
HAL Id: hal-01231800
https://hal.inria.fr/hal-01231800

Submitted on 20 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Applicative Bisimulation and Quantum λ-Calculi
Ugo Dal Lago, Alessandro Rioli

To cite this version:
Ugo Dal Lago, Alessandro Rioli. Applicative Bisimulation and Quantum λ-Calculi. 6th Fundamentals
of Software Engineering (FSEN), Apr 2015, Tehran, Iran. pp.54-68, �10.1007/978-3-319-24644-4_4�.
�hal-01231800�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49455673?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01231800
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Applicative Bisimulation
and Quantum λ-Calculi?

Ugo Dal Lago and Alessandro Rioli

Università di Bologna & INRIA
{ugo.dallago,alessandro.rioli2}@unibo.it

Abstract. Applicative bisimulation is a coinductive technique to check
program equivalence in higher-order functional languages. It is known to
be sound — and sometimes complete — with respect to context equiv-
alence. In this paper we show that applicative bisimulation also works
when the underlying language of programs takes the form of a linear λ-
calculus extended with features such as probabilistic binary choice, but
also quantum data, the latter being a setting in which linearity plays a
role. The main results are proofs of soundness for the obtained notions
of bisimilarity.

1 Introduction

Program equivalence is one of the fundamental notions in the theory of pro-
gramming languages. Studying the nature of program equivalence is not only
interesting from a purely foundational point of view, but can also be the first
step towards defining (semi)automatic techniques for program verification, or for
validating compiler optimisations. As an example, conformance of a program to
a specification often corresponds to the equivalence between the program and the
specification, once the latter is written in the same formalism as the program.

If the language at hand is an higher-order functional language, equivalence
is traditionally formalised as Morris’ context equivalence: two programs are con-
sidered equivalent if and only if they have the same behavior in every possible
context [15]. This makes it relatively easy to prove two programs to be not equiv-
alent, since this merely amounts to finding one context which separates them.
On the other hand, proving two terms to be equivalent requires one to examine
their behaviour in every possible context.

Various ways to alleviate the burden of proving context equivalence have been
proposed in the literature, from CIU theorems (in which the class of contexts
is restricted without altering the underlying relation [14]) to adequate denota-
tional semantics, to logical relations [17]. We are here interested in coinductive
techniques akin to bisimulation. Indeed, they have been shown to be very pow-
erful, to the point of not only being sound, but even complete as ways to prove
terms to be context equivalent [16]. Among the various notions of bisimulation
which are known to be amenable to higher-order programs, the simplest one is
? This work is partially supported by the ANR project 12IS02001 PACE.

certainly Abramsky’s applicative bisimulation [1], in which terms are seen as
interactive objects and the interaction with their environment consists in taking
input arguments or outputting observable results.

Applicative bisimulation is indeed well-known to be fully-abstract w.r.t. con-
text equivalence when instantiated on plain, untyped, deterministic λ-calculi [1].
When the calculus at hand also includes a choice operator, the situation is more
complicated: while applicative bisimilarity is invariably a congruence, thus sound
for context equivalence, completeness generally fails [16, 13], even if some un-
expected positive results have recently been obtained by Crubillé and the first
author [4] in a probabilistic setting. An orthogonal issue is the one of linearity:
does applicative bisimulation work well when the underlying calculus has linear
types? The question has been answered positively, but only for deterministic
λ-calculi [3, 2]. Finally, soundness does not hold in general if the programming
language at hand has references [11].

In this paper, we define and study applicative bisimulation when instan-
tiated on linear λ-calculi, starting with a purely deterministic language, and
progressively extending it with probabilistic choice and quantum data, a setting
in which linearity is an essential ingredient [19, 20]. The newly added features
in the language are shown to correspond to mild variations in the underlying
transition system, which in presence of probabilistic choice becomes a labelled
Markov chain. The main contributions of this paper are congruence results for
applicative bisimilarity in probabilistic and quantum λ-calculi, with soundness
with respect to context equivalence as an easy corollary. In all the considered
calculi, Howe’s technique [9, 16] plays a key role.

This is the first successful attempt to apply coinductive techniques to quan-
tum, higher-order, calculi. The literature offers some ideas and results about
bisimulation and simulation in the context of quantum process algebras [8, 7,
6]. Deep relations between quantum computation and coalgebras have recently
been discovered [10]. None of the cited works, however, deals with higher-order
functions.

This paper is structured as follows. In Section 2, a simple linear λ-calculus,
called `STλ will be introduced, together with its operational semantics. This is
a purely deterministic calculus, on top of which our extensions will be defined.
Section 3 presents the basics of applicative bisimulation, instantiated on `STλ.
A probabilistic variation on `STλ, called `PSTλ, is the subject of Section 4,
which also discusses the impact of probabilities to equivalences and bisimilarity.
Section 5 is about a quantum variation on `STλ, dubbed `QSTλ, together with
a study of bimilarity for it. Section 6 concludes the paper with a discussion
about full-abstraction. An extended version of this paper with more details is
available [5].

2 Linear λ-Calculi: A Minimal Core

In this section, a simple linear λ-calculus called `STλ will be introduced, together
with the basics of its operational semantics. Terms and values are generated by

the following grammar:

e, f ::= v | ee | if e then e else e | let e be 〈x, x〉 in e | Ω;

v, w ::= x | tt | ff | λx.e | 〈v, v〉.
Observe the presence not only of abstractions and applications, but also of value
pairs, and of basic constructions for booleans. Pairs of arbitrary terms can be
formed as follows, as syntactic sugar:

〈e, f〉 = (λx.λy.〈x, y〉)ef.

Finally, terms include a constant Ω for divergence. b is a metavariable for truth
values, i.e. b stands for either tt or ff. We need a way to enforce linearity, i.e.,
the fact that functions use their arguments exactly once. This can take the form
of a linear type system whose language of types is the following:

A,B ::= bool | A(A | A⊗A.
The set Y includes all types. Typing judgments are in the form Γ ` e : A,
where Γ is a set of assignments of types to variables. Typing rules are standard,
and can be found in Figure 1. The set T `STλ

Γ,A contains all terms e such that

x : A ` x : A ` b : bool
Γ ` e : A(B ∆ ` f : A

Γ,∆ ` ef : B Γ ` Ω : A

Γ ` v : A ∆ ` w : B
Γ,∆ ` 〈v, w〉 : A⊗B

Γ, x : X, y : Y ` e : A ∆ ` f : X ⊗ Y
Γ,∆ ` let f be 〈x, y〉 in e : A

Γ, x : A ` e : B
Γ ` λx.e : A(B

Γ ` e : bool ∆ ` f : A ∆ ` g : A
Γ,∆ ` if e then f else g : A

Fig. 1. Typing Rules

Γ ` e : A. T `STλ

∅,A is usually written as T `STλ

A . Notations like V`STλ

Γ,A or V`STλ

A are
the analogues for values of the corresponding notations for terms.

Endowing `STλ with call-by-value small-step or big-step semantics poses no
significant problem. In the first case, one defines a binary relation → between
closed terms of any type by the usual rule for β-reduction, the natural rule for
the conditional operator, and the following rule: let 〈v, w〉 be 〈x, y〉 in e →
e{v, w/x, y}. Similarly, one can define a big-step evaluation relation ⇓ between
closed terms and values by a completely standard set of rules (see [5] for more
details). The expression e ⇓, as usual, indicates the existence of a value v with

e ⇓ v. Subject reduction holds in the following sense: if ∅ ` e : A, e → f , and
e ⇓ v, then both ∅ ` f : A and ∅ ` v : A.

The expressive power of the just-introduced calculus is rather poor. Nonethe-
less, it can be proved to be complete for first-order computation over booleans,
in the following sense: for every function F : {tt, ff}n → {tt, ff}, there is a
term which computes F , i.e. a term eF such that eF 〈b1, . . . , bn〉 ⇓ F (b1, . . . , bn)
for every b1, . . . , bn ∈ {tt, ff}n. Indeed, even if copying and erasing bits is not
in principle allowed, one could anyway encode, e.g., duplication as the following
combinator of type bool (bool ⊗ bool: λx.if x then 〈tt, tt〉 else 〈ff, ff〉.
Similarly, if Γ ` e : A and x is a fresh variable, one can easily find a term
weak x in e such that Γ, x : bool ` weak x in e : A and weak b in e behaves like
e for every b ∈ {ff, tt}.

But how could one capture program equivalence in an higher-order setting
like the one we are examining? The canonical answer goes back to Morris [15],
who proposed context equivalence (also known as observational equivalence) as
the right way to compare terms. Roughly, two terms are context equivalent iff
they behave the same when observed in any possible context, i.e. when tested
against any possible observer. Formally, a context is nothing more than a term
with a single occurrence of a special marker called the hole and denoted as [·]
(see [5]). Given a context C and a term e, C[e] is the term obtained by filling
the single occurrence of [·] in C with e. For contexts to make sense in a typed
setting, one needs to extend typing rules to contexts, introducing a set of rules
deriving judgments in the form Γ ` C[∆ ` A] : B, which can be read informally
as saying that whenever ∆ ` e : A, it holds that Γ ` C[e] : B.

We are now in a position to define the context preorder: given two terms e
and f such that Γ ` e, f : A, we write e ≤Γ,A f iff for every context C such
that ∅ ` C[Γ ` A] : B, if C[e] ⇓ then C[f] ⇓. If e ≤Γ,A f and f ≤Γ,A e,
then e and f are said to be context equivalent, and we write e ≡Γ,A f . What
we have just defined, infact, are two typed relations ≤ and ≡, that is to say
two families of relations indexed by contexts and types, i.e. ≤ is the family
{≤Γ,A}Γ,A, while ≡ is {≡Γ,A}Γ,A. If in the scheme above the type B is restricted
so as to be bool, then the obtained relations are the ground context preorder
and ground context equivalence, respectively. Context equivalence is, almost by
construction, a congruence. Similarly, the context preorder is easily seen to be a
precongruence.

3 Applicative Bisimilarity and its Properties

Context equivalence is universally accepted as the canonical notion of equiva-
lence of higher-order programs, being robust, and only relying on the underlying
operational semantics. Proving terms not context equivalent is relatively easy:
ending up with a single context separating the two terms suffices. On the other
hand, the universal quantification over all contexts makes proofs of equivalence
hard.

A variety of techniques have been proposed to overcome this problem, among
them logical relations, adequate denotational models and context lemmas. As
first proposed by Abramsky [1], coinductive methodologies (and the bisimulation
proof method in particular) can be fruitfully employed. Abramsky’s applicative
bisimulation is based on taking argument passing as the basic interaction mech-
anism: what the environment can do with a λ-term is either evaluating it or
passing it an argument.

In this section, we will briefly delineate how to define applicative bisimilar-
ity for the linear λ-calculus `STλ. We will do that in an unnecessarily pedantic
way, defining a labelled transition system, and then playing the usual bisimu-
lation game on top of it. This has the advantage of making the extensions to
probabilistic and quantum calculi much easier.

A labelled transition system (LTS in the following) is a triple L = (S,L,N),
where S is a set of states, L is a set of labels, and N is a subset of S × L × S.
If for every s ∈ S and for every ` ∈ L there is at most one state t ∈ S with
(s, `, t) ∈ N , then L is said to be deterministic. The theory of bisimulation for
LTSs is very well-studied [18] and forms one of the cornerstones of concurrency
theory.

An applicative bisimulation relation is nothing more than a bisimulation on
an LTS L`STλ

defined on top of the λ-calculus `STλ. More specifically, the LTS
L`STλ

is defined as the triple

(T `STλ] V`STλ , E`STλ] V`STλ ∪ {eval, tt, ff} ∪ (Y] Y),N`STλ
),

where:
• T `STλ is the set ∪A∈Y(T `STλ

A × {A}), similarly for V`STλ . On the other
hand, E`STλ is ∪A,B,E∈Y(T `STλ

x:A,y:B,E × {(A,B,E)}). Observe how any pair
(v,A) appears twice as a state, once as an element of T `STλ and again as
an element of V`STλ . Whenever necessary to avoid ambiguity, the second
instance will be denoted as (v̂, A). Similarly for the two copies of any type A
one finds as labels.

• The label eval models evaluation of terms, while the labels tt, ff are the way
a boolean constant declares its own value.

• The relation N`STλ
contains all triples in the following forms:

((t̂t, bool), tt, (t̂t, bool)); ((f̂f, bool), ff, (f̂f, bool));
((λ̂x.e, A(B), (v,A), (e{v/x}, B));

((〈̂v, w〉, A⊗B), (e, (A,B,E)), (e{v/x,w/y}, E));
((e,A), A, (e,A)); ((v̂, A), Â, (v̂, A)); ((e,A), eval, (v̂, A));

where, in the last item, we of course assume that e ⇓ v.
Basically, values interact with their environment based on their types: abstrac-
tions take an input argument, pairs gives their two components to a term which
can handle them, and booleans constants simply expose their value. The only
way to interact with terms is by evaluating them. Both terms and values expose

their type. As one can easily verify, the labelled transition system L`STλ
is de-

terministic. Simulation and bisimulation relations for L`STλ
are defined as for

any other LTS. Notice, however, that both are binary relations on states, i.e., on
elements of T `STλ] V`STλ . Let us observe that:
• Two pairs (e,A) and (f,B) can be put in relation only if A = B, because
each state makes its type public through a label. For similar reasons, states
in the form (v,A) and (ŵ, B) cannot be in relation, not even if A = B.

• If (v,A) and (w,A) are in relation, then also (v̂, A) and (ŵ, A) are in relation.
Conversely, if (v̂, A) and (ŵ, A) are in a (bi)simulation relation R, then R ∪
{((v,A), (w,A))} is itself a (bi)simulation.

As a consequence, (bi)similarity can be seen as a relation on terms, indexed by
types. Similarity is denoted as �, and its restriction to (closed) terms of type
A is indicated with �A. For bisimilarity, symbols are ∼ and ∼A, respectively.
(Bi)similarity can be generalised to a typed relation by the usual open extension.

Example 1. An example of two distinct programs which can be proved bisimilar
are the following:

e = λx.λy.λz.and (xy) (or z tt); f = λx.λy.λz.x(or (and z ff) y);

where and and or are combinators computing the eponymous boolean functions.
Both e and f can be given the type (bool (bool) (bool (bool (bool
in the empty context. They can be proved bisimilar by just giving a relation
Re,f which contains the pair (e, f) and which can be proved to be an applicative
bisimulation. Another interesting example of terms which can be proved bisimilar
are the term e = if f then g else h and the term s obtained from e by λ-
abstracting all variables which occur free in g (and, equivalently, in h), then
applying the same variables to the obtained term. For more details, see [5].

Is bisimilarity sound for (i.e., included in) context equivalence? And how
about the reverse inclusion? For a linear, deterministic λ-calculus like the one
we are describing, both questions have already been given a positive answer [7].
In the next two sections, we will briefly sketch how the correspondence can be
proved.

3.1 (Bi)similarity is a (Pre)congruence.

A natural way to prove that similarity is included in the context preorder, (and
thus that bisimilarity is included in context equivalence) consists in first showing
that similarity is a precongruence, that is to say a preorder relation which is
compatible with all the operators of the language.

While proving that � is a preorder is relatively easy, the naive proof of
compatibility (i.e. the obvious induction) fails, due to application. A nice way
out is due to Howe [9], who proposed a powerful and reasonably robust proof
based on so-called precongruence candidates. Intuitively, the structure of Howe’s
method is the following:

1. First of all, one defines an operator (·)H on typed relations, in such a way
that whenever a typed relation R is a preorder, RH is a precongruence.

2. One then proves, again under the condition that R is an equivalence relation,
that R is included into RH , and that RH is substitutive.

3. Finally, one proves that �H is itself an applicative simulation. This is the
so-called Key Lemma [16], definitely the most difficult of the three steps.

Points 2 and 3 together imply that � and �H coincide. But by point 1, �H ,
thus also �, are precongruences. Points 1 and 2 do not depend on the underlying
operational semantics, but on only on the language’s constructs.

In Figure 2, one can find the full set of rules defining (·)H when the underlying
terms are those of `STλ.

∅ ` cRt : A
∅ ` cRHt : A

x : A ` xRt : A
∅ ` xRHt : A

Γ, x : B ` eRHh : A Γ ` (λx.h)Rt : B (A

Γ ` (λx.e)RHt : B (A

Γ ` eRHh : B (A ∆ ` fRHs : B Γ,∆ ` (hs)Rt : A
Γ,∆ ` (ef)RHt : A

Γ ` eRHh : bool
∆ ` fRHs : A ∆ ` gRHr : A

Γ,∆ ` (if h then s else r)Rt : A
Γ,∆ ` (if e then f else g)RHt : A

Γ ` eRHh : X ⊗ Y
∆, x : X, y : Y ` fRHs : A

Γ,∆ ` (let h be 〈x, y〉 in s)Rt : A
Γ,∆ ` (let e be 〈x, y〉 in f)RHt : A

Γ ` vRHu : A ∆ ` wRHz : B Γ,∆ ` 〈u, z〉Re : A⊗B
Γ,∆ ` 〈v, w〉RHe : A⊗B

Fig. 2. The Howe’s Rules for `STλ.

Theorem 1. In `STλ, � is included in ≤, thus ∼ is included in ≡.

4 Injecting Probabilistic Choice

The expressive power of `STλ is rather limited, due to the presence of linearity.
Nevertheless, the calculus is complete for first-order computations over the finite
domain of boolean values, as discussed previously. Rather than relaxing linear-
ity, we now modify `STλ by endowing it with a form or probabilistic choice,
thus obtaining a new linear λ-calculus, called `PSTλ, which is complete for
probabilistic circuits. We see `PSTλ as an intermediate step towards `QSTλ, a
quantum λ-calculus we will analyze in the following section.

The language of terms of `PSTλ is the one of `STλ where, however, there
is one additional binary construct ⊕, to be interpreted as probabilistic choice:
e ::= e ⊕ e. The set Y of types is the same as the one of `STλ. An evaluation
operation is introduced as a relation ⇓⊆ T `PSTλ

∅,A × D`PSTλ

A between the sets of
closed terms of type A belonging to `PSTλ and the one of subdistributions of
values of type A in `PSTλ. The elements of D`PSTλ

A are actually subdistributions
whose support is some finite subset of the set of values V`PSTλ

A , i.e., for each
such E , we have E : V`PSTλ

A 7→ R[0,1] and
∑
v∈V`PSTλ

A

E (v) ≤ 1. Whenever
this does not cause ambiguity, subdistributions will be referred to simply as
distributions. In Figure 3 a selection of the rules for big-step semantics in `PSTλ

is given. Expressions in the form {vpii }i∈I have the obvious meaning, namely the
distribution with support {vi}i∈I which attributes probability pi to each vi.

As for the terms e ∈ T `PSTλ

A , the following lemma holds:

Lemma 1. If ∅ ` e : A, then there is a unique distribution E such that e ⇓ E .

Lemma 1 only holds because the λ-calculus we are working with is linear, and as
a consequence strongly normalising. If e ⇓ E , then the unique E from Lemma 1
is called the semantics of e and is denoted simply as [e].

v ⇓ {v1} Ω ⇓ ∅
e ⇓ E f ⇓ F s{w/x} ⇓ Gλx.s,w

ef ⇓
∑

λx.s∈S(E),w∈S(F) E (λx.s)F (w)Gλx.s,w

e ⇓ E f ⇓ F g ⇓ G

if e then f else g ⇓ E (tt)F + E (ff)G
e ⇓ E f ⇓ F

e⊕ f ⇓ 1
2 E + 1

2 F

Fig. 3. Big-step Semantics of `PSTλ — Selection

Context equivalence and the context preorder are defined very similarly to
`STλ, the only difference being the underlying notion of observation, which in
`STλ takes the form of convergence, and in `PSTλ becomes the probability of
convergence.

4.1 Applicative Bisimilarity

Would it be possible to define applicative bisimilarity for `PSTλ similarly to
what we have done for `STλ? The first obstacle towards this goal is the dy-
namics of `PSTλ, which is not deterministic but rather probabilistic, and thus
cannot fit into an LTS. In the literature, however, various notions of probabilis-
tic bisimulation have been introduced, and it turns out that the earliest and
simplest one, due to Larsen and Skou [12], is sufficient for our purposes.

A labelled Markov chain (LMC in the following) is a triple (S,L,P), where S
and L are as in the definition of a LTS, while P is a transition probability matrix,
i.e., a function from S×L×S to R[0,1] such that for every s and for every `, it holds
that P(s, `,S) ≤ 1 (where the expression P(s, `,X) stands for

∑
t∈X P(s, `, t)

whenever X ⊆ S). Given such a LMC M , an equivalence relation R on S is said
to be a bisimulation on M iff whenever (s, t) ∈ R, it holds that P(s, `, E) =
P(t, `, E) for every equivalence class E of S modulo R. A preorder R on S is
said to be a simulation iff for every subset X of S, it holds that P(s, `,X) ≤
P(t, `, R(X)). With some efforts (see [5] for some more details) one can prove that
there exist largest bisimulation and simulation, that we continue to call similarity
and bisimilarity, respectively. Probabilistic (bi)simulation, despite the endeavor
required to define it, preserves all fundamental properties of its deterministic
sibling. As an example, a symmetric probabilistic simulation is a bisimulation.
Moreover, bisimilarity is the intersection of similarity and co-similarity.

Labelled Markov chains are exactly the objects we need when generalising
the construction L`STλ

to `PSTλ. The LMC M`PSTλ
, indeed, is defined as the

triple

(T `PSTλ] V`PSTλ , E`PSTλ] V`PSTλ ∪ {eval, tt, ff} ∪ (Y] Y),P`PSTλ
)

where P`PSTλ
is the function assuming the following values:

P`PSTλ((t̂t, bool), tt, (t̂t, bool)) = 1; P`PSTλ((f̂f, bool), ff, (f̂f, bool)) = 1;
P`PSTλ((λ̂x.e, A(B), (v,A), (e{v/x}, B)) = 1;

P`PSTλ((〈̂v, w〉, A⊗B), (e, (A,B,E)), (e{v/x,w/y}, E)) = 1;
P`PSTλ((e,A), A, (e,A)) = 1 P`PSTλ((v̂, A), Â, (v̂, A)) = 1;

P`PSTλ((e,A), eval, (v̂, A)) = [e](v);

and having value 0 in all the other cases. It is easy to realise that P`PSTλ
can

indeed be seen as the natural generalisation of N`STλ
: on states in the form

(v̂, A), the function either returns 0 or 1, while in correspondence to states like
(e,A) and the label eval, it behaves in a genuinely probabilistic way.

As for `STλ, simulation and bisimulation relations, and the largest such re-
lations, namely similarity and bisimilarity, can be given by just instantiating the
general scheme described above to the specific LMC modeling terms of `PSTλ

and their dynamics. All these turn out to be relations on closed terms, but as
for `STλ, they can be turned into proper typed relations just by the usual open
extension.

The question now is: are the just introduced coinductive methodologies sound
with respect to context equivalence? And is it that the proof of precongruence
for similiarity from Section 3.1 can be applied here? The answer is positive, but
some effort is needed. More specifically, one can proceed as in [4], generalising
Howe’s method to a probabilistic setting, which makes the Key Lemma harder
to prove. By the way, the set of Howe’s rules are the same as in `STλ, except
for a new one, namely

Γ ` eRHh : A ∆ ` fRHs : A Γ,∆ ` (h⊕ s)Rt : A
Γ,∆ ` (e⊕ f)RHt : A

Thus:

Theorem 2. In `PSTλ, � is included in ≤, thus ∼ is included in ≡.

5 On Quantum Data

Linear λ-calculi with classical control and quantum data have been introduced
and studied both from an operational and from a semantical point of view [20,
7]. Definitionally, they can be thought of as λ-calculi in which ordinary, classic,
terms have access to a so-called quantum register, which models quantum data.

A quantum register Q on a finite set of quantum variables Q is mathemati-
cally described by an element of a finite-dimensional Hilbert space whose compu-
tational basis is the set SB(Q) of all maps from Q to {tt, ff} (of which there are
2|Q|). Any element of this basis takes the form |r1 ← b1, r2 ← b2, · · · , rn ← bn〉,
where Q = {r1, . . . , rn} and b1, . . . , bn ∈ {tt, ff}. Elements of this Hilbert space,
called H(Q), are in the form

Q =
∑

η∈SB(Q)

αη|η〉, (1)

where the complex numbers αη ∈ C are the so-called amplitudes, and must
satisfy the normalisation condition

∑
η∈SB(Q) |αη|2 = 1. If η ∈ SB(Q) and r is

a variable not necessarily in Q, then η{r ← b} stands for the substitution which
coincides with η except on r where it equals b.

The interaction of a quantum register with the outer environment can cre-
ate or destroy quantum bits increasing or decreasing the dimension of Q. This
shaping of the quantum register is mathematically described making use of the
following operators:
• The probability operator PRrb : H(Q)→ R[0,1] gives the probability to obtain
b ∈ {tt, ff} as a result of the measurement of r ∈ Q in the input register:

PRrb(Q) =
∑
η(r)=b

|αη|2.

• If r ∈ Q, then the projection operator MSrb : H(Q)→ H(Q−{r}) measures the
variable r, stored in the input register, destroying the corresponding qubit.
More precisely MSrtt(Q) and MSrff(Q) give as a result the quantum register
configuration corresponding to a measure of the variable r, when the result
of the variable measurement is tt or ff, respectively:

MSrb(Q) = [PRrb(Q)]−
1
2

∑
η∈SB(Q−{r})

αη{r←b}|η〉,

where Q is as in (1).
• If r 6∈ Q, then the operator NWrb : H(Q) → H(Q ∪ {r}) creates a new qubit,
accessible through the fresh variable name r, and increases the dimension of
the quantum register by one .

Qubits can not only be created and measured, but their value can also bemodified
by applying unitary operators to them. Given any such n-ary operator U , and
any sequence of distinct variables r1, . . . , rn (where ri ∈ Q for every 1 ≤ i ≤ n),
one can build a unitary operator Ur1,...,rn on H(Q).

5.1 The Language

We can obtain the quantum language `QSTλ as an extension of basic `STλ. The
grammar of `STλ is enhanced by adding the following values:

e ::= U(v) | meas(v) | new(v); v ::= r;

where r ranges over an infinite set of quantum variables, and U ranges over a fi-
nite set of unitary transformations. The term new(v) acting on boolean constant,
returns (a quantum variable pointing to) a qubit of the same value, increasing
this way the dimension of the quantum register. The term meas(v) measures a
value of type qubit, therefore it decreases the dimension of the quantum register.

Typing terms in `QSTλ does not require any particular efforts. The class
of types needs to be sligthly extended with a new base type for qubits, called
qbit, while contexts now give types not only to classical variables, but also to
quantum variables. The new typing rules are in Figure 4.

Γ ` v : qbit
Γ ` meas(v) : bool

Γ ` v : bool
Γ ` new(v) : qbit

Γ ` v : qbit⊗n

Γ ` U(v) : qbit⊗n
r : qbit ` r : qbit

Fig. 4. Typing rules in `QSTλ.

The semantics of `QSTλ, on the other hand, cannot be specified merely as a
relation between terms, since terms only make sense computationally if coupled
with a quantum register, namely in a pair in the form [Q, e], which is called
a quantum closure. Analogously to what has been made for `PSTλ, small step
reduction operator → and the big step evaluation operator ⇓ are given as rela-
tions between the set of quantum closures and of quantum closures distributions.
In figures 5 and 6 the small-step semantics and big-step semantics for `QSTλ

are given. Quantum closures, however, are not what we want to compare, since
what we want to be able to compare are terms. Context equivalence, in other
words, continues to be a relation on terms, and can be specified similarly to the
probablistic case, following, e.g. [20].

[Q, (λx.e)v]→ {[Q, e{v/x}]1}

[Q, e]→ {[Qi, fi]pi}i∈I
[Q, eg]→ {[Qi, fig]pi}i∈I

[Q, e]→ {[Qi, fi]pi}i∈I
[Q, ve]→ {[Qi, vfi]pi}i∈I

[Q, if tt then f else g]→ {[Q, f]1} [Q, if ff then f else g]→ {[Q, g]1}

[Q, e]→ {[Qi, hi]pi}i∈I
[Q, if e then f else g]→ {[Qi, if hi then f else g]pi}i∈I

[Q, let 〈v, w〉 be 〈x, y〉 in f]→ {[Q, f{v/x,w/y}]1}

[Q, e]→ {[Qi, hi]pi}i∈I
[Q, let e be 〈x, y〉 in g]→ {[Qi, let hi be 〈x, y〉 in g]pi}i∈I

[Q, meas(r)]→ {[MSrff(Q), ff]PRrff(Q) , [MSrtt(Q), tt]PRrtt(Q)}

[Q, U〈r1, . . . , rn〉]→ {[Ur1,...,rn(Q), 〈r1, . . . , rn〉]1}

r fresh variable
[Q, new(b)]→ {[NWrb(Q), r]1} [Q, Ω]→ ∅

Fig. 5. Small-step Semantics of `QSTλ.

5.2 Applicative Bisimilarity in `QSTλ

Would it be possible to have a notion of bisimilarity for `QSTλ? What is the
underlying “Markov Chain”? It turns out that LMCs as introduced in Section 4.1
are sufficient, but we need to be careful. In particular, states of the LMC are not
terms, but quantum closures, of which there are in principle nondenumerably
many. However, since we are only interested in quantum closures which can be
obtained (in a finite number of evaluation steps) from closures having an empty
quantum register, this is not a problem: we simply take states as those closures,
which we dub constructible. M`QSTλ

can be built similarly to M`PSTλ
, where

(constructible) quantum closures take the place of terms. The non zero elements
of the function P`QSTλ

are defined as follows:

P`QSTλ((t̂t, bool), bool, (t̂t, bool)) = 1;
P`QSTλ((f̂f, bool), bool, (f̂f, bool)) = 1;

P`QSTλ(([Q, r̂] , qbit), ([W , e] , A), ([Q ⊗W , e{r/x}] , A)) = 1;
P`QSTλ((

[
Q, λ̂ x.e

]
, A(B), ([W , v̂] , A), ([Q ⊗W , e{v/x}] , B)) = 1;

[Q, v] ⇓ {[Q, v]1} [Q, Ω] ⇓ ∅
r fresh variable

[Q, new(b)] ⇓ {[NWrb(Q), r]1}

[Q, U〈r1 . . . rm〉] ⇓ {[Ur1,...,rm(Q), 〈r1, . . . , rm〉]1}

[Q, meas(r)] ⇓ {[MSrff(Q), ff]PRrff(Q) , [MSrtt(Q), tt]PRrtt(Q)}

[Q, e] ⇓ {[Qi, λ x.hi]pi}i∈I
[Qi, f] ⇓ {[Qi,h, si,h]qi,h}i,h∈H

[Qi,h, hi{si,h/x}] ⇓ Ei,h

[Q, ef] ⇓
∑

i,h
pi · qi,h · Ei,h

[Q, e] ⇓ {[Qff, ff]pff , [Qtt, tt]ptt}
[Qff, g] ⇓ E
[Qtt, f] ⇓ F

[Q, if e then f else g] ⇓ pffE + pttF

[Q, e] ⇓ {[Qi, 〈vi, wi〉]pi}i∈I [Qi, f{vi/x,wi/y}] ⇓ Ei

[Q, let e be 〈x, y〉 in f] ⇓
∑

i
pi · Ei

Fig. 6. Big-step Semantics of `QSTλ.

P`QSTλ((
[
Q, 〈̂v, w〉

]
, A⊗B), ([W , e] , (A,B,E)), ([Q ⊗W , e{v/x,w/y}] , E)) = 1;

P`QSTλ(([Q, e] , A), A, ([Q, e] , A)) = 1 P`QSTλ(([Q, ê] , A), A, ([Q, ê] , A)) = 1;
P`QSTλ(([Q, e] , A), eval, ([U , v] , A)) = [[Q, e]] ([U , v]) .

Once we have a LMC, it is easy to apply the same definitional scheme we have
seen for `PSTλ, and obtain a notion of applicative (bi)similarity. Howe’s method,
in turn, can be adapted to the calculus here, resulting in a proof of precongruence
and ultimately in the following:

Theorem 3. In `QSTλ, � is included in ≤, thus ∼ is included in ≡.

More details on the proof of this can be found in [5].

Example 2. An interesting pair of terms which can be proved bisimilar are the
following two:

e = λx.if (meas x) then ff else tt; f = λx.meas(X x);

where X is the unitary operator which flips the value of a qubit. This is remark-
able given, e.g. the “non-local” effects entanglement could cause.

6 On Full-Abstraction

In the deterministic calculus `STλ, bisimilarity not only is included into context
equivalence, but coincides with it (and, analogously, similarity coincides with the
context preorder). This can be proved by observing that in L`STλ

, bisimilarity

coincides with trace equivalence, and each linear test, i.e., each trace, can be
implemented by a context. This result is not surprising, and has already been
obtained in similar settings elsewhere [2].

But how about `PSTλ and `QSTλ? Actually, there is little hope to prove
full-abstraction between context equivalence and bisimilarity in a linear setting
if probabilistic choice is present. Indeed, as shown by van Breugel et al. [21],
probabilistic bisimilarity can be characterised by a notion of test equivalence
where tests can be conjunctive, i.e., they can be in the form t = 〈s, p〉, and t
succeeds if both s and p succeeds. Implementing conjuctive tests, thus, requires
copying the tested term, which is impossible in a linear setting. Indeed, it is easy
to find a counterexample to full-abstraction already in `PSTλ. Consider the
following two terms, both of which can be given type bool (bool in `PSTλ:

e = λx.weak x in tt⊕ ff; f = (λx.weak x in tt)⊕ (λx.weak x in ff).

The two terms are not bisimilar, simply because tt and ff are not bisimilar, and
thus also λx.weak x in tt and λx.weak x in ff cannot be bisimilar. However,
e and f can be proved to be context equivalent: there is simply no way to
discriminate between them by way of a linear context (see [5] for more details).

What one may hope to get is full-abstraction for extensions of the consid-
ered calculi in which duplication is reintroduced, although in a controlled way.
This has been recently done in a probabilistic setting by Crubillé and the first
author [4], and is the topic of current investigations by the authors for a non-
strictly-linear extension of `QSTλ.

7 Conclusions

We show that Abramsky’s applicative bisimulation can be adapted to linear λ-
calculi endowed with probabilistic choice and quantum data. The main result
is that in both cases, the obtained bisimilarity relation is a congruence, thus
included in context equivalence.

For the sake of simplicity, we have deliberately kept the considered calculi as
simple as possible. We believe, however, that many extensions would be harm-
less. This includes, as an example, generalising types to recursive types which,
although infinitary in nature, can be dealt with very easily in a coinductive set-
ting. Adding a form of controlled duplication requires more care, e.g. in presence
of quantum data (which cannot be duplicated).

References

1. S. Abramsky. The lazy λ-calculus. In D. Turner, editor, Research Topics in Func-
tional Programming, pages 65–117. Addison Wesley, 1990.

2. Gavin M. Bierman. Program equivalence in a linear functional language. J. Funct.
Program., 10(2):167–190, 2000.

3. Roy L. Crole. Completeness of bisimilarity for contextual equivalence in linear
theories. Electronic Journal of the IGPL, 9(1), January 2001.

4. Raphaëlle Crubillé and Ugo Dal Lago. On probabilistic applicative bisimulation
and call-by-value λ–calculi. In ESOP, volume 8410 of LNCS, pages 209–228, 2014.

5. Ugo Dal Lago and Alessandro Rioli. Applicative bisimulation and quantum
λ-calculi (long version). Available at http://eternal.cs.unibo.it/abqlc.pdf,
2014.

6. Timothy A. S. Davidson, Simon J. Gay, Hynek Mlnarik, Rajagopal Nagarajan, and
Nick Papanikolaou. Model checking for communicating quantum processes. IJUC,
8(1):73–98, 2012.

7. Yuxin Deng and Yuan Feng. Open bisimulation for quantum processes. CoRR,
abs/1201.0416, 2012.

8. Simon J. Gay and Rajagopal Nagarajan. Communicating quantum processes. In
POPL, pages 145–157, 2005.

9. Douglas J. Howe. Proving congruence of bisimulation in functional programming
languages. Inf. Comput., 124(2):103–112, 1996.

10. Bart Jacobs. Coalgebraic walks, in quantum and turing computation. In FOS-
SACS, volume 6604 of LNCS, pages 12–26, 2011.

11. Vasileios Koutavas, Paul Blain Levy, and Eijiro Sumii. From applicative to envi-
ronmental bisimulation. Electr. Notes Theor. Comput. Sci., 276:215–235, 2011.

12. Kim Guldstrand Larsen and Arne Skou. Bisimulation through probabilistic testing.
Inf. Comput., 94(1):1–28, 1991.

13. Søren B. Lassen and Corin Pitcher. Similarity and bisimilarity for countable
non-determinism and higher-order functions. Electr. Notes Theor. Comput. Sci.,
10:246–266, 1997.

14. Robin Milner. Fully abstract models of typed λ-calculi. Theor. Comput. Sci.,
4:1–22, 1977.

15. J. Morris. Lambda Calculus Models of Programming Languages. PhD thesis, MIT,
1969.

16. Andrew M. Pitts. Operationally-based theories of program equivalence. In Se-
mantics and Logics of Computation, pages 241–298. Cambridge University Press,
1997.

17. Gordon Plotkin. Lambda definability and logical relations. In Memo SAI-RM-4,
School of Artificial Intelligence. Edinburgh, 1973.

18. Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge Uni-
verstity Press, 2012.

19. Peter Selinger and Benoît Valiron. A lambda calculus for quantum computation
with classical control. In TLCA, volume 3461 of LNCS, pages 354–368, 2005.

20. Peter Selinger and Benoît Valiron. On a fully abstract model for a quantum linear
functional language. Electron. Notes Theor. Comput. Sci., 210:123–137, 2008.

21. Franck van Breugel, Michael W. Mislove, Joël Ouaknine, and James Worrell. Do-
main theory, testing and simulation for labelled Markov processes. Theor. Comput.
Sci., 333(1-2):171–197, 2005.

