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Abstract. In the context of Active Learning for classification, the classi-
fication error depends on the joint distribution of samples and their labels
which is initially unknown. The minimization of this error requires esti-
mating this distribution. Online estimation of this distribution involves a
trade-off between exploration and exploitation. This is a common prob-
lem in machine learning for which multi-armed bandit theory, building
upon Optimism in the Face of Uncertainty, has been proven very efficient
these last years. We introduce two novel algorithms that use Optimism
in the Face of Uncertainty along with Gaussian Processes for the Active
Learning problem. The evaluation lead on real world datasets shows that
these new algorithms compare positively to state-of-the-art methods.

Keywords: Active Learning, Classifiaction, Multi-Armed Bandits

1 Introduction

Classification is a supervised learning framework consisting in the association of
instances to labels, existing in finite number. It uses a set of instances already
associated to labels called the training set. In order to get a high prediction
accuracy, the training set should contain a high number of instances. Recently,
it has become easy to collect, store and process large data sets. However, the
association of each instance of the training set to labels requires the manual
annotation by an expert. This task is time consuming, and may involve other
costs.

In Active Learning, the goal is to minimize the number of requests to the
expert needed to achieve a targeted performance of the classifier. Equivalently,
to maximize its performance under a fixed budget of requests. Hence, an Ac-
tive Learning algorithm dynamically constructs the training set by sequentially
deciding which instance to present to the expert. The instance is chosen con-
sidering all the previously received labels, such that its inclusion in the training
set lead to the best performance of the classifier. We work under the pool-based
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sampling scheme in which a set of unlabeled instances is available. The Active
Learning algorithm successively selects instances from the pool to be labeled.

Among the many ways that exist to formulate this problem, which are re-
viewed in [8], this work focus on the Error Minimization framework. In this
framework, the selection criterion is derived from the true risk, or misclassifica-
tion rate. It is thus directly linked to the (mostly used) measure of performance
for classifiers. We distinguish two strategies in this framework: the function to
be minimized is either the maximum or the average misclassification rate among
the instance space. In the first case, the strategy is to estimate the true risk re-
lated to each unlabeled instance and to sample the one for which it is maximum.
In the second case, the strategy is to simulate the sample of each instance and
to effectively sample the one resulting in the maximum decrease of the true risk.
This second strategy has the advantage of representativeness, which means that
an instance with a lot of unlabeled data around it is preferred to an isolated one.

The true risk can not be known perfectly, since it requires the true label
distribution which need to be learned. But it can be estimated, along with a
measure of uncertainty, using the labels received so far. Among the methods that
exist in Error Minimization, the difference lies in how to manage the uncertainty
about the true risk. In [9], the true risk is directly replaced by its estimation.
In [4] and [5], the binary loss is expected over the possible values of the true
conditional density of the class label. In [3], a min-max approach is used to
ensure a minimum decrease of the risk.

In this paper, we propose a new solution to manage the uncertainty in the
Error Minimization problem based on the Optimism in the Face of Uncertainty
approach. Indeed, querying an instance may be used in order to increase the
performance of the classifier directly, but also to improve future decisions. This
is thus a case of exploration/exploitation dilemma for which the Optimism in
the Face of Uncertainty is a well-renown approach, particularly for finite budget
problems. The method is thus to establish first a probability bound on the value
of the ideal criterion. Then to select the instance for which it is maximum.

Optimism in the Face of Uncertainty has been successfully used for Active
Learning. In [2], the authors focused on the reduction of the version space. In [1],
the instance space is partitioned and an allocation strategy is defined.

We apply our solution to Gaussian Processes. Indeed, they provide a simple
Bayesian learning framework which outputs a probability distribution on the
conditional density of the class labels. It is thus well fitted for Active Learning,
and particularly for Optimistic methods.

We briefly review Gaussian Processes in Section 2. Then, we present our
proposed algorithms for both strategies in Sections 3 and 4. We present the
experiments end their results in Sections 5 and 6.

2 Gaussian Processes

A stochastic process is a generalization of a probability distribution to functions,
each input is associated with a probability distribution on the output. In the case
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of Gaussian Processes (GP), this distribution is Normal and can therefore be
characterized only by its mean and variance. It thus provides a simple Bayesian
framework for the supervised learning problem.

Let us consider the instance space X and the label set Y . In binary classifi-
cation, the label set is composed of two elements, here Y = {−1, 1}. In the case
of noisy classification, the expert can be represented by a Bernoulli distribution:

P (y ∈ Y = 1|x ∈ X) =
µ(x) + 1

2
,

where µ(x) is the mean label for instance x. We use a GP to estimate the values
of µ(x) from S.

Let us denote Dp the set containing all the instances from the pool, it is
split into Dl and Du, respectively the sets of labeled and unlabeled examples of
size nl and nu. Suppose that we are given a training set S = {(xi, yi)}i∈J1,nlK
containing all the labeled instances and the associated label given by the expert.

A GP make use of a kernel function k(., .) to specify the covariance between
outputs. LetKl,l = [k(xi, xj)]nl×nl

be the covariance matrix of labeled instances.
Let Kx,l = [k(x, xi)]xi∈Dl

be the covariance of an instance x ∈ X and the labeled
instances.

Conditioning the joint Gaussian distribution of µ(x) on the observed labels
gives the following joint posterior distribution:

µ(x)|S ∼ N (mS(x), σ
2
S(x)).

withmS(x) = Kx,l(Kl,l + σ2I)
−1

yl and σ2
S(x) = k(x, x)−Kx,l(Kl,l + σ2I)

−1
Kx,l

>.
The GP classifier predicts labels according to the sign of the posterior distri-

bution’s mean.
l(x) = sign(mS(x)) (1)

Note that this mean is the same as the Regularized Least Square Regression
(RLSR). The interest of GP is in Active Learning, where the confidence measure
is able to tell in which region of the instance space the model has to be refined.

3 Local Risk Minimization

In this section, we propose an algorithm based on Optimism in the Face of
Uncertainty that minimizes the maximum local risk of the classifier. We first
define the loss function then derive an criterion that tend to minimize it.

Suppose that we are given a budget n. At each time step t ∈ J1, nK, the
Active Learning algorithm selects an unlabeled instance xt ∈ Du, submits it to
the expert, receives a label yt and adds the pair to the training set.

At any time step t, the current training set St is used to train the GP. This
one is then used to predict the label lt(x) for any instance x ∈ X from Eq. (1).
The expected prediction error, or local risk, is the probability that the expert
would give a different label:

rt(x) =

{
1+µ(x)

2 if lt(x) = −1
1−µ(x)

2 if lt(x) = +1
. (2)



4 Timothé Collet † and Olivier Pietquin ‡

We want to minimize the maximum risk one would encounter by presenting an
unknown instance x ∈ X. We therefore define the following loss:

Lt = argmax
x∈X

rt(x). (3)

In order to minimize this kind of loss, the solution is to select the instance for
which the local risk is maximum.

xt+1 = argmax
x∈Du

rt(x).

Indeed, sampling an instance will necessarily lower the risk at its location, sam-
pling where the maximum risk is attained guarantees to decrease this maximum:

However, this loss can not be used as such. Indeed, this suppose to know the
true value of µ(x) at least for every unlabeled instances, which is unrealistic.
If it was known, the prediction would be direct. We propose to use Optimism
in the Face of Uncertainty in order to approach this solution knowing only a
distribution of µ(x), given by the GP. In this paradigm, a confidence bound on
the ideal criterion is establish relatively to a probability δ, then its upper bound
is used as a heuristic. We show how to use the distribution of µ(x) to derive the
distribution of the local risk.

Suppose that the label lt(x) = −1 is predicted. Then,

P(rt(x) ≥ εt(x)) = P(µ(x) ≥ 2εt(x)− 1).

The GP trained with labeled instances outputs the following distribution:

µ(x)|St ∼ N (mSt(x), σ
2
St(x)).

Thus,

P(rt(x) ≥ εt(x) = δ ⇐⇒ 2εt(x)− 1 = Φ−1(δ,mSt(x), σ
2
St(x)),

with Φ the cumulative distribution function of the Normal distribution.
This applies symmetrically for lt(x) = 1. Let us remind that lt(x) = sign(mSt(x))

from Eq (1), then:

εt(x) =
1 + Φ−1(δ, |mSt(x)|, σ2

St(x))

2
. (4)

Thus, εt bounds rt with probability 1− δ. Following an optimistic approach
our algorithm selects at each time step the unlabeled instance for which εt is
maximum:

xt+1 = argmax
Du

εt(xp). (5)

Minimizing the local risk is a solution that has shown good results in state-
of-the-art. However, it does not consider the density of instances around the
considered instances. Indeed, the criterion is computed using only their own
prediction from the GP. In the next section, we change the loss to consider this.
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4 Global Risk Minimization

In this section, we propose an algorithm based on Optimism in the Face of Un-
certainty that minimizes the global risk of the classifier. The main improvement
of this new algorithm compared to the one of the previous section is that it
considers the representativeness (as defined in [?]) of an instance. We first the
loss function being used and then show a criterion that tend to minimize it.

We now consider the expected error one would encounter by presenting an
instance x ∈ X drawn from the instance distribution which is the global risk of
the classifier:

Rt(St) =
∫
X

rt(x)dP (x).

It is impractical because of the integral and because we do not known exactly the
instance distribution. However, we have access to a pool instances following this
distribution. We can thus estimate the global risk from it. We therefore define
the loss:

R̃t(St) =
∑
x∈Dp

rt(x).

Defining a strategy that optimally minimizes this loss is NP-hard. However,
it is common to make a myopic approximation. Thus the ideal strategy is to
simulate the sampling of all the instances in the pool of unlabeled instances.
Then, to effectively sample the one which results in the highest decrease of the
risk:

xt+1 = argmax
x∈Du

∆xs
R̃t(St), (6)

where
∆xsRt(St) = R̃t(St)− R̃t(St ∪ {xs, ys}),

where ys is the true label of xs.
This suppose to know the true values of µ(x) and ys, which is unrealistic.

We propose to use the Optimism in the Face of Uncertainty approach in order
sample as close as possible to the ideal sampling but with only a distribution
of µ(x), given by the GP. We show how to compute a confidence bound on the
criterion from Eq. (6) relatively to a probability δ.

Let us consider the simulation of the sample of xs ∈ Du and that the label
given by the expert is ys. Let l+t (x) = sign(mSt∪{xs,ys}(x)). Then,

∀x ∈ Dp, rt(x) = 1lt(x) 6=sign(µ(x)) − 1l+t (x)6=sign(µ(x)),

Thus,

∀x ∈ Dp, rt(x) =

{
1lt(x) 6=−1 − 1l+t (x)6=−1 with prob. P(µ(x) < 0|St ∪ {xs, ys})
1lt(x) 6=1 − 1l+t (x) 6=1 with prob. P(µ(x) ≥ 0|St ∪ {xs, ys}).

We can then combine the cases for every instance in the pool to deduct the
probability: P(∆xsRt(St)|St ∪ {xs, ys}). We can also combine the cases for ys,
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given that P(ys = +1) = P(µ(xs) ≥ 0|St), to deduct: P(∆xsRt(St)|St). We then
compute the probability bound et relatively to a fixed probability δ as:

P(∆xsRt(St) ≤ et(xs)|St) = 1− δ. (7)

Following an optimistic approach, our algorithm selects at each time step the
unlabeled instance for which et is maximum:

xt+1 = argmax
xs∈Du

et(xs). (8)

5 Experiments

We evaluated our algorithms on several datasets from the UCI repository [7].
Each experiment consisted in a series of 1,000 runs. For each of these runs, the
dataset was randomly divided in two equal parts: one was used as the pool of
instances in which the algorithms were allowed to pick, the other one was used
as a test set, hidden from the algorithm. Our algorithm is initialized with one
labeled instance randomly drawn from the pool. At each time step, the accuracy
of the classifier is recorded as the proportion of well classified instances on the
test set. The global performance displayed on figures results from averaging the
accuracy of every run.

We compare OLRM and OGRM with the following methods: (1) Random
Sampling: each instance to be labeled is randomly drawn from the pool, (2)
Uncertainty Sampling (US) [6] samples instance closest to the boundary, (3)
QUIRE [3] min-max strategy for minimization of the global risk, (4) VOI [5]
minimization of the expected global risk, and (5) GPAL (Uncertainty) [4] mini-
mization of the expected local risk.

All these algorithms use the GP or RLSR classifier. Indeed, different classifier
have different intrinsic performances. Thus, we think it is not meaningful to
compare Active Learning algorithms which are based on different classifiers.
Here, the Gaussian kernel is used. The optimal parameter σ has been found
using grid-search.

6 Results

Fig. 1[a-d] displays the classification accuracy for each evaluated methods for
with different budget of labeled instances. Notice that even though the marker
only appears ten times on each curve, the accuracy is plotted for every integer
number of labeled instances. As some curves are hard to differentiate, Fig. 1[e-h]
shows a zoomed version of, respectively, Fig. 1[a-d], focusing on those methods.

The parameter δ in OLRM and OGRM controls the exploration/exploitation
trade-off. In the case of OGRM, this parameter was tuned using a gridsearch. It
appeared that any value lower than 0.5 lead to almost exactly the same perfor-
mance, with a slight tendency for values closer to 0.5.
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Fig. 1. Evaluation of algorithms

In the case of OLRM, no value of the parameter had an outstanding per-
formance. The optimal parameter always depended on the number of labeled
instances considered. However, optimistic algorithm are often studied through
a finite budget framework. This suppose that the budget is known from the
beginning and the parameter may be chosen accordingly. Though, we do not
provide any theoretical analysis to chose its value. The displayed curve for this
algorithm shows the maximum performance OLRM would have for each budget
if the parameter was chosen accordingly.

We can see on Fig. 1[a-d] that the three algorithms based on minimization
of the local risk have very close performance. By looking at the zoomed version
on Fig. 1[e-h], we see that they are not exactly equivalent. First, notice that US
is strictly equivalent with OLRM with δ = 0.5. While GPAL is designed as an
improvement of US that considers the variance outputted by the GP, it is most
of the time outperformed by it. We can also see that, for a majority budget,
there exist a parameter of ORLM that can achieve better performance than US.

We observe on Fig. 1[a-d] that OGRM outperforms all the methods it is com-
pared to. Using the global risk loss function inherently make the performance
increase sooner. Indeed, it considers the density of instances, and has an a pri-
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ori about where to sample with no observations. It is therefore surprising that
QUIRE behaves worse than local risk methods. On Fig. 1[a-b], VOI starts with
the same performance as OGRM but does not follow. This is because it considers
the decrease of the estimation of the risk and not the estimation of the decrease
of the risk.

7 Conclusion

In this paper, we introduce a new way to deal with uncertainty in the Error Min-
imization problem that uses Optimism in the Face of Uncertainty. We present
two algorithms that work with two different losses. One can be seen as a general-
ization of Uncertainty Sampling, while the second extend the former to consider
the instances distribution. Evaluations on real-world datasets were made that
showed that both algorithms compared positively to state-of-the-art methods.
Future work will focus on theoretical analysis and on the adaptation to the multi-
class case. We will also consider improving the noise distribution being used to
stick to the expert’s distribution.
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