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Abstract—The Internet of Things (IoT) paradigm brings an
opportunity for advanced Demand Response (DR) solutions.
Indeed, it enables visibility and control on the various appliances
that may consume, store or generate energy within a home. It has
been shown that a centralized control on the appliances of a set
of households leads to efficient DR mechanisms; unfortunately,
such solutions raise privacy and scalability issues. In this paper
we propose an IoT-based DR approach that deals with these
issues. Specifically, we propose and analyze a scalable two levels
control system where a centralized controller allocates power to
each house on one side and, each household implements an IoT-
based DR local solution on the other side. A limited feedback
to the centralized controller allows to enhance the performance
with little impact on privacy. The solution is proposed for the
general framework of capacity markets.

I. INTRODUCTION

The growing deployment of intermittent renewable energy

sources at different scales (from bulk to micro generation)

advocates for the design of advanced Demand Response (DR)

solutions to maintain the stability of the power grid and to

optimize the usage of resources.

DR takes advantage of demand flexibility. The level of gain

depends on the granularity of visibility and control on the

demand. The Internet of Things (IoT) paradigm enables im-

plementing DR at the finest granularity (individual appliances),

and deploying IoT-based solutions becomes feasible, both from

technological and economical points of view.

The introduction of capacity markets in several countries

provides incentives for: the flexibility end users could provide

through DR mechanisms; the deployment of flexible genera-

tors (for which the energy cost is higher than the average).

In this paper, we focus on DR solutions for keeping power

consumption below a certain known capacity limit for a well-

defined period of time. A possible application is for utility

companies, which are interested in limiting the cost of the

capacity certificates they have to acquire in the capacity market

(for securing supply). Such cost reduction is facilitated by

keeping power consumption below known thresholds.

*§ This author has carried out the work presented in this paper at LINCS
(www.lincs.fr)

In [3] the authors propose and analyze several IoT-based

DR mechanisms. They show that fine-grained visibility and

control on a set of households at an aggregation point enables

to maximize users perceived utility. However, this approach

may cause scalability as well as privacy problems. On the

other hand, they consider two levels control systems where

a central controller allocates available capacity to households

based on some static information (e.g. type of contract). Then,

local controllers leverage IoT benefits for local optimization,

without any feedback to the central controller. The drawback

of such approach is that it significantly reduces the total utility

perceived by the users.

In this paper, our main contribution is the proposition and

evaluation of an intermediate approach, based on two level

systems with partial feedback from the local controllers to the

central entity. The feedback sent has little impact on privacy.

Proposed solution enforce fairness by considering two levels of

utility for each appliance (i.e., vital and comfort). We compare

the performance of the proposed scheme with the two cases

studied in [3] (fully centralized solution and two level system

with no feedback). Results are analyzed for homogeneous (all

households have the same characteristics) and heterogeneous

scenarios. We show that for both cases, the proposed algorithm

outperforms the scheme with no feedback. It runs in a limited

number of iterations, which ensures good scalability and

limited requirements in terms of communication resources.

The paper is organized as follows: Section II presents the

related work. The system model and allocation schemes are

introduced in Section III and IV respectively. In Section V, we

study the performance of the proposed control scheme and

compare it to two benchmark control approaches through a

numerical analysis of the model. Conclusion and future work

are presented in Section VI.

II. RELATED WORK

Most proposed DR approaches can be classified in 2 groups,

namely, incentive based and direct control based. Incentive

based approaches aim to induce a targeted behavior of users

through dynamic prices. Authors in [5] propose a dynamic

pricing scheme based on a distributed algorithm to compute



optimal prices and demand schedules. In this work, we are

interested in direct load control of heterogeneous appliances

in the context of capacity markets. Direct load control has

the advantage of providing tight consumption guaranties. Such

mechanisms have been mainly proposed for providing system

services (for example, real time following of a flexibility

demand curb) and not in the context of capacity markets.

While detailed appliance models are proposed in pricing

papers (see for example [5]), most previous work on direct

control focus on specific types of appliances. For instance, the

authors in [7] propose an online control of deferrable ON-OFF

loads. A wide range of proposals focus on Thermostatically

Controlled Loads (TLCs) ([6], [8], [10], [4]).

Recent work has proposed schemes that are capable of

taking into account flexibility of any generic appliance ([11],

[12]). Authors in [12] propose a customer reward scheme

that incentivizes users to accept direct control of loads. They

propose a greedy algorithm (maximizes utility slot by slot)

based on the utility that each appliance declare for each slot.

It’s shown in [3] that such an allocation has low performance

since decisions are taken with no view on the global time

period. It also has obvious privacy issues. As stated in the

introduction, the present work builds on conclusion of the

analysis in [3]. Most closely related work to our proposal is the

scheme presented in [11] which is very similar to [5] if prices

are interpreted as control signals. The authors in [11] propose

to solve a similar problem but their approach requires con-

vergence of the algorithm to produce an allocation that does

not violate total capacity constraint. In our proposal, stopping

the algorithm before convergence (in case of communication

delays or loss for certain homes) will degrade performance but

still propose a feasible solution. The authors in [11] do not

discuss scalability and communication requirements in terms

of number of iterations required. They also assume convex

utility functions. Moreover, due to the type of information

provided to the centralized controller, our solutions better

guaranties privacy. Finally, they don’t consider fairness. We

introduce the concept of vital and comfort utility for each

appliance. On the one hand, this enables to better model the

real utility for end users and, on the other hand, we intrinsically

introduce a certain level of fairness.

III. SYSTEM MODEL

We consider an aggregator in charge of allocating power to

a set of H households under a total capacity constraint C(t).
t represents time slots. We suppose that during a defined time

period (measured in slots), in absence of control, predicted

demand would exceed available capacity. We call this period

a DR period. We denote by DEa and DEh the functional

groups in charge of decision taking at the aggregator side and

at the user h side (one per home), respectively. DEa is in

charge of allocating power to each household (Cht), under the

total power constraint. For each house h, DEh has two main

roles: the collection of information on variables monitored at

user premises (state of appliances, local temperature, etc.);

the enforcement of control decisions received from DEa (e.g.

by controlling the appliances). More details will be given

in Section IV when introducing the considered allocation

schemes.

System Parameters and Exogenous Variables

H Number of homes

A Number of classes of appliances

Pa
m(h) Minimum power consumed by appliance a in home h

Pa
M (h) Maximum power consumed by appliance a in home h

πa
v/c

(h, t) Preference coefficients

C(t) Available power capacity at time slot t

L(h) Power limits for home h

tM DR period duration in time slots

Tm(h) Minimum acceptable indoor temperature for home h

TP (h) Preferred indoor temperature for home h

TM (h) Maximum acceptable indoor temperature for home h

T0(h) Initial indoor temperature for home h

F (h), G(h) Coefficients for temperature dynamics in home h

Te(t) Exterior temperature at time t

Control Variables and Controlled Variables

Ua
ht Utility of appliance a in home h at time t

Uv
a
ht Vital component of Ua

ht
Uc

a
ht Comfort component of Ua

ht
Xa

ht Power consumed by appliance a in home h at time t

xa
ht = 1 when appliance a in home h at time t is active

and = 0 otherwise

Tht Temperature of home h at time t

Cht Capacity limit allocated for home h at time t

ght Subgradient of the utility function at point Cht for
home h at time t

TABLE I: Table of notation
A utility function is defined for each controlled appliance to

express the impact of its operation on user’s satisfaction. We

assume electrical appliances are classified among A classes.

Appliances of the same class have similar usage purposes

(e.g., heating) but may have different operation constraints.

Appliance of class a at home h operates within a given power

range [P a
m(h), P a

M (h)].
Following [3], a specific utility function is modeled for each

class of appliances based on usage patterns and criticality,

users’ preferences and exogenous variables (e.g. external tem-

perature). So, the utility of an appliance is expressed either

directly as a function of its consumption or as a function of

some monitored variables (see Section V for an example).

In the present work, we introduce two levels of utility per

appliance, vital and comfort. The first one expresses high

priority targets of high impact on users’ wellbeing and the

second one expresses less essential preferences.

For notation, we write utilities as vital/comfort pairs: Ua
ht =

(Uv
a
ht, Uc

a
ht) denotes utility of appliance a at time t for home

h. When controlling a set of appliances, policies target to

satisfy comfort only if vital needs cannot be further covered for

all appliances. Control decisions are based on the lexicograph-

ical order comparison of utility values: For two values Ua
ht and

U ′a
ht, we say Ua

ht > U ′a
ht iff Uv

a
ht > U ′

v
a

ht or (Uv
a
ht = U ′

v
a

ht and

Uc
a
ht > U ′

c
a

ht). Utilities can be summed using element-wise

addition.

We denote by πa
v (h, t) (resp. πa

c (h, t)) the maximal vital

(resp. comfort) utility associated to appliance a at home h and

time t. These values, which we call preference coefficients,

represent how the importance of appliances is modulated

depending on the preferences of users.



We assume that each house has a power limit L(h) sufficient

to achieve a maximal utility.

The optimization problem considered in this paper consists

in maximizing the total utility (using the lexicographic total

order) of users under system constraints. We notice that

fairness is introduced through the lexicographic ordering of

vital and comfort utility values (no comfort power is allocated

to any house if not all vital needs are covered). We do not

directly focus on revenues but expect that reaching maximal

users’ utility leads to maximal gains for all involved players.

Utility companies can provide better services for a given total

allocated power, which should translate into higher revenues,

or reduce the expenses in the capacity market for a given level

of service, which should reduce total costs. End users can save

money due to attractive prices they get for participating to the

service and adjusting energy consumption to their predefined

policies. Notation is summarized in Table I.

IV. ALLOCATION SCHEMES

We present here two reference schemes that will be used

for benchmarking purposes, along with our proposed solution.

A. Global Maximum Utility

The centralized global optimization is formulated by equa-

tions (1).

maxXa

ht
,xa

ht

∑tM
t=1

∑H

h=1

∑A

a=1 U
a
ht (1a)

s.t.
∑H

h=1

∑A

a=1 X
a
ht ≤ C(t), ∀ t (1b)

P a
m(h)xa

ht ≤ Xa
ht ≤ P a

M (h)xa
ht, ∀ t, ∀ h, ∀ a (1c)

xa
ht ∈ {0, 1}, ∀ t, ∀ h, ∀ a. (1d)

This problem was studied in [3], which shows the im-

portance of fine grained information from homes on the

performance of the control.

One can solve (1) if all the informations about appliances

and their utility functions are transmitted by the repartitors

DEh to the aggregator DEa, which can then compute an

optimal global solution and notify the repartitors accordingly.

While being optimal with respect to the utilities (by design),

this allocation, called GM , has two major drawbacks. First, it

requires to compute the solution of a complex problem, which

may raise scalability issues. Second, fine grained information

harvesting may cause privacy related issues which can affect

the acceptance of the control scheme by users. Thus, it may be

preferable to store information locally at homes with a local

intelligence. This leads to the following scheme.

B. Local Maximum Utility

This control scheme, denoted LM , considers only one way

communication from DEa to DEh (no feedback is transmitted

from DEh to DEa), and decision is made at both levels.

First, DEa allocates power to homes proportionally to their

subscribed power, so the power allocated to home h is

Cht =
L(h)

∑

i L(i)
C(t).

Then, at each home h, DEh decides the corresponding

allocation per appliance by solving the restriction of (1) to

h, using Cht instead of C(t).
By design, LM is scalable (only local problems are solved)

and private information disclosure is kept to a minimum. The

drawback is that the corresponding allocation may be far from

optimal [3].

C. SubGradient decomposition

We aim at achieving a reasonable trade-off between the cen-

tralized solution GM , which provides maximum performance

in terms of total utility value, and the local solution LM ,

which enforces scalability and privacy.

To do so, we propose a simple primal decomposition ,de-

noted SG, of the global GM problem into a master problem,

described in (2), and subproblems, described in (3).

Master problem

max
∑H

h=1 Uh (2a)
∑H

h=1 Cht = C(t), ∀ t (2b)

Cht ≥ 0, ∀ h ∀ t. (2c)

Subproblems

For each home h, the following mixed integer linear problem

(MILP) is solved:

Uh = max
∑tM

t=1

∑A

a=1 U
a
ht (3a)

∑A

a=1 X
a
ht ≤ Cht, ∀ t. (3b)

We briefly describe the main steps of SG: SG needs to

be bootstrapped with an initial power allocation. Then, for up

to KMAX iterations, DEa transmits to each repartitor DEh

the current allocation proposal {Cht}t. DEh then solves the

corresponding subproblem (3) and sends back the total utility

Uh feasible, along with the subgradients associated to the

current solution. Using the values reported by the repartitors,

DEa then tries to propose a better solution. In the end, the

best found solution is used.

We now give the additional details necessary to have a full

view of the solution.

1) Initial allocation: The first allocation is based only on

homes’ static maximum power limit. Following [3], we use a

round-robin strategy: we allocate to some houses up to their

power limit until the available capacity C(t) is reached; we

cycle with time the houses that are powered. The interest

for SG of such an initial allocation (e.g. compared LM ) is

that it gives an initial diversity that will help finding good

subgradients.

2) Subproblem and subgradient computation: The sub-

problem (3) is solved by DEh as in LM , using the values

Cht proposed by DEa. Reporting Uh is straightforward once

the local solution is computed. For the subgradients, let ght
denotes a subgradient of the utility function at point Cht. The

value ght can be found in two ways: either analytically or

by taking optimal value of the dual variables of (3b). In this

paper, we use an analytical computation of ght based on the

utility functions.



3) Finding better solutions: To update the current solution

at the k-th iteration, DEa does the following:

• It first computes a value αkght, where αk is a parameter

that depends on the iteration number. This value repre-

sents potential increase of Cht.

• It then adjusts the new values of Cht so they stay positive

and fit the capacity constraints.

For the first phase, the step size αk for each iteration k is a

crucial parameter. Thus, choosing appropriate step sizes is key

to speeding up resolution. Intuitively, αk should be chosen to

make the allocation update (dictated by αkght) useful for high

consumption appliances during the first iterations. Then, αk

should decrement with k so that the update is able to modify

allocations corresponding to low consumption appliances.

For the adjustment phase, it is important to deal with cases

where allocation update αkght is larger than available capacity

C(t) or maximum subscribed power L(h) of home h, so we

first cap αkght at the minimum between power limit of the

smallest home (Lm := minh L(h)) and system capacity C(t).
We therefore define βkht = min(αkght, Lm,C(t)).

Then for each t, we remove some positive common value

λt to the Cht to keep the sum of the allocations equal to the

total capacity C(t). To avoid houses with low Cht to be badly

impacted (in particular to avoid negative allocations), a subset

It of the houses will be “protected” so that their values cannot

decrease. In details, we do the following, starting with It = ∅:

• We compute λt such that the values

C ′

ht =

{

Cht +max{βkht − λt, 0} if h ∈ It,
Cht + βkht − λt otherwise,

(4)

sum to C(t). See [9], [1] for more details.

• We protect (e.g. add to It) all houses that get a negative

value C ′

ht.

• We iterate the steps above until all C ′

ht are positive. DEa

then proposes C ′

ht as a new solution to investigate.

Remarks: While the solution described here applies to

a 2-level hierarchy (DEa, DEh), it can be generalized to M
levels to take into account static maximum capacity of differ-

ent aggregation points on a hierarchical distribution network:

considering an aggregation point m at a certain level, the

subgradient for m can be obtained by adding up subgradients

from its children.

Also note that the proposed scheme can run asynchronously

in the sense that it does not require all houses to communi-

cate simultaneously. In fact, as soon as two homes respond,

reallocation can be made based on the sum of the power for

responding homes without having to wait for others to respond.

V. NUMERICAL ANALYSIS

We now propose to evaluate the performance of our pro-

posed solution for a specific use case.

A. Parameters and settings

To study the performance of the control schemes for several

values of capacity, we choose the following system parameters:

Class [P 1

m(h), P 1

M (h)] [P 2

m(h), P 2

M (h)] F (h) G(h)
1 [50, 1000] [1000, 4000] 0.0017 0.075

2 [50, 500] [1000, 2000] 0.0008 0.0365

TABLE II: Classes of houses

X1
ht

Uv
1
ht

0 P 1
m(h) P 1

M (h)

π1
v(h, t)

(a) Vital utility

X1
ht

Uc
1
ht

0 P 1
m(h) P 1

M (h)

π1
c (h, t)

(b) Comfort utility

Fig. 1: Utility of light power

Tht

Uv
2
ht

0 Tm(h) TP (h) TM (h)

π2
v(h, t)

(a) Vital utility

Tht

Uc
2
ht

0 Tm(h) TP (h) TM (h)

π2
c (h, t)

(b) Comfort utility

Fig. 2: Utility of Tht

• The size of the system is H = 100 houses.

• We select a slot duration of 5 minutes.

• The DR period is set to tM = 100 slots (≈ 8 hours).

• We consider two types of appliances (A = 2): lighting

(a = 1) and heating (index a = 2). Utility functions for

both appliances have a vital and a comfort component.

• Vital light utility is fully obtained as soon as the minimal

light power P 1
m(h) is reached, while comfort utility

linearly grows from P 1
m(h) to P 1

M (h) (See Fig.1).

• For heating, vital utility linearly grows until the minimum

tolerable temperature Tm(h) := 15◦C is reached, while

comfort utility linearly grows from T 1
m(h) to the preferred

temperature TP (h) := 22◦C (See Fig.2).

• We suppose a constant external temperature Te(t) =
10◦C ∀t and an initial temperature T0(h) = 22◦C ∀h.

• We suppose constant preference coefficients during the

whole period: πv(h, t) = πc(h, t) = 1 ∀h ∀t.
• Temperature in homes evolves according to a simplified

conductance/capacity model that leads to the following

dynamics:

Tht = Th(t−1) + F (h)X2
ht +G(h)(Te(t)− Th(t−1)).

• Two types of houses are considered (See Table II), with

class 2 having better energetic performance than class 1

(less light power required to achieve full utility and better

insulation).

We suppose that the total available power is constant over

the DR period, C(t) = C. We analyze the model for different

values of C, ranging from low (only one type of appliances

can be used) to full capacity (all appliances can be used).

While this model is rather simple (two types of appli-

ances, constant values for C, π and Te), we believe that the

knowledge required to compute good solutions is sufficient to

capture the trade-off between the efficiency of an allocation

and the privacy of the users.
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Fig. 3: Average utility per home over the DR period as a

function of the available capacity (homogeneous case)

For the decomposition problem, we fix the maximum num-

ber of iterations to KMAX = 100 iterations (Suppose it is

a desired communication constraint). In the present, αk is

chosen non-summable diminishing and specifically equal to

500000/(
√
k + 1). As stated in section IV-C, the order of

magnitude of αk is crucial to make capacity updates useful for

homes and to speed up performance improvement. We choose

to divide by the square root of k rather than k to slow the

decay of αk. The computation of ght is done by taking the

highest slope of the utility functions with regard to Xa
ht at the

solution of the local optimization problem (For heating, ght
is computed by multiplying the slope of the utility function

by the power coefficient F (h) in the considered temperature

dynamics).

The numerical analysis of the various presented mixed

integer linear problems has been carried out using IBM ILOG

CPLEX ([2]).

In the following, we discuss two cases: homogeneous and

heterogeneous. For the homogeneous case, all houses belong

to class 1 and for the heterogeneous one, we suppose 50 houses

of class 1 and 50 houses of class 2.

B. Results on the homogeneous case

Figure 3 presents the main results on the homogeneous

case. It displays the average utility per home over the DR

period as the function of the available capacity C, for the

three considered schemes (GM , LM and SG). For better

readability, vital and comfort utilities are displayed separately.

Note that with the chosen parameters, the maximal feasible

utility (vital and comfort) is 2. Another value of interest for

vital utility is 1.75, which corresponds to situations where all

houses are able to achieve vital light (P 1
m = 50 W) but none

has the power necessary for heating (P 2
m = 1000 W) so there

is no control of temperature. Because the requirement for vital

light is very low, it can be seen as a worst case situation.

Using a static allocation, LM struggles more than the other

schemes for rising the vital utility above that threshold. It

can only start to use heat for C = 105 (1000 W per house).

Maximal vital utility is reached for C = 105× 103 (1050 W

per house) and maximal utility (vital and comfort) necessarily

requires C = 2× 105 (2000 W per house).

Obviously, GM , the optimal solution, is able to achieve

better utilities. In particular, it achieves maximal vital utility

even for very low capacities (down to 3× 104), thanks to its

ability of finding a working rolling allocation that allows all

houses to use heat for a sufficient part of the period.

As expected, our proposal, SG, stands in-between these two

opposite schemes. It is able to improve the vital utility of

houses for values below C = 105, even if it fails to perform

as good as GM . With respect to the comfort utility, it performs

on par with LM even in situation where it devotes resources

on heating (for vital utility) while LM does not.

It should be noted that the homogeneous case is a kind of

worst case for SG. Actually, by design, if all homes have

the same αkght for a certain t, SG struggles to break ties

between the sets I0 and I1. This is the reason why SG does not

outperform LM for very low capacities. Also, the algorithm

consumes many iterations to reach its best solution (up to 20

in our experiments). As we are about to see, SG performs

better in a heterogeneous case.

C. Results on the heterogeneous case

The results for the heterogeneous case are shown in Figures

4 (class 1) and 5 (class 2).

We first discuss GM . For vital utility, the results are pretty

much similar for both classes to the homogeneous case, with

maximal value obtained even for low capacities (down to 3×
104). For the comfort utility, however, one notices that GM
leads to better values for class 2 compared to class 1. This

is due to the fact that class 2 houses have better energetic

performance, so once vital utility is ensured for all, it is more

gainful to allocate energy to class 2.

The same reason explains the poor performance of LM .

Let us remind that the static allocation is proportional to the

maximum power L(h) of homes. So for a given capacity, class

1 homes get more power than class 2 ones. As a result, while

performance of class 1 is satisfactory, performance of class 2 is

terrible. In particular, the capacity required for class 2 houses

to achieve maximal vital utility is very high: C = 1.7× 105,

which corresponds to 1700 W per house (regardless the class).

Lastly, we observe that compared to the homogeneous case,

the performance of our solution SG is now closer to GM than

to LM . In particular, SG manages to take advantage of the

heterogeneity to reach high vital utility values more quickly

than in Figure 3. Regarding comfort utility, it stays below GM
values but manages to give descent values for both classes,

which gives a clear advantage over LM (especially regarding

the handling of class 2 houses).
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Fig. 4: Average utility per home as a function of the available

capacity (heterogeneous case, class 1)

Moreover, SG converges faster on the heterogeneous case:

the scheme takes between 3 to 8 iterations to find the best

allocation over the kMAX iterations.

VI. CONCLUSION

We propose an IoT-based demand response approach, which

we name SG, that relies on a 2 level control scheme.

Intelligence (decision taking) is split between a centralized

component and a set of local controllers (one per home). The

proposed control approach enables reaching good performance

in terms of utility perceived by users while keeping privacy

and providing scalability. Moreover, priority is provided to

critical needs and fairness among households is introduced.

We show that the approach outperforms schemes where the

central controller takes decisions based on the available total

capacity and on static (contract based) information bout the

households. Results for the proposed use cases show that the

proposed scheme requires a limited number of iterations to

render effective solutions. Moreover, the proposed solution is

robust in the sense that the system will keep working even in

periods where the proposed algorithms have no converged and

in cases where information is delayed or lost.

Future work will encompass a study on the power allocation

algorithms for the SG scheme considering i) a broader range

of classes of appliances and ii) more general cases for the

available capacity curb. We will also study the effect of

communication impairments on the global performance and

on fairness. Finally, we will analyze the cost savings under

realistic cost models, looking for solutions that will target

minimizing the total expenses a provider will incur in the
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Fig. 5: Average utility per home as a function of the available

capacity (heterogeneous case, class 2)

Capacity market while keeping a predefined level of service.
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