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Abstract

To face the explosion of the Internet traffic, a new generation of optical networks is being developed;
the Elastic Optical Networks (EONs). The aim with EONs is to use the optical spectrum efficiently
and flexibly. The efficiency and flexibility are, however, accompanied by more difficulty in the resource
allocation problems. In this report, we study the problem of Spectrum Allocation in Elastic Optical
Tree-Networks. In trees, even though the routing is fixed, the spectrum allocation is NP-hard. We
survey the complexity and approximability results that have been established for the SA in trees and
prove new results for stars and binary trees.

1 Introduction

Elastic Optical Networks (EONs) [10] have been proposed recently as a potential candidate to replace the
traditional Wavelength Division Multiplexing (WDM) networks. In EONs, new technologies such as optical
OFDM, adaptive modulation techniques, bandwidth variable transponders, and flexible spectrum selective
switches are used to ensure an efficient utilization of the optical resources and to enable a flexible grid as
opposed to the WDM fixed-grid. In fact, the optical spectrum in EONs is subdivided into small channels,
called slots, which are finer than the 50GHz wavelengths used under WDM. With these slots, small bitrates
are not over-provisioned and big bitrates can be satisfied as single entities, under the constraint of contiguity.
This constraint dictates that the slots used by a request should be consecutive. This results in an efficient
use of the spectrum but it also makes the problems of resource allocation in EONs more difficult than their
counterparts in WDM.

The key resource allocation problem in EONs is referred to as Routing and Spectrum Assignment (RSA).
In RSA, the input is a set of traffic requests and the objective is to allocate to each request, a path in the
optical network and an interval of spectrum slots along that path, minimizing the utilized spectrum. The
spectrum allocated to a request has to be contiguous (contiguity constraint), it has to be the same over all
links of the routing path (continuity constraint) and requests with paths sharing a link should be assigned
disjoint spectrum intervals (non-overlapping constraint). If the routing is fixed, i.e. a path is predefined for
each request, RSA reduces to the problem of Spectrum Assignment (SA).

Related work The SA problem is a generalization of the well studied problem of Wavelength Assignment
(WA) (WA is the special case of SA in which all requests have equal demands). Since WA has been proved
NP-complete in [4], SA is also NP-complete. In fact, SA remains NP-hard even in networks where WA is
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vestments for the Future” under reference ANR-11-LABX-0031-01
†This author is supported by a grant from the ”Conseil régional Provence Alpes-Côte d’Azur”.
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tractable, particularly in path networks. Indeed, SA has been proved to be equivalent to other problems
studied in the literature which we describe in details in Section 2. Using the results obtained for the equivalent
problems, SA is NP-complete in paths even if the requests’ demands do not exceed 2 slots [2]. Furthermore,
SA is NP-complete in paths with 4 links and unidirectional rings with 3 links [24]. On the positive side, SA
can be approximated within a factor of 2 + ε in paths, a factor of 4 + ε in rings, and a factor of O(log(k)) in
binary trees where k is the number of requests [23].

Contribution In this report, we study the SA problem in trees. We focus on special cases where the tree
is a star or a binary tree. By studying these special cases, we hope to gain more insight into the general
problem in trees and design a constant-factor approximation algorithm or prove that such algorithm does
not exist. We prove that SA is NP-hard in undirected stars of 3 links and in directed stars of 4 links, and
show that in general stars it can be approximated within a factor of 4. Afterwards, we use the equivalence
of SA with a graph coloring problem (interval coloring) to find constant-factor approximation algorithms for
SA on binary trees with special demand profiles. Namely, we examine the cases where the demands are in a
set {k, kX} (k,X ∈ N∗), in a set {kX, k(X + 1)} (k,X ∈ N∗), or bounded by D. For the latter case, we give
a general approximation when the demands are bounded by D ∈ N and then give better approximations for
the cases where the demands are bounded by D ∈ {3, 4, 5, 6}.

This report is organized as follows. In Section 2, we formally define the SA problem and survey its
relation to other problems and its complexity in path networks in particular. Afterwards, we present our
results in stars and binary trees in Sections 3 and 4, respectively.

2 Problem statement and related problems

In this section, we first define the problem of Spectrum Assignment (SA) and then present some related
problems and highlight their relation to SA. In the last subsection, we list the results implied by these
relations for the complexity of SA in paths.

2.1 Spectrum Assignment

An instance (N ,R) of the problem consists of a graph N = (N,L) and a set of requests R. The graph N
models an optical network with N as the set of nodes and L as the set of links. A request r ∈ R consists of
a path P (r) in N and a spectrum demand d(r) ∈ N (number of spectrum slots). We say that two requests
r, r′ ∈ R are conflicting if their paths P (r) and P (r′) share a link. A spectrum assignment of (N ,R) is a
mapping f from R to N∗ such that for every pair of conflicting requests r, r′ ∈ R, we have {f(r), . . . , f(r) +
d(r) − 1} ∩ {f(r′), . . . , f(r′) + d(r′) − 1} = ∅. We say that all the slots in {f(r), . . . , f(r) + d(r) − 1} are
occupied by r. In this report, we consider slots as integers (which will be useful for the relation with colors
in interval colorings); however other authors consider slots as intervals of unit length. In fact the set of slots
{f(r), . . . , f(r) + d(r)− 1} corresponds to the spectrum interval ]f(r)− 1, f(r) + d(r)− 1] and we sometimes
use them interchangeably.

The span of a spectrum assignment f , denoted s(f), is the smallest integer s such that for each request
r ∈ R, f(r) + d(r) − 1 ≤ s. The span of an instance (N ,R), denoted by s(N ,R) is the minimum of the
spans over all possible spectrum assignments. We formulate the Spectrum Assignment problem as follows:

Problem 1 (Spectrum Assignment (SA)). Given an instance (N ,R), compute s(N ,R).

For an instance (N ,R) of SA, the load of a link `, denoted by π(`), is the sum of the demands of the
requests using ` and the load of an instance, denoted by Π(N ,R), is the maximum load over all its links.
It is straightforward that Π(N ,R) ≤ s(N ,R). In the approximations we obtain for SA in this report, the
span is usually upper bounded by a function of the maximum load.

The greedy algorithm for SA is an algorithm which assigns spectrum to requests ordered in a given order
r1, . . . , rn such that a request ri is assigned the smallest positive integer g(ri) such that {g(ri), . . . , g(ri) +
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Figure 1: Example of the construction of the conflict graph

d(i) − 1} ∩ {g(rj), . . . , g(rj) + dj − 1} = ∅ for each rj in {r1, . . . , ri−1} conflicting with ri. We will use this
algorithm many times in the rest of this report.

Figure 1a illustrates an instance of SA on a binary tree with 5 requests (ri(j) is request ri with demand
j). Note that the order of the requests with which the greedy algorithm is applied has a direct impact on
the number of spectrum slots used. In the example of Figure 1a, applying the greedy algorithm in the order
r1, r2, r3, r4, and then r5 results in the use of 7 spectrum slots, while applying the algorithm in the order
r3, r1, r5, r2, and then r4 results in the use of only 5 spectrum slots: slots {1}, {2}, {2, 3}, {4, 5}, and {3, 4, 5}
for r3, r1, r5, r2, and r4, respectively. The span of this instance is exactly 5, as the load is equal to 5 on the
two links used by r3.

2.2 Related problems

2.2.1 Scheduling Tasks on Multiprocessor Systems

It has been proved in [24] that SA in a network of k links can be reduced to the problem of Scheduling
Tasks on Multiprocessor Systems (STMS) with k multiprocessors. In the STMS problem, we are given a set
of n tasks and a set of identical processors, a processing time d(j) and a prespecified set Pj of processors
for each task j, j ∈ {1, . . . , n}. The objective is to schedule the tasks so as to minimize the makespan
Cmax = max

j
Cj , where Cj denotes the completion time of task j, under the following constraints: (1)

preemptions (interruptions of a task) are not allowed, (2) each task must be processed simultaneously by all
processors in Pj , and (3) each processor can work on at most one task at a time.

Given an instance (N ,R) of SA, an instance of STMS is constructed as follows. For each link ` of N , we
associate a processor w`, and for each request r in R with path P (r) and demand d(r), we associate a task
tr with processing time d(r) and a set of processors {w` | ` ∈ P (r)}. The makespan is then the span of the
instance of SA.

Complexity of STMS Note that the relation above is only in one direction as there exist instances of
STMS for which there is no corresponding instance of the SA problem. However for 3 processors we can
associate to an instance of STMS an instance of SA in an unidirectional ring with 3 links (each processor
being associated to one of the links). It has been shown in [15] that the problem of STMS is strongly NP-
complete even if the number of used processors is at most 3. Using this result, it is proved in [24] that the
SA problem is strongly NP-complete in an unidirectional ring with 3 links. On the positive side, it has been
proved in [11] and [16] that STMS can be approximated within 7

6 and 1.5 when the number of processors is
3 and 4, respectively. Theorem 1 follows from these approximations.

Theorem 1. There are approximation algorithms with ratios 7
6 and 1.5 for the Spectrum Assignment problem

in networks with 3 and 4 links, respectively.
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2.2.2 Dynamic Storage Allocation

When the network is a path, the SA problem is equivalent to the problem of Dynamic Storage Allocation
(DSA). In the DSA problem, we are given a set A of items to be stored, each a ∈ A having size d(a), an
arrival time α(a), and a departure time β(a) (with β(a) > α(a)). A storage allocation for A is a function
f : A→ N∗ which associates to each item a ∈ A a storage interval I(a) =]f(a)− 1, . . . , f(a) + d(a)− 1] such
that for all a, a′ ∈ A with a 6= a′, if ]α(a), β(a)]∩]α(a′), β(a′)] is not empty, then I(a) ∩ I(a′) is empty. The
storage size used by a storage allocation f denoted by s(f) is the smallest integer s such that for each item
a ∈ A, f(a) + d(a) − 1 ≤ s. The objective in DSA is to find a storage allocation which minimizes the used
storage size.

If we consider the time interval as a path network and each of the items to be stored as a request, we
can see the equivalence between the problem of SA in paths and the DSA problem. In more details, given
an instance of SA on a path (v1, . . . , vk), we associate to each request r with demand d(r), an item ar of size
d(r). We also associate to each vertex vi of the path network time i. Let vi and vj be the endvertices of the
path P (r) of the request r (i < j), then we choose for the associated item ar the arrival time α(ar) = i and
the departure time β(ar) = j. The fact that two requests r and r′ are conflicting corresponds to the fact
that the time intervals ]α(ar), β(ar)] and ]α(ar′), β(ar′)] intersect. Then a spectrum assignment with span
γ corresponds to a storage allocation using a storage size γ. Conversely using the opposite transformation
we can associate to an instance of DSA an instance of SA on a path.

Complexity of DSA The problem of DSA has been extensively studied. It has been proved that DSA is
strongly NP-complete, even when restricted to instances where the storage size of all items is in {1, 2}. The
proof of NP-completeness is by reduction from the 3-PARTITION problem and can be found in the appendix
of [2]. On the positive side, many approximation algorithms have been proposed to solve DSA. The first
proposed algorithms are based on a greedy algorithm called First Fit (FF) and its performance for online
coloring of interval graphs. The relation between online coloring of interval graphs and dynamic storage
allocation can be found in [5]. Using FF a linear approximation was proved in [17] and a ratio of 6 is given in
[18]. Gergov has adopted another approach not using FF, yielding an approximation of 5 and 3 sequentially
in [8] and [9]. In his approach, Gergov defines and uses a 2-allocation which is a storage allocation where
two items but not three are allowed to overlap. A better approximation has been achieved in [3] where the
authors use the idea of boxing items to design a 2 + ε-approximation algorithm. Better approximations were
achieved for DSA with restricted item sizes. In [19], the authors present a 4

3 -approximation algorithm when
the maximum size is 2, and a 1.7-approximation algorithm when the maximum size is 3. In [20], it is proved
that for instances with sizes of 1 and X, an approximation of ratio 2 − 1

X can be guaranteed. All these
results established for DSA apply, by equivalence, to SA in paths.

2.2.3 Interval Coloring

As pointed out in [23], the problem of SA is also equivalent to a graph coloring problem called Interval
Coloring (IC). An interval coloring or a contiguous coloring [12] of a vertex-weighted graph (G = (V,E), w)
is a mapping f : V → N∗ such that for every v, v′ ∈ V , if (v, v′) ∈ E then {f(v), . . . , f(v) + w(v) − 1} ∩
{f(v′), . . . , f(v′) +w(v′)−1} = ∅. The number of colors used by an interval coloring f , denoted by χf (G,w)
is the smallest integer s such that for each vertex v ∈ V , f(v)+w(v)−1 ≤ s. The interval chromatic number
of a weighted graph (G,w), denoted by χ(G,w), is the smallest number of colors needed to color the vertices
with intervals, i.e. it is the minimum of χf (G,w) among all possible interval colorings f of (G,w). The
interval coloring problem is defined as follows.

Problem 2 (Interval Coloring (IC)). Given a vertex-weighted graph (G,w), compute χ(G,w).

To see the equivalence between SA and IC we do the following. For an instance (N ,R) of SA, we create
a weighted graph (G = (V,E), w) modeling the dependency between the different requests called the conflict
graph. We associate to every request r ∈ R a vertex vr in V . We add an edge between two vertices vr and
vr′ if the corresponding requests r and r′ are conflicting. The weight w(vr) of each vertex vr is equal to the
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demand of the corresponding request r (i.e. w(vr) = d(r)). Figure 1b (ri(j) is vertex ri with weight j) shows
the conflict graph associated to the SA instance of Figure 1a.

If (N ,R) is an instance of SA and (G,w) is its conflict graph, then finding a spectrum assignment of
(N ,R) is equivalent to finding an interval coloring of (G,w) and s(N ,R) = χ(G,w).

Complexity of IC The problem of IC has been introduced in [12] where its relation to other problem
such as DSA has been highlighted. It has also been proved in [12] that IC is equivalent to the problem of
finding, for a vertex-weighted graph, an acyclic orientation which minimizes the weight of the longest path,
where the length of a path is the sum of the weights of its vertices. The complexity of DSA implies that IC
is strongly NP-complete in interval graphs. IC is also strongly NP-complete in proper interval graphs [22].
On the positive side, IC is polynomial in comparability graphs [12] and can be approximated within a factor
of 2 + ε in interval graphs [3], a factor of 2 for proper interval graphs [22] and claw-free chordal graphs [6],
and a factor of O(log(n)) in chordal graphs where n is the number of vertices [21].

Since the conflict graph associated to an instance of SA in a path is an interval graph (and vice versa),
all the results established for IC in interval graphs apply to SA in paths. In section 4, we will use the fact
that the conflict graph associated to a binary tree is a chordal graph to obtain results for SA in binary trees
using interval coloring of chordal graphs.

2.3 Spectrum Assignment in paths

The results deduced from the equivalence to the problems defined above can be summarized as follows for
path networks.

• With respect to the number of links, SA is NP-complete in path networks with 4 links and polynomial
in paths with at most 3 links [24], and it can be approximated within a factor of 1.5 in paths with 4
or 5 links [24].

• With respect to the demands, SA is strongly NP-complete even if the requests have demands in the set
{1, 2} [2]. It can be approximated within a factor of 4

3 and a factor of 1, 7 when the maximum demand
is 2 and 3, respectively [19]. It also can be approximated within a factor of 2− 1

X when the demands
are in the set {1, X} [20].

• In general, SA in paths can be approximated in paths within a factor of 2 + ε [3] and it can be
approximated within a factor of 2 when the paths of the requests are such that no path is strictly
included in another [22].

3 Spectrum Assignment in stars: hardness and approximability
results

A star is a tree-network with at most one node of degree at least 2. The problem of wavelength assignment
(WA) is NP-complete in undirected stars but polynomial in directed stars [1]. We prove in this section that
SA is not only NP-complete in undirected stars but also in directed stars with 4 links. On the positive side,
we prove the existence of a 4-approximation algorithm for the general case.

Theorem 2. The problem of Spectrum Assignment is strongly NP-complete in undirected stars with 3 links.

Proof. It was shown in [24] that the SA problem is strongly NP-complete in a 3-link unidirectional ring (see
subsection 2.2.1). Let us consider an instance of SA in a 3-link ring C = (l1, l2, l3) with a request set R.
Let us build a star S with three links l′1, l′2 and l′3, and a set of requests R′ defined as follows. For each
request r ∈ R using at most 2 links, we create a request r′ in R′ such that if the path of r in C is P (r) = li,
i ∈ {1, 2, 3}, then the path of r′ in S is P (r′) = l′i, and if P (r) = lilj , then P (r′) = l′il

′
j . Solving SA in (C,R)

is equivalent to solving SA in (S,R′).
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Figure 2: Reduction from 2-PARTITION to SA in a directed star

Theorem 3. The problem of Spectrum Assignment is weakly NP-complete in directed stars with 3 ingoing
links and one outgoing link or 3 outgoing links and one ingoing link.

Proof. The proof is by reduction from the 2-PARTITION problem. In the 2-PARTITION problem, we are
given a set A of k integers a1, a2, . . . , ak such that B =

∑k
j=1 aj and the objective is to decide whether A

can be partitioned into two disjoint sets A1 and A2 such that
∑
aj∈A1

aj =
∑
aj∈A2

aj .

Given an instance of the 2-PARTITION problem with a set of k integers A = {a1, a2, . . . , ak} such that

B =
∑k
j=1 aj , we create an instance of the Spectrum Assignment problem in a 4-link directed star network

S (Figure 2a) and a set of requests R. The star S has 3 ingoing links l1,l2, and l3 and one outgoing link
l4. The set of requests R consists of the requests presented in Figure 2b: requests ra, rb, rc, r1, and r2 and
for every integer ai in the set A, a request ri3 with demand ai and using link l3. We prove that finding a
spectrum assignment for (S,R) with span 3

2B is equivalent to finding a partition of A into two sets A1 and

A2 such that
∑
aj∈A1

aj =
∑
aj∈A2

aj = B
2 . In fact, if there is a partition of A into A1 and A2 such that∑

aj∈A1
aj =

∑
aj∈A2

aj = B
2 , then we can assign spectrum as shown in Figure 2c. Now let us suppose there

is a spectrum assignment for (S,R) with span 3
2B. There are two possible symmetric assignments to the

requests on links l1 and l2. We suppose we assign to r1, ra, r2 and rb spectrum intervals ]0, B], ]B, 3
2B],

]B2 ,
3
2B], and ]0, B2 ], respectively (the analysis is similar for the other assignment). This assignment forces

request rc to use the interval ]B2 , B] and the other requests on link l3 will have to be partitioned into two

sets of the same size B
2 .

Theorem 4. The problem of Spectrum Assignment in directed stars with at most 3 links or exactly 2 ingoing
links and 2 outgoing links can be solved in polynomial time.

Proof. In all of these cases, the span is equal to the maximum load and the greedy algorithm with specific
orders can achieve the optimal span.

• When the star has only ingoing or outgoing links, the problem is trivial since any conflicting requests
use the same link and the greedy algorithm with any order can achieve the optimal span.

• For the case where the star is a directed path of length 2, an optimal spectrum assignment consists in
using the greedy algorithm with an order where the requests using two links come first. This way, the
spectrum span will be defined by the link with the maximum load.

• For the case where the star has two ingoing links l1 and l2 and one outgoing link l3 (or the opposite), an
optimal spectrum assignment consists in using the greedy algorithm with an order where the requests
using l1 and l3 come first and the requests using l2 and l3 come last. Indeed let Ai3 be the sum of
the demands of the requests using li and l3 for i ∈ {1, 2} and let Ai be the sum of the demands of
the requests using only link li for i ∈ {1, 2, 3}. Then the span of the spectrum used on link l1 is
A13 + A1 = π(l1), and that on links l2 and l3 is equal to max(A1

3 + A3, A
2) + A2

3 = max(π(l2), π(l3)),
and so the span of this spectrum assignment is equal to the maximum load of the instance.
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• When the star has 2 ingoing links l1 and l2 and 2 outgoing links l3 and l4, let Aij be the sum of the
demands of the requests using li and lj for i ∈ {1, 2} and j ∈ {3, 4} and let Ai be the sum of the
demands of the requests using only link li for i ∈ {1, 2, 3, 4}. First, the requests using l1 and l3 and
the requests using l2 and l4 are assigned with the greedy algorithm; the span of the spectrum used on
links l1 and l3 is equal to A13, and the span of the spectrum used on links l2 and l4 is equal to A24.
Afterwards, the requests using only one link are assigned; the span of the spectrum used on links l1, l2,
l3, and l4 is A13 +A1, A24 +A2, A13 +A3, and A24 +A4, respectively. Finally, the requests using l1 and
l4 and the requests using l2 and l3 are assigned with the greedy algorithm; the span of the spectrum
used on links l1 and l4 is equal to max(A1

3 + A1, A
2
4 + A4) + A1

4 = max(π(l1), π(l4)), and the span of
the spectrum used on links l2 and l3 is equal to max(A1

3 +A3, A
2
4 +A2) +A2

3 = max(π(l2), π(l3)). This
means that the span of this spectrum assignment is equal to the maximum load of the instance.

Theorem 5. Let (N ,R) be an instance of SA. If the length of the paths associated to the requests in R is
at most α, then the greedy algorithm gives a 2α-approximation for the Spectrum Assignment problem. In
particular there is a 4-approximation polynomial-time algorithm for the Spectrum Assignment problem in
stars.

Proof. Let (N ,R) be an instance of SA. Let the requests of R be ordered in the non-increasing order of
demands r1, r2, . . . , rq (i.e., d(r1) ≥ d(r2) ≥ · · · ≥ d(rq)). Let Π be the maximum load. We will use at most
2αΠ slots to allocate spectrum to the requests of R. Suppose that we have already assigned spectrum to the
first requests rj , j < i with the span 2αΠ and consider the request ri with demand d(ri) = d. For each link
l of the path P (ri), let Ri(l) be the set of requests already assigned conflicting with ri on the link l. As the
load of the link l is at most Π, the sum of the demands of the requests of Ri(l) is at most Π− d. Since each
of these requests has demand at least d, we have at most Π−d

d requests in Ri(l). This implies that the path

P (ri) has at most α(Π−d)
d requests conflicting with ri which have been already assigned spectrum. Consider

the slots not occupied by these requests (available slots). If there exists an interval of d or more available
slots below these requests or between two requests, we can assign to request ri the first such interval.

Otherwise, between slot 1 and the first slot occupied by the conflicting requests and between the last slot
occupied by a request and the first slot of the next request there are at most d− 1 available slots. As there

are at most α(Π−d)
d requests conflicting with ri, we have at most α(Π−d)

d such intervals. As the requests in
Ri(l) occupy at most (Π− d) slots, we have at most α(Π− d) slots occupied by the conflicting requests and

at most α(Π−d)
d (d − 1) slots available where we cannot provision ri. Altogether, we have a number of non

usable slots equal to α(Π−d)+ α(Π−d)
d (d−1) = 2αΠ−2αd− α(Π−d)

d . So, there is an interval of 2αd+ α(Π−d)
d

available contiguous slots above all the requests conflicting with ri. Then, we can allocate to ri d contiguous
slots in this interval. In particular, in the case of stars where α = 2, we obtain a 4-approximation.

This approximation algorithm for stars together with the 2 + ε-approximation algorithm for paths pre-
sented in [3], imply a constant factor approximation for tree networks which are spiders. A spider is a tree
with one vertex of degree at least 3 and all others with degree at most 2.

Theorem 6. There is a (6 + ε)-approximation for the Spectrum Assignment problem in spiders.

Proof. Let (S,R) be an instance of SA in a spider tree. Let v be the vertex of S of degree 3 and let S′ be the
star induced by v and all the vertices of S which are at distance 1 from v. We first consider the set of requests
R1 using an edge of S′. For a request r of R1 we associate the restricted request r′ in S′ with path the
subpath of r restricted to S′ and same demand as r. We use the 4-approximation presented in Theorem 5,
to allocate spectrum to these restricted requests using the star S′. That induces a spectrum assignment
to the requests of R1, as two such requests intersect if and only if their restricted requests intersect. Now
we consider the other set of requests R2 which are included in some path P of the paths of S \ S′. We
use the 2 + ε-approximation algorithm to allocate spectrum to the requests of R2 using P . We can use
the same spectrum range for two different paths as they have no link in common. So altogether we get a
(6 + ε)-approximation algorithm.
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4 Spectrum Assignment in binary trees

The SA problem in binary trees (trees in which each node has degree at most three) has been studied in [23].
It has been proved that SA can be approximated within a ratio of O(log(k)) where k is the number of
requests. The proof is based on the equivalence between SA and the problem of Interval Coloring (IC). In
fact, the conflict graph of an instance of SA in a binary tree corresponds to an edge intersection graph of
paths in a binary tree. These graphs have been proved to be chordal graphs in [13, 14]. Using the problem
of interval coloring in chordal graphs, we give in this section some constant-factor approximation algorithms
for the problem of spectrum assignment in binary trees with special demand profiles. Namely, we examine
the cases where the demands are in a set {k, kX} (k,X ∈ N∗), in a set {kX, k(X + 1)} (k,X ∈ N∗), or
bounded by D. For the latter case, we give a general approximation when the demands are bounded by
D ∈ N and then give better approximations for the cases where the demands are bounded by D ∈ {3, 4, 5, 6}.
It is important to recall here that even if the network is a path and the demands are bounded by 2, SA is
strongly NP-complete. We first start by giving some definitions and then we state our results.

4.1 Definitions

A chord of a cycle C in a graph is an edge of the graph connecting two vertices that are not adjacent in
C. A graph G is chordal if every cycle of G with at least 4 vertices has a chord. One important property
of chordal graphs is their perfect elimination order. The perfect elimination order (PEO) of a graph is
an ordering x1, x2, . . . , xn of the vertices of the graph such that for i = 1, . . . , n − 1, the neighbors of xi
in G[{xi+1, . . . , xn}]1 form a clique. It is well known that a graph is chordal if and only if it has a perfect
elimination order. Paper [25] describes a linear time algorithm called maximum cardinality search that can be
used to determine if a given graph has a perfect elimination order and construct such an ordering if it exists.
Throughout the remainder of this report, we use the reverse perfect elimination order (RPEO) in the design of
some algorithms. Note that if v1, v2, . . . , vn is a RPEO of the vertices of a chordal graph, then for i = 2, . . . , n,
the neighbors of vi in G[{v1, . . . , vi−1}] form a clique. Another tool we will be using is the greedy algorithm
for IC. Defined similarly to the greedy algorithm for SA, the greedy algorithm for IC, also called the First Fit
algorithm (FF) is an algorithm which assigns colors to vertices in a given order v1, . . . , vn such that a vertex vi
is assigned the smallest positive integer g(vi) such that {g(vi), g(vi)+w(vi)−1}∩{g(vj), g(vj)+w(vj)−1} = ∅
for each vj in {v1, . . . , vi−1} which is adjacent to vi.

In a weighted graph (G = (V,E), w), we define the weight of a subset S ⊆ V to be the quantity
w(S) =

∑
v∈S w(v). The maximum weighted clique is a clique with the biggest weight. The density of (G =

(V,E), w) is the weight of the maximum weighted clique and is denoted by ∆(G,w). It is straightforward
that ∆(G,w) ≤ χ(G,w), where χ(G,w) is the interval chromatic number of (G,w).

In the remainder of this section, we present our results for SA in binary trees with bounded demands as
corollaries after proving theorems for IC in weighted chordal graphs with bounded weights. We note here
that even though every conflict graph of an instance of SA in a binary tree is a chordal graph, the opposite
is not true [13].

4.2 Demands k and kX

In this section, we present an approximation algorithm for the SA problem when the demand of each request
is either k or kX, with k,X ∈ N∗. We start by proving the following theorem for interval coloring in chordal
graphs.

Theorem 7. Let (G,w) be a weighted chordal graph with weights in the set {1, X}. There exists a polynomial-

time algorithm that finds an interval coloring of (G,w) with 2∆(G,w)− b∆(G,w)
X c colors.

1For S ⊆ V , we define G[S] as the subgraph of G induced by the vertices of S, i.e. the subgraph of G containing the vertices
of S and all the edges of G which have both endpoints in S.
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Proof. It has been proved in [20] that there is an algorithm to find a (2− 1
X )-approximation for the problem

of interval coloring in interval graphs whenever there are only two weights 1 and X. We generalize this
algorithm for chordal graphs as follows.

Let (G,w) be a weighted chordal graph with weights in {1, X} and let ∆ = ∆(G,w) be its density. We
will use 2∆ − b∆

X c colors to color (G,w) as follows. We partition the colors into two sets. The first set S1

contains colors from 1 to ∆ and the second set S2 contains colors from ∆ + 1 to 2∆− b∆
X c.

We order the vertices ofG in the reverse perfect elimination order. Let v1, . . . , vn be the obtained ordering.
Recall that the neighbors of vi in {v1, . . . , vi−1} form a clique in the graph induced by {v1, . . . , vi−1}. We use
the greedy algorithm to assign colors to the vertices in this order with the additional property that colors
assigned to a vertex are either included in S1 or S2 (we cannot use colors from both sets). We prove that
with this algorithm, all vertices will be assigned colors in S1 or S2.

• All vertices of weight 1 will have a color in S1. In fact, if a vertex vi of weight 1 cannot be assigned
a color in S1, then its neighbors in {v1, . . . , vi−1} occupy all colors of S1. This implies that vi and its
neighbors in {v1, . . . , vi−1}form a clique of size ∆ + 1 a contradiction.

• For vertices of weight X, suppose that there is a vertex vj of weight X to which we cannot assign
colors neither in S1 nor in S2. The minimum number of colors used in S1 that can make it not possible
to color vj with colors from S1 is b∆

X c (X − 1 free colors then 1 occupied color, then X − 1 free colors
and 1 occupied color . . . ). The weight of the neighbors of vj in {v1, . . . , vj−1} which use colors in S1

is at least b∆
X c. Since we cannot assign colors from S2 to vj and knowing that only vertices of the

same weight X use colors from S2 with the greedy algorithm, we deduce that the sum of the weights
of the neighbors of vj in {v1, . . . , vj−1} which use colors in S2 is at least |S2| − (X − 1). So vj and its
neighbors form a clique of size X + b∆

X c + |S2| − (X − 1) ≥ ∆ + 1 as |S2| = ∆ − b∆
X c. This implies

that the density of G is at least ∆ + 1, which is not possible.

Corollary 1. Let (G,w) be a weighted chordal graph with weights in the set {k, kX}. There exists a

polynomial time algorithm that finds an interval coloring of (G,w) with 2∆(G,w)− kb∆(G,w)
kX c colors.

Proof. Note that to color a graph (G,w) with weights in {k, kX}, we can transform it to a graph (G,w′)
with weights in {1, X}, color (G,w′) and then transform the colors we found into intervals of colors of size
k. The number of colors used for G will be then at most k times the number of colors used for G′. Note
also that the density of (G,w) is k times the density of (G,w′). By Theorem 1 we can color (G,w′) with

2∆(G,w′)− b∆(G,w′)
X c colors and so we can color (G,w) 2k∆(G,w′)− kb∆(G,w′)

X c = 2∆(G,w)− kb∆(G,w)
kX c

colors.

Remark : This implies that when the weights are in the set {k, kX}, we can color the graph with less
than (2− 1

X )∆(G,w) + k colors.
Thanks to Corollary 1, we can deduce the following corollary.

Corollary 2. Let I be an instance of SA in a binary tree such that the demands of requests are in the set
{k, kX} and the span of I is OPT . There is a polynomial-time algorithm that finds a spectrum assignment
for I with span less than (2− 1

X )OPT + k.

Now, in what follows of this subsection, we find a lower bound on the number of colors that can be used
to find an interval coloring of a weighted chordal graph with weights in {k, kX}.

Theorem 8. There exists a family of weighted graphs (Gm)m∈N∗ , with weights in the set {k, kX}, for which
the ratio between the interval chromatic number and the density tends to 2− 1

X when m tends to infinity.

Proof. For m > 0, we build the weighted graph Gm of density k(mX2 + 1) as follows.
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• mX2 + 1 vertices of weight k each forming a ”big” clique.

• For each subset S of mX + 1 vertices of the big clique, we add m(X − 1) new vertices of weight kX
each. These vertices form a clique with the vertices of S.

In any contiguous coloring of Gm, there exists an integer λ in {0, . . . , kX − 1} such that the ”big” clique
uses mX + 1 colors congruent to λ modulo kX. Suppose that this is not true and that the big clique uses
for each integer i in {0, . . . , kX − 1} at most mX colors which are congruent to i modulo kX. This means
that the number of colors used is at most kmX2. This is not possible since this maximum clique has weight
k(mX2 + 1). Let S be a subset of mX + 1 vertices of the big clique using colors that are congruent to λ
modulo kX. Vertices of S form a clique with m(X − 1) vertices of weight kX. Each of these vertices uses
a color congruent to λ modulo kX. In total, m(2X − 1) + 1 colors which are congruent to λ are used. This
means that the total number of colors used is at least kmX(2X − 1) + 1. The ratio between the chromatic

number and the density is then at least kmX(2X−1)+1
k(mX2+1) = 2− 1

X −
(2k−1)X−k
kX(mX2+1) . When m goes to infinity, this

ratio goes to 2− 1
X .

4.3 Demands kX and k(X + 1)

In this section, we present an approximation algorithm for the SA problem when the demand of each request
is either kX or k(X + 1). We start by proving the following theorem for interval coloring in chordal graphs.

Theorem 9. Let (G,w) be a weighted chordal graph with weights in {kX, k(X + 1)}. There is a polynomial
time algorithm to color G with at most X+1

X ∆(G,w) colors.

Proof. Let (G,w) be a weighted chordal graph with weights in {kX, k(X + 1)}. Let m = b∆(G,w)
kX c, we

prove that we can color (G,w) with k(X + 1)m colors. We partition the set of colors {1, . . . , k(X + 1)m}
into m contiguous intervals Ii, 1 ≤ i ≤ m of size k(X + 1) each. Let us order the vertices of (G,w) in the
RPEO order. We use the greedy algorithm to color the vertices in this order using for each vertex colors
from exactly one interval Ii, 1 ≤ i ≤ m. Suppose that we cannot color some vertex vj , this means that each
interval Ii, 1 ≤ i ≤ m, contains a neighbor of vj with weight at least kX (recall that the weights are either
kX or k(X + 1)). Since the neighbors of vj which appear first in the RPEO form a clique with vj , we have a
clique of weight at least mkX+kX > ∆(G,w) which is not possible. Therefore we can color all the vertices.

Theorem 9 implies the following corollary.

Corollary 3. There is a X+1
X -approximation algorithm for the Spectrum Assignment problem in binary trees

when the demands of the requests are in the set {kX, k(X + 1)}.

4.4 Maximum demand D

In this section, we present an approximation algorithm for the SA problem when the maximum demand is
D.

Theorem 10. Let (G,w) be a weighted chordal graph with maximum weight W . There is a polynomial time
algorithm that finds an interval coloring of (G,w) with at most 2 log2(W )∆(G,w) colors.

Proof. The proof is inspired from that of [21] which proposes a O(log2(n))-approximation where n is the
number of vertices.

Let (G,w) be a vertex-weighted chordal graph with maximum weight W . Let us partition the set of
vertices V into k subsets Si, i ∈ {1, . . . , k} such that for each vertex v ∈ Si, w(v) ∈ [ai, bi], with a1 = 1,
ai+1 = bi + 1 and bk = W . We first ignore the weights and optimally color each graph Gi induced by
the subset Si. As the graphs are chordal, we can color the vertices of Gi with ω(Gi) colors where ω(Gi)

10



is the clique number of Gi. Afterwards, we replace the color of each vertex v ∈ Gi by an interval of w(v)
colors. This way, we obtain an interval coloring of Gi with at most biω(Gi) colors. Therefore, the vertices

of G can be colored with c colors where c =
k∑
i=1

biω(Gi). Note that aiω(Gi) ≤ ∆(G,w) which implies that

c ≤
k∑
i=1

bi
ai

∆(G,w).

Let us choose bi = 2ai for i < k. We will have then ai = 2i − 1 for i ≤ k and bi = 2i+1 − 2 for i < k.
If 2h ≤ W ≤ 2h+1 − 2, then we choose k = h = blog2(W )c and we will have c ≤ 2blog2(W )c∆(G,w).
If W = 2h+1 − 1, then we choose k = h + 1. In this case, we have bk = W = ak = 2h+1 − 1 and
c ≤ (2h+ 1)∆(G,w). Since 22h+1 ≤ (2h+1 − 1)2, we have 2h+ 1 ≤ 2 log2(W ) and therefore we always have
c ≤ 2 log2(W )∆(G,w).

Note that we can obtain slightly better approximations by using other ratios for bi
ai

. If bi
ai

= x, we obtain
an x logx(W ) approximation. For x = 3, we obtain a 3 log3(W ) ' 1.893 log2(W ) approximation. The best
ratio value we can take is x = e (which minimizes the function x logx(W )); for this value we obtain an
e ln(W ) ' 1.884 log2(W ) approximation.

Theorem 10 implies the following corollary.

Corollary 4. There is a 2 log2(D)-approximation for the Spectrum Assignment problem in binary trees
where D is the maximum demand.

4.5 Maximum demand at most 6

In the previous subsection, an approximation algorithm for the SA problem in binary trees where the
maximum demand is at most D has been presented. This approximation is achieved by partitioning the
requests into subsets of close demands. This technique is used not only in binary trees but also in general
graphs as a heuristic [26]. In what follows, we use different techniques to find better approximations for SA
in binary trees for some given values of the maximum demand D. The techniques we use were introduced in
[19] to approximate DSA. Results in [19] can extend directly to SA in path networks giving approximation
algorithms with factors 4

3 and 1.7 when the spectrum demands are bounded by 2 and 3, respectively. In
what follows we use the same techniques to design constant-factor approximations for SA in binary trees
when the spectrum demand is bounded by 6.

We first prove the following theorem for interval coloring.

Theorem 11. Let (G,w) be a weighted chordal graph. There are polynomial-time algorithms which find an
interval coloring of (G,w) with at most 3

2∆(G,w) + 1
2 , 19

10∆(G,w) + 8
5 , 59

27∆(G,w) + 67
27 , 859

336∆(G,w) + 229
56

and 287
100∆(G,w) + 885

200 colors when the maximum weight is bounded by 2, 3, 4, 5 and 6, respectively.

Proof. As in the previous sections, ∆(G,w) refers to the density of the weighted graph (G,w) and will be
abbreviated in this proof to ∆.

Let C(d, S) denote the set of instances of IC in which the graph is chordal, the density is at most d and
the weights are in the set S. Let c(d, S) denote the smallest integer α such that for each instance of C(d, S),
there is an interval coloring with at most α colors (if such α exists).

We present first the general approach to solve the problem for any maximum weight W before presenting
the cases W ∈ {3, 4, 5, 6} in details.

General Approach Let (G,w) be a weighted chordal graph with maximum weight W . To color the graph
G, we proceed in two phases as follows.

• Partitioning the vertices into multi-level blocks: in this phase, the vertices are partitioned into blocks.
We will have for each i ∈ {1, . . . ,W}, a set Bi of ni level-i blocks B1

i , . . . , B
ni
i each of density di. We

order the blocks in the lexicographic order: block Bji is before block Bj
′

i′ if i < i′ or i = i′ and j < j′.
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Our algorithm consists in considering successively the vertices in the RPEO order and assigning a new
vertex v to the first available block (in the block’s order). In more details, we assign a vertex v to a
block B if the weight of the clique induced by v and its neighbors in B does not exceed the density of
the block. The vertex v and its neighbors in B indeed form a clique since the graph is chordal and we
consider the vertices in the RPEO order.

We will choose the parameters di and ni (see details after) in such a way that the following property
is satisfied:

Property *: Each vertex of weight i is assigned to some block in the set Bl such that l ≤ i.
In particular, this means that at the end of the algorithm each vertex is assigned to some block.

• Solving the problem of interval coloring for each block: in this second phase, the vertices of each block
of Bi are colored using an algorithm to solve instances with density di and weights in Si = {i, . . . ,W}
(the possible weights of the vertices in Bji ). Note that the vertices of a block of Bi induce a graph
which belongs to C(di, Si). The algorithm we use is designed to use no more than c(di, Si) colors.

Therefore, the total number of colors used to color the whole graph is at most

W∑
i=1

nic(di, {i, . . . ,W})

The total number of colors depends on ni and di. In fact, we will proceed as follows. For a chosen set of
values of the densities di, we will choose the smallest possible ni such that Property* is satisfied. Afterwards,
we will compute c(di, {i, . . . ,W}) and therefore the total number of colors for the chosen values of di. We
will do this for many values of the densities di and keep the set of values which minimize the total number
of colors.

Choice of the ni Note that, if for some i, di < i, then ni = 0 as a block of Bi cannot be used to assign
a vertex of weight ≥ i (recall that the vertices of weight < i are by Property * all assigned to blocks of Bl
with l < i). So, in the following claims, we suppose di ≥ i for all i.

Claim 1. n1 =
⌈

∆
d1

⌉
Proof. Suppose that a vertex v of weight 1 cannot be assigned to any block of B1. This means that, for each
block B of B1, vertex v and its neighbors in B form a clique of size > d1 and so the weight of the neighbors
of v in B is at least d1. This implies that the weight of the neighbors of v in all of the blocks in B1 is at
least n1d1. Since we are considering the vertices in the RPEO, this implies that the clique induced by v and

its neighbors in B1 is of weight n1d1 + 1 which exceeds ∆ for n1 =
⌈

∆
d1

⌉
. This is not possible.

Claim 2. n2 =
⌈

∆−1−n1(d1−1)
∆2

2

⌉
where ∆2

2 = max{2, d2 − 1}.

Proof. Suppose that a vertex v of weight 2 cannot be assigned to any block of B1 or B2. This means that,
for each block B of B1 (resp. B2), vertex v and its neighbors in B form a clique of size > d1 (resp. > d2)
and so the weight of the neighbors of v in B is at least d1 − 1 (resp. d2 − 1). However, if d2 = 2, as all the
vertices of weight 1 are assigned to blocks of B1, v has necessarily one neighbor of weight 2 in each block of
B2. Therefore, if we let ∆2

2 = max{2, d2 − 1}, the clique induced by v and its neighbors in the RPEO has a

weight at least n1(d1 − 1) + n2∆2
2 + 2 which exceeds ∆ for n2 =

⌈
∆−1−n1(d1−1)

∆2
2

⌉
.

Example: Consider the case W=2 and let d1 = 2 d2 = 2. Applying the formula we get n1 = d∆
2 e and

n2 = d∆−1−n1

2 e. Using the fact that c(2, {1, 2}) = c(2, {2}) = 2 the number of colors is 2n1 + 2n2 that is 6p
for ∆ = 4p; 6p + 2 for ∆ = 4p + 1 and for ∆ = 4p + 2 and 6p + 4 for ∆ = 4p + 3 that we can express as
2∆ − 2d∆−1

4 e. That is slightly better than the value obtained in Theorem 7 more precisely one less when
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∆ = 4p + 2 (resp. 4p + 3) where we get 6p + 2 (resp. 6p + 4) colors instead of 6p + 3 (resp. 6p + 5). In
summary we get:

For maximum weight 2, we obtain an approximation with a multiplicative ratio of 3
2 and

an additive constant of 1
2 .

Claim 3. ni =


∆+1−i−

i−1∑
l=1

nl∆
l
i

∆i
i

 where ∆l
i = max{l, dl + 1− i}.

Proof. Suppose that a vertex v of weight i cannot be assigned to any block of Bl with l ≤ i. This means
that, for each block B of Bl, vertex v and its neighbors in B form a clique of size > dl and so the weight of
the neighbors of v in B is at least dl + 1 − i. Furthermore, as all the vertices of weight < l are assigned to
blocks of Bj for j < l, v has necessarily one neighbor of weight at least l in any block of Bl. Therefore, if
we let ∆l

i = max{l, dl + 1− i}, the clique induced by v and its neighbors in the RPEO has a weight at least

i∑
l=1

nl∆
l
i + i which exceeds ∆ for ni =


∆+1−i−

i−1∑
l=1

nl∆
l
i

∆i
i

.

Maximum weight 3 Let W = 3. We choose some values for di and using the claims above, we obtain
the following values of ni:

• d1 = d2 = d3 = 3. n1 =
⌈

∆
3

⌉
and n2 =

⌈
∆−1−2n1

2

⌉
and n3 =

⌈
∆−2−n1−2n2

3

⌉
.

• d1 = 5, d2 = d3 = 3. n1 =
⌈

∆
5

⌉
and n2 =

⌈
∆−1−4n1

2

⌉
and n3 =

⌈
∆−2−3n1−2n2

3

⌉
.

• d1 = d2 = 5, d3 = 3. n1 =
⌈

∆
5

⌉
and n2 =

⌈
∆−1−4n1

4

⌉
and n3 =

⌈
∆−2−3n1−3n2

3

⌉
.

To compare the values of the total number of colors we need to compute c(3, S) for some basic sets S.
We recall that c(d, S) is the minimum number of colors which can be used in an interval coloring of any
chordal graph with density d and weights in S.

• c(3,{1,2,3}) = 4.

We first prove that c(3, {1, 2}) ≥ 4. Let us consider the example presented in Figure 3 in which the
density is 3 and the maximum weight is 2. The graph in the example consists of a clique of 3 vertices
of weight one, such that each vertex of weight one is joined to a vertex of weight 2. This graph cannot
be colored using only 3 colors. If we suppose that it can be colored with 3 colors {1, 2, 3}, then one of
the vertices of weight one will have to be assigned color 2. For this vertex, the neighbor of weight 2
cannot be colored since the only available colors are 1 and 3 which are not contiguous.

To prove that c(3, {1, 2, 3}) ≤ 4, we use the First Fit algorithm in the RPEO which needs at most 4
colors .

• c(3,{2,3}) = c(3,{3}) = 3.

In fact in an instance of C(3, {2, 3}), all vertices are isolated and we can hence easily color them with
at most 3 colors.

• c(4,{1,2,3}) = 6.

We first prove that c(4, {1, 2, 3}) ≥ 6. Let us consider the example presented in Figure 4 which consists
of a clique of four vertices of weight one. Each vertex of weight one is joined to a vertex of weight 3
and each pair of vertices of weight one is joined to a vertex of weight 2. Suppose that we only use 5
colors {1, 2, 3, 4, 5} to color this graph. If one of the vertices of weight 1 uses color 3, then its neighbor
which has weight 3 cannot be colored. Otherwise, if the vertices of weight 1 use colors {1, 2, 4, 5}, then
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Figure 3: An example showing that c(3, {1, 2}) 6= 3

1 1

11

3

3 3

32

2

2

2

2 2

Figure 4: An example showing that c(4, {1, 2, 3}) 6= 5

the vertex of weight 2 which is adjacent to the vertices of weight 1 which have colors 2 and 4 cannot
be colored.

To color any instance in C(4, {1, 2, 3}) with at most 6 colors, we use the first fit algorithm in the RPEO.

• c(4,{2,3}) = 4.

The First Fit algorithm in the RPEO, colors any instance in C(4, {2, 3}) with at most 4 colors.

• c(5,{1,2,3}) = 7.

We first prove that c(5, {1, 3}) ≥ 7. Let us consider the graph G consisting of a clique of 5 vertices
each of weight 1 and such that each pair of vertices of the clique is connected to a vertex of weight 3.
The graph G is chordal with density 5 and weights in {1, 3}. Let us suppose that we can color G with
only six colors. There are either two vertices of weight one colored with colors 2 and 4 or two vertices
of weight one colored with colors 3 and 5. In both cases the vertex of weight 3 adjacent to these two
vertices cannot be colored.

Now let us describe an algorithm that takes an instance of C(5, {1, 2, 3}) and colors it with at most 7
colors. The algorithm is a First Fit algorithm in the RPEO of the vertices with the additional feature
that colors 5 and 6 are forbidden for vertices of weight 1.

– If a vertex v of weight 3 is considered, then if v has a neighbor of weight 2 colored with {α, α+1},
we color v with {1, 2, 3} if α ≥ 4 or {5, 6, 7} if α ≤ 3. If v has two neighbors of weight 1; if color
7 is not used we color v with {5, 6, 7}. If color 7 is used, but not color 4 we color v with {4, 5, 6}.
If both colors 4 and 7 are used, we color v with {1, 2, 3}.
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– If a vertex v of weight 2 is considered, then if v has 3 neighbors of weight 1, we color v with {5, 6}.
If it has one neighbor of weight 2 colored {α, α+ 1} and one of weight 1 colored β, then we color
v with {5, 6} if α ≤ 3; with {1, 2} if α ≥ 4 and β ≥ 3; with color {6, 7} if α = 4 and β ≤ 2 or
{3, 4} if α ≥ 5 and β ≤ 2.

• c(5,{2,3}) = 5.

The First Fit algorithm in the RPEO in which we forbid color 3 to vertices of weight 2 uses at most 5
colors (note that a vertex of weight 3 cannot be colored with {2, 3, 4}).

Now, we can compute the number of colors for the 3 cases considered above.

• If we set d1 = d2 = d3 = 3, the number of colors used is n1c(3, {1, 2, 3}) +n2c(3, {2, 3}) +n3c(3, {3}) =
4n1 + 3n2 + 3n3. As n3 ≤ ∆−n1−2n2

3 the number of colors is at most ∆ + 3n1 + n2 and as n2 ≤ ∆−2n1

2

it is at most 3∆
2 + 2n1. Finally, as n1 ≤ ∆

3 + 2
3 , the number of colors used is at most 13

6 ∆ + 4
3 .

• If we set d1 = 5, d2 = d3 = 3, the number of colors used is n1c(5, {1, 2, 3})+n2c(3, {2, 3})+n3c(3, {3}) =
7n1 + 3n2 + 3n3. As n3 ≤ ∆−3n1−2n2

3 the number of colors is at most ∆ + 4n1 +n2 and as n2 ≤ ∆−4n1

2

it is at most 3∆
2 + 2n1. Finally, as n1 ≤ ∆

5 + 4
5 , the number of colors used is at most 19

10∆ + 8
5 .

• If we set d1 = d2 = 5, and d3 = 3, the number of colors used is n1c(5, {1, 2, 3}) + n2c(5, {2, 3}) +
n3c(3, {3}) = 7n1 + 5n2 + 3n3. As n3 ≤ ∆−3n1−3n2

3 the number of colors is at most ∆ + 4n1 + 2n2 and

as n2 ≤ ∆−4n1+2
4 it is at most 3∆

2 + 2n1 + 1. Finally, as n1 ≤ ∆
5 + 4

5 , the number of colors used is at
most 19

10∆ + 13
5 .

We have tried other values of di and ni but we obtained bigger numbers of colors. For example:

• If we set d1 = 4, d2 = d3 = 3, using c(4, {1, 2, 3}) = 6, the number of colors is at most 17
8 ∆ + 15

8 .

• If we set d1 = d2 = 4, and d3 = 3, using c(4, {2, 3}) = 4 the number of colors is at most 13
6 ∆ + 13

6 .

• If we set d1 = 6, and d2 = d3 = 3, then using c(6, {1, 2, 3}) = 9 (to be computed after), the number of
colors is at most 23

12∆ + 25
12 .

• If we set d1 = 6, d2 = 5 and d3 = 3, then using c(5, {2, 3}) = 5, the number of colors is at most
23
12∆ + 37

12 .

For maximum weight 3, we obtain an approximation with a multiplicative ratio of 19
10 and

an additive constant of 8
5 .

Maximum weight 4 Let us first compute c(4, S) for some basic sets S.

• c(4,{1,2,3,4}) = 6.

Since in an instance of C(4, {1, 2, 3, 4}), the vertices of weight 4 are isolated, we color them and then
use the algorithm used to prove that c(4, {1, 2, 3}) = 6 to color the other vertices.

• c(4,{2,3,4}) = 4.

A First Fit algorithm in the RPEO uses at most 4 colors. In fact, in an instance of C(4, {2, 3, 4}),
vertices of weights 3 or 4 are isolated and it suffices to color vertices of weight 2 with {1, 2} or {3, 4}.

• c(4,{3,4}) = c(4,{4}) = 4.

In an instance of C(4, {3, 4}), all vertices are isolated and can be colored independently.
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• c(5,{1,2,3,4}) = 8.

We first prove that c(5, {1, 2, 3, 4}) ≥ 8. Let us consider the graph G which consists of a clique of
5 vertices of weight 1 each and such that each vertex of weight one is connected to a new vertex of
weight 4 and each pair of vertices of weight 1 is connected to a new vertex of weight 3. The graph
G is chordal and has density 5 and maximum weight 4. Suppose that only 7 colors can be used to
color G. Color 4 cannot be used for any vertex of weight 1, otherwise its neighbor of weight 4 cannot
be colored. Furthermore we can use for vertices of weight 1 at most one of the pair of colors {2, 5}
and {3, 6}, otherwise the neighbor of weight 3 connected to this pair cannot be colored. So we have
altogether 3 colors forbidden for vertices of weight 1 and so only 4 available colors which is impossible.

Now let us describe an algorithm that takes an instance of C(5, {1, 2, 3, 4}) and colors it with at most
8 colors. The algorithm uses first fit in the RPEO with the additional feature that colors 3 and 6 are
forbidden to vertices of weight 1. Let us check that this algorithm uses indeed at most 8 colors.

– If a vertex v of weight 4 is considered, then if v has a neighbor of weight 1 which has been already
colored α, we color v with {1, 2, 3, 4} if α ≥ 5 or {5, 6, 7, 8} if α ≤ 4.

– If a vertex v of weight 3 is considered, then if v has a neighbor of weight 2 colored with {α, α+1},
we color v with {1, 2, 3} if α ≥ 4 or with {6, 7, 8} if α ≤ 3. If v has two neighbors of weight 1
colored with α < β, we color v with {1, 2, 3} if α ≥ 4 or {3, 4, 5} if α ≤ 2 and β ≥ 7 or {6, 7, 8} if
α ≤ 2 and β ≤ 5 (recall that α 6= 3 and β 6= 6).

– If a vertex v of weight 2 is considered, then if v has 3 neighbors of weight 1 colored with α < β < γ,
we color v with {1, 2} if α ≥ 4, or {3, 4} if α ≤ 2 and β ≥ 5, or {5, 6} if β ≤ 4 and γ ≥ 7, or {7, 8}
if γ ≤ 5. If v has one neighbor of weight 2 colored with {α, α + 1} and one of weight 1 colored
β, we color v with {1, 2} if α ≥ 3 and β ≥ 4, or {4, 5} if α ≤ 2 and β ≥ 7, or {7, 8} if α ≤ 2 and
β ≤ 5, or {3, 4} if α ≥ 5 and β ≤ 2, or {7, 8} if α ≤ 4 and β ≤ 2.

• c(5,{2,3,4}) = 5.

In an instance of C(5, {2, 3, 4}), vertices of weight 4 are isolated. We can color them then all with colors
{1, 2, 3, 4}. For the vertices of weights 2 and 3, we use the algorithm which achieves c(5, {2, 3}) = 5.

• c(6,{1,2,3,4}) = c(6,{1,2,3}) = 9.

We first prove that c(6, {1, 3}) ≥ 9. Let us consider the graph G consisting of a clique of 6 vertices of
weight 1 each and such that the vertices of each triple of the clique are connected to a vertex of weight
3. The graph G is chordal with density 6 and weights in {1, 3}. Let us suppose that we can color G
with only 8 colors. There are three vertices of weight 1 using colors {1, 4, 7} or three vertices of weight
1 using colors {2, 5, 8} or two vertices of weight 1 using colors {3, 6}. In any of these three cases, a
vertex of weight 3 cannot be colored.

Now let us describe an algorithm that takes an instance of C(6, {1, 2, 3, 4}) and colors it with at most 9
colors. The algorithm is a First Fit algorithm in the RPEO of the vertices with two additional features:
colors 6,7 and 8 are forbidden to vertices of weight 1, and each vertex of weight 2 is assigned colors
{1, 2}, {3, 4}, {5, 6}, or {7, 8} and not any other contiguous combination of two colors. This algorithm
uses at most 9 colors.

– If a vertex v of weight 4 is considered, then if v has a neighbor of weight 2 which has been already
colored, the possible sets of color used by this neighbor are {1, 2}, {3, 4}, {5, 6}, or {7, 8}. In any
case, v can be colored with 4 contiguous colors. If v has two neighbors of weight 1 each that have
been already colored, then either one of the colors 9 or 5 is not used by this neighbor, and in this
case v can use it along with the colors {6, 7, 8} (which are forbidden for vertices of weight 1), or
both colors 9 and 5 are used and v can use colors {1, 2, 3, 4}.

– If a vertex v of weight 3 is considered, then if v has a neighbor of weight 3 colored with {α, α +
1, α+ 2}, we color v with {1, 2, 3} if α ≥ 4 or with {7, 8, 9} if α ≤ 3. If v has two neighbors one of
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weight 2 colored with {α, α+ 1} and one of weight 1 colored with β, then we color v with {6, 7, 8}
if α = 1 or 3; {1, 2, 3} if α = 5 or 7 and β ≥ 4; {7, 8, 9} if α = 5 and β ≤ 3; {4, 5, 6} if α = 7 and
β ≤ 3.

– If a vertex v of weight 2 is considered. If all its neighbors that have been already colored are of
weight 1, then v can be assigned colors {7, 8}. If v has two colored neighbors of weight 2 each, or
one colored neighbor of weight 2 and two other colored neighbors with weight 1, or one colored
neighbor of weight 3 and another of weight 1, or one vertex of weight 4, then one of the channels
{1, 2}, {3, 4}, {5, 6}, or {7, 8} is necessarily free to be used.

• c(6,{2,3,4}) = 8.

We first prove that c(6, {2, 4}) ≥ 8. Let us consider the graph G which consists of a clique of 3 vertices
of weight 2 each, and such that each vertex of weight 2 is connected to a vertex of weight 4. The graph
G is chordal and has density 6 and weights in {2, 4}. Let us suppose that we can color G with only
7 colors. In any possible coloring of the vertices of weight 2, a vertex v of weight 2 has to use either
colors {3, 4} or {4, 5}. In both cases, the neighbor of v which has weight 4 cannot be colored.

Now let us describe the algorithm that colors an instance of C(6, {2, 3, 4}). The algorithm uses First
Fit in the RPEO with the additional feature that the possible combinations of colors for vertices of
weight 2 are the following: {1, 2}, {3, 4}, {5, 6}, and {7, 8}.

• c(6,{3,4}) = 6.

Vertices of weight 4 are isolated and can be all assigned colors {1, 2, 3, 4} and other vertices can be
colored using first fit in the RPEO with at most 6 colors.

Now, we can compute the number of colors for d1 = 6 and d2 = d3 = d4 = 4.
The number of colors used is n1c(6, {1, 2, 3, 4}) + n2c(4, {2, 3, 4}) + n3c(4, {3, 4}) + n4c(4, {4}) = 9n1 +

4n2 + 4n3 + 4n4.
We have n1 =

⌈
∆
6

⌉
; n2 =

⌈
∆−1−5n1

3

⌉
; n3 =

⌈
∆−2−4n1−2n2

3

⌉
, and n4 =

⌈
∆−3−3n1−2n2−3n3

4

⌉
.

As n4 ≤ ∆−3n1−2n2−3n3

4 the number of colors is at most ∆ + 6n1 + 2n2 + n3. As n3 ≤ ∆−4n1−2n2

3 the

number of colors is at most 4∆
3 + 14

3 n1 + 4
3n2, and as n2 ≤ ∆−5n1+1

3 it is at most 16∆
9 + 22

9 n1 + 4
9 . Finally,

as n1 ≤ ∆+5
6 , the number of colors is at most 59

27∆ + 67
27 .

We have computed the number of colors for other choices of the di but the values are bigger.

• For d1 = d2 = d3 = d4 = 4, then the number of colors used is 6n1 + 4n2 + 4n3 + 4n4 which is at most
91
36∆ + 97

36 colors.

• For d1 = 5 and d2 = d3 = d4 = 4, then the number of colors used is 8n1 + 4n2 + 4n3 + 4n4 which is at
most 109

45 ∆ + 176
45 colors.

• For d1 = d2 = 5 and d3 = d4 = 4, then the number of colors used is 8n1 + 5n2 + 4n3 + 4n4 which is at
most 73

30∆ + 17
5 colors.

• For d1 = d2 = d3 = 6, d4 = 4, then the number of colors used is 9n1 + 8n2 + 6n3 + 4n4 which is at
most 139

60 ∆ + 167
60 colors.

• For d1 = d2 = 6 and d3 = d4 = 4, then the number of colors used is 9n1 + 8n2 + 4n3 + 4n4 which is at
most 67

30∆ + 91
30 colors.

For maximum weight 4, we obtain an approximation with a multiplicative ratio of 59
27 and

an additive constant of 67
27 .
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Maximum weight 5 Let us first compute c(5, S) for some basic sets S.

• c(5,{1,2,3,4,5}) = 8.

In fact, we know that c(5, {1, . . . , 4}) = 8 and for any chordal graph with density 5 and maximum
weight 5, vertices of weight 5 are isolated and can be colored independently from the others.

• c(5,{2,3,4,5}) = 5.

In a chordal graph of density 5 and weights in {2, . . . , 5}, vertices of weight 4 or 5 are isolated and can
be easily colored. For other vertices, we know that c(5, {2, 3}) = 5.

• c(5,{3,4,5}) = c(5,{4,5}) = 5.

All vertices are isolated and can be easily colored.

• c(6,{1,2,3,4,5}) = 10.

We first prove that c(6, {1, . . . , 5}) = 10. Let us consider the graph G which consists of a clique C of 6
vertices of weight 1 such that each of the vertices of C is connected to a vertex of weight 5, and each
pair of vertices of C is connected to a vertex of weight 4. Let us suppose that we can color G with 9
colors. Color 5 cannot be used for any vertex of weight 1, otherwise its neighbor of weight 5 cannot
be colored. Furthermore we can use for vertices of weight 1 at most one of the pair of colors {2, 6},
{3, 7}, {4, 8}, otherwise the neighbor of weight 4 connected to this pair cannot be colored. So we have
altogether 4 colors forbidden for vertices of weight 1 and so only 5 available colors which is impossible.

The First Fit in the RPEO with the additional feature of forbidding colors {7, 8, 9, 10} to vertices of
weight 1 colors any instance of C(6, {1, . . . , 5}) with at most 10 colors.

• c(6,{2,3,4,5}) = 8.

Vertices of weight 5 are isolated and can be easily colored. As for other vertices we have already proved
that c(6, {2, 3, 4}) = 8.

• c(6,{3,4,5}) = 6.

Vertices of weight 4 and 5 are isolated and vertices of weight 3 can be colored using First Fit in the
RPEO with either the colors {1, 2, 3} or {4, 5, 6}.

• c(7,{1,2,3,4,5}) ≤ 12.

To obtain a coloring with 12 colors, we use the First Fit algorithm in the RPEO with the additional
feature of forbidding colors {8, 9, 10, 11, 12} to vertices of weight 1 and colors {8, 9} and {9, 10} for
vertices of weight 2. The proof that the algorithm works is done by considering the various possibilities
when a new vertex is added.

– If a vertex v of weight 5 is considered, then if v has:

∗ 2 neighbors of weight 1, we color v with {8, 9, 10, 11, 12}.
∗ 1 neighbor of weight 2 colored with {α, α+ 1}, we color v with {1, 2, 3, 4, 5} if α ≥ 6 or with
{8, 9, 10, 11, 12} if α ≤ 5.

– If a vertex v of weight 4 is considered, then if v has:

∗ 3 neighbors of weight 1, we color v with {9, 10, 11, 12}.
∗ 1 neighbor of weight 2 colored with {α, α+ 1} and 1 neighbor of weight 1 colored β, we color
v with {9, 10, 11, 12} if α ≤ 7; otherwise α ≥ 10 and we color v with {1, 2, 3, 4} if β ≥ 5 or
with {5, 6, 7, 8} if β ≤ 4.(Note that we use the fact that α 6= 8; otherwise with α = 8 and
β = 4 we could not have colored v).

∗ 1 neighbor of weight 3 colored with {α, α + 1, α + 2}, we color v with {1, 2, 3, 4} if α ≥ 5 or
{9, 10, 11, 12} if α ≤ 4.
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– If a vertex v of weight 3 is considered, then if v has:

∗ 4 neighbors of weight 1, we color v with {10, 11, 12}.
∗ 1 neighbor of weight 2 colored with {α, α+ 1} and 2 neighbors of weight 1 colored β < γ, we

color v with {10, 11, 12} if α ≤ 7; otherwise α ≥ 10, and we color v with {1, 2, 3} if β ≥ 4 or
with {4, 5, 6} if β ≤ 3 and γ ≥ 7 or with {7, 8, 9} if β ≤ 3 and γ ≤ 6. (Note that we use the
fact that α 6= 9; otherwise with α = 9, β = 3 and γ = 6 we could not have colored v).

∗ 2 neighbors of weight 2 colored with {α, α+1} {β, β+1} with α < β, we color v with {1, 2, 3}
if α ≥ 4, or with {5, 6, 7} if α ≤ 3 and β ≥ 10, or with {10, 11, 12} if α ≤ 3 and β ≤ 7.

∗ 1 neighbor of weight 3 colored with {α, α + 1, α + 2} and 1 neighbor of weight 1 colored β,
we color v with {10, 11, 12} if α ≤ 7 or {1, 2, 3} if α ≥ 8 and β ≥ 4 or with {4, 5, 6, } if α ≥ 8
and β ≤ 3.

∗ 1 neighbor of weight 4 colored with {α, α+ 1, α+ 2, α+ 3}, we color v with {1, 2, 3} if α ≥ 4
or {10, 11, 12} if α ≤ 3.

– If a vertex v of weight 2 is considered, then if v has:

∗ 5 neighbors of weight 1, we color v with {11, 12}.
∗ 1 neighbor of weight 2 colored with {α, α+ 1} and 3 neighbors of weight 1 colored β < γ < δ,

we color v with {11, 12} if α ≤ 7; otherwise if α ≥ 10 we color v with {1, 2} if β ≥ 3, or with
{3, 4} if β ≤ 2 and γ ≥ 5, or with {5, 6} if β ≤ 2, γ ≤ 4 and δ ≥ 7, or with {7, 8} if β ≤ 2,
γ ≤ 4 and δ ≤ 6.

∗ 2 neighbors of weight 2 colored with {α, α + 1} and {β, β + 1} with α < β, and a neighbor
of weight 1 colored γ, we color v with {11, 12} if β ≤ 7; otherwise if β ≥ 10 we color v with
{1, 2} if α ≥ 3 and γ ≥ 3 , or with {4, 5} if α ≤ 2 and γ ≥ 6, or with {6, 7} if α ≤ 2 and
γ ≤ 5, or with {3, 4} if α ≥ 5 and γ ≤ 2, or with {6, 7} if α ≤ 4 and γ ≤ 2.

∗ 1 neighbor of weight 3 colored with {α, α + 1, α + 2} and 2 neighbors of weight 1 colored
β < γ, we color v with {11, 12} if α ≤ 8; otherwise if α ≥ 9 we color v with {1, 2} if β ≥ 3 or
with {4, 5} if β ≤ 2 and γ ≥ 6 or with {6, 7} if β ≤ 2 and γ ≤ 5.

∗ 1 neighbor of weight 3 colored with {α, α + 1, α + 2} and 1 neighbor of weight 2 colored
{β, β + 1}, we color v with {1, 2} if α ≥ 3 and β ≥ 3 , or with {11, 12} if α ≤ 2 and β ≤ 7, or
with {5, 6} if α ≤ 2 and β ≥ 10, or with {4, 5} if α ≥ 6 and β ≤ 2, or with {11, 12} if α ≤ 5
and β ≤ 2.

∗ 1 neighbor of weight 4 colored with {α, α+ 1, α+ 2, α+ 3} and 1 neighbor of weight 1 colored
β, we color v with {11, 12} if α ≤ 7 or {1, 2} if α ≥ 8 and β ≥ 3 or with {3, 4} if α ≥ 8 and
β ≤ 2.

∗ 1 neighbor of weight 5 colored with {α, α + 1, α + 2, α + 3, α + 4}, we color v with {1, 2} if
α ≥ 3 or {11, 12} if α ≤ 2.

Now we can compute the number of colors for d1 = 7 and d2 = d3 = d4 = d5 = 5.
The number of colors used is n1c(7, {1, 2, 3, 4, 5}) + n2c(5, {2, 3, 4, 5}) + n3c(5, {3, 4, 5}) + n4c(5, {4, 5}) +

n5c(5, {5}) = 12n1 + 5n2 + 5n3 + 5n4 + 5n5.
We have n1 =

⌈
∆
7

⌉
, n2 =

⌈
∆−1−6n1

4

⌉
, n3 =

⌈
∆−2−5n1−3n2

3

⌉
, n4 =

⌈
∆−3−4n1−2n2−3n3

4

⌉
, and n5 =⌈

∆−4−3n1−2n2−3n3−4n4

5

⌉
.

As in the preceding cases, we, successively, use upper bounds for the ni. The number of colors is at most
∆+9n1+3n2+2n3+n4, then 5∆

4 +8n1+ 5
2n2+ 5

4n3, then 5∆
3 + 71

12n1+ 5
4n2, then 95∆

48 + 97
24n1+ 5

8 ≤
859
336∆+ 229

56 .

We have computed the number of colors for other choices of the di but we obtained bigger values as we
present in what follows.

• If we set d1 = d2 = d3 = d4 = d5 = 5, then the number of colors used is 8n1 + 5n2 + 5n3 + 5n4 + 5n5

which is at most 679
240∆ + 161

40 .
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• If we set d1 = d2 = d3 = 6,d4 = d5 = 5, then the number of colors used is 10n1 + 8n2 + 6n3 + 5n4 + 5n5

which is at most 659
240∆ + 343

60 .

• If we set d1 = 6, d2 = d3 = d4 = d5 = 5, then the number of colors used is 10n1 +5n2 +5n3 +5n4 +5n5

which is at most 763
288∆(G,w) + 1275

288 .

For maximum weight 5, we obtain an approximation with a multiplicative ratio of 859
336 and

an additive constant of 229
56 .

Maximum weight 6 Let us first compute c(6, S) for some basic sets S. Note that with a density at most
6, any vertices of weight 6 are isolated. We can then deduce the following from what we have computed for
a maximum weight of 5.

• c(6,{1,2,3,4,5,6}) = 10.

• c(6,{2,3,4,5,6}) = 8.

• c(6,{3,4,5,6}) = c(6,{4,5,6}) = c(6,{5,6}) = c(6,{6}) = 6.

• c(7,{1,2,3,4,5,6}) = 12.

We use the algorithm which gives c(7, {1, 2, 3, 4, 5, }) ≤ 12. If a vertex v of weight 6 is added it is joined
to at most one vertex of weight 1 of color β. If β ≤ 6, we color v with colors {7, 8, 9, 10, 11, 12}) and if
β = 7 with colors {1, 2, 3, 4, 5, 6}) and so c(7, {1, 2, 3, 4, 5, 6}) ≤ 12.

To show that c(7, {1, 2, 3, 4, 5, 6}) ≥ 12, we consider the chordal graph consisting of a clique of 7 vertices
of weight one such that each vertex of this clique is joined to a vertex of weight 6. Furthermore we
join each pair of vertices of weight 1 to a vertex of weight 5. Suppose that we can color the graph
with 11 colors. Color 6 cannot be used for any vertex of weight 1, otherwise its neighbor of weight 6
cannot be colored. Furthermore we can use for vertices of weight 1 at most one color of each of the
following pairs of colors {2, 7}, {3, 8}, {4, 9}, {5, 10}, otherwise the neighbor of weight 5 connected to
this pair cannot be colored. So we have altogether 5 colors forbidden for vertices of weight 1 and so
only 6 available colors which is impossible.

Now we can compute the number of colors for d1 = 7 and d2 = d3 = d4 = d5 = d6 = 6.
The number of colors used is n1c(7, {1, 2, 3, 4, 5, 6})+n2c(6, {2, 3, 4, 5, 6})+n3c(6, {3, 4, 5, 6})+n4c(6, {4, 5, 6})+

n5c(6, {5, 6}) + n6c(6, {6}) = 12n1 + 8n2 + 6n3 + 6n4 + 6n5 + 6n6.
We have n1 =

⌈
∆
7

⌉
, n2 =

⌈
∆−1−6n1

5

⌉
, n3 =

⌈
∆−2−5n1−4n2

4

⌉
, n4 =

⌈
∆−3−4n1−3n2−3n3

4

⌉
, n5 =

⌈
∆−4−3n1−2n2−3n3−4n4

5

⌉
,

and n6 =
⌈

∆−5−2n1−2n2−3n3−4n4−5n5

6

⌉
.

Like in the preceding cases, we obtain upperbounds on ni. The number of colors is at most ∆+10n1+6n2+
3n3+2n4+n5, then 6∆

5 + 47
5 n1+ 28

5 n2+ 12
5 n3+ 6

5n4, then 3∆
2 + 41

5 n1+ 47
10n2+ 3

2n3, then 15∆
8 + 253

40 n1+ 16
5 n2+ 3

8 ,

then 503∆
200 + 497

200n1 + 459
200 ≤

287
100∆ + 885

200 .

If we set d1 = d2 = d3 = 6 = d4 = d5 = d6 = 6, the number of colors used is 10n1 + 8n2 + 6n3 + 6n4 +
6n5 + 6n6 which is at most 603

200∆(G,w) +O(1).
We could improve the value if we could prove that c(8, {1, 2, 3, 4, 5, 6}) ≤ 14 but that seems not possible.

We can only prove c(8, {1, 2, 3, 4, 5, 6}) ≤ 15 which gives a bigger number of colors.

For maximum weight 6, we obtain an approximation with a multiplicative ratio of 287
100 and

an additive constant of 885
200 .

Theorem 11 implies the following corollary.

Corollary 5. Let I be an instance of SA in a binary tree. Let OPT be the span of I. There are polynomial-
time algorithms which find a spectrum assignment for I with a span less than 3

2OPT + 1
2 , 19

10OPT + 8
5 ,

59
27OPT + 67

27 , 859
336OPT + 229

56 and 287
100OPT + 885

200 when the maximum request demand is bounded by 2,3,4,5
and 6, respectively.
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5 Conclusion

We have studied in this report the problem of Spectrum Assignment (SA) in tree networks. We have proved
that SA is NP-complete in undirected stars with 3 links and directed stars with 4 links. We have also shown
that there is a 4-approximation algorithm to solve the problem in general stars. Afterwards, we have focused
on SA in binary trees with special demand profiles and we have designed constant approximation algorithms
for several cases. As future work, we would like to find approximation algorithms for interval coloring in
chordal graphs in general and to SA in binary trees in particular. Towards this objective, we believe the
following directions might be useful.

• It would be interesting to try to use the clique graph of the chordal graph [7] to find an acyclic
orientation where the number of maximal cliques to which a path belongs is bounded. In fact, finding
a k-approximation for interval coloring is equivalent to finding an acyclic orientation in which the
longest directed path has vertices in at most k maximal cliques [12]. This approach has been used to
find a 2-approximation for interval coloring in claw-free chordal graphs [6].

• It would be also helpful to try to use ideas from the approximation algorithms used for interval coloring
in interval graphs. These algorithms were developed for the problem of Dynamic Storage Allocation
(DSA) as we mentioned in Section 2.2.2 and they use mainly three techniques.

– 2-coloring (2-allocation) [9]: in this technique, which yields a 3-approximation for Interval Coloring
(IC) in interval graphs, first, a 2-coloring is found where 2 adjacent vertices but not three might
use the same color. This 2-coloring is transformed afterwards to a normal coloring. Is it possible
to find a 2-coloring for chordal graphs in polynomial time?

– Boxing vertices [3]: in this technique, which yields a 2+ε approximation for IC in interval graphs,
vertices are modeled as rectangles (the dimensions of a rectangle corresponding to a vertex v
are the weight of v and the interval corresponding to v in the interval representation of the
graph). These rectangles are cleverly boxed or gathered in larger rectangles. Afterwards an exact
algorithm is used to color these large rectangles. Is it possible to adapt such technique to chordal
graphs and find a clever way to box the vertices?

– Buddy-decreasing-size algorithm [5]: in this algorithm, which yields a 6-approximation for IC
in interval graphs, vertices are colored in the decreasing order of their weights. Some of the
challenges in this direction is that using it as it is for chordal graphs cannot give better than a
log(n)-approximation; there is a tight example in [21]. In the tight example however all the vertices
have the same weight which means that there is an exponential number of possible orders. Is there
a clever order (something similar to lexicographic order?) which can give a better approximation
ratio?
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