
HAL Id: hal-01225212
https://hal.inria.fr/hal-01225212

Submitted on 10 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visualization algorithm for CSG polyhedral solids
Anne Verroust

To cite this version:
Anne Verroust. Visualization algorithm for CSG polyhedral solids. Computer-Aided Design, Elsevier,
1987. �hal-01225212�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49461259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01225212
https://hal.archives-ouvertes.fr

Visualization algorithm for CSG polyhedral solids

Anne Verroust
INRIA, Domaine de Voluceau,

78150 LE CHESNAY CEDEX, FRANCE
LIENS, Ecole Normale Supérieure,

45 rue d’Ulm, 75230 PARIS CEDEX 05, FRANCE

Abstract

An algorithm is presented here to visualize CSG solids in wire frame with hid-
den faces eliminated. The approach taken is to construct the image of the CSG
solid directly from the CSG tree. This algorithm takes into account face coherence
property and the depth of the faces to minimize the number of rays fired during the
process. It mixes a two dimensional polygonal clipping and a ray casting algorithm.

Key words : solid modelling, constructive solid geometry, hidden surface algorithms, ray-
casting.

Introduction

Constructive Solid Geometry (CSG) is one of the classical representations of three-
dimensional solids. It is particularly well adapted to ray-tracing algorithms [Kaj] which
produce realistic images with reflections, refractions and transparencies. The aim, here,
is to make a CAD part of a ray-tracing program. Thus it is necessary to generate images
rapidly from CSG models. There are two ways to solve this problem:

• construct a boundary surface model from the CSG tree and use a hidden surface
algorithm on it (see [HLT] and [RVo] for more details).

• compute directly the image of the CSG tree without computing the boundaries of
the CSG solid.
We are interested more particularly in the second type of methods. Most of them use
as basis the ray-casting method, first introduced by Roth [Rot]. As this method is time
consuming, many authors have proposed improvements to this algorithm.

Roth himself introduces box enclosure to eliminate some parts of the screen and,
when the silhouette of the solid is wanted, sample the screen with rays and then locate
the first visible face via a binary search. This can induce imprecisions in the final image
if the sample size is too large.

Bronsvort, Jansen and Van Wijk [BJV] propose also to use sampling and scan line
enclosure instead of box enclosure and simplify the CSG tree in an “active CSG tree” to
reduce boolean calculation in each ray. However, they recognize that the computation

1

time is too big to make the visualization being interactive.
Atherton [Ath] uses several coherence properties (span, visible-segment, scan-line and

object coherences) to fire rays in crucial points of the screen. His solution is adapted
to scan-line visualization.

Some authors improve the computation of the first visible surface in ray-tracing al-
gorithm ([GHW] and [Jan]). Nevertheless they are concerned by ray-tracing more than
by ray-casting and their improvements are interesting when a great amount of rays are
fired.

More recently several authors have taken much attention to depth coherence in their
algorithms:

Crocker [Cro] introduces the notion of “invisibility coherence” to decrease the visu-
alization time for scan-line surface algorithms. The intuitive idea is to eliminate the
surfaces that are likely to be invisible, knowing their minimal z-depth and the different
z-depths of the previous scan line. He also adapts his method to Constructive Solid
Geometry by improving Atherton’s algorithm. His measurements show the advantages
of the method.

Okino, Kakazu and Morimito [OHM] and Requicha and Rossignac [RRo] both use
an extended depth buffer in their visualization algorithms.

The approach presented here is largely inspired by Atherton’s solution [Ath]. Ather-
ton’s visualization process is adapted to scan-line algorithms, thus he uses span and
scan-line coherence. We want to display a CSG solid composed of polyhedral objects in
wire frame. The final image is viewed as a partition of the screen in polygonal zones,
each polygonal zone representing a part of the projection of a face of the CSG solid in
the screen (any polygonal zone of the screen will be called window). Window coherence
is usee in the algorithm. The main idea is the following:
The result of the ray-cast on objects transformed by a perspective orthographic trans-
form depends only on the respective order of the z-depths of the different objects en-
countered. Thus, if we make a subdivision of the screen in windows where the z-depth
order of the faces covering each window is ensured to be constant inside it, at least until
the first visible face, it is enough to fire a ray from any point inside the window to know
the visible face for all the points inside the window.
In a primary version [Ver], we have followed this idea and made a subdivision of the
screen in windows such that :

• if a face of an object overlaps a window, this face entirely contains the window.

• if two faces intersect in the space, no window may contain any portion of the in-
tersecting line except on its boundary.

In the current version, rectangle enclosure and a kind of “active CSG tree” [BJV] is
used to eliminate some parts of the screen. This algorithm will be described in the next
section.
In most cases, this subdivision is too thin. The problem is then to minimize the car-
dinality of the subdivision without altering the final image. To this purpose, using the

2

z-depth of the faces,
• during the two dimensional clipping process, some certainly invisible faces are elimi-
nated.
• we compute only spatial intersections which may change the result of the ray-cast.
They are called consequent intersections.
These eliminations are explained and a new algorithm of visualization is described in
the third section of the paper.
Some measurements of the new algorithm are also given in the final section.

Description of the visualization process

The CSG solid is a CSG tree of polyhedral primitives. There are no condition on the
type of allowed polygons, It is assumed that different faces of a same object do not
intersect in the space. During the whole process, we work with the projections of the
objects on the screen except when we compute the spatial intersections of objects and
when we fire a ray. Thus the primitives are identified with collections of faces of the
screen during most of the explanation of the algorithm.
The algorithm is decomposed in three phases:

• “preparation phase”: a first rough partition of the screen into rectangles.

• “clipping phase”: a subdivision of the screen in windows where the result of the
ray-cast is ensured to be constant for all the points inside each window.

• “merging phase”: a final subdivision of the screen where the windows associated
to the same visible face are joined.

Before going into the description of these three phases, some functions used during the
whole process are introduced:

FUNCTIONS

RAY-CAST(window,cover list,visible) : fires a ray from a point P inside the win-
dow, evaluate the boolean expression of the z-depths of the faces of COVER LIST
on the “active CSG tree” corresponding and put in VISIBLE the result obtained.

INSERT(list,face) : inserts face in the list and returns it. This insertion preserves
the existing order in the list.

DEL(list,face) : deletes face from the list and returns the result.

EXTRACT(list,face) : returns the first face of the list.

SPATIAL(window,list1,list2) : returns a collection of windows, result of the par-
titionment of the window by the projections of the spatial intersections between
the faces of list1 and the faces of list2.

3

INTER(window,face) : computes the windows resulting from the intersection of
the window and the face. These windows have DEL(candidate list,face) as CAN-
DIDATE LIST and INSERT(cover list, face) as COVER LIST and no visible face
associated.

DIFF(window,face) : computes the windows resulting from the difference of the
window and the face. These windows have the same COVER LIST than the initial
window and DEL(candidate list, face) as CANDIDATE LIST and no visible face
associated.

MERGE(window1,window2) : computes the windows resulting from the union of
window1 and window2.

The faces of CANDIDATE LIST and COVER LIST are lexicographically sorted by :
• the order of the objects in a postorder traversal of the CSG tree,
• the decreasing order of the minimum z-depth of the faces, zmin(face),
• the decreasing order of the maximum z-depth of the faces, zmax(face).

Preparation phase

To begin, a perspective transform is made on all the primitives. During this transforma-
tion, the faces without thickness are eliminated and the others are oriented in clockwise
order. The faces of each object are sorted in decreasing order versus their minimal and
their maximal z-depths. A bounding rectangle is associated to each primitive. We make
then a rough partition P of the screen using the CSG tree with the bounding rectangles
as leaves. We subdivide the overlapping rectangles and eliminate the rectangles whose
associated “active CSG tree” is the empty tree. This process is described in details in
[Ver]. At the end of the phase, for each rectangle, CANDIDATE LIST contains exactly
the faces of the active CSG tree that could overlap the rectangle and COVER LIST and
VISIBLE are empty.

Clipping phase

During this phase, we mix three different processes :
the clipping of a window and a face on the screen,
the ray-cast process and
the computation of the spatial intersections of faces.

We recursively subdivide the windows W of the partition P maintaining, at each step, the
variables CANDIDATE LIST, COVER LIST and VISIBLE associated to each window
as follows :

For each window W of P having an empty VISIBLE face associated,
If CANDIDATE LIST is not empty

4

F = EXTRACT(CANDIDATE LIST),
replace W in P by DIFF(W,F) ∪ INTER(W,F),

else
if COVER LIST is not empty

For each W’ in SPATIAL(W,COVER LIST,COVER LIST)
VISIBLE = RAY-CAST(W’,COVER LIST,VISIBLE),
if VISIBLE is empty, delete W’ from P

else
delete W from P.

Thus at the end of this phase, P contains windows of the screen having a non empty
VISIBLE face associated.

Merging phase

In this phase we try successively to merge the windows of P when they have the same
VISIBLE face associated :

For any window W in P,
NOCHANGE = TRUE,
For any window W’ in P having the same VISIBLE than W,

if MERGE(W,W’) is equal to a unique window
NOCHANGE = FALSE,
replace W and W’ by MERGE(W,W’) in P

if NOCHANGE is TRUE, W cannot be merged,
insert W in the final partition.

The four functions DIFF(), INTER(), MERGE() and SPATIAL() use a two dimensional
polygon clipper, introduced by [AWe] and described in details in [Ver]. This algorithm
allows to compute intersections, union and difference of two polygons that may have
“holes” in their contour. Thus, it allows as primitive of the CSG solid any type of
polyhedral object.

Computation reduction

In this section we explicit and justify the two notions of “certainly” invisible face and
“consequent” spatial intersections for a window. We present then a modified version of
the visualization algorithm to include these reductions.

Certainly invisible face

The objects of the CSG tree are classified in three classes :

• union objects.
Objects of the CSG tree which are involved only in union operations or, which is
equivalent, the objects whose ancestor in the CSG tree are only union operations.

5

• left objects.
Objects of the CSG tree which appear at the left of their first difference or inter-
section ancestor.

• right objects.
Objects which are neither union nor left objects.

By extension, the faces will be differentiated in union, left or right faces.

Example 1. The CSG tree of Figure 1 has one left object A, three right objects B,
C and D and two union objects E and F.

Figure 1: CSG tree composed of 6 primitives

∪

��
��

� HHHHH
∪

�� HH
FE

−
�� HH

D∩
� H

A ∪
� H

B C

The philosophy here is to eliminate a face from a CANDIDATE LIST of a window using
the least amount of computation time and without omitting possible spatial intersec-
tions. Thus only the maximal and the minimal z-depths of the faces are considered.
Given a window W and a face F of its CANDIDATE LIST, the elimination of F from
the CANDIDATE LIST differs, according to the type of the face.

• If F is an union face, it will be eliminated when F is entirely behind an union face
of the COVER LIST. In this case, F may belong to the boundary of the CSG solid,
but it is not visible in this window.

• If F is a right face, F is involved in at least one intersection or difference operation.
F is eliminated

– either when F is hidden by a union face,

– or when F cannot take part of the boundary of the CSG solid, at least in
that zone of the screen. It is the case when the face is entirely behind all the
left faces belonging to COVER LIST. This condition is due to the existing
ordering of CANDIDATE LIST.

6

Nevertheless they have a common characteristic : they are behind the first visible face
inside the window W.
More precisely, given a window W, the first face F of its CANDIDATE LIST is said
certainly invisible if and only if :

if F is an union face,
zmin(F) ≥ min { zmax(F’) | F’ union face belonging to COVER LIST }

if F is a right face,
zmin(F) > min (max { zmax(F’) | F’ left face belonging to

COVER LIST },
min { zmax(F’) | F’ union face belonging to

COVER LIST })

Because of the ordering of CANDIDATE LIST, when F is certainly invisible, all the
faces of CANDIDATE LIST belonging to the same object are also invisible.

A new function is added :

ELIM(window, candidate list) : successively eliminates the first faces of candi-
date list which are certainly invisible. The function stops when candidate list is
empty or when the first face is not certainly invisible.

Example 2 :
Let us consider the scene of Figure 2. For the clarity of the example, we suppose that

projection of the scene on the plane y = y0

Corresponding view

on the screen.

�
�
�
�
�

J
J
J
J

a1

a2

a3
A

B

a4

b1

b4

b2

b3

s
x1

s
x2

s
x3

s
x4

6

-x

z

y = y0

��

��

���

���

@

@

Figure 2: The scene is composed of two objects A and B.

the minimal and the maximal z-depths of the faces cutting the plane y = y0 appear in

7

the plane. The faces of A and B are ordered in a1,..., a4 and in b1,..., b4 with respect to
the order induced by their minimal and maximal z-depths (the faces without thickness
in the screen have been eliminated at the entrance).
As the tree is traversed in postorder, we have :

If the CSG tree is

∪ a2, a3, a4 and all the faces of B are certainly invisible
/ \ in the window corresponding to a1.
A B

∩ − b2, b3 and b4 are certainly invisible in all the
/ \ / \ windows covering a1 (i.e. corresponding
A B or A B to the segments x1x2, x2x3 and x3x4).

∪ b2, b3, b4 and a2, a3, a4 are certainly invisible
/ \ in the window corresponding to a1.
B A

∩ − no face is certainly invisible.
/ \ / \
B A or B A

One can see in this example, that the order of the primitives in the tree has
an effect on the number of certainly invisible faces for a window :

the tree has to be constructed from the front to the bottom of the scene.

Thus, to take advantage of the notion of “certainly” invisible face, the initial CSG tree
T is transformed into an equivalent one T ′ as follows :

all the union objects are extracted from T . They are inserted in a CSG tree Tl in
such a way that Tl is a binary search tree w. r. t. the (zmin, zmax) lexicographic
order.

the CSG tree T − {union objects} is reorganized by:

• Eliminating the empty leaves: if Ø represents the empty tree,

∪ = ∪ = A we built the “active
/ \ / \ CSG tree” corresponding to

A Ø Ø A T − {union objects}

8

• Using recursively the following rules, while making a postorder traversal of
T − {union objects}:
If A and B are CSG trees such that (zmin(A), zmax(A)) > (zmin(B), zmax(B)),
then :

∩ is replaced by ∩
/ \ / \

A B B A

∪ is replaced by ∪
/ \ / \

A B B A

when zmin(B) > zmax(A) , A and B represent disjoint CSG solids. Then :

- = A and ∩ = Ø
/ \ / \

A B A B

and the minimum and the maximum z-depths of the subtrees are deduced from
their subtrees using the rules:
zmin(A ∩ B)= sup (zmin(A),zmin(B)),
zmax(A ∩ B)= inf (zmax(A),zmax(B)),
zmin(A ∪ B)= inf (zmin(A),zmin(B)),
zmax(A ∪ B)= sup (zmax(A),zmax(B))
and zmin(A - B)= zmin(A), zmax(A - B)= zmax(A).

Let Tr be the resulting CSG tree.

the CSG tree T ′ is equal to

T ′ = ∩ if Tr and Tl

/ \ are both non empty
Tl Tr

else T ′ = Tr if Tl is the empty tree
T ′ = Tl in the other cases.

As the presence of union objects can have an effect in the elimination of right faces,
Tl has to be examined before Tr, thus it is the left son of T .

Let us call this process T ′ = REORDER(T). The tree T ′ is built
from the front to the bottom of the scene for the union objects,
and from the front to the bottom of the scene when it is possible for the others.

9

REORDER(T) is called before entering the preparation step.

Consequent spatial intersections

In the clipping phase, the spatial intersections occurring in a window are computed only
when all the faces of CANDIDATE LIST have been examined. At this point of the
visualization algorithm, COVER LIST contains a sufficient set of faces to compute the
ray-cast inside all the window. To justify the name of consequent spatial intersection let
us explain our intuitive reasoning :

the result of the ray-cast may differ in two points P and P’ of a window if some faces
of COVER LIST intersect in front of the face visible in P or in P’. An intersection of
this type changes the z-depth order and thus may modify the result of the ray-cast.

Thus, given a window W and a point P inside W, the consequent spatial intersections
are the intersections of faces belonging to COVER LIST and faces appearing in front of
the visible face on P.
The function RAYCAST is modified as follows :

RAY-CAST(window, cover list, consequent list, visible) :
put in VISIBLE the result of the ray-cast on P and put in
CONSEQUENT LIST the faces whose z-depth on P is smaller or equal than the
z-depth of VISIBLE. If the result of the ray-cast is empty, CONSEQUENT LIST
is exactly COVER LIST.

Some unnecessary rays may be fired, but, if we take into account “ Atherton’s face
coherence” [Ath] (the occurrence of surface intersecting is relatively rare), in most of
the cases the SPATIAL does not subdivide the window.

Example 3 :
In Figure 3 the faces have the same property than in Example 2 : their minimal and

maximal z-depths appear in the projection plane.

On W : COVER LIST={ a1, a2, b1, b2, c1, c2}
On P , RAY-CAST returns VISIBLE = a1 and z-depth sort gives a1,...
SPATIAL computes intersections of the faces a1, b1 and a1, c1. W is split in three win-
dows W1, W2 and W3.
In W1 and W2, the ray-cast is constant and equal to a1.
In Q inside W3, the ray-cast gives VISIBLE = b1 and the z-depth sort gives c1, b1,...
SPATIAL computes intersections of the faces b1 and c1.
In this example the spatial intersections computed are all of importance for the compu-
tation of the first visible face.

10

6

-x

z

B
B
B
B
B
BB

B
B
B
B
B
BB

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
��

A
A

@
@
@
@
@
@
@
@
@
@
@
@
@
@

```````````````

s s
s

A

B

C

CSG tree :

∪

�� @@
A ∩

@@��
B C

W1 W2
W3

W4 W5

W

P c

a1

a2

c1

c2

b1

b2

Figure 3: Projection of the scene on the plane y = y0.

Conclusion

Consider Table 1 in conjunction with Figures 4-10. It can be remarked that the com-
puting time depends mainly on the size of the first subdivision. Thus all the causes
of increase or reduction of the subdivision affect the computing time in the same way;
particularly:

• the concentration and the imbrication of the objects more than the number of faces
(compare the results of figure 5 and figure 8)

• the point of view chosen (c.f. the difference between figure 8 and figure 10)

• the classes of the objects present in the CSG tree

This algorithm is an improvement of the ray-casting algorithm. It seems a little slower
but still comparable with Atherton’s scan line visualization [Ath]. The modified version
of Atherton’s algorithm introduced very recently by Bronsvoort [Bro] seems nevertheless
very efficient and faster than our algorithm.
Anyhow our images are different than Atherton’s or Bronsvoort’s ones, as we obtain a
description of the screen in polygons and not in lines.

The use of octree structure jointly with the construction of the screen subdivision may
induce a better elimination of useless subdivisions than our reasoning on the minimum
and maximum z-depths of the faces. This is an orientation to improve the algorithm.

11



references number of number number number number size of time
of primitives of of union of left of right the first taken

figures in the tree facets objects objects objects subdivision (⋆)

4 13 162 5 4 4 665 282

5 17 548 17 0 0 647 239

6 14 187 8 6 6 524 153

8 4 63 4 0 0 555 192

9 49 294 49 0 0 855 305

10 4 63 4 0 0 259 120
(⋆) The measurements correspond to the CPU time in seconds of all the visualization process on

a VAX/785 without floating point accelerator.

Table 1: Description of the figures and timing results

Acknowledgments

This work has been done in the first phase at the “Institut National de l’Audiovisuel”
in the team of D. Borenstein, J.C. Hourcade and A. Nicolas. It has been continued at
the “Institut National de Recherche en Informatique et Automatique” and terminated
in the Computer Science Laboratory of the “Ecole Normale Supérieure”. It is written
in C language on a VAX 785 working on Unix system.

References

[Ath] Atherton, P.R., “A scan Line Hidden Surface Removal Procedure for Con-
structive Solid Geometry”, Computer Graphics, Vol. 17, No. 3, July 1983, pp.
73-82.

[AWe] Atherton, P.R. and Weiler K., “Hidden Surface Removal using Polygon Area
Sorting”, Computer Graphics, Vol. 11, No. 2, Summer 1977, pp. 214-222.

[Bro] Bronsvoort, W.F., “Techniques for reducing Boolean evaluation time in CSG
scan-line algorithms”, Computer Aided Design, Vol. 18, No 10, December
1986, pp. 533-538.

[BJV] Bronsvoort, W.F., Jansen, F.W., VanWijk, J.J., “Two Methods for Improving
the Efficiency of Ray casting in Solid Modelling”, Computer Aided Design,
Vol. 16, No. 1, January 1984, pp. 51-55.

[Cro] Crocker G.A., “Invisibility Coherence for Faster Scan-line Hidden Surface Al-
gorithms”,Computer Graphics, Vol. 18, No. 3, July 1984, pp. 95-102.

12



[GHW] Greenberg D.P., Hooper G. and Weghorst H., “Improved Computational
Methods for Ray Tracing”, ACM Transactions on Graphics, Vol. 3, No. 1,
January 1984, pp. 52-69.

[HLT] Hughes J.F., Laidlaw D.H. and Trumbore W.B., “Constructive Solid Geome-
try for Polyhedral Objects”, Computer Graphics, Vol. 20, No. 4, August 1986,
pp. 161-169.

[Jan] Jansen F.W., “A CSG List Priority Hidden Surface Algorithm”, Eurograph-
ics’85 proceedings, pp. 51-62.

[Kaj] Kajiya, J.T., “Tutorial on Ray Tracing”, Siggraph 84.

[OHM] Okino N.,Kakazu Y. and Morimoto M., “Extended Depth-Buffer Algorithms
for Hidden-Surface Visualization”, IEEE Computer Graphics and Applica-
tions, May 1984, pp. 79-88.

[RRo] Requicha A.G., Rossignac J., “Depth-buffering Display Techniques for Con-
structive Solid Geometry”, IEEE Computer Graphics and Applications,
September 1986, pp. 29-39.

[RVo] Requicha A.A.G. and Voelcker H.B., “Boolean Operations in Solid Modeling:
Boundary evaluation and Merging Algorithms”, IEEE Computer Graphics
and Applications, January 1985, pp. 30-34.

[Rot] Roth, S.D.,“Ray Casting for Modelling Solids”, Computer Graphics and Image
Processing, No 18, February 1982, pp.109-144.

[Ver] Verroust A.,“ A CSG Visualization Algorithm using Polygon Clipping”, Rap-
port INRIA No. 461, December 1985.

13



Figure 4 : 

the CSG tree is composed of 13 primitives. The subdivision of the screen 

contains 665 windows after the clipping phase. Time taken : 282 s. Most 

operations involved in the CSG tree are difference or intersection operations. 

Thus the facets of these objects are less eliminated than the union facets.

That explains the size of the subdivision.

14



Figure 5 : 

The CSG tree is composed of 17 polyhedral primitives. It involves only

union operations. Thus we obtain only 647 windows in the subdivision of 

 the screen after the clipping phase. The visualisation process takes 239 s.

15



 Figure 6 :

 The subdivision of the screen after the clipping phase. It contains 

 524 windows. One can see that some facets of front objects have been

 eliminated : they correspond to some ‘‘surely invisible facets’’ .

16



 Figure 7 :

 Final image corresponding to the subdivision of Figure 6. The CSG tree is 

 composed of 14 polyhedral primitives. Time taken : 153 s. 

17



 Figure 8 :

 The CSG tree is  the union of 4 polyhedral primitives. Time taken : 192 s. 

18



 Figure 9 :

 Each chair is the union of 6 primitives and the table is the union of 

 7 primitives . The CSG tree is composed of 49 polyhedral primitives. 

 Time taken : 305 s. 

19



 Figure 10 :

 The same CSG solid than in Figure 8 but the point of  

 view is different. Time taken : 120 s. 

20


