
HAL Id: hal-01227600
https://hal.inria.fr/hal-01227600

Submitted on 11 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feature Selection for SUNNY: a Study on the
Algorithm Selection Library

Roberto Amadini, Fabio Biselli, Maurizio Gabbrielli, Tong Liu, Jacopo Mauro

To cite this version:
Roberto Amadini, Fabio Biselli, Maurizio Gabbrielli, Tong Liu, Jacopo Mauro. Feature Selection
for SUNNY: a Study on the Algorithm Selection Library. ICTAI, Nov 2015, Vietri sul Mare, Italy.
�hal-01227600�

https://hal.inria.fr/hal-01227600
https://hal.archives-ouvertes.fr

Feature Selection for SUNNY:
a Study on the Algorithm Selection Library

Roberto Amadini∗†, Fabio Biselli∗, Maurizio Gabbrielli∗†, Tong Liu∗ and Jacopo Mauro‡
∗Department of Computer Science and Engineering, University of Bologna, Italy.

†FOCUS team, INRIA, France.
‡Department of Informatics, University of Oslo, Norway.

Abstract—Given a collection of algorithms, the Algorithm
Selection (AS) problem consists in identifying which of them is
the best one for solving a given problem. The selection depends on
a set of numerical features that characterize the problem to solve.
In this paper we show the impact of feature selection techniques
on the performance of the SUNNY algorithm selector, taking
as reference the benchmarks of the AS library (ASlib). Results
indicate that a handful of features is enough to reach similar,
if not better, performance of the original SUNNY approach that
uses all the available features. We also present sunny-as: a tool
for using SUNNY on a generic ASlib scenario.

I. INTRODUCTION

The Algorithm Selection (AS) problem aims at selecting
the best algorithm for solving a given problem among a
collection of available algorithms. Initially proposed in 1976
by Rice [30], in the last decade AS has attracted increasing
attention and a variety of AS approaches1 have been proposed.

Given a set (or portfolio) of algorithms {A1, . . . , Am},
the prediction of the “best” algorithm Ak for a new, unseen
problem x clearly depends on a given notion of performance
measure (e.g., the runtime or the solution quality) and it is
usually performed on the basis of the feature vector of x, i.e.,
a collection Fx = (f1, . . . , fd) of d ≥ 1 numerical attributes
that characterize the input problem x. Unfortunately, not all
the features are equally important: very often some features
are more informative than others. Determining how many and
which features to use is crucial for the performance of AS.
This process, well-known also in related fields like Machine
Learning and statistics, is called Feature Selection (FS).

SUNNY [2] is an algorithm selector originally tailored for
Constraint Satisfaction Problems (CSPs) and later on adapted
for dealing with Constraint Optimization Problems (COPs) [4].
SUNNY is also the algorithm that underpins sunny-cp [3], a
constraint solver exploiting a portfolio of different constituent
solvers for solving both CSPs and COPs encoded in MiniZinc
language [27]. In this paper we show the impact of FS
techniques on the performance of the SUNNY algorithm
selector. We use the benchmarks of the Algorithm Selection
library (ASlib) [6], a recently introduced repository which
encodes different AS scenarios in a standardized format with

Supported by the EU project FP7-644298 HyVar: Scalable Hybrid Vari-
ability for Distributed, Evolving Software Systems.

1The original notion of AS has been afterwards extended by the definition
of Algorithm Portfolio [10] [19], [24], [33].

the aim of sharing and comparing different AS approaches.
Note that the contribution of this paper is not to compare the
performance of SUNNY with other AS approaches as done in
the preliminary study of [1]. Here instead we fix the SUNNY
original approach as a baseline, and we evaluate and compare
different FS methods on all the heterogeneous scenarios of
the ASlib. The goal is to assess if and how SUNNY can take
advantage of a reduced set of features in order to reach a
similar, or maybe better, performance w.r.t. its original version
which uses all the available features.

We introduce new normalized metrics for evaluating well-
known FS methods over different ASlib scenarios by also
varying the number of selected features. Empirical results
indicate that —although there is not a dominant FS method—
a handful of features is often enough for SUNNY to reach
similar, if not better, performance of the default approach
exploiting all the given features. This confirms the findings
reported in [6], [7], [18], [25] showing that only few features
can be enough to describe and discriminate the structure of the
problem to be solved. Unfortunately, it seems that no pattern
exists to discriminate ex-ante the best features for a given
scenario: even scenarios having the same feature space have
indeed different best features.

Based on these findings we also developed sunny-as:
a tool for applying SUNNY on a given ASlib scenario.
sunny-as enables to train and test an AS scenario conform-
ing to ASlib specifications, allowing us to apply different FS
methods.

Paper Structure. In Section II we provide some background
notions. Section III presents the methodology we followed for
conducting the experiments. In Section IV we show the empir-
ical results while in Section V we introduce the sunny-as
tool. Section VI discusses the related work. Section VII
concludes the paper presenting also some future directions.

II. BACKGROUND

In this section we give some preliminary notions about the
ASlib library, the SUNNY algorithm, and the FS algorithms
we used in our experiments.

A. Algorithm Selection Library

The Algorithm Selection library (ASlib) [6] provides a stan-
dardized format for representing AS scenarios and a repository

Scenario Algorithms (m) Problems (n) Features (d) Timeout (τ)
ASP-POTASSCO 11 1294 138 600

CSP-2010 2 2024 86 5000
MAXSAT12-PMS 6 876 37 2100

PREMARSHALLING-ASTAR-2013 4 527 16 3600
PROTEUS-2014 22 4021 198 3600

QBF-2011 5 1368 46 3600
SAT11-HAND 15 296 115 5000
SAT11-INDU 18 300 115 5000
SAT11-RAND 9 600 115 5000
SAT12-ALL 31 1614 115 1200

SAT12-HAND 31 767 115 1200
SAT12-INDU 31 1167 115 1200
SAT12-RAND 31 1362 115 1200

TABLE I
ASlib SCENARIOS.

that contains a growing number of datasets from the literature.
Its goal is to enable researches and practitioners to effectively
share and compare different AS approaches.

Each ASlib scenario contains at least: an algorithm space
A = {A1, . . . , Am}; a problem space X = {x1, . . . , xn};
a feature space Fd = {F1, . . . , Fn} where Fj ∈ Rd is the
feature vector of the problem xj ; a performance space Pτ =
{P1,1, . . . , Pm,n} where Pi,j ∈ R measures the performance
of algorithm Ai on problem xj within a timeout of τ seconds.
Optionally, a scenario may contain a file indicating the cost of
extracting a (group of) features. Indeed, feature computation
contributes to the total runtime. However, since it is usually
a minor overhead, when the feature cost is not specified it is
assumed to be 0.

As of today, ASlib contains 13 heterogeneous scenarios2

that ranges from Answer-Set Programming to Constraint
Satisfaction Problems, from Quantified Boolean Formula to
Boolean Satisfiability, and so on. As summarized in Table
I, the scenarios also vary in the number of algorithms m,
problems n, features d, and in the time limits τ . The most
represented domain is SAT, with seven scenarios. In all the
scenarios, the runtime is the only performance measure. In
the rest of the section we briefly describe the ASlib scenarios.
For more details, we refer the interested reader to [6].

1) ASP-POTASSCO: This scenario contains a set of An-
swer Set Programming (ASP) problems and a set of algorithms
automatically constructed by an adapted version of Hydra [36].
The features were generated by a lightweight version of clasp,
including static and probing features organized into feature
groups; they were previously used by claspfolio solver [15].

2) CSP-2010: This scenario contains Constraint Satisfac-
tion Problems and only two solvers: one that employs lazy
learning [8] and one that does not [9]. The dataset is heavily
biased towards the non-learning solver. Improving on this
scenario is a challenging task, since the single best algorithm
is very good and both solvers share a common core.

3) MAXSAT12-PMS: MaxSAT aims to maximize the num-
ber of satisfied clauses for a SAT problem. In particular this
scenario focuses on the partial MaxSAT (PMS) problem [26].

2In this paper we consider the 1.0.1 version of ASlib, i.e., the same used
in the ongoing evaluation available at http://www.coseal.net/aslib/.

It consists of a collection of random, crafted, and industrial
instances from the 2012 MaxSAT Evaluation. It contains only
six solvers with very different characteristics.

4) PREMARSHALLING-ASTAR-2013: This scenario con-
tains different real-world and time-sensitive Container Pre-
Marshalling (CPM) problems. Built from from two recent A∗

and IDA∗ approaches [35], it contains four highly homoge-
neous algorithms. The features provided are new and not as
well tested as in the other scenarios.

5) PROTEUS-2014: The PROTEUS scenario [16] includes
an extremely diverse mix of well-known CSP solvers alongside
competition-winning SAT solvers that can accept different
conversions of CSP into SAT. The features include both the
SAT and CSP features for a given instance. This potentially
provides additional information to AS approaches.

6) QBF-2011: This scenario contains a Quantified Boolean
Formula (QBF) dataset coming from the main, small hard,
2QBF and random tracks of QBF Solver Evaluation 2010.
Features and solvers are taken from the AQME system and
described in more detail in [28]. Although the QBF scenario
includes only five algorithms, this set is highly diverse.

7) SAT*: ASlib contains seven scenarios of SAT problems
derived from three tracks of SAT competitions 2011/12: in-
dustrial (INDU), crafted (HAND) and random (RAND). The
SAT scenarios are characterized by a high level of maturity
and diversity in terms of solvers, features, and instances.

B. SUNNY

Originally tailored for Constraint Programming only, the
SUNNY [2] algorithm can be easily generalized to Algorithm
Selection. Fixed a solving timeout τ and a portfolio A of
algorithms, SUNNY exploits instances similarity to produce a
sequential schedule σ = [(A1, t1), . . . , (Ah, th)] where algo-
rithm Ai ∈ A has to run for ti seconds and

∑h
i=1 ti = τ . For

any input problem x, SUNNY uses a k-Nearest Neighbours (k-
NN) algorithm to select from a training set of known instances
the subset N(x, k) of the k instances closer to the feature
vector Fx of x according to the Euclidean distance. Starting
from the N(x, k) instances SUNNY relies on three heuristics
to compute the schedule σ: (i) Hsel, for selecting the most
promising algorithms {A1, . . . , Ah} ⊆ A to run; (ii) Hall,
for allocating to each Ai ∈ A a certain runtime ti ∈ [0, τ]

http://www.coseal.net/aslib/

for i = 1, . . . , h; (iii) Hsch, for scheduling the sequential
execution of the algorithms according to their presumed speed.
The heuristics Hsel, Hall, and Hsch depend on the application
domain. For CSPs, Hsel selects the smallest sub-portfolio
S ⊆ A that solves the most instances in N(x, k), by using the
runtime for breaking ties. Hall allocates to each Ai ∈ S a time
ti proportional to the instances that S can solve in N(x, k),
by using a special backup solver for covering the instances
of N(x, k) not solvable by any solver. Finally, Hsch sorts the
solvers by increasing solving time in N(x, k). For COPs the
approach is similar, but different evaluation metrics are used.
Example 1 shows a running example of how SUNNY works
on a given CSP; for more details about SUNNY we refer the
interested reader to [2], [4].

Example 1 Let x be a CSP, A = {A1, A2, A3, A4} a port-
folio, A3 the backup solver, τ = 1800 seconds the solving
timeout, N(x, k) = {x1, ..., x5} the k = 5 neighbours of x,
and the runtimes of solver Ai on problem xj defined as in
Table II. In this case, the smallest sub-portfolios that solve the
most instances (4 to be precise) in N(x, k) are {A1, A2, A3},
{A1, A2, A4}, and {A2, A3, A4}. The heuristic Hsel selects
S = {A1, A2, A4} because these solvers are faster in solving
the instances in N(x, k). Since A1 and A4 solve 2 instances,
A2 solves 1 instance and x1 is not solved by any solver, the
time window [0, τ] is partitioned in 2 + 2 + 1 + 1 = 6 slots:
2 assigned to A1 and A4, 1 slot to A2, and 1 to the backup
solver A3. Finally, Hsch sorts the solvers by increasing solving
time. The final schedule produced by SUNNY is therefore
σ = [(A4, 600), (A1, 600), (A3, 300), (A2, 300)].

x1 x2 x3 x4 x5
A1 τ τ 3 τ 278
A2 τ 593 τ τ τ
A3 τ τ 36 1452 τ
A4 τ τ τ 122 60

TABLE II
RUNTIMES (IN SECONDS). τ MEANS THE SOLVER TIMEOUT.

C. Feature Selection

Features are of paramount importance for characterizing
a given problem instance and building accurate predictions
models. For this reason, there is an extensive literature con-
cerning the problem of selecting a suitable subset of the most
informative features [18], [25]. This process, typically referred
as Feature Selection (FS), has the purpose of removing those
features that are redundant, irrelevant, and potentially harmful.
Selecting a minimal set of features has the advantage of
simplifying the prediction model, lowering the training and
feature extraction costs, reducing the potential overfitting and
hopefully improving the prediction accuracy [29].

FS techniques [11] consists basically of a combination of
two ingredients: a search technique for finding good subsets
of features, and a scoring metric to evaluate such subsets.
Since exploring all the possible subsets of features is compu-
tationally intractable for non-trivial feature spaces, heuristics
are employed to guide the search of the best subsets. Greedy

search strategies usually come in two flavors: forward selec-
tion and backward elimination. In forward selection, features
are progressively incorporated into larger and larger subsets.
Conversely, in backward elimination features are progressively
removed starting from all the available features. Combination
of these two techniques, genetic algorithms, or local search
algorithms such as simulated annealing are also used.

FS approaches can be distinguished in mainly two cate-
gories: wrappers and filters. Filter methods select the features
regardless of the model, trying to suppress the least interesting
ones. These methods are particularly efficient and robust to
overfitting. In contrast, wrappers evaluate subsets of features
possibly detecting the interactions between features. Wrappers
methods can be more accurate than filters, but have two main
disadvantages: they are more exposed to the overfitting risk,
and they have a much higher computational cost.

In this work we chose to focus on filter methods only.
We made this decision since we wanted to test general and
lightweight FS approaches, trying to be as free as possible
from overfitting and high training costs. This choice also met
the rules of the ICON Challenge on Algorithm Selection [20]
that impose a maximal training time of 12 CPU hours.3 In
particular, we used two standard search methods: BestFirst
and Ranker. BestFirst searches the feature subsets by greedy
hill climbing augmented with a backtracking facility. In this
paper we tested both the canonical forward selection and the
backward selection, where backtracking is used if necessary.
Ranker instead ranks the features by their individual evalu-
ation. For BestFirst we used the Correlation-based Feature
Selection (CFS) evaluator, which computes the worth of a
subset of features by considering the individual predictive
ability of each feature, along with the degree of redundancy
between them [13]. For Ranker we used the following well-
known evaluators:
• Information Gain (InfoGain): Evaluates the worth of an

attribute by measuring the information gain with respect
to the class:4

InfoGain(Class,Feat) = H(Class)−H(Class | Feat)

where H(Class) and H(Feat) are the entropies based
on the probability associated with each class and feature
respectively, and H(Class | Feat) is the entropy of Class
conditioned on Feat.

• Gain Ratio (GainR): Measures the gain ratio w.r.t. the
class:

GainR(Class,Feat) =
InfoGain(Class,Feat)

H(Feat)

• Symmetrical Uncertainty (SymmU): Measures the sym-
metrical uncertainty w.r.t. the class:

SymmU(Class,Feat) = 2×H(Class)−H(Class | Feat)
H(Class) +H(Feat)

3We noticed that for some ASlib scenarios the use of a wrapping method
required days of computation, even with the simplest greedy search strategies.

4In our case, the class is the best available algorithm for a given instance,
i.e., the one having the lower runtime.

• Relief : Evaluates the worth of an attribute by repeatedly
sampling an instance and considering the value of the
given attribute for the nearest instance of the same and
different class. For more details, see [22], [23], [31]

• OneR: Evaluates the worth of an attribute by means of
1R, a classifier using the minimum-error attribute for
predictions, discretizing numeric attributes [14].

All the above mentioned approaches have been implemented
by means of WEKA [12], a well-known tool for Machine
Learning and data mining tasks.

III. METHODOLOGY

In this Section we explain the methodology we followed
for adapting SUNNY to the different ASlib scenarios and for
evaluating the FS approaches above introduced.

A. SUNNY Adaptation

Adapting SUNNY to ASlib scenarios was rather straight-
forward. Fixed a training set Xtr ⊆ X of known instances
and a corresponding feature space Ftr, we normalized every
feature vector by removing all the constant features of Ftr
and by scaling each of them in the range [−1, 1]. Then,
for each unknown problem x /∈ Xtr, SUNNY computes
the neighborhood N(x, k) ⊆ Xtr and the resulting schedule
σ = [(a1, t1), . . . , (ah, th)] exactly as explained in Section
II-B. In particular, since the only performance measure of
ASlib scenarios is the runtime, the methodology is the same
of Example 1. Following the methodology of [5], we set
k =

√
|Xtr| and the backup solver as the algorithm of A

having the lower average runtime in Xtr.
Each scenario of the ASlib is evaluated with a 10-fold cross

validation: the dataset X is partitioned in 10 disjoint subsets
X1, . . . ,X10 called folds, treating in turn a fold Xi as the test
set and the union

⋃
j 6=i Xj of other folds as the training set.

B. Performance Evaluation

Different metrics can be used for evaluating the performance
of an AS approach on a given scenario. The Fraction of
Solved Instances (FSI) of an approach is the ratio between
the number of instances it solves and all the instances of
the scenario. This metric is commonly used for comparing
different AS approaches due to its simplicity and significance.
However, it does not take into account the time needed to
solve a problem. To capture also the timing aspects of the
resolution, the Penalized Average Runtime (PAR) measure is
often used. Fixed an AS scenario and a positive integer k,
PARk(S) represents the average time taken by AS approach S
to solve all the problems of the scenario, where a penalization
of k × τ seconds is given for the instances not solved by S
within the timeout τ .

Unfortunately, despite FSI and PARk can be suitable metrics
for measuring the AS quality, when more than one scenario is
considered their average values may be no longer significant.
For example, putting together and averaging the PARk values
of ASP-POTASSCO and CSP-2010 is not meaningful because
the different time limits (τ is 600 and 5000 respectively) also

implies a different penalization k × τ for the instances not
solved within τ seconds. Moreover, even if the FSI value
is always in the [0, 1] range, comparing the average FSI of
different scenarios may be not fair. For example, a FSI of 0.5
can be very good or very bad depending on the algorithms
and the problems of a scenario since almost every scenario
of ASlib contains instances which are not solvable by any
algorithm. A normalization is therefore needed to keep the
performance of different scenarios on the same scale.

Let us define the Virtual Best Solver (VBS) of a scenario
as the oracle selector that for every instance x ∈ X always
chooses the algorithm A ∈ A having the lower runtime on x.
If FSI(S) is the fraction of solved instances of an AS approach
S on a given scenario, we define the Normalized Fraction of
Solved Instances FSI as:

FSI(S) = max

{
0, 1− FSI(VBS)− FSI(S)

FSI(VBS)− FSI(SBS)

}
where FSI(SBS) is the FSI of the Single Best Solver (SBS),
i.e., the algorithm A ∈ A that solves the most instances of the
dataset X . In this way, for any given scenario and AS approach
S, FSI(S) is always a value in [0, 1] linearly proportional
to the performance quality of S. In particular, FSI(S) = 0
indicates a performance worse than or equal to the SBS , while
FSI(S) = 1 if S reaches the perfect performance (i.e, that
of the VBS). Moreover, the relative scenario performance is
always preserved: for every distinct approaches S, S′ we have
that FSI(S) ≤ FSI(S′) ⇐⇒ FSI(S) ≤ FSI(S′).

Analogously, set the SBS as the algorithm A ∈ A having
the lower average runtime over all the instances of X , we
define the Normalized Penalized Average Runtime PARk of
an AS approach S on a given scenario as:

PARk(S) = max

{
0, 1− PARk(VBS)− PARk(S)

PARk(VBS)− PARk(SBS)

}
Recalling that it is outside the scope of this paper to provide

a comparison of SUNNY against other AS approaches, in Ta-
ble III we however show the PAR10 score of SUNNY against
other state-of-the-art AS approaches (viz., ISAC, SNNAP,
aspeed, claspfolio, claspfolio-pre, zilla, and LLAMA). These
values are obtained from the PAR10 results of [1]. As can be
seen, SUNNY appears to be promising for non-SAT scenarios
(in particular QBF and Proteus) while for SAT problems
there is a clear performance gap w.r.t. the best approaches.
Curiously, by considering the average PAR10 over all the
scenarios, the best approach turns out to be claspfolio with
pre-solving, even if this approach is never the best one for
any given scenario.

C. Feature Selection

As mentioned in Section II-C, the FS algorithms we
tested in the experiments have been evaluated by exploiting
their implementation in WEKA. We used in particular the
AttributeSelection class, a supervised attribute filter
that allows to combine search and evaluation methods. Con-
cerning BestFirst method, we used the class BestFirst for

Scenario ISAC SNNAP aspeed claspfolio claspfolio-pre zilla LLAMA SUNNY
ASP-POTASSCO 0.472 0.644 0.353 0.819 0.800 0.710 0.773 0.690

CSP-2010 0.062 0.000 0.045 0.805 0.793 0.828 0.857 0.681
MAXSAT12-PMS 0.640 0.588 0.648 0.891 0.716 0.939 0.864 0.871

PREMARSHALLING-ASTAR-2013 0.166 0.000 0.744 0.292 0.680 0.564 0.350 0.706
PROTEUS-2014 0.713 0.644 0.865 0.789 0.848 0.808 0.790 0.877

QBF-2011 0.590 0.197 0.803 0.858 0.892 0.873 0.894 0.896
SAT11-HAND 0.189 0.474 0.729 0.624 0.712 0.655 0.711 0.516
SAT11-INDU 0.000 0.184 0.000 0.356 0.346 0.000 0.251 0.092
SAT11-RAND 0.777 0.646 0.776 0.926 0.930 0.950 0.892 0.534
SAT12-ALL 0.000 0.536 0.095 0.693 0.675 0.728 0.740 0.581

SAT12-HAND 0.000 0.458 0.473 0.706 0.702 0.759 0.779 0.572
SAT12-INDU 0.000 0.449 0.000 0.586 0.446 0.409 0.410 0.005
SAT12-RAND 0.257 0.000 0.000 0.380 0.274 0.160 0.305 0.000

Average all scenarios 0.297 0.371 0.426 0.671 0.678 0.645 0.663 0.540
Average non-SAT scenarios 0.441 0.345 0.576 0.742 0.788 0.787 0.755 0.787

Average SAT scenarios 0.175 0.392 0.296 0.610 0.584 0.523 0.584 0.329
TABLE III

PENALIZED AVERAGE RUNTIME.

search and class CfsSubsetEval as evaluator. Regarding
Ranker method, we used Ranker class for search and the
following classes for the evaluation:

• InfoGainAttributeEval
• GainRatioAttributeEval
• SymmetricalUncertAttributeEval
• ReliefFAttributeEval
• OneRAttributeEval

Each WEKA algorithm has been evaluated by using its default
parameters configuration, possibly tuning the -N parameter for
varying the number of selected features (see Section IV).

All the experiments have been performed on Intel Dual-
Core 2.93GHz computers with 3 MB of CPU cache, 2 GB of
RAM, and Debian 3.2.65 operating system. The source code
and the results of the experiments are publicly available at
https://github.com/lteu/sunny-fs.

IV. RESULTS

In this section we present the experimental results we
obtained following the methodology described in Section III.
In particular, we measured the performance of the different FS
approaches in terms of the FSI and PAR10 metrics.

We first show the performance of BestFirst method with
Forward and Backward heuristics. As can be seen from Table
IV, improvements are minimal both in terms of PAR10 and
FSI. Indeed, with the sole exception of PREMARSHALLING
scenario, the Forward method is always worse than the original
SUNNY approach exploiting all the available features. Slightly
better is the Backward approach, which improves the original
performance also in the QBF and SAT11-INDU scenarios. Not
surprisingly, due to the pronounced anti-correlation between
FSI and PAR10, the corresponding normalised values FSI and
PAR10 are proportional: the higher is the FSI, the higher is
the PAR10 (and viceversa).

Better results are instead achieved by using Ranker. Table
V depicts the peak PAR10 performance of the FS approaches
introduced in Section II-C against the original SUNNY ap-

proach.5 Here we evaluated every method by varying the
number of selected features in {1, 2, . . . , 8} ∪ {16, 32, 64}.
Several interesting insights can be observed. Firstly, for all
the considered scenarios there is always a FS method able to
outperform the original SUNNY approach exploiting all the
available features. The best feature evaluator in this regard
appears to be Relief, which reaches the best PAR10 for 7 sce-
narios out of 13. However, there are no dominated evaluators
since every method reaches the peak performance for at least
one scenario. The “# Features” column represents the number
of selected features for the best approach in the form d→ d′

where d is the original number of features and d′ the resulting
number of selected features. We can note that for almost all the
scenarios less than eight features are enough for outperforming
the original SUNNY approach, with a reduction factor which
is often above 90%. The relative performance gain6 can be
considerable (sometimes also beyond 100%).

Table VI reports the average PAR10 performance of each
FS approach over all the scenarios by varying the number
of selected features in {1, 2, . . . , 8}∪{16, 32, 64}. The results
point out that there is not a clearly dominant FS method. Relief
is still the approach that reaches the peak performance the
most number of times (i.e., with 1, 2, 4, 16, and 32 features).
However, the overall best PAR10 score (0.605) is reached by
InfoGain with just 5 features.

We conclude this section with some considerations about
how many and which features to select for a given scenario.
Unfortunately, as shown in Table V, there is not a clear
pattern indicating what is the number of features to select.
Although in general SUNNY needs only few features (often no
more than five, see “# Features” column) for reaching a good
performance, we cannot identify a clear trend in the number
of selected features even when the application domain is the
same (e.g., see the number of features for SAT scenarios).

5We do not report the FSI results since, as mentioned above, FSI results
are strongly correlated to PARk results.

6In Table V the relative performance gain is defined as 100× P ′−P
P

where
P and P ′ are respectively the PAR10 of the original approach and the PAR10

of the best FS approach.

https://github.com/lteu/sunny-fs

PAR10 PAR10 FSI FSI
Scenario VBS SBS Original Forward Backward VBS SBS original Forward Backward

ASP-POTASSCO 400.2 880.5 0.690 0.676 0.671 0.859 0.937 0.692 0.679 0.667
CSP-2010 6344.3 7201.6 0.681 0.659 0.598 0.858 0.875 0.706 0.647 0.588

MAXSAT12-PMS 3127.2 4893.1 0.871 0.828 0.871 0.769 0.853 0.869 0.833 0.869
PREMARSHALLING-ASTAR-2013 227.6 7002.9 0.706 0.752 0.752 0.812 1 0.729 0.777 0.777

PROTEUS-2014 4105.9 13443.4 0.877 0.833 0.874 0.628 0.887 0.892 0.865 0.892
QBF-2011 8337.1 15330.2 0.896 0.835 0.907 0.577 0.77 0.917 0.876 0.927

SAT11-HAND 13360.7 25649.1 0.516 0.489 0.494 0.497 0.74 0.514 0.486 0.486
SAT11-INDU 8187.5 14605.9 0.092 0.066 0.109 0.717 0.843 0.103 0.079 0.127
SAT11-RAND 9186.4 19916.4 0.928 0.907 0.896 0.603 0.82 0.931 0.908 0.899
SAT12-ALL 241.3 3079.9 0.581 0.473 0.552 0.753 0.988 0.596 0.485 0.562

SAT12-HAND 3662.2 6338.9 0.572 0.484 0.558 0.477 0.701 0.585 0.496 0.567
SAT12-INDU 2221.5 3266 0.052 0 0 0.736 0.821 0.082 0 0
SAT12-RAND 2872.8 3271.1 0 0 0 0.731 0.764 0 0 0

Average 4790.362 9606.077 0.574 0.539 0.560 0.694 0.846 0.586 0.548 0.566
TABLE IV

BESTFIRST FORWARD AND BACKWARD PERFORMANCE.

Scenario Original SymmU GainRatio InfoGain Relief OneR # Features Reduction [%] Gain [%]
ASP-POTASSCO 0.690 0.700 0.700 0.700 0.710 0.611 138 → 5 96.377 2.888

CSP-2010 0.681 0.795 0.795 0.717 0.739 0.785 86 → 5 94.186 16.770
MAXSAT12-PMS 0.871 0.874 0.874 0.874 0.913 0.831 37 → 16 56.757 4.835

PREMARSHALLING-ASTAR-2013 0.706 0.781 0.766 0.785 0.794 0.781 16 → 2 87.500 12.458
PROTEUS-2014 0.877 0.895 0.852 0.893 0.886 0.876 198 → 7 96.465 2.080

QBF-2011 0.896 0.910 0.910 0.914 0.922 0.897 46 → 3 93.478 2.942
SAT11-HAND 0.516 0.602 0.588 0.602 0.596 0.524 115 → 5 95.652 16.724
SAT11-INDU 0.092 0.244 0.244 0.244 0.220 0.256 115 → 2 98.261 178.022
SAT11-RAND 0.928 0.931 0.932 0.932 0.939 0.924 115 → 16 86.087 1.222
SAT12-ALL 0.581 0.610 0.557 0.602 0.601 0.586 115 → 32 72.174 5.002

SAT12-HAND 0.572 0.623 0.598 0.623 0.593 0.597 115 → 5 95.652 8.956
SAT12-INDU 0.052 0.226 0.228 0.224 0.238 0.181 115 → 3 97.391 359.510
SAT12-RAND 0 0 0.010 0.024 0.090 0 115 → 7 93.913 ∞

TABLE V
PEAK PAR10 PERFORMANCE FOR EACH RANKER SELECTOR.

FS Approach 1 2 3 4 5 6 7 8 16 32 64
SymmU 0.486 0.546 0.583 0.582 0.599 0.591 0.599 0.571 0.567 0.568 0.480

GainRatio 0.412 0.472 0.521 0.549 0.572 0.581 0.587 0.577 0.575 0.553 0.476
InfoGain 0.496 0.548 0.566 0.569 0.605 0.595 0.595 0.574 0.569 0.575 0.482

Relief 0.531 0.550 0.563 0.587 0.598 0.581 0.574 0.565 0.587 0.590 0.492
OneR 0.518 0.570 0.560 0.547 0.570 0.572 0.571 0.573 0.576 0.576 0.579

Maximum 0.531 0.550 0.583 0.587 0.605 0.595 0.599 0.577 0.587 0.590 0.492
TABLE VI

AVERAGE PAR10 PERFORMANCE OF RANKER OVER ALL THE SCENARIOS.

If we focus instead on which features allow to reach the best
performance, the results obviously vary across the scenarios.
Table VII lists the features selected by the best tested FS
method reported in Table V. We report these features for two
reasons. On the one hand, these reduced sets of features enable
researchers to further assess and compare the performance of
other AS and FS approaches over the different scenarios. On
the other hand, such features might help a domain expert
to deepen the study of the most informative features for
a particular scenario. For more details about scenarios and
features we refer the reader to [6] (and to the papers describing
the scenarios listed in Section II-A).

V. SUNNY-AS

Based on the results shown in Section IV, we developed
sunny-as: an AS utility tool that uses the SUNNY algo-
rithm for evaluating scenarios conforming to the ASlib format
specifications. According to the cv.arff file contained in
every scenario, sunny-as allows to split the original scenario
into h × k training/testing scenarios, where h is the number

of repetitions and k the number of folds of the corresponding
k-cross validation. sunny-as can be used in three different
modes: training, pre-solving and testing.

In the training phase, sunny-as extracts some basic
information from the training scenario (e.g., the portfolio, the
backup solver, the timeout) and builds the knowledge base
needed by SUNNY for computing the algorithms schedule
as explained in Section II-B. The knowledge base is auto-
matically created by processing the meta-information of the
scenario (e.g., runtimes, feature values, feature costs, etc.).
Basically, it is a map that associates to every training instance
its normalized feature vector (where constant features are
removed and values are scaled in the range [−1, 1]) and the
runtimes of each solver of the portfolio on such instance.
sunny-as also allows to set different options, e.g., the range
of the feature values or the timeout for feature extraction. Note
that —since SUNNY is a lazy approach— this phase is more
a setup than a training, since no prediction model is explicitly
learned.

Optionally, after the training phase the user can define

Scenario Features
ASP-POTASSCO Frac Body-Body Equivalences, Frac Other Equivalences, Tight, Frac Atom-Atom Equivalences, Literals in Conflict Nogoods-1

CSP-2010 stats sums count, stats var bool, stats edge density, stats branchingvars, stats varcount
MAXSAT12-PMS pnr var max, pnr cls std, pnr var mean, numClauses, pnr cls mean, pnr var spread, horn, binary, pnr var min,var clauses ratio,

perc soft, trinary, unary, pnr var std, vcg var std, vcg cls min
PREMARSH. container-density, tiers

PROTEUS-2014 csp perten avg predshape, csp perten avg predsize, csp sqrt max domsize, csp sqrt avg domsize, csp percent dec predicate,
directorder POSNEG-RATIO-CLAUSE-mean, directorder reducedVars

QBF-2011 NEG HORN CLAUSE, TERMORE CLAUSE, OCCFP OCCFN
SAT11-HAND BINARYp, horn clauses fraction, SP bias q25, VCG CLAUSE coeff variation, lobjois mean depth over vars
SAT11-INDU SP unconstraint q10, VCG CLAUSE coeff variation
SAT11-RAND cl num q90, cl num max, cl num q75, cl num mean, cl num q50, cl num q25, cl num min, cl num q10, VG max,

DIAMETER entropy, cl size q10, cl size q25, VG mean, DIAMETER coeff variation, cl num coeff variation, cl size mean
SAT12-ALL SP unconstraint q25, vars clauses ratio, SP unconstraint mean, POSNEG RATIO CLAUSE entropy, VCG VAR coeff variation,

SP unconstraint q75, SP bias coeff variation, SP bias mean, BINARYp, reducedVars, SP unconstraint max, VCG CLAUSE entropy,
POSNEG RATIO CLAUSE coeff variation, cl num q75, cl num q50, cl num mean, cl num q90, SP unconstraint q90, cl num q25,
VG coeff variation, SP bias q25, SP bias q50, VCG CLAUSE coeff variation, nclausesOrig, HORNY VAR coeff variation,
SP unconstraint coeff variation, gsat FirstLocalMinRatio Mean, VCG VAR entropy, DIAMETER max, nvarsOrig,
POSNEG RATIO CLAUSE min, nclauses

SAT12-HAND SP bias coeff variation, reducedClauses, horn clauses fraction, SP unconstraint max, POSNEG RATIO CLAUSE min
SAT12-INDU BINARYp, vars clauses ratio, SP bias q50
SAT12-RAND cl num max, cl num q90, cl num q75, cl num mean, cl num q50, cl num q25, cl num q10

TABLE VII
FEATURES SELECTED BY THE BEST FS METHODS.

also a presolving phase in which it is possible to filter the
initial portfolio, set a static schedule, and in particular perform
a selection over all the original features. For example, by
defining the corresponding sunny-as options the user can
apply all the FS algorithms listed in Section III-C.

Finally, the testing scenario is used for computing and eval-
uating the SUNNY predictor. A script is available for printing
(or redirecting) the SUNNY schedule for every test instance,
according to the ASlib specifications. The arguments used by
SUNNY are those computed in the previous steps. However,
sunny-as allows to override them by modifying for example
the static schedule, the neighborhood size, the portfolio, the
backup solver, the timeout, and even the knowledge base itself.
sunny-as also provides a utility for making statistics on the
predictions (e.g., computing the PAR10 and FSI measures).
sunny-as is completely written in Python and publicly

available at https://github.com/CP-Unibo/sunny-as. It partici-
pated in the first ICON Challenge on Algorithm Selection [20]
using InfoGain to select the best 5 features. This version
was the best algorithm selector for PREMARSHALLING
scenario, but it globally achieved rather poor results. We are
investigating the reasons behind such performance, especially
for SAT scenarios.

VI. RELATED WORK

The interest in algorithm selection is quite general and
growing. For more comprehensive surveys about AS problem
and related paradigms, we refer the interested reader to [19],
[24], [32]. In this context we report just the AS related works
dealing with feature selection.7

A preliminary investigation on ASlib is performed in [6].
In particular, forward selection is used to select the best
features and algorithms for each scenario. In contrast to our
approach, the authors use a wrapper with a random regression

7An updated list of papers dealing with algorithm selection is available at
4c.ucc.ie/∼larsko/assurvey/

forest to evaluate the features/algorithms subset. Their findings
are however similar to ours: usually the number of required
features is very small if compared to the complete feature set
(at most five features per scenario are selected). Interestingly,
also the number of algorithms is substantially reduced in most
scenarios. The possibility of considering just a small number
of algorithms may lead to performance improvements also for
SUNNY, especially when it comes to compute the best sub-
portfolios. However, due to the fact that the use of wrapper
methods for performing the algorithm selection was far more
computationally expensive for SUNNY, in this paper we focus
only in feature selection and not in algorithm filtering.

In [7] forward feature selection is used for predicting the
runtime of planners. In this case too, authors show that only
4-6 features (among 311 features in total) may lead to a
performance similar to that obtained by using all the available
features. In [25] feature filtering has been applied to the
Instance-Specific Algorithm Configuration (ISAC) tool, prov-
ing that in SAT and CSP domains the number of features used
by ISAC can be reduced to less than a quarter, often providing
significant performance gains. In [18] empirical analyses on
SAT, MIP, and TSP problems show that just two key algorithm
parameters or, similarly, few instance features suffice to predict
the most salient algorithm performance measures.

VII. CONCLUSIONS

In this paper we examined the impact of Feature Selection
(FS) techniques on the performance of the SUNNY algorithm
selector. We use the benchmarks of the Algorithm Selection li-
brary (ASlib) [6], a repository including different AS scenarios
encoded in a standardized format. In particular, we evaluated
whether and how different off-the-shelf FS approaches applied
to SUNNY algorithm can improve the original SUNNY ap-
proach (which uses by default all the available features). To the
best of our knowledge, except for the preliminary investigation
of [6], no similar analysis on the ASlib scenarios have been

https://github.com/CP-Unibo/sunny-as
4c.ucc.ie/~larsko/assurvey/

performed yet.
We evaluated and compared the different FS methods on

all the heterogeneous scenarios of the ASlib in terms of
two normalized metrics, FSI and PAR10, that we introduced
for avoiding biases when considering scenarios with different
characteristics. Empirical results indicate that —although there
is not a clearly dominant FS method— a handful of features
is often enough for SUNNY to reach a similar if not better
performance of the default approach. Unfortunately we are not
currently able to extrapolate meaningful and general patterns
for detecting ex-ante the number and the best features for a
given scenario. Finally, we also developed sunny-as: a tool
for applying SUNNY on a given ASlib scenario.

From a qualitative point of view, understanding and analyz-
ing which are the most significant features is a major challenge
that deserves to be explored in the future. However, we believe
that even quantitative and empirical investigations —as those
described in this paper— are worth to follow for avoiding the
use of redundant information, focusing on a restricted but still
meaningful set of features.

As an extension of this work, additional scenarios (e.g.,
optimization and planning problems), performance measures,
and FS approaches may be tested. The sunny-as tool we
developed should facilitate the evaluation and the comparison
of SUNNY using different AS scenarios and FS methods.
For example, we are interested in comparing the off-the-shelf
FS approaches of this paper with the best ones of the ICON
challenge [20] and ASlib [6].

Furthermore, by tuning the parameters of sunny-as it is
also possible to try and test different SUNNY configurations
(e.g., by adding a static schedule, by varying the portfolio
composition, or by changing the neighborhood size). In this
context, automatic configurators [17], [21] can be used for
tuning the parameters.

An interesting future direction concerns the development
of dynamic AS approaches. Indeed, since for the majority of
the scenarios just few static or probing features are enough
to reach the best results, following approaches such as [34] it
might be possible to define dynamic AS approaches that only
rely on the observed runtime behavior of the algorithms.

REFERENCES

[1] R. Amadini, F. Biselli, M. Gabbrielli, T. Liu, and J. Mauro. SUNNY for
Algorithm Selection: A Preliminary Study. In CILC, 2015. Available
at: http://www.cs.unibo.it/∼amadini/cilc 2015.pdf.

[2] R. Amadini, M. Gabbrielli, and J. Mauro. SUNNY: a Lazy Portfolio
Approach for Constraint Solving. TPLP, 14(4-5):509–524, 2014.

[3] R. Amadini, M. Gabbrielli, and J. Mauro. A multicore tool for constraint
solving. In IJCAI, pages 232–238. AAAI Press, 2015.

[4] R. Amadini, M. Gabbrielli, and J. Mauro. Portfolio approaches for
constraint optimization problems. AMAI, pages 1–18, 2015.

[5] R. Amadini, M. Gabbrielli, and J. Mauro. SUNNY-CP: a sequential CP
portfolio solver. In SAC, pages 1861–1867. ACM, 2015.

[6] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fré-
chette, H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and J. Van-
schoren. Aslib: A benchmark library for algorithm selection. arXiv
preprint arXiv:1506.02465, 2015.

[7] C. Fawcett, M. Vallati, F. Hutter, J. Hoffmann, H. H. Hoos, and
K. Leyton-Brown. Improved features for runtime prediction of domain-
independent planners. In ICAPS. AAAI, 2014.

[8] I. P. Gent, C. Jefferson, L. Kotthoff, I. Miguel, N. C. A. Moore,
P. Nightingale, and K. E. Petrie. Learning when to use lazy learning in
constraint solving. In ECAI, pages 873–878, 2010.

[9] I. P. Gent, C. Jefferson, and I. Miguel. Minion: A fast scalable constraint
solver. In ECAI, pages 98–102, 2006.

[10] C. P. Gomes and B. Selman. Algorithm portfolios. Artif. Intell., 126(1-
2):43–62, 2001.

[11] I. Guyon and A. Elisseeff. An Introduction to Variable and Feature
Selection. Journal of Machine Learning Research, 3:1157–1182, 2003.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The WEKA data mining software: an update. SIGKDD Explor.
Newsl., 11(1), Nov. 2009.

[13] M. A. Hall. Correlation-based Feature Subset Selection for Machine
Learning. PhD thesis, University of Waikato, Hamilton, New Zealand,
1998.

[14] R. Holte. Very simple classification rules perform well on most
commonly used datasets. Machine Learning, 11:63–91, 1993.

[15] H. Hoos, M. T. Lindauer, and T. Schaub. claspfolio 2: Advances in
algorithm selection for answer set programming. TPLP, 14(4-5):569–
585, 2014.

[16] B. Hurley, L. Kotthoff, Y. Malitsky, and B. O’Sullivan. Proteus: A
Hierarchical Portfolio of Solvers and Transformations. In CPAIOR,
volume 8451 of LNCS, pages 301–317. Springer, 2014.

[17] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential Model-Based
Optimization for General Algorithm Configuration. In LION, volume
6683 of LNCS, pages 507–523. Springer, 2011.

[18] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Identifying Key Algorithm
Parameters and Instance Features Using Forward Selection. In LION,
volume 7997 of LNCS, pages 364–381. Springer, 2013.

[19] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown. Algorithm Runtime
Prediction: The State of the Art. CoRR, abs/1211.0906, 2012.

[20] ICON Challenge on Algorithm Selection. http://iconchallenge.insight-
centre.org/challengeas.

[21] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney. ISAC - Instance-
Specific Algorithm Configuration. In ECAI, volume 215 of Frontiers in
Artificial Intelligence and Applications. IOS Press, 2010.

[22] K. Kira and L. A. Rendell. A practical approach to feature selection.
In D. H. Sleeman and P. Edwards, editors, 9th International Workshop
on Machine Learning, pages 249–256. Morgan Kaufmann, 1992.

[23] I. Kononenko. Estimating attributes: Analysis and extensions of relief. In
F. Bergadano and L. D. Raedt, editors, ECML, pages 171–182. Springer,
1994.

[24] L. Kotthoff. Algorithm selection for combinatorial search problems: A
survey. AI Magazine, 35(3):48–60, 2014.

[25] C. Kroer and Y. Malitsky. Feature Filtering for Instance-Specific
Algorithm Configuration. In ICTAI, pages 849–855. IEEE, 2011.

[26] C. M. Li and F. Manyà. Maxsat, hard and soft constraints. In Handbook
of Satisfiability, pages 613–631. 2009.

[27] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack. MiniZinc: Towards a Standard CP Modelling Language. In
CP, 2007.

[28] L. Pulina and A. Tacchella. A self-adaptive multi-engine solver for
quantified boolean formulas. Constraints, 14(1):80–116, 2009.

[29] J. Reunanen. Overfitting in Making Comparisons Between Variable
Selection Methods. Journal of Machine Learning Research, 3:1371–
1382, 2003.

[30] J. R. Rice. The Algorithm Selection Problem. Advances in Computers,
15:65–118, 1976.

[31] M. Robnik-Sikonja and I. Kononenko. An adaptation of relief for
attribute estimation in regression. In D. H. Fisher, editor, ICML, pages
296–304. Morgan Kaufmann, 1997.

[32] K. Smith-Miles. Cross-disciplinary perspectives on meta-learning for
algorithm selection. ACM Comput. Surv., 41(1), 2008.

[33] K. A. Smith-Miles. Towards insightful algorithm selection for optimisa-
tion using meta-learning concepts. In IJCNN, pages 4118–4124. IEEE,
2008.

[34] K. Stergiou. Heuristics for dynamically adapting propagation in con-
straint satisfaction problems. AI Commun., 22(3):125–141, 2009.

[35] K. Tierney and Y. Malitsky. An algorithm selection benchmark of the
container pre-marshalling problem. In LION 9, pages 17–22, 2015.

[36] L. Xu, H. Hoos, and K. Leyton-Brown. Hydra: Automatically Config-
uring Algorithms for Portfolio-Based Selection. In AAAI, 2010.

http://www.cs.unibo.it/~amadini/cilc_2015.pdf
http://iconchallenge.insight-centre.org/challengeas
http://iconchallenge.insight-centre.org/challengeas

