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On the interaction problem between a compressible fluid and a

Saint-Venant Kirchhoff elastic structure

M. Boulakia ∗ † S. Guerrero∗

Abstract

In this paper, we consider an elastic structure immersed in a compressible viscous fluid. The motion of the
fluid is described by the compressible Navier-Stokes equations whereas the motion of the structure is given
by the nonlinear Saint-Venant Kirchhoff model. For this model, we prove the existence and uniqueness of
regular solutions defined locally in time. To do so, we first rewrite the nonlinearity in the elasticity equation
in an adequate way. Then, we introduce a linearized problem and prove that this problem admits a unique
regular solution. To obtain time regularity on the solution, we use energy estimates on the unknowns and
their successive derivatives in time and to obtain spatial regularity, we use elliptic estimates. At last, to
come back to the nonlinear problem, we use a fixed point theorem.

AMS subject classification: 74F10, 76N10, 74B20

1 Introduction

1.1 Statement of problem

In this paper, we deal with a fluid-solid interaction problem where the fluid is governed by the compressible
Navier-Stokes equations and the solid is an hyperelastic structure which fulfills the Saint-Venant Kirchhoff
nonlinear model.

Let T > 0 be given. We suppose that the structure and the fluid move in a fixed connected bounded
domain Ω ⊂ R3. At time t, we denote by ΩS(t) the solid domain and by ΩF (t) = Ω\ΩS(t) the fluid domain.
We suppose that the boundaries of ΩS(0) and Ω are smooth (C4 for instance) and that ΩS(0) does not touch
the external boundary. The fluid velocity u and the fluid density ρ satisfy the compressible Navier-Stokes
equations: ∀ t ∈ (0, T ), ∀x ∈ ΩF (t),{ (

∂tρ+∇ · (ρu)
)
(t, x) = 0,(

ρ∂tu+ ρ(u · ∇)u
)
(t, x)−∇ ·

(
2µε(u) + µ′(∇ · u)Id− pId

)
(t, x) = 0,

(1)

where (ε(u))ij = 1
2 (∇u+∇ut)ij = 1

2 (∂jui+∂iuj) denotes the symmetric part of the gradient and Id ∈M3(R)
stands for the identity matrix. We assume that the viscosity coefficients (µ, µ′) belong to R∗+×R+ and that
the pressure p only depends on ρ and is given by p = P (ρ)−P (ρ), for some P ∈ C∞(R∗+) and some constant
ρ > 0.

For results concerning the well-posedness and regularity of the Navier-Stokes compressible equations, we
refer to the books [28] and [16] and the references therein.

As long as the structure is concerned, its elastic displacement ξ satisfies the Saint-Venant Kirchhoff model
(see, for instance, [8]):

∂2
t ξ −∇ · σ(ξ) = 0 in (0, T )× ΩS(0), (2)
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where the first Piola-Kirchhoff tensor σ(ξ) is given by :

σ(ξ) := (Id +∇ξ)
(
λ(∇ξ +∇ξt +∇ξt∇ξ) +

λ′

2
(2∇ · ξ + |∇ξ|2)Id

)
.

We also assume that the viscosity coefficients (λ, λ′) belong to R∗+ × R+. These equations were considered,
for instance, in [30] for Neumann boundary conditions and in [17] for Dirichlet boundary conditions.

We now introduce the flow χ(t, ·) : ΩF (0)→ R3 which associates to the lagrangian coordinate of a fluid
particle its eulerian coordinate. For all y ∈ ΩF (0), the flow χ(·, y) satisfies{

∂tχ(t, y) = u(t, χ(t, y)) t ∈ (0, T ),

χ(0, y) = y.
(3)

Then, we set ΩF (t) := χ(t,ΩF (0)). Notice that this time-dependent domain is implicitly defined since u(t, ·)
itself satisfies an equation on ΩF (t). This definition allows to make the link between the lagrangian point of
view on the structure and the eulerian point of view on the fluid.
The structure and fluid motions are coupled on the interface. Since the fluid is viscous, the velocity at the
interface is supposed to be continuous. Moreover, due to the law of reciprocal actions, the normal component
of the stress tensors is also supposed to be continuous. Using the flow χ, we can write the normal component
of the fluid stress tensor on ∂ΩS(0). This way, on (0, T )× ∂ΩS(0), we have{

u ◦ χ = ∂tξ

T(u, ρ) ◦ χ cof∇χn = σ(ξ)n,
(4)

where n is the outward unit normal defined on ∂ΩS(0) and we have denoted

T(u, ρ) :=
(
2µε(u) + µ′(∇ · u)Id− (P (ρ)− P (ρ))Id

)
. (5)

Here, in order to simplify the writing, we have used the classical notation

(f ◦ χ)(t, y) := f(t, χ(t, y)) ∀(t, y) ∈ (0, T )× ΩF (0),

for a function f defined in (0, T )× ΩF (t).
The system is complemented with a Dirichlet condition on the external boundary:

u = 0 on (0, T )× ∂Ω. (6)

Observe that (ρ, 0, 0) is a stationary solution of system (1), (2) and (4)-(6).
Finally, we introduce the initial conditions

ρ(0, ·) = ρ0 in ΩF (0), u(0, ·) = u0 in ΩF (0) (7)

and

ξ(0, ·) = 0 in ΩS(0), ∂tξ(0, ·) = ξ1 in ΩS(0) (8)

which satisfy

ρ0 ∈ H3(ΩF (0)), ρ0 > ρmin > 0 in ΩF (0), u0 ∈ H6(ΩF (0)), ξ1 ∈ H3(ΩS(0)). (9)
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To summarize, the system we consider in this paper is the following :

(
∂tρ+∇ · (ρu)

)
(t, x) = 0 in ΩF (t),(

ρ∂tu+ ρ(u · ∇)u
)
(t, x)−∇ ·

(
2µε(u) + µ′(∇ · u)Id− pId

)
(t, x) = 0 in ΩF (t),

∂2
t ξ −∇ · σ(ξ) = 0 in ΩS(0),

u = 0 on ∂Ω,

u ◦ χ = ∂tξ on ∂ΩS(0),

T(u, ρ) ◦ χ cof∇χn = σ(ξ)n on ∂ΩS(0),

ρ(0, ·) = ρ0, u(0, ·) = u0 in ΩF (0),

ξ(0, ·) = 0, ∂tξ(0, ·) = ξ1 in ΩS(0),

(10)

where χ is defined by (3).
To deal with the above system, we are going to rewrite the elasticity part in the same spirit as in [17].

For this purpose, let us set

ciαjβ(∇ξ) := λ(δβiδαj + δαβδij) + λ′δiαδjβ + c`iαjβ(∇ξ) + cqiαjβ(∇ξ), (11)

where c`iαjβ(∇ξ) stands for the linear part

c`iαjβ(∇ξ) := λ(δij∂βξα + δαj∂βξi + δij∂αξβ + δαβ∂jξi + δiβ∂αξj + δαβ∂iξj)

+ λ′(δiα∂βξj + δαβδij(∇ · ξ) + δjβ∂αξi)
(12)

and cqiαjβ(∇ξ) is the quadratic part

cqiαjβ(∇ξ) := λ(δij(∂βξ · ∂αξ) + ∂βξi∂αξj + δαβ(∇ξj · ∇ξi)) + λ′
(

1

2
δijδαβ |∇ξ|2 + ∂αξi∂βξj

)
. (13)

Here and in what follows, ∂k for k = i, α, j, β ∈ {1, 2, 3} represents the partial derivative with respect to
the spatial variable yk and ∂t and ∂s represents the partial derivative with respect to the time variable. We
remark that the coefficients ciαjβ satisfy the following symmetry property :

ciαjβ = cjβiα, ∀i, j, α, β = 1, 2, 3. (14)

Then, one can prove that

∂r(σ(ξ))iα =

3∑
j,β=1

ciαjβ(∇ξ)∂2
rβξj ∀i, α = 1, 2, 3,

where r can represent either the time derivative or a spatial derivative. In particular, one deduces

(∇ · σ(ξ))i =

3∑
α,j,β=1

ciαjβ(∇ξ)∂2
αβξj ∀i = 1, 2, 3.

and
3∑

α=1

(σ(ξ))iαnα =

3∑
α,j,β=1

(∫ t

0

ciαjβ(∇ξ)∂2
sβξjds

)
nα on ∂ΩS(0), ∀i = 1, 2, 3,

where we have used that σ(0, ·) = 0 on ∂ΩS(0).
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Taking into account the above considerations, we get the following system :

(
∂tρ+∇ · (ρu)

)
(t, x) = 0 in ΩF (t),(

ρ∂tu+ ρ(u · ∇)u
)
(t, x)−∇ ·

(
2µε(u) + µ′(∇ · u)Id− pId

)
(t, x) = 0 in ΩF (t),

∂2
t ξi −

3∑
α,j,β=1

ciαjβ(∇ξ)∂2
αβξj = 0, i = 1, 2, 3 in ΩS(0),

u = 0 on ∂Ω,

u ◦ χ = ∂tξ on ∂ΩS(0),

T(u, ρ) ◦ χ cof∇χn =

3∑
α,j,β=1

(∫ t

0

ciαjβ(∇ξ)∂2
sβξjds

)
nα on ∂ΩS(0),

(15)

complemented with the initial conditions (7)-(8).
Observe that, contrarily to system (10), in system (15) the boundary conditions of the elasticity part do

not combine nicely with the elasticity equation. Indeed, in view of the elasticity equation (15)3, it would be
natural to have

3∑
α,j,β=1

ciαjβ(∇ξ)∂βξj nα

in the right-hand side of (15)6. In fact, this re-writing of the elasticity equation is the only way we have
found to perform a fixed-point argument on the elasticity equation

∂2
t ξ −∇ · σ(ξ) = 0,

regardless of the boundary conditions. This strategy allows us to overcome the difficulties coming from the
nonlinearities in σ(ξ) and the hyperbolic character of the equation.

Due to this discordance between the boundary conditions and the elasticity equation, we will need to
consider an auxiliary problem (see (45) below, where the boundary conditions are the natural ones).

1.2 Compatibility conditions

We will also assume that the following compatibility conditions on the initial data hold :

u0 = 0 on ∂Ω,

u0 = ξ1 on ∂ΩS(0),

T(u0, ρ0)n = 0 on ∂ΩS(0),

∇ · (T(u0, ρ0)) = 0 on ∂ΩF (0),

S1n = (2λε(ξ1) + λ′(∇ · ξ1)Id)n on ∂ΩS(0),

∇ · (T1(U1) + P ′(ρ0)ρ0∇ · u0 Id) = 0 on ∂Ω,

U3 = ∇ · (2λε(ξ1) + λ′∇ · ξ1Id) on ∂ΩS(0),

S2n = σ1(ξ1)n on ∂ΩS(0).

(16)
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In the above identities, we have denoted T1(u) := 2µε(u) + µ′(∇ · u)Id,

S1 := T1 (U1) + (u0 · ∇)T(u0, ρ0) + P ′(ρ0)∇ · (ρ0u0)Id− T(u0, ρ0)∇ut0,

U1 :=
∇ · T(u0, ρ0)

ρ0
− (u0 · ∇)u0,

S2 := T1(U2) + (U1 · ∇)T(u0, ρ0) + 2(u0 · ∇)(T1(U1) + P ′(ρ0)∇ · (ρ0u0)Id)

+ (u0 · ∇)[(u0 · ∇)T(u0, ρ0)]− P ′′(ρ0)(∇ · (ρ0u0))2Id + P ′(ρ0)∇ · (ρ0U1 −∇ · (ρ0u0)u0)Id

+ 2[T1(U1) + P ′(ρ0)∇ · (ρ0u0)Id + (u0 · ∇)T(u0, ρ0)]((∇ · u0)Id−∇ut0)

+ T(u0, ρ0)

(
−∇

(
∇ · T(u0, ρ0)

ρ0

)t
+ 2cof (∇u0)

)

U2 :=
1

ρ0
∇ · (T1(U1) + P ′(ρ0)∇ · (ρ0u0)Id)− (u0 · ∇)U1 − (U1 · ∇)u0,

U3 := U2 + (U1 · ∇)u0 + (u0 · ∇)U1 + (u0 · ∇)

(
∇ · T(u0, ρ0)

ρ0

)
σ1(ξ1) := 2λ(∇ξt1∇ξ1 + (∇ξ1)2 +∇ξ1∇ξt1) + λ′(2(∇ · ξ1)∇ξ1 + |∇ξ1|2Id).

Observe that
{
∂it [T(u, ρ) ◦ χ cof∇χ]n

}
|t=0 coincides with Sin on {0}×∂ΩS(0) (i = 1, 2) and that

{
∂itu
}
|t=0

coincides with Ui in ΩF (0) (i = 1, 2). To show that, we have used

∂tcof (∇χ)|t=0 = (∇ · u0)Id−∇ut0 in ΩF (0)

and

∂2
t cof (∇χ)|t=0 = ∇ ·

(
∇ · T(u0, ρ0)

ρ0

)
Id−∇

(
∇ · T(u0, ρ0)

ρ0

)t
+ 2cof (∇u0) in ΩF (0).

Let us briefly explain how these compatibility conditions are obtained. The first three conditions cor-
respond to (4) and (6) taken at t = 0. The fourth one corresponds to applying the time derivative to (4)1

and (6) and taking t = 0 and the fifth one corresponds to applying the time derivative to (4)2 and taking
t = 0. As for the sixth (respectively seventh and eighth) condition, it is obtained by applying the second
time derivative to (6) (respectively (4)1 and (4)2) and taking t = 0.

1.3 State of the art and statement of the main result

Let us present some of the main results concerning the existence and uniqueness of solutions of the Navier-
Stokes compressible equations. A first result of existence and uniqueness of local regular solutions was proved
in [33]. In the case of isentropic fluids (i.e. when P (ρ) = ργ with γ > 0), the papers [23] for γ = 1 and [24]
for γ > 1 show the global existence of a weak solution for small initial data. The first global existence result
for large data was proved in [27] with γ > 9/5 for dimension N = 3 and with γ > N/2 for N > 4. The
conditions on the coefficient γ have been relaxed in [14] where it is assumed that γ > N/2 for N > 3. We
refer to the books [28] and [16] for additional references on compressible fluids.

Let us also cite several works on the existence and uniqueness of solutions of the Saint-Venant Kirchhoff
equations (2). In [30], the author considers these equations in dimension 2 complemented with nonlinear
Neumann boundary conditions and establishes a local existence result for small data with a loss of derivatives
from the boundary data. In [17], the author proves an existence and uniqueness result of local solutions for
a general 3-dimensional system of thermoelasticity with right-hand sides and with homogeneous Dirichlet
boundary conditions. In this last reference, there is no loss of regularity with respect to the right-hand side
of the elasticity equation.

Different kinds of fluid-structure interaction problems have been studied in the literature.
A large number of studies deal with an incompressible fluid modeled by the incompressible Navier-Stokes
equations. For the coupling of an incompressible fluid with a rigid structure, we mention [20] which shows
the local in time existence of weak solutions and papers [9] and [12] (with variable density) which prove the
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global existence of weak solutions. By ‘global existence’, we mean that the solution exists until collisions
between the structure and the external boundary or between two structures. Paper [31] proves the global
existence of weak solutions beyond collisions and [32] proves the existence and uniqueness of strong solutions
(global in 2D and local in 3D). At last, [21] and [22] study the lack of collision in 2D or 3D.

For the coupling between an incompressible fluid and an elastic structure, the existence of global weak
solutions is proved in [13] when the elastic structure is given by a finite sum of modes and in [4] with a
regularizing term in the structure motion. These two results give the existence of solutions defined as long
as there is no collision between the structure and the boundary and as long as no interpenetration occurs
in the structure. The local existence of regular solutions is proved in [10]. Moreover, the coupling with an
elastic plate has also been studied: we quote [1] where the existence of local strong solution is obtained,
[7] which proves the existence of global weak solution with a regularizing term in the plate equation and
[19] which proves the same result without regularizing term in 2D. Recently, two local existence results of
regular solutions have been proved in [29] whenever Ω, ΩS(0) and ΩF (0) are parallelepipeds and in [26] in
the general case. Moreover, the two works [18] and [2] study the existence and uniqueness of steady solutions
of incompressible Navier-Stokes equations coupled with the nonlinear Saint-Venant Kirchhoff model.

Concerning compressible fluids, the global existence of weak solutions for the interaction with a rigid
structure is obtained in [12] (for P (ρ) = ργ and γ > 2) and in [15] (for γ > N/2). Moreover, in [5], the
existence of global regular solutions is proved for small initial data.

At last, for the interaction between a compressible fluid and an elastic structure, [3] proves the global
existence of a weak solution in 3D for γ > 3/2. The result is obtained for an elastic structure described by a
regularized elasticity equation. The local existence and uniqueness of a regular solution of the linear version
of our problem (15)-(7)-(8) has been proved in [6] and later in [25].

In the present paper, we prove the local existence and uniqueness of regular solutions for system (15)
complemented with the initial conditions (7)-(8).

Definition 1 Let us introduce some spaces :

XT
m := L∞(0, T ;Hm(ΩS(0))) ∩Wm,∞(0, T ;L2(ΩS(0))), 0 6 m 6 4.

Y T1 := L∞(0, T ;L2(ΩF (0))) ∩ L2(0, T ;H1(ΩF (0))),

Y T2 := L∞(0, T ;H2(ΩF (0))) ∩H1(0, T ;H1(ΩF (0))) ∩W 1,∞(0, T ;L2(ΩF (0))),

Y T4 := L∞(0, T ;H4(ΩF (0))) ∩W 2,∞(0, T ;H2(ΩF (0))) ∩W 3,∞(0, T ;L2(ΩF (0))) ∩H3(0, T ;H1(ΩF (0))).

Remark 2 Observe that the spaces XT
m correspond to the hyperbolic scaling. As long as the Y Tm are con-

cerned, one would expect them to correspond to the parabolic scaling but the strong coupling between the
elastic displacement and the velocity of the fluid makes the velocity not as regular as usually.

More precisely, we will prove the following theorem

Theorem 3 Let (ρ0, u0, ξ1) satisfy (9) and (16). Then, there exists T ∗ > 0 such that system (15) comple-
mented with the initial conditions (7)-(8) admits a unique solution (ρ, u, ξ) defined in (0, T ∗) such that

(ρ ◦ χ, u ◦ χ, ξ) ∈ ZT
∗

:= (L∞(0, T ∗;H3(ΩF (0))) ∩W 3,∞(0, T ∗;L2(ΩF (0))))× Y T
∗

4 ×XT∗

4

and
χ ∈W 1,∞(0, T ∗;H4(ΩF (0))) ∩W 4,∞(0, T ∗;L2(ΩF (0))).

Moreover, there exists a function g : R3
+ → R+ increasing in each variable and satisfying g(0, 0, 0) = 0 such

that
‖(ρ ◦ χ, u ◦ χ, ξ)‖ZT∗ 6 g(‖ρ0 − ρ‖H3(ΩF (0)), ‖u0‖H6(ΩF (0)), ‖ξ1‖H3(ΩS(0))).

Remark 4 Observe that we assume that u0 ∈ H6(ΩF (0)) (see Remark 14) while we are not able to prove
that u ◦ χ ∈ C0([0, T ∗];H6(ΩF (0))). This gap is due to the coupling between equations of different nature.
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To prove this result, we will partially linearize our problem, prove a regularity result for this problem
and then use a fixed point argument. In the next subsection, we introduce the intermediate problem which
is partially linearized with the help of a given fluid velocity and a given elastic deformation. Comparing
our strategy with [11] (which considers a coupling between the incompressible Navier-Stokes equations and
a quasilinear elasticity system), we do not need to regularize the elastic displacement equations. Indeed,
in that reference the authors add an artificial viscosity term so that the global elasticity-velocity system is
parabolic.

1.4 A partial linear problem

Let (ρ0, u0, ξ1) satisfy (9) and (16). We introduce the following notations: for all t > 0, we define

Qt = (0, t)× ΩF (0), Σt = (0, t)× ∂ΩS(0).

For all p, r > 0 and q, s ∈ [1,+∞], we denote by W p,q(W r,s) the space W p,q(0, T ;W r,s(ΩF (0))).
Let us also introduce the following vector fields :

u1 :=
∇ · T(u0, ρ0)

ρ0
, (17)

u2 := ∇ ·
[
T(u0, ρ0)(∇ · u0Id−∇ut0) + T1(u1)− µ((∇u0)2 + (∇ut0)2)− µ′((∇u0)2 : Id)Id

− P ′(ρ0)ρ0∇ · u0Id] .
(18)

Recall that T was defined in (5) and T1 was defined right after (16).
Then, we define the following fixed point space, for all M > 0 and all T > 0 :

ATM =
{

(v, ξ) ∈ Y T4 ×XT
4 , v = 0 on (0, T )× ∂Ω, ∂jt v(0, ·) = uj(·) in ΩF (0) (j = 0, 1, 2),

ξ(0, ·) = 0, ∂tξ(0, ·) = ξ1(·) in ΩS(0) and ‖v‖Y T
4

6M, ‖ξ‖XT
4
6M

}
:= (ATM )1 × (ATM )2.

(19)

Let 0 < T < 1 and let (v̂, ξ̂) ∈ ATM be given with M > 0 and T > 0 specified later. We will use this data
to partially linearize our problem. Let us now define the flow χ̂ by

χ̂(t, y) = y +

∫ t

0

v̂(s, y) ds ∀y ∈ ΩF (0). (20)

Direct computations allow to prove several estimates on χ̂ which we present in the following lemma :

Lemma 5 There exists C > 0 and κ > 0 such that for all v̂ ∈ (ATM )1 and all T sufficiently small with
respect to M , we have:

‖χ̂‖W 1,∞(H4)∩W 3,∞(H2)∩W 4,∞(L2)∩H4(H1) 6 C(1 +M) (21)

‖∇χ̂− Id‖W 1,∞(H3)∩W 3,∞(H1)∩H4(L2) 6 CM (22)

‖cof(∇χ̂)− Id‖L∞(H3) + ‖(∇χ̂)−1 − Id‖L∞(H3) 6 CTκM. (23)

Here, and in the following, C represents a constant which only depends on the domains ΩF (0) and ΩS(0).

Remark 6 By T small with respect to M , we mean that there exists ε > 0 and n0 > 0 such that T 6 T0

with
T0 := min

{
ε,

ε

Mn0

}
.

In Lemma 5 and all through the paper κ > 0 denotes a generic constant whose value can change from line
to line.

In the sequel we denote ĉiαjβ instead of ciαjβ(∇ξ̂) (see (11) for the definition of ciαjβ). From the definition
of (ATM )2, it is not difficult to see that the following estimates hold :
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Lemma 7 Let M > 0, T > 0 and ξ̂ be given in (ATM )2. Then, there exists C > 0 such that for all
i, α, j, β ∈ {1, 2, 3}, we have

‖c`iαjβ(∇ξ̂) + cqiαjβ(∇ξ̂)‖XT
3
6 C(M +M2), (24)

where c`iαjβ(∇ξ) and cqiαjβ(∇ξ) were defined in (12) and (13), respectively. In particular, for all B ∈M3(R)
we have

3∑
i,α,j,β=1

ĉiαjβBjβBiα >
λ

2
|B +Bt|2 + λ′|trB|2 − CT (M +M2)|B|2. (25)

Observe that from Lemma 5, χ̂(t, ·) is invertible from ΩF (0) onto Ω̂F (t) = χ̂(t,ΩF (0)) for all t ∈ (0, T ),
for T small enough. Let us state a partially linearized system on the reference domains ΩF (0) and ΩS(0).
First we define, for all (t, y) ∈ QT

v(t, y) := u(t, χ̂(t, y)), γ(t, y) = ρ(t, χ̂(t, y))− ρ. (26)

The first equation in (15) is replaced by

∂tγ + γ(∇v̂(∇χ̂)−1 : Id) + ρ(∇v̂(∇χ̂)−1 : Id) = 0 in QT . (27)

Next, the second equation of system (15) becomes

(ρ+ γ) det∇χ̂∂tv −∇ · T̂(v, γ) = 0 in QT , (28)

where

T̂(v, γ) :=
(
µ(∇v(∇χ̂)−1 + (∇χ̂)−t∇vt) + µ′(∇v(∇χ̂)−1 : Id)Id− (P (ρ+ γ)− P (ρ))Id

)
cof∇χ̂. (29)

Next, the elasticity equation that we consider is

∂2
t ξi −

3∑
α,j,β=1

ĉiαjβ∂
2
αβξj = 0 i = 1, 2, 3, in (0, T )× ΩS(0). (30)

As long as the boundary conditions are concerned, we have

v = 0 on (0, T )× ∂Ω (31)

and 
v = ∂tξ,

(T̂(v, γ) n)i =

3∑
α,j,β=1

(∫ t

0

ĉiαjβ∂
2
sβξjds

)
nα, i = 1, 2, 3,

(32)

on ΣT .
At last, the initial conditions satisfied by (γ, v) are

γ(0, ·) = γ0 := ρ0 − ρ in ΩF (0), v(0, ·) = u0 in ΩF (0). (33)

We observe that, from the definition of u1 and u2 (see (17) and (18) above), we have that

∂jt v(0, ·) = uj(·) in ΩF (0) (j = 1, 2).

In order to prove this, we have used the equations of γ and v and the identities :

∂t(det(∇χ̂))(0, ·) = ∇ · u0, ∂t((ρ+ γ) det(∇χ̂))(0, ·) = 0 and ∂t((∇χ̂)−1)(0, ·) = −∇u0 in ΩF (0).

We introduce the following fixed point mapping:

Λ : (v̂, ξ̂) ∈ ATM → (v, ξ) (34)
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where (v, ξ), together with γ, is solution of system (27)-(32) with the initial conditions (8) and (33).
Notice that a fixed-point of Λ provides a solution (ρ, u, ξ) of (15) complemented with the initial conditions

(7)-(8).
First, we will prove that Λ goes from ATM to ATM for some M > 0 and for some T > 0 small enough.

This is the main purpose of Section 2. Next, in Section 3 we prove the existence of a Banach space Z such
that ATM is closed in Z and Λ is a contraction for the Z-norm. This will imply the existence of a unique
fixed-point for Λ, which achieves the proof of Theorem 3.

2 Regularity results for the partially linearized problem

In what follows, we denote by C0 a constant of the type

C0 = g(‖γ0‖H3(ΩF (0)), ‖u0‖H6(ΩF (0)), ‖ξ1‖H3(ΩS(0))), (35)

where g : R3
+ → R+ is increasing in each variable and g(0, 0, 0) = 0.

2.1 Regularity of the density

Since the equation (27) satisfied by γ is decoupled from the other variables v and ξ, we can obtain a first
regularity result independently from the other equations.

Lemma 8 Let v̂ ∈ (ATM )1. For T small enough with respect to M and for all γ0 ∈ H3(ΩF (0)), there exists
a unique solution γ of (27) and (33)1 γ ∈ W k,∞(H3−k), 0 6 k 6 3. Moreover, there exists C0 > 0 and
κ > 0 such that

‖γ‖Wk,∞(H3−k) 6 C0 + TκM, ∀0 6 k 6 3. (36)

Furthermore, for T small enough with respect to M , there exists γmin > −ρ such that

γ > γmin in QT . (37)

Proof : Equation (27) can be written as

∂tγ + γẑ = −ρẑ in QT (38)

where ẑ = ∇v̂(∇χ̂)−1 : Id. Thus, γ is explicitly given by, for all t ∈ (0, T )

γ(t) = −ρ
∫ t

0

ẑ(s) exp

(∫ s

t

ẑ(r) dr

)
ds+ γ(0) exp

(
−
∫ t

0

ẑ(s) ds

)
in ΩF (0). (39)

First, from (23) we deduce that

‖ẑ‖L∞(H3) 6 ‖[∇v̂((∇χ̂)−1 − Id)] : Id‖L∞(H3) + ‖∇v̂‖L∞(H3) 6M(1 + CTκM) 6 CM.

Then, coming back to (39) we see that

‖γ‖L∞(H3) 6 C0 + TκM. (40)

Finally, we are going to estimate ∂3
t γ using the following equation :

∂3
t γ = (ρ+ γ)(−ẑ3 + 3∂tẑẑ − ∂2

t ẑ). (41)

From the definition of ẑ and using Lemma 5, we deduce

‖∂tẑ‖L∞(H2) + ‖∂3
t ẑ‖L2(L2) 6 C(M +M2), (42)

Using this inequality, we find

‖ẑ‖L∞(H2) 6 ‖ẑ(0, ·)‖H2(ΩF (0)) + T‖∂tẑ‖L∞(H2) 6 C0 + TκM. (43)
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Now, from the definition of ẑ and the definition of (ATM )1 and using the identities

∂t((∇χ̂)−1)(0, ·) = −∇u0, ∂2
t ((∇χ̂)−1)(0, ·) = 2(∇u0)2 −∇u1 in ΩF (0),

we find

∂tẑ(0, ·) = (∇u1 − (∇u0)2) : Id, ∂2
t ẑ(0, ·) = ∇ · u2 − 3∇u1∇u0 : Id+ 2(∇u0)3 : Id in ΩF (0).

In particular, we obtain the following from (42) :{
‖∂2
t ẑ‖L∞(L2) 6 ‖∂2

t ẑ(0, ·)‖L2(ΩF (0)) + T 1/2‖∂3
t ẑ‖L2(L2) 6 C0 + TκM,

‖∂tẑ‖L∞(L2) 6 ‖∂tẑ(0, ·)‖L2(ΩF (0)) + T‖∂2
t ẑ‖L∞(L2) 6 C0 + TκM.

(44)

Coming back to (41) and using (40), (43) and (44), we deduce

‖∂3
t γ‖L∞(L2) 6 C0 + TκM.

This, together with (40) readily implies (36). Finally, taking into account that

γ(t, ·) = ρ0(·) exp

(
−
∫ t

0

ẑ(s) ds

)
− ρ > ρ0 exp(−CTM)− ρ in ΩF (0),

(37) follows from the fact that ρ0 > ρmin > 0 (see (9)) by taking T small enough with respect to M .

2.2 Existence and uniqueness for an auxiliary problem

Let us consider an auxiliary problem which will be useful for establishing the existence of solution of our
system via a fixed-point argument. Let us take g ∈ H1

` (0, T ;L2(∂ΩS(0))), where

H1
` (0, T ) := {θ ∈ H1(0, T ) : θ(0) = 0}.

We consider the following problem :

(ρ+ γ) det∇χ̂∂tv −∇ · T̂(v, γ) = 0 in QT ,

∂2
t ξi −

3∑
α,j,β=1

ĉiαjβ∂
2
αβξj = 0, i = 1, 2, 3, in (0, T )× ΩS(0),

v = 0 on (0, T )× ∂Ω,

v = ∂tξ on ΣT ,[
T̂(v, γ)n

]
i

=

3∑
α,j,β=1

ĉiαjβ∂βξjnα + gi, i = 1, 2, 3, on ΣT ,

v(0, ·) = u0 in ΩF (0),

ξ(0, ·) = 0, ∂tξ(0, ·) = ξ1 in ΩS(0),

(45)

where γ is the solution of (27) and (33)1. Recall that T̂(v, γ) was defined in (29). We also denote

T̂1(v) :=
(
µ(∇v(∇χ̂)−1 + (∇χ̂)−t∇vt) + µ′(∇v(∇χ̂)−1 : Id)Id

)
cof∇χ̂. (46)

Lemma 9 Let (v̂, ξ̂) ∈ ATM , u0 ∈ L2(ΩF (0)), ξ1 ∈ L2(ΩS(0)), γ0 ∈ H3(ΩF (0)) and g ∈
H1
` (0, T ;L2(∂ΩS(0))). For T small enough with respect to M and the initial conditions (see (48)), there

exists a unique solution (v, ξ) ∈ Y T1 ×XT
1 of (45) (recall that Y1 and X1 have been defined in Definition 1).

Moreover, there exists C > 0 and C0 > 0 such that

‖v‖Y T
1

+ ‖ξ‖XT
1
6 C0 + C‖γ‖L∞(L2) + C‖g‖H1(0,T ;L2(∂ΩS(0))). (47)
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Remark 10 By T small enough with respect to M and the initial conditions, we mean that there exist ε > 0,
n0 > 0 and f : R3

+ → R+ increasing in each variable such that T 6 T0 with

T0 := min

{
ε,

ε

Mn0
,

ε

f(‖γ0‖H3 , ‖u0‖H6 , ‖ξ1‖H3)

}
. (48)

Proof of Lemma 9:
• Step 1. Galerkin approximation of system (45).

Let {w`}`∈N∗ ∈ H1
0 (ΩF (0)) and {z`}`∈N∗ ∈ H1(ΩS(0)) two orthogonal basis in L2 and {z̃`}`∈N∗ an

extension on H1
0 (Ω) of {z`}`∈N∗ . The initial conditions ξ1 and u0 can be decomposed on these basis:

ξ1 =

∞∑
`=1

α1
`z` and u0 =

∞∑
`=1

α1
` z̃` +

∞∑
`=1

β0
`w`

We try to find (vn, ξn) satisfying

∫
ΩF (0)

T̂(vn, γ) : ∇wn dy +

∫
ΩS(0)

∂2
t ξ
n · ∂tzn dy +

3∑
i,α,j,β=1

∫
ΩS(0)

ĉiαjβ∂βξ
n
j ∂t∂αz

n
i dy

+

3∑
i,α,j,β=1

∫
ΩS(0)

∂αĉiαjβ∂βξ
n
j ∂tz

n
i dy +

∫
ΩF (0)

(ρ+ γ) det(∇χ̂)∂tv
n · wn dy =

∫
∂ΩS(0)

g · ∂tzn dσ,

(49)

for t ∈ (0, T ), where

wn(t, y) =

n+1∑
`=1

χ′`(t)z̃`(y) +

n+1∑
`=1

κ`(t)w`(y), t ∈ (0, T ), y ∈ ΩF (0)

and

zn(t, y) =

n+1∑
`=1

χ`(t)z`(y), t ∈ (0, T ), y ∈ ΩS(0)

for χ`, κ` ∈ C∞([0, T ]) (1 6 ` 6 n+ 1).
We look for (vn, ξn) in the form

vn(t, y) =

n+1∑
`=1

α′`(t)z̃`(y) +

n+1∑
`=1

β`(t)w`(y) (t, y) ∈ (0, T )× ΩF (0)

and

ξn(t, y) =

n+1∑
`=1

α`(t)z`(y) (t, y) ∈ (0, T )× ΩS(0)

This yields the system

A(t)
d

dt

 αi
α′i
βi

 = M(t)

 αi
α′i
βi

+B(t), t ∈ (0, T ),

complemented by the initial conditions:  αi
α′i
βi

 (0) =

 0
α1
i

β0
i

 .

The matrix A(t) := (Aij(t))16i,j63 for Aij(t) ∈Mn+1(R) is given by A11 := Id, A1j ≡ 0 for j = 2, 3, Ai1 ≡ 0
for i = 2, 3,

A22(t) :=

(
δk` +

∫
ΩF (0)

(ρ+ γ) det(∇χ̂)z̃k · z̃` dy

)
16k,`6n+1

,
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A23(t) :=

(∫
ΩF (0)

(ρ+ γ) det(∇χ̂)z̃k · w` dy

)
16k,`6n+1

,

A32 := At23 and

A33(t) :=

(∫
ΩF (0)

(ρ+ γ) det(∇χ̂)wk · w` dy

)
16k,`6n+1

.

Next, M(t) := (Mij(t))16i,j63, where Mij(t) ∈ Mn+1(R) are given by M1j ≡ 0 for j = 1, 3, M12 := Id,
M31 ≡ 0,

M21(t) := −

 3∑
i,α,j,β=1

∫
ΩS(0)

(
ĉiαjβ(∂βz`)j(∂αzk)i + ∂αĉiαjβ(∂βz`)j(zk)i

)
dy


16k,l6n+1

,

M22(t) := −

(∫
ΩF (0)

T̂1(z̃`) : ∇z̃k dy

)
16k,`6n+1

,M23(t) := −

(∫
ΩF (0)

T̂1(w`) : ∇z̃k dy

)
16k,`6n+1

and

M32(t) := −

(∫
ΩF (0)

T̂1(z̃`) : ∇wk dy

)
16k,`6n+1

,M33(t) := −

(∫
ΩF (0)

T̂1(w`) : ∇wk dy

)
16k,`6n+1

.

On the other hand, B(t) := (Bi(t))16i63 with Bi(t) ∈ Rn+1 given by B1(t) ≡ 0,

B2(t) =

(∫
ΩF (0)

(P (ρ+ γ)− P (ρ))cof (∇χ̂) : ∇z̃` dy +

∫
∂ΩS(0)

g · z` dσ

)
16`6n+1

and

B3(t) =

(∫
ΩF (0)

(P (ρ+ γ)− P (ρ))cof (∇χ̂) : ∇w` dy

)
16`6n+1

.

One can easily see that A(t) is positive definite thanks to the fact that ρ + γ > ρ + γmin > 0 (see (37))
and det(∇χ̂)(t) > C > 0 (see (22)) for T small enough with respect to M . Moreover, A−1,M,B ∈ L∞(0, T ).
This gives the existence of a unique solution

(vn, ξn) ∈W 1,∞(0, T ;H1(ΩF (0)))×W 2,∞(0, T ;H1(ΩS(0))).

• Step 2. Estimate of (vn, ξn).
Let us prove an energy estimate of the form

‖vn‖L∞(L2) + ‖vn‖L2(H1) + ‖ξn‖L∞(0,T ;H1(ΩS(0))) + ‖ξn‖W 1,∞(L2(0,T ;ΩS(0)))

6 C0 + C‖γ‖L∞(L2) + C‖g‖H1(0,T ;L2(∂ΩS(0))).
(50)
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In order to do this, we take wn := vn and zn := ξn in (49) and we integrate between 0 and t. This yields:

1

2

∫
ΩF (0)

(ρ+ γ)(t)|vn(t)|2 det∇χ̂(t) dy − 1

2

∫
ΩF (0)

(ρ+ γ0)|un0 |2 dy −
1

2

∫∫
Qt

|vn|2∂s((ρ+ γ) det∇χ̂) dy ds

+

∫∫
Qt

(µ
2
|∇vn(∇χ̂)−1 + (∇χ̂)−t(∇vn)t|2 + µ′|∇vn(∇χ̂)−1 : Id|2

)
det∇χ̂ dy ds

−
∫∫

Qt

(P (ρ+ γ)− P (ρ)) cof∇χ̂ : ∇vn dy ds+
1

2

∫
ΩS(0)

|∂tξn(t)|2 dy − 1

2

∫
ΩS(0)

|ξn1 |2 dy

+
1

2

3∑
i,α,j,β=1

∫
ΩS(0)

[ĉiαjβ∂βξ
n
j ∂αξ

n
i ](t)dy − 1

2

3∑
i,α,j,β=1

∫ t

0

∫
ΩS(0)

∂sĉiαjβ∂βξ
n
j ∂αξ

n
i dyds

+

3∑
i,α,j,β=1

∫ t

0

∫
ΩS(0)

∂αĉiαjβ∂βξ
n
j ∂sξ

n
i dyds =

∫ t

0

∫
∂ΩS(0)

g · ∂sξn dσds.

(51)
Here, we have employed the notation

ξn1 =

n+1∑
`=1

α1
`z` and un0 =

n+1∑
`=1

α1
` z̃` +

n+1∑
`=1

β0
`w`,

and we have used ξn|t=0 = 0 and the symmetry of the coefficients ciαjβ (see (14)).

For the first term, according to (37) and (22)∫
ΩF (0)

(ρ+ γ)(t)|vn(t)|2 det∇χ̂(t) dy > (ρ+ γmin)(1− CTκM)

∫
ΩF (0)

|vn(t)|2 dy. (52)

The second term is bounded by

1

2

∫
ΩF (0)

(ρ+ γ0)|un0 |2 dy 6 C(‖γ0‖2L∞(ΩF (0)) + ‖u0‖2L2(ΩF (0)) + ‖u0‖4L2(ΩF (0))) = C0. (53)

The third term is estimated by∫∫
Qt

|vn|2|∂s((ρ+ γ) det∇χ̂)| dy ds 6
∫∫

Qt

|vn|2(|∂sγ| |det∇χ̂|+ |ρ+ γ| |∂s(det∇χ̂)|) dy ds

6 CT‖vn‖2L∞(L2)(‖γ‖W 1,∞(L∞) +M(ρ+ ‖γ‖L∞(L∞))).

Here we have used (22) and the fact that T is small with respect to M . Thus, according to (36), we have∫∫
Qt

|vn|2|∂s((ρ+ γ) det∇χ̂)| dy ds 6 CT (M + C0 + C0M)‖vn‖2L∞(L2). (54)

We consider now the viscosity term corresponding to the second line of (51). The term in µ′ is estimated,
thanks to (23), in the following way :

µ′
∫∫

Qt

|∇vn(∇χ̂)−1 : Id|2 det∇χ̂ dy ds > µ′

2

∫∫
Qt

|∇ · vn|2 dy ds− µ′
∫∫

Qt

|∇vn((∇χ̂)−1 − Id) : Id|2 dy ds

+µ′
∫∫

Qt

|∇vn(∇χ̂)−1 : Id|2(det∇χ̂− 1) dy ds >
µ′

2

∫∫
Qt

|∇ · vn|2 dy ds− CTκM‖vn‖2L2(H1).

(55)
In the same way, we prove

µ

2

∫∫
Qt

|∇vn(∇χ̂)−1 + (∇χ̂)−t(∇vn)t|2 det∇χ̂ dy ds > µ

∫∫
Qt

|ε(vn)|2 dy ds− CTκM‖vn‖2L2(H1). (56)
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For the first term in the third line of (51), we notice that, for any δ > 0, there exists a positive constant C
such that∣∣∣∣∫∫

Qt

(P (ρ+ γ)− P (ρ)) cof∇χ̂ : ∇vn dy ds
∣∣∣∣ 6 δ‖∇vn‖2L2(L2) + C

∫∫
Qt

|P (ρ+ γ)− P (ρ)|2 dy ds.

According to Lemma 8
0 < a = ρ+ γmin 6 ρ+ γ 6 C + C0 = b,

for T small with respect to M . Thus, there exists an interval I ⊂ R∗+ such that ρ ∈ I and [a, b] ⊂ I. Then,
since ‖P ′‖L∞(I) is increasing with respect to ‖γ0‖H3 , ‖u0‖H6 and ‖ξ1‖H3 , we obtain∫∫

Qt

|P (ρ+ γ)− P (ρ)|2 dy ds 6 ‖P ′‖2L∞(I)‖γ‖
2
L2(L2) 6 f(‖γ0‖H3 , ‖u0‖H6 , ‖ξ1‖H3)T‖γ‖2L∞(L2) 6 ‖γ‖

2
L∞(L2),

for T small enough with respect to the initial conditions (see (48)). This implies that∣∣∣∣∫∫
Qt

(P (ρ+ γ)− P (ρ)) cof∇χ̂ : ∇vn dy ds
∣∣∣∣ 6 δ‖∇vn‖2L2(L2) + C‖γ‖2L∞(L2). (57)

For the first term in the fourth line of (51), we use estimate (25) and we find

1

2

3∑
i,α,j,β=1

∫
ΩS(0)

[ĉiαjβ∂βξ
n
j ∂αξ

n
i ](t)dy > λ

∫
ΩS(0)

|ε(ξn)|2(t)dy +
λ′

2

∫
ΩS(0)

|∇ · ξn|2(t)dy

− CTκM‖∇ξn(t)‖2L2(ΩS(0)).

(58)

For the next two terms of (51), we use estimate (24) and we have∣∣∣∣∣∣−1

2

3∑
i,α,j,β=1

∫ t

0

∫
ΩS(0)

∂sĉiαjβ∂βξ
n
j ∂αξ

n
i dyds+

3∑
i,α,j,β=1

∫ t

0

∫
ΩS(0)

∂αĉiαjβ∂βξ
n
j ∂sξ

n
i dyds

∣∣∣∣∣∣
6 CT (M +M2)(‖∇ξn‖2L∞(0,T ;L2(ΩS(0))) + ‖∂tξn‖2L∞(0,T ;L2(ΩS(0)))).

(59)

Finally, ∣∣∣∣∣
∫ t

0

∫
∂ΩS(0)

g · ∂sξn dσds

∣∣∣∣∣ =

∣∣∣∣∣
∫
∂ΩS(0)

g(t) · ξn(t) dσ −
∫ t

0

∫
∂ΩS(0)

∂sg · ξn dσds

∣∣∣∣∣
6 δ‖ξn‖2L∞(0,T ;H1(ΩS(0))) + Cδ‖g‖2H1(0,T ;L2(∂ΩS(0))),

(60)

where we have used that ‖g‖L∞(0,T ;L2(∂ΩS(0))) 6 T 1/2‖g‖H1(0,T ;L2(∂ΩS(0))) (recall that g(0, ·) ≡ 0 on ∂ΩS(0)).
Thus, we can reassemble inequalities (52) to (60). Taking the supremum of (51) in t ∈ (0, T ), using

Korn’s inequality and taking δ small enough and T small with respect to M and C0, we deduce (50).

Thanks to (50), one can pass to the limit as n → ∞ in (49) and show the existence and uniqueness of
(v, ξ) ∈ Y T1 ×XT

1 a weak solution of (45). Consequently, we have proved Lemma 9.
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2.3 Existence of solution of a linear system

Let us come back to the problem given by equations (28)-(32) complemented by the initial conditions (8)
and (33)2 : 

(ρ+ γ) det∇χ̂∂tv −∇ · T̂(v, γ) = 0 in QT ,

∂2
t ξi −

3∑
α,j,β=1

ĉiαjβ∂
2
αβξj = 0, i = 1, 2, 3, in (0, T )× ΩS(0),

v = 0 on (0, T )× ∂Ω,

v = ∂tξ on ΣT ,[
T̂(v, γ)n

]
i

=

3∑
α,j,β=1

(∫ t

0

ĉiαjβ∂
2
sβξjds

)
nα, i = 1, 2, 3, on ΣT ,

v(0, ·) = u0 in ΩF (0),

ξ(0, ·) = 0, ∂tξ(0, ·) = ξ1 in ΩS(0).

(61)

Observe that this system corresponds to the auxiliary problem (45) with gi given by

−
3∑

α,j,β=1

(∫ t

0

∂sĉiαjβ∂βξjds

)
nα, i = 1, 2, 3.

Proposition 11 Let (v̂, ξ̂) ∈ ATM , u0 ∈ H1(ΩF (0)), ξ1 ∈ H1(ΩS(0)) and γ0 ∈ H3(ΩF (0)) satisfying (16)1-
(16)2. For T small enough with respect to M and the initial conditions (see (48)), there exists a unique
solution (v, ξ) ∈ Y2×X2 (recall that Y T2 and XT

2 have been defined in Definition 1) of (61). Moreover, there
exists C0 > 0 and κ > 0 such that

‖v‖Y T
2

+ ‖ξ‖XT
2
6 C0 + TκM. (62)

Proof:
We intend to prove the existence and uniqueness of solution of (61) through a fixed point argument. We

thus define Λ0 which, to each ξ̃ ∈ X2, associates ξ which is, together with some v, the solution of problem
(45) with gi = h̃i, where

h̃i := −
3∑

α,j,β=1

(∫ t

0

∂sĉiαjβ∂β ξ̃jds

)
nα, i = 1, 2, 3. (63)

We notice that h̃ ∈ H1
` (0, T ;L2(∂ΩS(0))) and, using (24), we find

‖h̃‖H1(0,T ;L2(∂ΩS(0))) 6 TκM‖ξ̃‖XT
2
.

Then, ξ̃ being fixed, the existence and uniqueness of (v, ξ) comes from Lemma 9 and we have

‖(v, ξ)‖Y T
1 ×XT

1
6 C0 + C‖γ‖L∞(L2) + TκM‖ξ̃‖XT

2
.

We are going to prove that Λ0 maps from XT
2 to XT

2 and that it is a contraction. We divide the proof in
three steps :

• Step 1. Estimates on ∂tv and ∂tξ.
Let us differentiate the first equation in (61) with respect to time. We obtain

(ρ+ γ) det∇χ̂∂2
t v + ∂t((ρ+ γ) det∇χ̂)∂tv − ∂t∇ · T̂(v, γ) = 0 in QT . (64)
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Next, we multiply this equation by ∂tv and we integrate on Qt for any t ∈ (0, T ). For the first two terms of
(64), we have:∫∫

Qt

(
(ρ+ γ) det∇χ̂∂2

sv + ∂s((ρ+ γ) det∇χ̂)∂sv
)
∂sv dy ds

=
1

2

∫
ΩF (0)

(ρ+ γ)(t) det∇χ̂(t)|∂tv(t)|2 dy − 1

2

∫
ΩF (0)

ρ0|∂tv(0)|2 dy +
1

2

∫∫
Qt

|∂sv|2∂s((ρ+ γ) det∇χ̂) dy ds.

Thus, arguing exactly as in the proof of Lemma 9, we have, for T small enough with respect to M∫∫
Qt

(
(ρ+ γ) det∇χ̂∂2

sv + ∂s((ρ+ γ) det∇χ̂)∂sv
)
∂sv dy ds

>
ρmin

4

∫
ΩF (0)

|∂tv(t)|2 dy − 1

2

∫
ΩF (0)

ρ0|∂tv(0)|2 dy − CT (M + C0 + C0M)‖v‖2W 1,∞(L2).

(65)

Now, the remaining terms of (64) are∫∫
Qt

∂sT̂(v, γ) : ∂s∇v dy ds+

∫∫
Σt

3∑
i=1

∂s

[ 3∑
α,j,β=1

ĉiαjβ∂βξjnα + h̃i

]
∂2
ssξi dσ ds. (66)

We notice that

µ′
∫∫

Qt

∂s[(∇v(∇χ̂)−1 : Id)cof∇χ̂] : ∂s∇v dy ds = µ′
∫∫

Qt

|∂s∇v(∇χ̂)−1 : Id|2 det∇χ̂ dy ds

+µ′
∫∫

Qt

(∇v∂s((∇χ̂)−1) : Id)cof∇χ̂ : ∂s∇v dy ds+ µ′
∫∫

Qt

(∇v(∇χ̂)−1 : Id)∂s(cof∇χ̂) : ∂s∇v dy ds.

(67)
Arguing again as in Lemma 9 (see (55)), the first term in the right-hand side is estimated by

µ′
∫∫

Qt

|∂s∇v(∇χ̂)−1 : Id|2 det∇χ̂ dy ds > µ′

2

∫∫
Qt

|∂s∇ · v|2 dy ds− CTκM‖v‖2H1(H1).

To bound the second line of (67), we use that ‖∂t(∇χ̂)−1‖L2(L∞) + ‖∂tcof∇χ̂‖L2(L∞) 6 CT 1/2M (see (22)).
Thus, for the term in µ′ in (66), we have

µ′
∫∫

Qt

∂s[(∇v(∇χ̂)−1 : Id)cof∇χ̂] : ∂s∇v dy ds >
µ′

2

∫∫
Qt

|∂s∇ · v|2 dy ds− CTκM(‖v‖2H1(H1) + ‖v‖2L∞(H1))

>
µ′

2

∫∫
Qt

|∂s∇ · v|2 dy ds− CTκM‖v‖2H1(H1) − C‖u0‖2H1 .

(68)
The term in µ in (66) can be estimated in the same way as follows :

µ

∫∫
Qt

∂s
[(
∇v(∇χ̂)−1 + (∇χ̂)−t∇vt

)
cof∇χ̂

]
: ∂s∇v dy ds

> µ

∫∫
Qt

|∂sε(v)|2 dy ds− CTκM‖v‖2H1(H1) − C‖u0‖2H1 .

(69)

Next, for the pressure term in (66), we see that, for any δ > 0, there exists a positive constant C such that∫∫
Qt

∣∣∂s[(P (ρ+ γ)− P (ρ))cof∇χ̂]
∣∣ |∂s∇v| dy ds 6 δ‖∂t∇v‖2L2(L2) + C

∫∫
Qt

|P ′(ρ+ γ)|2|∂sγ|2 dy ds

+C

∫∫
Qt

|P (ρ+ γ)− P (ρ))|2|∂scof∇χ̂|2 dy ds.
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With the same arguments as in Lemma 9, we have∫∫
Qt

|P ′(ρ+ γ)|2|∂sγ|2 dy ds 6 T‖P ′‖2L∞(I)‖γ‖
2
W 1,∞(L2)

and, since ‖∂tcof∇χ̂)‖L2(L∞) 6 CT 1/2M (see (22)),∫∫
Qt

|P (ρ+ γ)− P (ρ))|2|∂scof∇χ̂|2 dy ds 6 CTM2‖P ′‖2L∞(I)‖γ‖
2
L∞(L2).

Thus, we get, for T small with respect to M and the initial conditions,∫∫
Qt

∣∣∂s[(P (ρ+ γ)− P (ρ))cof∇χ̂]
∣∣ |∂s∇v| dy ds 6 δ‖∂t∇v‖2L2(L2) + C‖γ‖2W 1,∞(L2). (70)

Combining identity (64) with estimates (65), (66) and (68)-(70), we obtain

ρmin
4

∫
ΩF (0)

|∂tv(t)|2dy +
µ′

2

∫∫
Qt

|∂s∇ · v|2dyds+ µ

∫∫
Qt

|∂sε(v)|2dyds

+

∫∫
Σt

3∑
i=1

∂s

[ 3∑
α,j,β=1

ĉiαjβ∂βξjnα + h̃i

]
∂2
ssξi dσ ds 6

1

2

∫
ΩF (0)

ρ0|∂tv(0)|2dy

+C(T (M + C0 + C0M)‖v‖2W 1,∞(L2) + ‖u0‖2H1 + ‖γ‖2W 1,∞(L2)) + (δ + TκM)‖v‖2H1(H1).

(71)

Let us now differentiate in time the second equation in (61), multiply by ∂2
t ξi and integrate in (0, t)×ΩS(0)

for any t ∈ (0, T ). This yields

1

2

∫
ΩS(0)

|∂2
t ξ|2(t)dy +

3∑
i,α,j,β=1

1

2

∫
ΩS(0)

[ĉiαjβ∂
2
tβξj∂

2
tαξi](t) dy

−
∫∫

Σt

3∑
i,α,j,β=1

ĉiαjβ∂
2
sβξj ∂

2
ssξi nα dσ ds =

∫
ΩS(0)

(
λ|ε(ξ1)|2 +

λ′

2
|∇ · ξ1|2

)
dy

+

3∑
i,α,j,β=1

∫ t

0

∫
ΩS(0)

∂sĉiαjβ∂
2
αβξj∂

2
ssξi dyds−

3∑
i,α,j,β=1

∫ t

0

∫
ΩS(0)

∂αĉiαjβ∂
2
sβξj∂

2
ssξi dyds

+
1

2

3∑
i,α,j,β=1

∫ t

0

∫
ΩS(0)

∂sĉiαjβ∂
2
sβξj∂

2
sαξi dyds.

(72)

For the second term in the left-hand side of (72), we use (25) and we have

1

2

3∑
i,α,j,β=1

∫
ΩS(0)

[ĉiαjβ∂tβξj∂tαξi](t)dy > λ

∫
ΩS(0)

|∂tε(ξ)|2(t)dy +
λ′

2

∫
ΩS(0)

|∂t∇ · ξ|2(t)dy − CTκM‖ξ‖2XT
2
.

(73)
On the other hand, using (24), we have that the last three terms of (72) are estimated by

CT (M +M2)‖ξ‖2XT
2
.
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Taking these two facts into account and combining (71) and (72), we deduce

ρmin
4

∫
ΩF (0)

|∂tv(t)|2dy +
1

2

∫
ΩS(0)

|∂2
t ξ|2(t)dy +

µ′

2

∫∫
Qt

|∂s∇ · v|2dyds+ µ

∫∫
Qt

|∂sε(v)|2dyds

+

∫∫
Σt

3∑
i=1

∂s

[ 3∑
α,j,β=1

ĉiαjβ∂βξjnα + h̃i

]
∂2
ssξi dσ ds−

∫∫
Σt

3∑
i,α,j,β=1

ĉiαjβ∂
2
sβξj ∂

2
ssξi nα dσ ds

+λ

∫
ΩS(0)

|∂tε(ξ)|2(t)dy +
λ′

2

∫
ΩS(0)

|∂t∇ · ξ|2(t)dy 6 C(‖u0‖2H2 + f(‖γ0‖H3)‖γ0‖2H1 + ‖ξ1‖2H1)

+C‖γ‖2W 1,∞(L2) + δ(‖v‖2W 1,∞(L2) + ‖v‖2H1(H1)) + CTκM‖ξ‖2XT
2
,

(74)

for T small enough with respect to M and the initial conditions. Here, we have denoted by f : R+ → R+ an
increasing function.

Let us now deal with the boundary terms in (74). We have∫∫
Σt

3∑
i=1

∂s

[ 3∑
α,j,β=1

ĉiαjβ∂βξjnα + h̃i

]
∂2
ssξi dσ ds−

∫∫
Σt

3∑
i,α,j,β=1

ĉiαjβ∂
2
sβξj ∂

2
ssξi nα dσ ds

=

∫∫
Σt

3∑
i,α,j,β=1

∂sĉiαjβ∂βξj ∂
2
ssξi nα dσ ds+

∫∫
Σt

3∑
i=1

∂sh̃i∂
2
ssξi dσ ds := A1 +A2.

For A1, we use that ∂2
t ξ = ∂tv on (0, T )× ∂ΩS(0) and we have that

|A1| 6 CT 1/2‖∂tĉ‖L∞(0,T ;L∞(∂ΩS(0)))‖∇ξ‖L∞(0,T ;L4(∂ΩS(0)))‖∂tv‖L2(0,T ;L4(∂ΩS(0))).

Using now (24), we deduce
|A1| 6 CTκM‖ξ‖XT

2
‖v‖H1(H1).

From the definition of h̃ (see (63)), an analogous computation shows that

|A2| 6 CTκM‖ξ̃‖XT
2
‖v‖H1(H1).

Coming back to (74) and using Korn’s inequality, we get

‖v‖W 1,∞(L2) + ‖v‖H1(H1) + ‖ξ‖W 2,∞(0,T ;L2(ΩS(0))) + ‖ξ‖W 1,∞(0,T ;H1(ΩS(0)))

6 C0 + C‖γ‖W 1,∞(L2) + CTκM(‖ξ‖XT
2

+ ‖ξ̃‖XT
2

).
(75)

• Step 2. Spatial regularity of v and ξ.
We recall that v solves the stationary elliptic problem : for all t ∈ (0, T )

−∇ · T̂(v, γ) = −(ρ+ γ) det∇χ̂∂tv in ΩF (0),

v = 0 on ∂Ω,[
T̂(v, γ)n

]
i

=

3∑
α,j,β=1

ĉiαjβ∂βξjnα + h̃i, i = 1, 2, 3, on ∂ΩS(0),

where h̃i was defined in (63). We can rewrite this system as follows :
−∇ · (µ(∇v +∇vt) + µ′(∇ · v)Id) = F in ΩF (0),

v = 0 on ∂Ω

(µ(∇v +∇vt) + µ′∇ · v)n = G̃ on ∂ΩS(0),

(76)
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with

F := −(γ + ρ) det(∇χ̂)∂tv −∇ · ((P (γ + ρ)− P (ρ))cof (∇χ̂))

+ µ∇ · ((∇v((∇χ̂)−1 − Id) + ((∇χ̂)−t − Id)(∇v)t)cof (∇χ̂)) + µ∇ · ((∇v +∇vt)(cof (∇χ̂)− Id))

+ µ′∇ · (∇v(((∇χ̂)−1 − Id) : Id)cof (∇χ̂)) + µ′∇ · ((∇v : Id)(cof (∇χ̂)− Id))

(77)

and, for i = 1, 2, 3,

G̃i := −µ
[
(∇v((∇χ̂)−1 − Id) + ((∇χ̂)−t − Id)(∇v)t)cof (∇χ̂)n

]
i
− µ

[
(∇v + (∇v)t)(cof (∇χ̂)− Id)n

]
i

− µ′
[
(∇v((∇χ̂)−1 − Id) : Id)cof (∇χ̂)n

]
i
− µ′ [(∇v : Id)(cof (∇χ̂)− Id)n]i

+ [(P (ρ+ γ)− P (ρ))cof (∇χ̂)n]i +

3∑
α,j,β=1

ĉiαjβ∂βξjnα + h̃i.

(78)

Let us show that F ∈ L∞(L2) and G̃ ∈ L∞(0, T ;H1/2(∂ΩS(0))) with suitable estimates. In order to estimate
F , we use (22), (23) and (36) :

‖F‖L∞(L2) 6 C(ρ+ C0 + TκM)‖∂tv‖L∞(L2) + f(‖γ0‖H3 , ‖u0‖H6 , ‖ξ1‖H3)‖γ‖L∞(H1) + ‖v‖L∞(H2)T
κM.

Here, we have also used that

‖P (ρ+ γ)− P (ρ)‖L∞(H1) 6 ‖P ′‖L∞(I)‖γ‖L∞(H1) 6 f(‖γ0‖H3 , ‖u0‖H6 , ‖ξ1‖H3)‖γ‖L∞(H1),

where I ⊂ R+ is an interval satisfying ρ ∈ I and I ⊃ [ρ+ γmin, ρ+ 1 + C0].
Using the same estimates as for F , we get

‖G̃‖L∞(0,T ;H1/2(∂ΩS(0))) 6 f(‖γ0‖H3 , ‖u0‖H6 , ‖ξ1‖H3)‖γ‖L∞(H1) + ‖v‖L∞(H2)T
κM

+
∥∥∥ 3∑
α,j,β=1

ĉiαjβ∂βξjnα + h̃i

∥∥∥
L∞(0,T ;H1/2(∂ΩS(0)))

.

For the last term we use (24) and we obtain

∥∥∥ 3∑
α,j,β=1

ĉiαjβ∂βξjnα+h̃i

∥∥∥
L∞(0,T ;H1/2(∂ΩS(0)))

6 C(1+TκM)‖ξ‖L∞(0,T ;H2(ΩS(0)))+CT
κM‖ξ̃‖L∞(0,T ;H2(ΩS(0)))

Using the elliptic regularity for (76), we obtain

‖v‖L∞(H2) 6 f(‖γ0‖H3 , ‖u0‖H6 , ‖ξ1‖H3)‖γ‖L∞(H1) + C(ρ+ C0 + TκM)‖∂tv‖L∞(L2)

+ ‖v‖L∞(H2)T
κM + C(1 + TκM)‖ξ‖L∞(0,T ;H2(ΩS(0))) + CTκM‖ξ̃‖L∞(0,T ;H2(ΩS(0))).

(79)

Let us take a look now at the equation satisfied by ξ:
−∇ · (2λε(ξ) + λ′(∇ · ξ)Id) = H in ΩS(0),

ξ(t, ·) =

∫ t

0

v on ∂ΩS(0).
(80)

Here, we have denoted

Hi := −∂2
ttξi +

3∑
α,j,β=1

(c`iαjβ(∇ξ̂) + cqiαjβ(∇ξ̂))∂2
αβξj , (81)
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for i = 1, 2, 3. We have to estimate this term in L∞(0, T ;L2(ΩS(0))). Observe that the term in c` and cq is
estimated thanks to (24). Using again classical elliptic estimates, we obtain

‖ξ‖L∞(0,T ;H2(ΩS(0))) 6 C(‖∂2
t ξ‖L∞(0,T ;L2(ΩS(0))) + TκM‖ξ‖L∞(0,T ;H2(ΩS(0))) + ‖

∫ t

0

v‖L∞(H2)),

6 C(‖∂2
t ξ‖L∞(0,T ;L2(ΩS(0))) + TκM‖ξ‖L∞(0,T ;H2(ΩS(0))) + T‖v‖L∞(H2)).

Combining this estimate with (79) and taking T small enough with respect to M , we get

‖v‖L∞(H2) + ‖ξ‖L∞(0,T ;H2(ΩS(0))) 6 f(‖γ0‖H3 , ‖u0‖H6 , ‖ξ1‖H3)‖γ‖L∞(H1)

+‖∂2
t ξ‖L∞(0,T ;L2(ΩS(0))) + C(ρ+ C0 + TκM)‖∂tv‖L∞(L2) + CTκM‖ξ̃‖L∞(0,T ;H2(ΩS(0))).

(82)

Coming back to (75), we deduce

‖v‖Y T
2

+ ‖ξ‖XT
2
6 C0 + TκM‖ξ̃‖X2 + (C + C0 + f(‖γ0‖H3 , ‖u0‖H6 , ‖ξ1‖H3))‖γ‖Y T

2
, (83)

for T small with respect to M and the initial conditions.

Remark 12 Looking at the computations made above, we observe that the term ‖γ‖Y T
2

in (83) only comes
from the pressure term

(P (ρ+ γ)− P (ρ))cof (∇χ̂).

• Step 3. Fixed point argument.
Here we are going to prove that Λ0, which was defined at the beginning of the proof, is a contraction.

Let ξ̃a, ξ̃b ∈ XT
2 . For c = a, b, we denote by (vc, ξc) the solution of (45) with

h̃ci := −
3∑

α,j,β=1

(∫ t

0

∂sĉiαjβ∂β ξ̃
c
jds

)
nα, i = 1, 2, 3,

instead of gi, that is to say, ξc = Λ0(ξ̃c). Observe that (v, ξ) := (va − vb, ξa − ξb) satisfy

(ρ+ γ) det∇χ̂∂tv −∇ · T̂1(v) = 0 in QT ,

∂2
t ξi −

3∑
α,j,β=1

ĉiαjβ∂
2
αβξj = 0, i = 1, 2, 3, in (0, T )× ΩS(0),

v = 0 on (0, T )× ∂Ω,

v = ∂tξ on ΣT ,[
T̂1(v)n

]
i

=

3∑
α,j,β=1

ĉiαjβ∂βξjnα + h̃ai − h̃bi , i = 1, 2, 3, on ΣT ,

v(0, ·) = 0 in ΩF (0),

ξ(0, ·) = 0, ∂tξ(0, ·) = 0 in ΩS(0).

(84)

Recall that T̂1(v) was defined in (46).
Let us apply estimate (83) to (v, ξ). Taking into account the definition of C0 (see (35)) and Remark 12,

we obtain in particular that
‖ξ‖XT

2
6 TκM‖ξ̃a − ξ̃b‖XT

2
.

Taking T small enough with respect to M , we find that Λ0 is a contraction from XT
2 into itself. This gives

the existence and uniqueness of a fixed point ξ ∈ XT
2 which is, together with v, a solution of (61).

Finally, we apply estimate (83) to the fixed point. Here, we estimate ‖γ‖Y T
2

using Lemma 8, we take T

small enough with respect to M and the initial conditions and we deduce (62).
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2.4 Regularity of the solution of the linear system

In this subsection, we will prove the following proposition which gives a regularity result for the solution of
system (61).

Proposition 13 Let (v̂, ξ̂) ∈ ATM , u0 ∈ H6(ΩF (0)), ξ1 ∈ H3(ΩS(0)) and γ0 ∈ H3(ΩF (0)) satisfying (16).
For T small enough with respect to M and the initial conditions (see (48)), the solution (v, ξ) of (61) belongs
to Y T4 ×XT

4 (recall that Y T4 and XT
4 have been defined in Definition 1). Moreover, there exists C0 > 0 and

κ > 0 such that
‖v‖Y T

4
+ ‖ξ‖XT

4
6 C0 + TκM. (85)

Proof:
• Step 1. Time regularity of v and ξ.

Let us differentiate three times with respect to time the first equation of system (61). We obtain in QT

(ρ+ γ) det∇χ̂∂4
t v + 3∂t((ρ+ γ) det∇χ̂)∂3

t v + 3∂2
t ((ρ+ γ) det∇χ̂)∂2

t v

+∂3
t ((ρ+ γ) det∇χ̂)∂tv −∇ · ∂3

t

[
T̂(v, γ)] = 0.

(86)

Then, we multiply this equation by ∂3
sv and integrate on Qt. For the first four terms, we argue as in the

proof of Lemma 9 and Proposition 11 and we obtain that, for T small enough with respect to M ,∫∫
Qt

[
(ρ+ γ) det∇χ̂∂4

sv + 3∂s((ρ+ γ) det∇χ̂)∂3
sv + 3∂2

s ((ρ+ γ) det∇χ̂)∂2
sv

+∂3
s ((ρ+ γ) det∇χ̂)∂sv

]
∂3
sv dy ds >

ρmin
4

∫
ΩF (0)

|∂3
t v(t)|2 dy − 1

2

∫
ΩF (0)

ρ0|∂3
t v(0)|2 dy

− CT‖v‖2Y T
4

3∑
k=1

‖∂kt ((ρ+ γ) det∇χ̂)‖L∞(H3−k).

(87)

Using Lemmas 5 and 8, we have

3∑
k=1

‖∂kt ((ρ+ γ) det∇χ̂)‖L∞(H3−k) 6 C(C0 +M + C0M) (88)

for T small enough with respect to M .
For the last term in (86), we have

−
∫∫

Qt

∂3
s∇ · T̂(v, γ)∂3

sv dy ds =

∫∫
Qt

∂3
s T̂(v, γ) : ∂3

s∇v dy ds

+

3∑
i=1

∫∫
Σt

3∑
α,j,β=1

∂2
s (ĉiαjβ∂sβξj)nα∂

4
sξi dσ ds.

(89)

For the first integral in the right-hand side of (89), we first estimate the term corresponding to T̂1(v):∫∫
Qt

∂3
s T̂1(v) : ∂3

s∇v dy ds > C

∫∫
Qt

|∂3
s ε(v)|2 dy ds− CTκM‖∂3

t v‖2L2(H1)

− CT 1/2‖v‖2Y4

3∑
k=1

(
‖∂kt (∇χ̂)−1‖L∞(L6) + ‖∂kt (cof∇χ̂)‖L∞(L6)

)
.

(90)

From (22) and taking T small with respect to M , we have

3∑
k=1

(
‖∂kt (∇χ̂)−1‖L∞(L6) + ‖∂kt (cof∇χ̂)‖L∞(L6)

)
6 CM. (91)
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For the resting term, we prove thanks to Lemmas 5 and 8 that

‖∂3
s [(P (ρ+ γ)− P (ρ))cof∇χ̂]‖L∞(L2) 6 C(C0 +M + C0M),

for T small with respect to the initial conditions. Then, we get∫∫
Qt

∂3
s [(P (ρ+ γ)− P (ρ))cof∇χ̂] : ∂3

s∇v dy ds 6 δ‖∂3
t∇v‖2L2(L2) + CT (C0 +M2 + C0M)

6 δ‖∂3
t∇v‖2L2(L2) + CTκ(C0 +M),

(92)

for T small with respect to M and the initial conditions. Taking into account (87)-(92), we deduce

ρmin
4

∫
ΩF (0)

|∂3
t v(t)|2dy +

3∑
i,α,j,β=1

∫∫
Σt

∂2
s (ĉiαjβ∂sβξj)nα∂

4
sξi dσ ds+ C

∫∫
Qt

|∂3
s ε(v)|2dy ds

6
1

2

∫
ΩF (0)

ρ0|∂3
t v(0)|2 dy + CTκ(C0 +M)‖v‖2Y T

4
+ δ‖∂3

t∇v‖2L2(L2) + CTκ(C0 +M2).

(93)

Let us now estimate the boundary term in (93) :

3∑
i,α,j,β=1

∫∫
Σt

∂2
s (ĉiαjβ∂sβξj)nα∂

4
sξi dσ ds =

3∑
i,α,j,β=1

∫∫
Σt

ĉiαjβ∂
3
s∂βξjnα∂

4
sξi dσ ds+A3, (94)

where

|A3| 6
∫∫

Σt

3∑
i,α,j,β=1

(
|∂2
s ĉiαjβ ||∂sβξj |+ 2|∂sĉiαjβ ||∂2

s∂βξj |
)
|∂3
svi| dσ ds.

Here, we have used that ∂sξ = v on Σt.
From (24) and the definition of XT

4 and Y T4 we deduce that

|A3| 6 CT 1/2(M +M2)‖ξ‖X4
‖v‖Y4

.

Combining this with (94), we deduce from (93) :

ρmin
4

∫
ΩF (0)

|∂3
t v(t)|2dy +

3∑
i,α,j,β=1

∫∫
Σt

ĉiαjβ∂
3
s∂βξjnα∂

4
sξi dσ ds+ C

∫∫
Qt

|∂3
s ε(v)|2dy ds

6
1

2

∫
ΩF (0)

ρ0|∂3
t v(0)|2 dy + CTκ(C0 +M)(‖v‖2Y T

4
+ ‖ξ‖2XT

4
) + CTκ(C0 +M2) + δ‖∂3

t∇v‖2L2(L2).

(95)

Remark 14 Observe that, thanks to the assumptions u0 ∈ H6(ΩF (0)) and ρ0 ∈ H3(ΩF (0)) (see (9)), we
have that ∫

ΩF (0)

ρ0|∂3
t v(0)|2 dy = C0.

In order to deal with the remaining boundary term in (95), we differentiate three times with respect to t the
equation satisfied by ξ (see (61)), we multiply it by ∂4

sξ and integrate on Qt. We obtain

1

2

∫
ΩS(0)

|∂4
t ξ(t)|2dy −

3∑
i,α,j,β=1

∫ t

0

∫
ΩS(0)

ĉiαjβ∂
3
s∂

2
αβξj∂

4
sξi dy ds+B1 =

1

2

∫
ΩS(0)

|∂4
t ξ(0)|2dy, (96)

where we can estimate B1, thanks to (24), as follows :

|B1| 6 CT (M +M2)‖ξ‖2XT
4
. (97)
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We integrate by parts in the second term :∫ t

0

∫
ΩS(0)

ĉiαjβ∂
3
s∂

2
αβξj∂

4
sξi dy ds = −

∫ t

0

∫
ΩS(0)

ĉiαjβ∂
3
s∂βξj∂

4
s∂αξi dy ds

−
∫ t

0

∫
ΩS(0)

∂αĉiαjβ∂
3
s∂βξj∂

4
sξi dy ds+

∫∫
Σt

ĉiαjβ∂
3
s∂βξj∂

4
sξi nα dσ ds.

We integrate by parts in time in the second term and we use (14). This yields :∫ t

0

∫
ΩS(0)

ĉiαjβ∂
3
s∂

2
αβξj∂

4
sξi dy ds = −1

2

∫
ΩS(0)

[
(ĉiαjβ∂

3
t ∂βξj∂

3
t ∂αξi)(t)− (ĉiαjβ∂

3
t ∂βξj∂

3
t ∂αξi)(0)

]
dy

−
∫ t

0

∫
ΩS(0)

(∂αĉiαjβ∂
4
sξi −

1

2
∂sĉiαjβ∂

3
s∂αξi)∂

3
s∂βξj dy ds+

∫∫
Σt

ĉiαjβ∂
3
s∂βξj∂

4
sξi nα dσ ds.

One can easily prove that the first term in the second line is estimated like in (97). Combining this with
(96) and taking into account (97), we get

1

2

∫
ΩS(0)

|∂4
t ξ(t)|2dy +

1

2

3∑
i,α,j,β=1

∫
ΩS(0)

(ĉiαjβ∂
3
t ∂βξj∂

3
t ∂αξi)(t) dy

−
3∑

i,α,j,β=1

∫∫
Σt

ĉiαjβ∂
3
s∂βξj∂

4
sξi nα dσ ds 6 C0 + CT (M +M2)‖ξ‖2XT

4
.

(98)

Here, we have used that

1

2

∫
ΩS(0)

|∂4
t ξ(0)|2dy +

1

2

∫
ΩS(0)

(ĉiαjβ∂
3
t ∂βξj∂

3
t ∂αξi)(0) dy 6 C‖ξ1‖2H3 = C0.

Combining (98) and (95), we see that the boundary terms simplify. On the other hand, using Körn’s
inequality and (25) we obtain

‖∂3
t v‖2L∞(L2) + ‖∂3

t v‖2L2(H1) + ‖∂4
t ξ‖2L∞(0,T ;L2(ΩS(0))) + ‖∂3

t ξ‖2L∞(0,T ;H1(ΩS(0)))

6 C0 + Tκ(C0 +M)(‖v‖2
Y T
4

+ ‖ξ‖2
XT

4
) + TκM2.

Using that T is small, we also have

‖v‖2W 3,∞(L2) + ‖v‖2W 2,∞(H1) + ‖v‖2H3(H1) + ‖ξ‖2W 4,∞(0,T ;L2(ΩS(0))) + ‖ξ‖2W 3,∞(0,T ;H1(ΩS(0)))

6 C0 + Tκ(‖v‖2
Y T
4

+ ‖ξ‖2
XT

4
) + TκM2.

(99)

• Step 2. Regularity in space of v and ξ.

We divide this step in two parts :
- Step 2.1. Let us first prove that v ∈W 2,∞(H2) and ξ ∈W 2,∞(0, T ;H2(ΩS(0))).

We first consider the stationary system satisfied by v :
−∇ · (µ(∇v +∇vt) + µ′(∇ · v)Id) = F in ΩF (0),

v = 0 on ∂Ω

(µ(∇v +∇vt) + µ′∇ · v)n = G on ∂ΩS(0).

(100)

In this system, F is given by (77) and G is given by (78) where the last two terms are replaced by

3∑
α,j,β=1

∫ t

0

(ĉiαjβ∂β∂sξjnα) ds.
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Using (36) and

‖∂kt det(∇χ̂)‖L∞(H3−k) + ‖∂kt cof (∇χ̂)‖L∞(H3−k) 6 C0 + TκM (k = 1, 2), (101)

we deduce that the first two terms of F are estimated as follows :

‖(ρ+ γ) det(∇χ̂)∂tv‖W 2,∞(L2) 6 (C + C0 + TκM)(‖v‖W 3,∞(L2) + ‖v‖W 2,∞(H1)) (102)

and
‖∇ · ((P (γ + ρ)− P (ρ))cof (∇χ̂))‖W 2,∞(L2) 6 C0 + TκM, (103)

thanks to (48).
Using (101), the first term in the second line of (77) is estimated in L∞(L2) by

C(‖∇v‖W 2,∞(H1)‖cof (∇χ̂)‖W 2,∞(H2)‖(∇χ̂)−1 − Id‖L∞(H3) + (C0 + TκM)‖v‖W 1,∞(H2)).

From (23), (101) and the interpolation inequality

‖v‖W 1,∞(H2) 6 ‖v‖
1/2
W 1,∞(H1)‖v‖

1/2
W 1,∞(H3) 6 ‖v‖

1/2
W 1,∞(H1)‖v‖

1/2

Y T
4
,

we find that the first term in the second line of (77) is estimated in L∞(L2) by

δ‖v‖Y T
4

+ (C0 + TκM)‖v‖W 1,∞(H1).

The other terms in (77) can be estimated analogously.
Combining this with (102), (103) and (99), we obtain

‖F‖W 2,∞(L2) 6 C0 + TκM + Tκ(‖v‖Y T
4

+ ‖ξ‖XT
4

). (104)

Concerning the term G, we get

‖G‖W 2,∞(H1/2(∂ΩS(0))) 6 C0+TκM+Tκ(‖v‖Y T
4

+‖ξ‖XT
4

)+

∥∥∥∥∥∥
3∑

α,j,β=1

∫ t

0

(ĉiαjβ∂β∂sξjnα) ds

∥∥∥∥∥∥
W 2,∞(0,T ;H1(ΩS(0)))

,

(105)
where we still denote n a regular extension of the normal vector to all ΩS(0). First, noticing that

‖ĉiαjβ‖W 2,∞(0,T ;H1(ΩS(0))) + ‖ĉiαjβ‖W 1,∞(0,T ;H2(ΩS(0))) 6 C(1 +M +M2)

for all i, α, j, β ∈ {1, 2, 3} (see (24)),

‖ĉiαjβ∇∂tξ‖W 1,∞(0,T ;H1(ΩS(0))) + ‖ĉiαjβ∇∂tξ‖W 2,∞(0,T ;L2(ΩS(0))) 6 C(1 +M +M2)‖ξ‖XT
4

and so

3∑
α,j,β=1

∥∥∥∥∫ t

0

ĉiαjβ∂β∂sξjnα ds

∥∥∥∥
W 1,∞(0,T ;H1(ΩS(0)))∩W 2,∞(0,T ;L2(ΩS(0)))

6 C0 + Tκ‖ξ‖XT
4
. (106)

Then, we observe that
∂t∇(ĉiαjβ∂t∇ξ) = ĉiαjβ∂

2
t∇∇ξ +R1

iαjβ

where
‖∂tR1

iαjβ‖L∞(0,T ;L2(ΩS(0))) 6 C(M +M2)‖ξ‖XT
4
.

Then, taking into account that c`iαjβ(∇ξ̂)|t=0 = 0, cqiαjβ(∇ξ̂)|t=0 = 0 and using (24), we find

‖∂t∇(ĉiαjβ∂t∇ξ)‖L∞(L2) 6 C‖ξ‖W 2,∞(0,T ;H2(ΩS(0))) + CT (M +M2)‖ξ‖W 2,∞(H2) + C0 + Tκ‖ξ‖XT
4
.
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Using (106) and this last inequality, we find from (105)

‖G‖W 2,∞(0,T ;H1/2(∂ΩS(0))) 6 C‖ξ‖W 2,∞(0,T ;H2(ΩS(0))) + C0 + TκM + Tκ(‖v‖Y T
4

+ ‖ξ‖XT
4

).

Using regularity estimates for system (100), we deduce

‖v‖W 2,∞(H2) 6 C‖ξ‖W 2,∞(0,T ;H2(ΩS(0))) + C0 + TκM + Tκ(‖v‖Y T
4

+ ‖ξ‖XT
4

). (107)

Next, we consider the stationary system (80) where H is given by (81). Then, we have

∂2
tHi = −∂4

t ξi +

3∑
α,j,β=1

∂2
t [(c`iαjβ(∇ξ̂) + cqiαjβ(∇ξ̂))∂2

αβξj ]. (108)

Let Liαjβ := ∂2
t [(c`iαjβ(∇ξ̂) + cqiαjβ(∇ξ̂))∂2

αβξj ] for 1 6 i, α, j, β 6 3. Using (24) and the fact that

|∂tc`iαjβ(∇ξ̂)| 6 C|ξ1| in ΩS(0), we obtain

‖Liαjβ‖L∞(0,T ;L2(ΩS(0))) 6 ‖Liαjβ(0, ·)‖L2(ΩS(0)) +

∥∥∥∥∫ t

0

∂sLiαjβ(s, ·)ds
∥∥∥∥
L∞(0,T ;L2(ΩS(0)))

6 C(‖ξ1‖2H3 + T (M +M2)‖ξ‖XT
4

) +

∥∥∥∥∫ t

0

(c`iαjβ(∇ξ̂) + cqiαjβ(∇ξ̂))∂3
s∂

2
αβξjds

∥∥∥∥
L∞(0,T ;L2(ΩS(0)))

.

Integrating by parts in time in the last term and using (24), we deduce

‖Liαjβ‖L∞(0,T ;L2(ΩS(0))) 6 C(‖ξ1‖2H3 + T (M +M2)‖ξ‖XT
4

), 1 6 i, α, j, β 6 3. (109)

From (108)-(109), we find

‖H‖W 2,∞(0,T ;L2(ΩS(0))) 6 C0 + Tκ‖ξ‖XT
4

+ ‖ξ‖W 4,∞(0,T ;L2(ΩS(0))).

Using elliptic regularity for system (80), we deduce

‖ξ‖W 2,∞(0,T ;H2(ΩS(0))) 6 C0 + Tκ‖ξ‖X4 + ‖ξ‖W 4,∞(0,T ;L2(ΩS(0))) +

∥∥∥∥∫ t

0

v

∥∥∥∥
W 2,∞(H2)

.

Using the definition of Y T4 and (99), we get

‖ξ‖W 2,∞(0,T ;H2(ΩS(0))) 6 C0 + TκM + Tκ(‖ξ‖XT
4

+ ‖v‖Y T
4

).

Combining this estimate with (107), we obtain

‖v‖W 2,∞(H2) + ‖ξ‖W 2,∞(0,T ;H2(ΩS(0))) 6 C0 + TκM + Tκ(‖v‖Y T
4

+ ‖ξ‖XT
4

). (110)

- Step 2.2. Next we prove that v ∈ L∞(H4) and ξ ∈ L∞(0, T ;H4(ΩS(0))).
We first estimate v in L∞(H4). In order to do this, we consider again system (100) and we estimate

‖F‖L∞(H2) and ‖G‖L∞(0,T ;H5/2(∂ΩS(0))). Using (21)-(23), (36) and (110), we find

‖F‖L∞(H2) 6 C0 + TκM + Tκ(‖v‖Y T
4

+ ‖ξ‖XT
4

).

Analogously, for G we get

‖G‖L∞(0,T ;H5/2(∂ΩS(0))) 6 C0 + TκM + Tκ‖v‖Y T
4

+

∥∥∥∥∥∥
3∑

α,j,β=1

∫ t

0

(ĉiαjβ∂β∂sξjnα) ds

∥∥∥∥∥∥
L∞(0,T ;H3(ΩS(0)))

. (111)
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In order to estimate this last term we first observe that, since ‖ĉiαjβ‖L∞(0,T ;H2(ΩS(0))) 6 C(1 + M + M2)
for all i, α, j, β ∈ {1, 2, 3} and ‖∇∂tξ‖L∞(0,T ;H2(ΩS(0))) 6 ‖ξ‖XT

4
, we have∥∥∥∥∥∥

3∑
α,j,β=1

∫ t

0

(ĉiαjβ∂β∂sξjnα) ds

∥∥∥∥∥∥
L∞(0,T ;H2(ΩS(0)))

6 CT (1 +M +M2)‖ξ‖XT
4
6 Tκ‖ξ‖XT

4
, (112)

taking T small with respect to M . On the other hand, for any ~α ∈ N3 with |~α| = 3 we have

∂~α(ĉiαjβ∂β∂sξj) = ĉiαjβ∂
~α(∂β∂sξj) +R2

iαjβ . (113)

Then, from (24) one can prove that

‖R2
iαjβ‖L∞(0,T ;L2(ΩS(0))) 6 C(M +M2)‖ξ‖XT

4
. (114)

We integrate by parts in the first term of (113) and we obtain∫ t

0

(ĉiαjβ∂
~α(∂β∂sξj))(s)ds = −

∫ t

0

(∂sĉiαjβ∂
~α(∂βξj))(s)ds+ (ĉiαjβ∂

~α(∂βξj))(t). (115)

Combining this identity with (112)-(115), we obtain the following from (111) and taking T small with respect
to M :

‖G‖L∞(0,T ;H5/2(∂ΩS(0))) 6 C0 + TκM + Tκ(‖v‖Y T
4

+ ‖ξ‖XT
4

) + C‖ξ‖L∞(0,T ;H4(ΩS(0))).

From elliptic estimates for system (100), we get

‖v‖L∞(H4) 6 C0 + TκM + Tκ(‖v‖Y T
4

+ ‖ξ‖XT
4

) + C‖ξ‖L∞(0,T ;H4(ΩS(0))). (116)

We consider now the elliptic system satisfied by ξ given by (80) where H is defined by (81). Using here
again that

‖c`iαjβ(∇ξ̂)+cqiαjβ(∇ξ̂)‖L∞(0,T ;H2(ΩS(0))) 6 CT‖∂t(c`iαjβ(∇ξ̂)+cqiαjβ(∇ξ̂))‖L∞(0,T ;H2(ΩS(0))) 6 CT (M+M2)

for 1 6 i, α, j, β 6 3, we directly obtain

‖H‖L∞(0,T ;H2(ΩS(0))) 6 C‖ξ‖W 2,∞(0,T ;H2(ΩS(0)))+CT (M+M2)‖ξ‖XT
4
6 C‖ξ‖W 2,∞(0,T ;H2(ΩS(0)))+T

κ‖ξ‖XT
4
.

Using elliptic estimates for this system, we find

‖ξ‖L∞(0,T ;H4(ΩS(0))) 6 C‖ξ‖W 2,∞(0,T ;H2(ΩS(0))) + Tκ‖ξ‖XT
4

+ CT‖v‖L∞(H4).

Combining this estimate with (116) and taking into account (110) we obtain

‖ξ‖L∞(0,T ;H4(ΩS(0))) +‖ξ‖W 2,∞(0,T ;H2(ΩS(0))) +‖v‖L∞(H4) +‖v‖W 2,∞(H2) 6 C0 +TκM+Tκ(‖v‖Y T
4

+‖ξ‖XT
4

).

Finally, we combine this with (99) and we obtain the desired estimate (85).

3 Fixed point argument

According to Lemma 8 and Proposition 13, there exist C0 > 0 and κ > 0 such that, for all M > 0 and all
(v̂, ξ̂) ∈ ATM , there exists T1 > 0 such that the solution (γ, v, ξ) of (27), (33)1 and (61) satisfies

‖γ‖Wk,∞(H3−k) + ‖v‖Y T
4

+ ‖ξ‖XT
4
6 C0 + TκM

for all T 6 T1 and all 0 6 k 6 3.

Let us take M = 2C0 and let us define T 6 T1 such that 2T
κ
6 1

2 . Then, we get

‖γ‖Wk,∞(H3−k) + ‖v‖Y T
4

+ ‖ξ‖XT
4
6M (117)

for all T 6 T and all 0 6 k 6 3.
We apply the following contraction fixed-point theorem (see [34], p. 17):
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Theorem 15 Let K be a nonempty, closed subset of a Banach space Z and suppose that Λ : K → K satisfies

‖Λ(v̂1)− Λ(v̂2)‖Z 6 θ‖v̂1 − v̂2‖Z ∀v̂1, v̂2 ∈ K, (118)

for some θ < 1. Then, Λ has a unique fixed point.

We set Z := Y T2 × XT
2 and K := AT

M
(see its definition in (19)), where T 6 T will be fixed at the end of

the proof in terms of M . Then K is a closed subset of Z. Let us define Λ : (v̂, ξ̂)→ (v, ξ) where (v, ξ) is the
solution (61) with γ the solution of (27) and (33)1. Then, according to (117), Λ(K) ⊂ K for any T 6 T .

Let us now prove inequality (118). In what follows, C will denote a constant which may depend on M .

We consider (v̂1, ξ̂1) (resp. (v̂2, ξ̂2)) in K and we denote (γ1, v1, ξ1) (resp. (γ2, v2, ξ2)) the corresponding

solution of (27), (33)1 and (61) associated to (v̂1, ξ̂1) (resp. (v̂2, ξ̂2)). Then, the function γ1 − γ2 satisfies{
(γ1 − γ2)t + (∇v̂2(∇χ̂2)−1 : Id)(γ1 − γ2) = L0 in QT ,

(γ1 − γ2)|t=0 = 0 in ΩF (0),

with
L0 := (∇v̂2(∇χ̂2)−1 : Id−∇v̂1(∇χ̂1)−1 : Id)(ρ+ γ1).

Since v̂1, v̂2 ∈ K1 := (AT
M

)1 and γ1 satisfies (117), we have that

‖L0‖L∞(H1) 6 C‖v̂1 − v̂2‖Y T
2
.

From the equation satisfied by γ1 − γ2, we have that

‖γ1 − γ2‖W 1,∞(H1) 6 C‖v̂1 − v̂2‖Y T
2
. (119)

Let now w := v1 − v2 and ζ := ξ1 − ξ2. Then w satisfies w(0, ·) = 0 in ΩF (0), w = 0 on ∂Ω and the
following equation:

(γ2 + ρ) det(∇χ̂2)wt −∇ · T̂1,2(w, γ1, γ2) = F0 in ΩF (0), (120)

where

T̂1,2(w, γ1, γ2) := (µ(∇w(∇χ̂2)−1 + (∇χ̂2)−t(∇w)t) + µ′(∇w(∇χ̂2)−1 : Id)Id)cof (∇χ̂2)

−(P (γ2 + ρ)− P (γ1 + ρ))cof (∇χ̂2)

and

F0 := ((γ2 + ρ) det(∇χ̂2)− (γ1 + ρ) det(∇χ̂1))v1,t − µ∇ · [∇v1((∇χ̂2)−1cof (∇χ̂2)− (∇χ̂1)−1cof (∇χ̂1))]

−µ∇ · ((∇χ̂2)−t(∇v1)tcof (∇χ̂2)− (∇χ̂1)−t(∇v1)tcof (∇χ̂1))

−µ′∇ · [(∇v1(∇χ̂2)−1 : Id)cof (∇χ̂2)− (∇v1(∇χ̂1)−1 : Id)cof (∇χ̂1)]

−∇ · [(P (γ1 + ρ)− P (ρ))(cof (∇χ̂1)− cof (∇χ̂2))].

On the other hand ζ satisfies ζ(0, ·) = 0 and ζt(0, ·) = 0 in ΩS(0) and the following equation for i = 1, 2, 3:

∂2
t ζi −

3∑
α,j,β=1

ciαjβ(∇ξ̂2)∂2
αβζj = H0,i (121)

where

H0,i :=

3∑
α,j,β=1

(ciαjβ(∇ξ̂1)− ciαjβ(∇ξ̂2))∂2
αβξ1,j . (122)

As long as the boundary conditions are concerned, we have on ∂ΩS(0) :
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wi = ∂tζi and
(
T̂1,2(w, γ1, γ2)n

)
i

=

3∑
α,j,β=1

(∫ t

0

ciαjβ(∇ξ̂2)∂2
sβζjds

)
nα +G0,i, (123)

for all 1 6 i 6 3, where

G0,i := µ
(
∇v1((∇χ̂2)−1cof (∇χ̂2)− (∇χ̂1)−1cof (∇χ̂1))n

)
i

+ µ (((∇χ̂2)−t(∇v1)tcof (∇χ̂2)− (∇χ̂1)−t(∇v1)tcof (∇χ̂1))n)i

+ µ′
(
((∇v1(∇χ̂2)−1 : Id)cof (∇χ̂2)− (∇v1(∇χ̂1)−1 : Id)cof (∇χ̂1))n

)
i

− ((P (γ1 + ρ)− P (ρ))(cof (∇χ̂1)− cof (∇χ̂2))n)i

+

3∑
α,j,β=1

(∫ t

0

(ciαjβ(∇ξ̂1)− ciαjβ(∇ξ̂2))∂2
sβξ1,jds

)
nα.

(124)

• Let us estimate w in H1(H1) ∩W 1,∞(L2) and ζ in W 2,∞(0, T ;L2(ΩS(0))) ∩W 1,∞(0, T ;H1(ΩS(0))).
First, we differentiate the equation of w with respect to t. This yields

(γ2 + ρ) det(∇χ̂2)∂2
tw − ∂t∇ · T̂1,2(w, γ1, γ2) = F̃0 in ΩF (0), (125)

and (
∂tT̂1,2(w, γ1, γ2)n

)
i

=

3∑
α,j,β=1

ciαjβ(∇ξ̂2)∂2
tβζjnα + ∂tG0,i on ∂ΩS(0), (126)

where
F̃0 := ∂tF0 − ∂tγ2 det(∇χ̂2)∂tw − (γ2 + ρ)∂t det(∇χ̂2)∂tw.

We multiply equation (125) by ∂tw and we integrate in ΩF (0). After an integration by parts, we obtain :

1

2

∫
ΩF (0)

(γ2 + ρ) det(∇χ̂2)∂t((wt)
2) dy +

∫
ΩF (0)

∂tT̂1,2(w, γ1, γ2) : ∂t∇w dy

+

∫
∂ΩS(0)

∂tT̂1,2(w, γ1, γ2)∂twndσ +

∫
ΩF (0)

F̃0 · ∂tw dy,
(127)

where we have used that w = 0 on ∂Ω. For the second term, we use (23) and (119) and we obtain∫
ΩF (0)

∂tT̂1,2(w, γ1, γ2) : ∂t∇w dy > (1− CT ν)

∫
ΩF (0)

|∂tε(w)|2dy − C
∫

ΩF (0)

|∇w|2dy

− δ
∫

ΩF (0)

|∂t∇w|2dy − C‖v̂1 − v̂2‖2Y T
2
.

Recall that ε(·) was defined right after (1). Here and in what follows, ν > 0 will denote a constant which
may change from line to line.

For the last term in (127), we have∣∣∣∣∣
∫

ΩF (0)

F̃0 · ∂tw dy

∣∣∣∣∣ 6 C

∫
ΩF (0)

|∂tw|2dy + C‖v̂1 − v̂2‖2Y T
2
.

Here, we have used the definition of Y T2 given in Definition 1 and estimates (117) and (119).
Then, one deduces from (127)

1

2

d

dt

∫
ΩF (0)

(γ2 + ρ) det(∇χ̂2)|∂tw|2 dy +

∫
∂ΩS(0)

∂tT̂1,2(w, γ1, γ2)∂twndσ + (1− CT ν)

∫
ΩF (0)

|∂tε(w)|2dy

6 C

(∫
ΩF (0)

|∇w|2dy +

∫
ΩF (0)

|∂tw|2dy + ‖v̂1 − v̂2‖2Y T
2

)
+ δ

∫
ΩF (0)

|∂t∇w|2dy

6 C
(
T‖∂t∇w‖2L2(L2) + ‖∂tw‖2L∞(L2) + ‖v̂1 − v̂2‖2Y T

2

)
+ δ

∫
ΩF (0)

|∂t∇w|2dy,
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where we have used that w(0, ·) ≡ 0 in ΩF (0). We integrate now between 0 and t. Using (37), (117) and
∂tw(0, ·) ≡ 0 in ΩF (0) for the first term and replacing the boundary terms thanks to (123), we find(ρmin

2
− CT ν

)∫
ΩF (0)

|∂tw(t)|2dx+

3∑
i=1

∫ t

0

∫
∂ΩS(0)

 3∑
α,j,β=1

ciαjβ(∇ξ̂2)∂2
sβζjnα + ∂sG0,i

 ∂2
sζi dy ds

+(1− CT ν)

∫ t

0

∫
ΩF (0)

|∂sε(w)|2dy ds 6 C
(

(T 2 + δ)‖∂t∇w‖2L2(L2) + T‖∂tw‖2L∞(L2) + T‖v̂1 − v̂2‖2Y T
2

)
.

(128)
Let us now differentiate with respect to t the equation satisfied by ζ. This yields for i = 1, 2, 3:

∂3
t ζi −

3∑
α,j,β=1

ciαjβ(∇ξ̂2)∂t∂
2
αβζj = H̃0,i, (129)

where

H̃0,i := ∂tH0,i +

3∑
α,j,β=1

∂tciαjβ(∇ξ̂2)∂2
αβζj .

We multiply this equation by ∂2
t ζi and we integrate in ΩS(0) :

1

2

d

dt

∫
ΩS(0)

|∂2
t ζ|2dy +

1

2

d

dt

3∑
i,α,j,β=1

∫
ΩS(0)

ciαjβ(∇ξ̂2)∂2
tβζj∂

2
tαζi dy −

3∑
i,α,j,β=1

∫
∂ΩS(0)

ciαjβ(∇ξ̂2)∂2
tβζj∂

2
t ζi nα dσ

=

3∑
i,α,j,β=1

∫
ΩS(0)

{(
1

2
∂tciαjβ(∇ξ̂2)∂2

tαζi − ∂αĉ2iαjβ∂2
t ζi

)
∂2
tβζj + ∂tciαjβ(∇ξ̂2)∂2

αβζj∂
2
t ζi

}
dy

+

∫
ΩS(0)

∂tH0 · ∂2
t ζ dy 6 C‖ζ‖2XT

2
+

∫
ΩS(0)

|∂tH0| |∂2
t ζ| dy.

(130)

Here, we have integrated by parts and used the symmetry of ciαjβ(∇ξ̂2) (see (14)). In order to estimate the
last term, we use that

‖ĉ1iαjβ − ĉ2iαjβ‖L∞(0,T ;H1(ΩS(0))) 6 C‖ξ̂1 − ξ̂2‖L∞(0,T ;H2(ΩS(0)))

and
‖∂tĉ1iαjβ − ∂tĉ2iαjβ‖L∞(0,T ;L2(ΩS(0))) 6 C‖ξ̂1 − ξ̂2‖W 1,∞(0,T ;H1(ΩS(0))) (131)

and we obtain∫
ΩS(0)

|∂tH0| |∂2
t ζ| dy 6 C(‖∂2

t ζ‖2L∞(0,T ;L2(ΩS(0))) + ‖ξ̂1 − ξ̂2‖2L∞(0,T ;H2(ΩS(0)))∩W 1,∞(0,T ;H1(ΩS(0)))).

Integrating between 0 and t in (130) and using (73) (for ciαjβ(∇ξ̂2) instead of ĉiαjβ) we deduce :

1

2

∫
ΩS(0)

|∂2
t ζ|2(t)dy + λ

∫
ΩS(0)

|∂tε(ζ)|2(t) dy +
λ′

2

∫
ΩS(0)

|∂t∇ · ζ|2(t)dy

−
3∑

i,α,j,β=1

∫ t

0

∫
∂ΩS(0)

ciαjβ(∇ξ̂2)∂2
sβζj∂

2
sζi nα dσ ds

6 CT (‖ζ‖2XT
2

+ ‖ξ̂1 − ξ̂2‖2L∞(0,T ;H2(ΩS(0))) + ‖ξ̂1 − ξ̂2‖2W 1,∞(0,T ;H1(ΩS(0)))).

We combine this inequality with (128) and we use Körn’s inequality :

‖w‖2W 1,∞(L2) + ‖w‖2H1(H1) + ‖ζ‖2W 2,∞(0,T ;L2(ΩS(0))) + ‖ζ‖2W 1,∞(0,T ;H1(ΩS(0))) 6
∫ T

0

∫
∂ΩS(0)

|∂tG0||∂2
t ζ| dy ds

+CT (‖ζ‖2XT
2

+ ‖v̂1 − v̂2‖2Y T
2

+ ‖ξ̂1 − ξ̂2‖2L∞0,T ;(H2(ΩS(0))) + ‖ξ̂1 − ξ̂2‖2W 1,∞(0,T ;H1(ΩS(0)))).

(132)
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Next we observe that

‖∂tG0‖L2((0,T )×∂ΩS(0)) 6 CT 1/2(‖∇v̂1 −∇v̂2‖L∞(H1) + ‖∇ξ̂1 −∇ξ̂2‖L∞(0,T ;H1(ΩS(0)))).

Since ∂2
t ζ = ∂tw on ∂ΩS(0), we find from (132) :

‖w‖2W 1,∞(L2) + ‖w‖2H1(H1) + ‖ζ‖2W 2,∞(0,T ;L2(ΩS(0))) + ‖ζ‖2W 1,∞(0,T ;H1(ΩS(0)))

6 CT (‖ζ‖2XT
2

+ ‖v̂1 − v̂2‖2Y T
2

+ ‖ξ̂1 − ξ̂2‖2XT
2

).
(133)

• Let us estimate w in L∞(H2) and ζ in L∞(0, T ;H2(ΩS(0))).

Let us consider the following elliptic problem satisfied by w (see (120), (123)):

−∇ · (µ(∇w + (∇w)t) + µ′∇ · w) = F0 +

4∑
j=1

Fj in ΩF (0),

µ(∇w + (∇w)t)n+ µ′(∇ · w)n = G0 +

4∑
j=1

Gj on ∂ΩS(0),

w = 0 on ∂Ω,

(134)

where the volume terms are given by

F1 := −(γ2 + ρ) det(∇χ̂2)∂tw, F2 := ∇ · ((P (γ2 + ρ)− P (γ1 + ρ))cof (∇χ̂2)),

F3 := −µ∇ · (∇w(Id− (∇χ̂2)−1cof (∇χ̂2)) + ((∇w)t − (∇χ̂2)−1(∇w)tcof (∇χ̂2))),

and
F4 := −µ′∇ · (∇w(Id− ((∇χ̂2)−1 : Id)cof (∇χ̂2))),

and the boundary terms are given by

G1,i :=

3∑
α,j,β=1

(∫ t

0

ciαjβ(∇ξ̂2)∂2
sβζjds

)
nα (1 6 i 6 3), G2 := −(P (γ2 + ρ)− P (γ1 + ρ))cof (∇χ̂2)n,

G3 := µ(∇w(Id− (∇χ̂2)−1cof (∇χ̂2)) + (∇w)t − (∇χ̂2)−t(∇w)tcof (∇χ̂2))n

and
G4 := µ′∇w(Id− ((∇χ̂2)−1 : Id)cof (∇χ̂2))n.

First, using (119) we have

‖F0‖L∞(L2) 6 CT (‖∂t(γ1 − γ2)‖L∞(L2) + ‖∇v̂1 −∇v̂2‖L∞(H1)) 6 CT‖v̂1 − v̂2‖Y T
2

and

‖F1‖L∞(L2) + ‖F2‖L∞(L2) 6 C(‖∂tw‖L∞(L2) + T‖∂t(γ1 − γ2)‖L∞(H1)) 6 C(‖∂t w‖L∞(L2) + T‖v̂1 − v̂2‖Y 2).

For F3 and F4 we use that v̂2 ∈ (AT
M

)1 and we find

‖F3‖L∞(L2) + ‖F4‖L∞(L2) 6 CT‖w‖L∞(H2).

Next, from the definition of G0 (see (124)) we obtain

‖G0‖L∞(0,T ;H1/2(∂ΩS(0))) 6 CT (‖v̂1 − v̂2‖L∞(H2) + ‖∇ξ̂1 −∇ξ̂2‖L∞(0,T ;H1(ΩS(0)))).

In order to estimate the last term in G0 we have used that H1(ΩS(0)) ↪→ L6(ΩS(0)). We integrate by parts
in G1 :

G1,i :=

3∑
α,j,β=1

(
−
∫ t

0

∂sciαjβ(∇ξ̂2)∂βζjds+ ciαjβ(∇ξ̂2)(t)∂βζ(t)

)
nα.
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Since ‖ciαjβ(∇ξ̂2)‖L∞(0,T ;H2(ΩS(0))) 6 C, we deduce taking T 6 1 :

‖G1‖L∞(0,T ;H1/2(∂ΩS(0))) 6 C‖ζ‖L∞(0,T ;H2(ΩS(0))).

Arguing as for F2, F3 and F4, we find

‖G2‖L∞(0,T ;H1/2(∂ΩS(0)))+‖G3‖L∞(0,T ;H1/2(∂ΩS(0)))+‖G4‖L∞(0,T ;H1/2(∂ΩS(0))) 6 CT (‖v̂1−v̂2‖Y T
2

+‖w‖L∞(H2)).

Using all these estimates we deduce that w, solution of (134), belongs to L∞(H2) and

‖w‖L∞(H2) 6 C(T (‖v̂1 − v̂2‖Y T
2

+ ‖∇ξ̂1 −∇ξ̂2‖L∞(0,T ;H1(ΩS(0))))

+‖ζ‖L∞(0,T ;H2(ΩS(0))) + ‖∂tw‖L∞(L2)).
(135)

We consider now the following elliptic problem satisfied by ζ :
−∇ · (λ(∇ζ + (∇ζ)t) + λ′∇ · ζ) = H0 +H1 +H2 in ΩS(0),

ζ(t, ·) =

∫ t

0

w(s, ·) ds on ∂ΩS(0),
(136)

where H0 was defined in (122),
H1 := −∂2

t ζ

and

H2,i := −
3∑

α,j,β=1

(c`iαjβ(∇ξ̂2) + cqiαjβ(∇ξ̂2))∂2
αβζj (1 6 i 6 3).

Using (131) we have

‖H0‖L∞(L2(ΩS(0))) 6
3∑

α,j,β=1

‖ciαjβ(∇ξ̂1)−ciαjβ(∇ξ̂2)‖L∞(L2(ΩS(0)))‖ξ1‖L∞(W 2,∞(ΩS(0))) 6 CT‖ξ̂1−ξ̂2‖W 1,∞(H1(ΩS(0))).

For H2, we use the fact that ĉ` and ĉq vanish at t = 0 and (24) and we obtain :

‖H2,i‖L∞(L2(ΩS(0))) 6
3∑

α,j,β=1

T‖∂t(c`iαjβ(∇ξ̂2)+cqiαjβ(∇ξ̂2))‖L∞(H2(ΩS(0)))‖ζ‖L∞(H2(ΩS(0))) 6 CT‖ζ‖L∞(H2(ΩS(0))).

Then, ζ ∈ L∞(H2(ΩS(0))) and

‖ζ‖L∞(H2(ΩS(0))) 6 C(T (‖ξ̂1 − ξ̂2‖W 1,∞(H1(ΩS(0))) + ‖w‖L∞(H2(ΩF (0)))) + ‖ζ‖W 2,∞(L2(ΩS(0)))),

for T small enough.
Combining this with (135), we deduce

‖w‖L∞(H2) + ‖ζ‖L∞(H2(ΩS(0))) 6 C(T (‖v̂1 − v̂2‖Y T
2

+ ‖ξ̂1 − ξ̂2‖XT
2

)

+‖∂tw‖L∞(L2) + ‖ζ‖W 2,∞(L2(ΩS(0)))).

Finally, using the estimate for the time derivatives (133), we find

‖w‖Y T
2

+ ‖ζ‖XT
2
6 CT 1/2(‖v̂1 − v̂2‖Y T

2
+ ‖ξ̂1 − ξ̂2‖XT

2
),

for T small enough.
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