

Model "l104ref"
Function

78

f0 : "f0" [f0_Ind_] [xs] [] "Unknown"

a0 : "a0" [a0_Ind_] [x] [] "Unknown"

w1 : "w1" [w1_Ind_] [x1] [] "Unknown"
% w1 ∈ C#(Ω1)

phi : "phi" [phi_Ind_] [xs] [] "Test"
% w1 ∈ C(Ω#)

theta1 : "theta1" [theta1_Ind_] [x1] [] "Unknown"

oe_eps : "oe" [oe_Ind_] [eps] [] "Given"

oe_rw_ : "oe" [oe_Ind_] [oe_Var_] [] "Given"
% O() tend to zero as ε->0 !

u0 : "u0" [u0_Ind_] [xs] [] "Unknown"

u1 : "u1" [u1_Ind_] [xs,x1] [] "Unknown"

v0 : "v0" [v0_Ind_] [xs] [(gammas v0_ null)] "Test"
% v0 ∈ CΓ#(Ω#), Test function

v1 : "v1" [v1_Ind_] [xs,x1] [(gammas v1_ null)] "Test"
% v1 ∈ CΓ#(Ω#,CΓ#(Ω1)), Test function

ut1 : "ut1" [ut1_Ind_] [xs,x1] [] "Unknown"
% u~1

eta : "eta" [eta_Ind_] [xs,x1] [] "Unknown"

Expression
v0_epsv1 : v0 + eps•v1

Operator
opB_v0_epsv1 : "B" [opB_Ind_] [v0_epsv1] [xs,x1] [x] [eps]

#Include "basic_math_rule.proof"
#Include "math_rule.proof"

Rule
ue_on_gamma : trace_ue → 0
% ue = 0 on Γ check

approximation_of_Tu : opT_ue → u0 + oe_eps
% Assumption : eq47

79

v_on_gamma1 : trace_v → 0
% v = 0 on Γ1

assumption_L99 : opT_ue → u0 + eps•u1
% T(ue) → u0 + eps•u1

two_scale_limit_of_a_derivative : u1-x1•∂u0/∂xs → ut1

substitute_psi : psi → kappa1•
∫ ∫

opT_due_dx•v đx1 đxs

psi_pass_eps_to_0 : opT_due_dx → eta

result_of_P97 : eta → ∂u0/∂xs + ∂ut1/∂x1

pretty_oe_eps : a_ + oe_eps → a_ - oe_eps

test : a_ → a_

repalace_v : v → opB_v0_epsv1

eps_expansion : 1/eps•(a_+b_) → 1/eps•a_+1/eps•b_

special1 : kappa0•
∫

k_•a2_ đx_ + kappa0•
∫

k_•b2_ đx_
= d_ → kappa0•

∫
k_•(a2_ + b2_) đx_ = d_

Operator
opT_ae : "T" [opT_ae_Ind_] [ae] [x] [xs,x1] [eps]
% T(ae)

opT_f : "T" [opT_f_Ind_] [f] [x] [xs,x1] [eps]
% T(f)

Rule
special2 : opT_ae → a0
special3 : opT_f → f0 + oe_eps

Step
step1 : repalace_v ↑
step2 : derivation_rule_for_B ↑
; linearity_derivative ↑
; take_constant_out_of_derivative ↑
step3 : linearity_opB ↑
step4 : take_const_out_of_opB ↑
; eps_expansion ↑
; simplify_math ↑
; simplify_derivative4 ↑
step5 : simplify_opB ↑

80

; simplify_math ↑
; eps_to_oe ↑
; simplify_multi_scale ↑
step6 : linearity_opB ↑
; expansion ↓
; integral_linearity ↓
; expansion ↓
; simplify_multi_scale ↑
; pretty_oe ↑
; mult_with_1 ↑
; pretty_meas ↑
; special1 ↑
step7 : inverse_linearity_opB ↑
step8 : approximation_between_B_and_TS ↑
; expansion ↓
; integral_linearity ↓
; expansion ↓
; take_constant_out_of_integral ↑
; eps_to_oe ↑
; simplify_multi_scale ↑
step9 : adjoint_or_dual_of_TS ↑
step10 : product_rule_of_opT ↑
; special2 ↑
; special3 ↑
; psi_pass_eps_to_0 ↑
; oe_pass_eps_to_0_rule ↑
; simplify_multi_scale ↑
; simplify_math ↑
step11 : result_of_P97 ↑

Model l104ref : step1; step2; step3; step4; step5; step6
; step7; step8; step9; step10; step11

7.8 Sixth Block
The code includes the source term and the proof itself corresponding to Lemma 66 in Section 6.1.

Sixth block source term:

PDE "l105_source_term"
Constant

psi : "psi"
gammae_NorVec : "gammae_NorVec"
gamma1_NorVec : "gamma1_NorVec"
gammas_NorVec : "gammas_NorVec"
omegae_NorVec : "omegae_NorVec"
omega1_NorVec : "omega1_NorVec"

81

omegas_NorVec : "omegas_NorVec"
norvec : "norvec"
block1 : "block1"

Region
gammae : "gammae" [gamma_Ind_] [gamma_Dim_] [] gammae_Bou_ gammae_NorVec
% Γε

gamma1 : "gamma1" [gamma1_Ind_] [gamma1_Dim_] [] gamma1_Bou_ gamma1_NorVec
% Γ1

gammas : "gammas" [gammas_Ind_] [gammas_Dim_] [] gammas_Bou_ gammas_NorVec
% Γ#

omegae : "omegae" [omegae_Ind_] [1] [] gammae omegae_NorVec
% Ωε(Γε)

omega1 : "omega1" [omega1_Ind_] [1] [] gamma1 omega1_NorVec
% Ω1(Γ1)

omegas : "omegas" [omegas_Ind_] [1] [] gammas omegas_NorVec
% Ω#(Γ#)

gammav : "gammav" [gammav_Ind_] [1] [gammas,gamma1] gammav_Bou_ gammav_NorVec_
% Γv = Γ#∪Γ1

eps_reg : "eps_reg" [eps_reg_Ind_] [1] [0,1] eps_reg_Bou_ eps_reg_NorVec_

Expression % use in source term
o1xos : omega1•omegas % Ω1xΩ# !!!

Function % use in source term
meas_rw_ : "Measure" [meas_Ind_] [meas_Var_] [] "Given"
% Measure function
meas_omegae : "Measure" [meas_Ind_] [omegae] [] "Given"
% |Ωε| !!! meas_Var =
meas_o1xos : "Measure" [meas_Ind_] [o1xos] [] "Given"
% |Ω1xΩ#|

Expression % use in source term
kappa0 : 1/meas_omegae
kappa1 : 1/meas_o1xos
null : 0

Variable
x : "x" [x_Ind_] omegae
x1 : "x1" [x1_Ind_] omega1

82

xs : "xs" [xs_Ind_] omegas
xg : "xg"[xg_Ind_] gammae
eps : "eps" [eps_Ind_] eps_reg

Function
ue : "ue" [ue_Ind_] [x] [(gammae ue_ null)] "Unknown"
% uε : Ωε, uε = 0

v : "v" [v_Ind_] [x] [(gammas v_ null)] "Test"

v0 : "v0" [v0_Ind_] [xs] [(gammas v0_ null)] "Test"
% v0 ∈ CΓ#(Ω#), Test function

u0 : "u0" [u0_Ind_] [xs] [] "Unknown"

a0 : "a0" [a0_Ind_] [x] [] "Unknown"

ut1 : "ut1" [ut1_Ind_] [xs,x1] [] "Unknown"
% u~1

v1 : "v1" [v1_Ind_] [xs,x1] [(gammas v1_ null)] "Test"
% v1 ∈ CΓ#(Ω#,CΓ#(Ω1)), Test function

f0 : "f0" [f0_Ind_] [x] [] "Unknown"

Expression % USE IN SOURCE TERM
dv_dx : ∂v/∂x
due_dx : ∂ue/∂x
v0_epsv1 : v0 + eps•v1

Operator % USE IN SOURCE TERM
opB_v : "B" [opB_Ind_] [v] [xs,x1] [x] [eps]
% B(v)

opT_ue : "T" [opT_Ind_] [ue] [x] [xs,x1] [eps]
% T(ue)

trace_ue : "Trace" [trace_Ind_] [ue] [x] [xg_rw_] [trace_Pa_]
% trace(ue)

trace_v : "Trace" [trace_Ind_] [v] [xs,x1] [xg_rw_] [trace_Pa_]
% trace(v)

opT_due_dx : "T" [opT_Ind_] [due_dx] [x] [xs,x1] [eps]
% T(∂ue/∂x)

opB_v0_epsv1 : "B" [opB_Ind_] [v0_epsv1] [xs,x1] [x] [eps]

83

PDE
l105_source_term :

∫ ∫
a0•(∂u0/∂xs+∂ut1/∂x1)•(∂v0/∂xs+∂v1/∂x1) đxs đx1 =

∫
f0•v0 đx

Sixth block in the reference proof:

Model "l105ref"
Function

oe_eps : "oe" [oe_Ind_] [eps] [] "Bigo"

oe_rw_ : "oe" [oe_Ind_] [oe_Var_] [] "Bigo"
% O() tend to zero as ε->0 !

u1 : "u1" [u1_Ind_] [xs,x1] [] "Unknown"

eta : "eta" [eta_Ind_] [xs,x1] [] "Unknown"

ae : "ae" [ae_Ind_] [x] [] "Unknown"

w1 : "w1" [w1_Ind_] [x1] [] "Unknown"
% w1 ∈ C#(Ω1)

phi : "phi" [phi_Ind_] [xs] [] "Test"
% w1 ∈ C(Ω#)

f : "f" [f_Ind_] [x] [] "Unknown"

theta1 : "theta1" [theta1_Ind_] [x1] [] "Unknown"
#Include "basic_math_rule.proof"
#Include "math_rule.proof"

Rule
ue_on_gamma : trace_ue → 0
% ue = 0 on Γ check

approximation_of_Tu : opT_ue → u0 + oe_eps
% Assumption : eq47

v_on_gamma1 : trace_v → 0
% v = 0 on Γ1

assumption_L99 : opT_ue → u0 + eps•u1
% T(ue) → u0 + eps•u1

two_scale_limit_of_a_derivative : u1-x1•∂u0/∂xs → ut1

substitue_psi : psi → kappa1•
∫ ∫

opT_due_dx•v đx1 đxs

84

psi_pass_eps_to_0 : kappa1•
∫ ∫

opT_due_dx•v đx1 đxs → kappa1•
∫ ∫

eta•v đx1 đxs

pretty_oe_eps : a_ + oe_eps → a_ - oe_eps

repalace_v : v → opB_v0_epsv1

repalace_v0 : v0 → 0

repalace_v1 : v1 → w1•phi

eps_expansion : 1/eps•(a_+b_) → 1/eps•a_+1/eps•b_

Step
step1 : repalace_v0 ↑
step2 : repalace_v1 ↑
; simplify_derivative ↑
; simplify_math ↑
; take_constant_out_of_derivative ↑
; fubini_theorem ↑
; take_constant_out_of_integral4 ↑
; expansion ↑
step3 : interpretation_of_a_weak_equality ↑
; integral_linearity ↑
; take_constant_out_of_integral5 ↑
; change_side_right ↑
; simplify_sign ↑
step4 : the_linear_operator_associated_to_the_microscopic_problem ↑

Model l105ref : step1; step2; step3; step4

7.9 Seventh Block
The code includes the source term and the proof itself corresponding to Lemma 67 in Section 6.1.

Seventh block source term:

PDE "l106_source_term"
Constant

psi : "psi"
gammae_NorVec : "gammae_NorVec"
gamma1_NorVec : "gamma1_NorVec"
gammas_NorVec : "gammas_NorVec"
omegae_NorVec : "omegae_NorVec"
omega1_NorVec : "omega1_NorVec"
omegas_NorVec : "omegas_NorVec"
norvec : "norvec"

85

block1 : "block1"

Region
gammae : "gammae" [gamma_Ind_] [gamma_Dim_] [] gammae_Bou_ gammae_NorVec
% Γε

gamma1 : "gamma1" [gamma1_Ind_] [gamma1_Dim_] [] gamma1_Bou_ gamma1_NorVec
% Γ1

gammas : "gammas" [gammas_Ind_] [gammas_Dim_] [] gammas_Bou_ gammas_NorVec
% Γ#

omegae : "omegae" [omegae_Ind_] [1] [] gammae omegae_NorVec
% Ωε(Γε)

omega1 : "omega1" [omega1_Ind_] [1] [] gamma1 omega1_NorVec
% Ω1(Γ1)

omegas : "omegas" [omegas_Ind_] [1] [] gammas omegas_NorVec
% Ω#(Γ#)

gammav : "gammav" [gammav_Ind_] [1] [gammas,gamma1] gammav_Bou_ gammav_NorVec_
% Γv = Γ#∪Γ1

eps_reg : "eps_reg" [eps_reg_Ind_] [1] [0,1] eps_reg_Bou_ eps_reg_NorVec_

Expression % use in source term
o1xos : omega1•omegas % Ω1xΩ# !!!

Function % use in source term
meas_rw_ : "Measure" [meas_Ind_] [meas_Var_] [] "Given"
% Measure function
meas_omegae : "Measure" [meas_Ind_] [omegae] [] "Given"
% |Ωε| !!! meas_Var =
meas_o1xos : "Measure" [meas_Ind_] [o1xos] [] "Given"
% |Ω1xΩ#|

Expression % use in source term
kappa0 : 1/meas_omegae
kappa1 : 1/meas_o1xos
null : 0

Variable
x : "x" [x_Ind_] omegae
x1 : "x1" [x1_Ind_] omega1
xs : "xs" [xs_Ind_] omegas
xg : "xg"[xg_Ind_] gammae

86

eps : "eps" [eps_Ind_] eps_reg

Function
a0 : "a0" [a0_Ind_] [x] [] "Unknown"

u0 : "u0" [u0_Ind_] [xs] [] "Unknown"

ut1 : "ut1" [ut1_Ind_] [xs,x1] [] "Unknown"
% u~1

v0 : "v0" [v0_Ind_] [xs] [(gammas v0_ null)] "Test"
% v0 ∈ CΓ#(Ω#), Test function

v1 : "v1" [v1_Ind_] [xs,x1] [(gammas v1_ null)] "Test"
% v1 ∈ CΓ#(Ω#,CΓ#(Ω1)), Test function

f0 : "f0" [f0_Ind_] [x] [] "Unknown"

v : "v" [v_Ind_] [x] [(gammas v_ null)] "Test"

ue : "ue" [ue_Ind_] [x] [(gammae ue_ null)] "Unknown"
% uε : Ωε, uε = 0

Expression % USE IN SOURCE TERM
dv_dx : ∂v/∂x
due_dx : ∂ue/∂x
v0_epsv1 : v0 + eps•v1

Operator % USE IN SOURCE TERM
opB_v : "B" [opB_Ind_] [v] [xs,x1] [x] [eps]
% B(v)

opT_ue : "T" [opT_Ind_] [ue] [x] [xs,x1] [eps]
% T(ue)

trace_ue : "Trace" [trace_Ind_] [ue] [x] [xg_rw_] [trace_Pa_]
% trace(ue)

trace_v : "Trace" [trace_Ind_] [v] [xs,x1] [xg_rw_] [trace_Pa_]
% trace(v)

opT_due_dx : "T" [opT_Ind_] [due_dx] [x] [xs,x1] [eps]
% T(∂ue/∂x)

opB_v0_epsv1 : "B" [opB_Ind_] [v0_epsv1] [xs,x1] [x] [eps]

PDE

87

l106_source_term :
∫ ∫

a0•(∂u0/∂xs+∂ut1/∂x1)•(∂v0/∂xs+∂v1/∂x1) đxs đx1 =
∫

f0•v0 đx % WORKING SOURCE TERM

Seventh block in the reference proof:

Model "l106ref"
Function

oe_eps : "oe" [oe_Ind_] [eps] [] "Given"

oe_rw_ : "oe" [oe_Ind_] [oe_Var_] [] "Given"
% O() tend to zero as ε->0 !

u1 : "u1" [u1_Ind_] [xs,x1] [] "Unknown"

eta : "eta" [eta_Ind_] [xs,x1] [] "Unknown"

ae : "ae" [ae_Ind_] [x] [] "Unknown"

f : "f" [f_Ind_] [x] [] "Unknown"

w1 : "w1" [w1_Ind_] [x1] [] "Unknown"
% w1 ∈ C#(Ω1)

phi : "phi" [phi_Ind_] [xs] [] "Test"
% w1 ∈ C(Ω#)

theta1 : "theta1" [theta1_Ind_] [x1] [] "Unknown"

#Include "basic_math_rule.proof"
#Include "math_rule.proof"

Rule
ue_on_gamma : trace_ue → 0
% ue = 0 on Γ check

approximation_of_Tu : opT_ue → u0 + oe_eps
% Assumption : eq47

v_on_gamma1 : trace_v → 0
% v = 0 on Γ1

assumption_L99 : opT_ue → u0 + eps•u1
% T(ue) → u0 + eps•u1

two_scale_limit_of_a_derivative : u1-x1•∂u0/∂xs → ut1

substitue_psi : psi → kappa1•
∫ ∫

opT_due_dx•v đx1 đxs

88

psi_pass_eps_to_0 : kappa1•
∫ ∫

opT_due_dx•v đx1 đxs → kappa1•
∫ ∫

eta•v đx1 đxs

pretty_oe_eps : a_ + oe_eps → a_ - oe_eps

repalace_v : v → opB_v0_epsv1

repalace_v0 : v0 → 0

repalace_v1 : v1 → ∂v0/∂xs•theta1

eps_expansion : 1/eps•(a_+b_) → 1/eps•a_+1/eps•b_

result_of_l105 : ∂ut1/∂x1 → ∂u0/∂xs•∂theta1/∂x1

Step
step1 : repalace_v1 ↑
; derivative_product_rule ↑
; derivative_change_order ↑
; simplify_derivative2 ↑
; simplify_derivative3 ↑
; simplify_math ↑
step2 : result_of_l105 ↑
step3 : introduction_of_a_kronecker_symbol ↑
; fubini_theorem ↑
; take_constant_out_of_integral6 ↑
; take_constant_out_of_integral6 ↑

Model l106ref : step1; step2; step3

8 Implementation of extensions
The Green rule, i.e. Proposition 49 in the reference proof, has been extended to the n-dimensional
case in Proposition 71. Its extension to vector valued functions is stated as follows.

Proposition 84 [Green Rule] If two vector valued functions u = (ui)i=1,..,n, v = (vj)j=1,..,n ∈
(H1(Ω))n then the traces of u and v on Γ are well defined and∫

Ω
ui
∂vj
∂x

dx =
∫

Γ
tr(ui) tr(vj) nΓ ds(x)−

∫
Ω
vi
∂uj
∂x

dx (116)

for all i and j ∈ {1, .., n}.

The implementations of these two extensions are detailed in the two following subsections and
the result of their combination appears in the last section devoted to the program outputs.

8.1 Implementation of extension to n-dimensional regions
The implementation of this extension includes declarations of variables, functions, operators and
rules related to the reference proof, and then declarations of a variable and a rule for the extension.

89

Extension "green_rule_extension_ndim" of Model "green_rule"

% ==
% " green_rule_extension_ndim"
% ==
Variable

var_ : "x" [] varRegion_

Rule
green_rule : X__ → Y__

% ==
% Extension ndim
% ==
Variable

var_’ndim : "x" [varIndex_] varRegion_

Rule
ext1’ndim : var_ ⇒ var_’ndim

Extension
green_rule_extension_ndim : green_rule;; p_; ext1’ndim

The extension itself is the command

green_rule_extension_ndim : green_rule;; p_; ext1’ndim

where green_rule;; is a pattern for localization of the operation refering to the Green rule of the
reference proof and p_;ext1’ndim is translated into the strategy s=InnerMost(p→p;ext1’ndim).
Since ext1’ndim is a rewriting rule at the top, the strategy s applies this rule using the InnerMost
strategy.

8.2 Extension to vector-valued solution
The implementation of the extension of the Green rule to the case of vector valued functions as in
Proposition 116 follows the same principle and is not further discussed.

Extension "green_rule_extension_vvf" of Model "green_rule"

% ==
% "reen_rule_extension_vvf"
% ==

Function
fun1_ : "u" [] [fun1InputVar_] [(fun1Bou_ fun1OnBou_ fun1Value_)] "Unknown"
fun2_ : "v" [] [fun2InputVar_] [(fun2Bou_ fun2OnBou_ fun2Value_)] "Test"

Rule
green_rule : X__ → Y__

90

% ==
% Extension vvf
% ==
Function

fun1_’vvf : "u" [fun1Index_] [fun1InputVar_] [(fun1Bou_ fun1OnBou_ fun1Value_)]
"Unknown"

fun2_’vvf : "v" [fun2Index_] [fun2InputVar_] [(fun2Bou_ fun2OnBou_ fun2Value_)]
"Test"

Rule
ext2’vvf : fun1_ ⇒ fun1_’vvf
ext3’vvf : fun2_ ⇒ fun2_’vvf

Extension
green_rule_extension_vvf : green_rule;; p_; (ext2’vvf | ext3’vvf)

9 Latex outputs
Any expression, proof or extension in the Processing Language can be transformed into Latex
format for the purpose of checking its correctness. We provide Latex outputs of the reference
Green rule, of the two extensions and their results when applied to the reference Green rule, of their
combination of the two extensions and finally of the result of the application of the combination to
the reference Green formula. Different options of display can be used, but in all cases the keyword
as Oper, Fun, Var etc are hidden. Here, only the most important arguments of the operators, the
functions and the variables are visible. This can be changed on demand. The notations ↑, IM, LC
represent the strategy BottomUp, InnerMost and LeftChoice.

9.1 Green rule extensions
9.1.1 Reference Green rule

The global structure of this little reference proof is kept on the format of the expressions in the
Processing Language with the keywords Proof, Model, Step and the names step1 of step and
Green_rule of strategy. The functions NormalOf, BoundaryOf and RegionOf are to recover the
region field, the boundary field and the normal direction in a variable, a region and boundary of
a region respectively.

Proof :
Model (
Step(step1,
(green_rule:∫

u · ∂v
∂x dx→ −

∫ ∂u
∂x · v dx

+
∫

Trace(u) · Trace(v) · NormalOf(BoundaryOf(RegionOf(x)))) ds) ↑
)

)

91

9.1.2 Green rule extension to n-dimensional regions

An extension starts with the function name Extension instead of Proof for a proof, then it
follows the grammar defined for extensions with the possible use of the two strategies IM, LC and
localization at relative positions (here the position 2 is relative to the position of the root of x).
The patterns of the search are green_rule: X__→ Y__, x and p_ The added context is [i_,⊥]
where the brackets refer to the function List. The gain in using an extension over defining a
complete proof is visible in the size of the added term which is the complement brought to the
proof.

Extension:
(IM(green_rule: X__→Y__),

(IM(p_),
(x,

(2, [i_,⊥])
)

)

The structure of the reference Green rule is kept after application of the above extension, only
the indices have been added.

Proof :
Model(
Step(step1,
(green_rule:∫

u · ∂v
∂xi_

dxi_ → −
∫ ∂u
∂xi_
· v dxi_

+
∫

Trace(u) · Trace(v) · NormalOf(BoundaryOf(RegionOf(xi_))) ds) ↑
)

)

9.1.3 Green rule extension to vector valued functions

The structure of the extension is the same except that the strategy LeftChoice is used to add
different indices on the function u and on the function v.

Extension:
(IM(green_rule: X__→Y__),

IM(p_),
LC(

(u,
(2, [j_,⊥])

),
(v,

(2, [k_,⊥])
)

)
)

Proof :

92

Model(
Step(step1,

(green_rule:∫
uj_ · ∂vk_

∂x dx→ −
∫ ∂uj_

∂x · vk_ dx
+
∫

Trace(uj_) · Trace(vk_) · NormalOf(BoundaryOf(RegionOf(x))) ds) ↑
)

)

9.1.4 Combination of the two extensions

The following combination of the two extensions has been built automatically. Evidently, it com-
bines the features of the two extensions and save the time to design another extension.

Extension:
(IM(green_rule: X__→Y__),

IM(p_),
LC(

(v,
(2, [k_,⊥])

),
(x,

(2, [i_,⊥])
)
(u,

(2, [j_,⊥])
)

)
)

Proof :
Model(
Step(step1,

(green_rule:∫
uj_ · ∂vk_

∂xi_
dxi_ → −

∫ ∂uj_
∂x · vk_ dxi_

+
∫

Trace(uj_) · Trace(vk_) · NormalOf(BoundaryOf(RegionOf(xi_))) ds) ↑
)

)

93

References
[BCHPM04] Y. Bertot, P. Castéran, G. Huet, and C. Paulin-Mohring. Interactive theorem prov-

ing and program development : Coq’Art : the calculus of inductive constructions.
Springer, Berlin, New York, 2004.

[BGL14] W. Belkhir, A. Giorgetti, and M. Lenczner. A symbolic transformation language and
its application to a multiscale method. Journal of Symbolic Computation, 65:49–78,
2014.

[BL04] Einar B.J. and Christoph L. Theorem reuse by proof term transformation. In Theorem
Proving in Higher Order Logics, pages 152–167, 2004.

[BN99] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University
Press, 1999.

[LS07] M. Lenczner and R. C. Smith. A two-scale model for an array of AFM’s cantilever
in the static case. Mathematical and Computer Modelling, 46(5-6):776–805, 2007.

[YBL14a] B. Yang, W. Belkhir, and M. Lenczner. Computer-aided derivation of multiscale
models: A rewriting framework. International Journal for Multiscale Computational
Engineering, 12(2), 2014.

[YBL14b] Bin Yang, Walid Belkhir, and Michel Lenczner. Computer-aided derivation of multi-
scale models: A rewriting framework. International Journal for Multiscale Compu-
tational Engineering., 12(2):91–114, 2014.

94

	Introduction
	Organization of the paper

	Preliminaries
	Term Rewriting
	A Rewriting Strategy Language
	The processing language

	Principle of the Extension-Combination Method
	Extensions as Second Order Strategies
	Position-based extensions and their combination

	Position-based extensions and their combination
	Strategy-based extensions and their combination
	Positive and negative patterns
	Extension operators as strategies
	Combination of strategy-based extension

	A correction criterion of the combination of strategy-based extension operators

	Mathematical proofs
	The Reference Proof
	Notations, Definitions and Propositions
	Two-Scale Approximation of a Derivative
	Homogenized Model Derivation

	Extension to n-dimensional Regions
	Notations, Definitions and Propositions
	Two-Scale Approximation of a Derivative
	Homogenized Model Derivation

	Implementation of the reference proof in the User Language
	Usual mathematical rules
	Propositions specialized to two-scale approximation
	First Block
	Second Block
	Third Block
	Fourth Block
	Fifth Block
	Sixth Block
	Seventh Block

	Implementation of extensions
	Implementation of extension to n-dimensional regions
	Extension to vector-valued solution

	Latex outputs
	Green rule extensions
	Reference Green rule
	Green rule extension to n-dimensional regions
	Green rule extension to vector valued functions
	Combination of the two extensions

