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Abstract: Stochastic hybrid systems have been largely studied in the literature in the
framework of Markov mode transitions and linear Gaussian state space mode models. In order
to generalize such results to hybrid systems involving phenomena characterized by differential-
algebraic equations, this paper studies the problem of state estimation for stochastic hybrid
systems with modes described by descriptor equations. The proposed state estimation algorithm
follows the interacting multiple model (IMM for short) approach, but the classical state space
system Kalman filters are replaced by descriptor system Kalman filters. Because of the difficulty
for computing the innovation of each descriptor system Kalman filter, a new method for
likelihood evaluation is proposed, as one important step of the new IMM algorithm. Numerical
examples are presented to illustrate the performance of the proposed algorithm.

Keywords: Hybrid system, descriptor system, IMM estimator, descriptor system Kalman filter.

1. INTRODUCTION

Differential equations have been widely used in the study
of dynamic systems, in particular, finite dimensional state
space equations of the form

ẋ(t) = f(x(t), u(t)) (1)

are often used for modeling engineering systems, with x(t)
and u(t) denoting respectively the state vector and the
input vector of the considered system, ẋ(t) = dx(t)/dt,
and f is a function characterizing the dynamic behavior
of the system. Despite the large success of such theories in
engineering practice, some complex systems cannot be ap-
propriately described in this framework. Such exceptions
include differential-algebraic systems and hybrid systems.

Algebraic constraints in engineering systems typically re-
sult from singularities of differential equations. For ex-
ample, a train following a turning track is constrained
by the geometrical form of the tack if the mass of the
earth is considered infinitely large compared to the mass
of the train. Such a system can be described by differential-
algebraic equations (DAE) of the form

g(ẋ(t), x(t), u(t))

which can represent a wider class of systems than the
classical state space systems of the form (1). After lin-
earization and discretization in time, such equations can
be approximated by implicit discrete time state space
equations of the form

Ek+1x(k + 1) = Akx(k) +Bku(k) + υ(k), (2)

where x(k), u(k) and υ(k) are respectively the discrete
time state, input and the modeling errors indexed by
k = 1, 2 . . . , and Ek+1, Ak, Bk are time varying matrices
of appropriate sizes. With a possibly rank deficient matrix
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Ek+1, refer to (2) which is known as a descriptor equation
[Nikoukhah et al. (1992)].

On the other hand, some complex systems have different
working modes, for example, the starting mode, the nor-
mal working mode, or some reduced regime mode in case
of component failures. If in each of these modes the system
is described by some differential equations, the over-all
functioning of the system, including the mode switching
mechanism and the behavior within each mode, is usually
modeled as a hybrid system [Bar-Shalom et al. (2001)].

The purpose of the present paper is to study state estima-
tion for hybrid systems with working modes described by
descriptor equations of the form (2).

The study of descriptor systems, notably about state esti-
mation, has a rich literature [Yeu et al. (2001); Nikoukhah
et al. (1992); Marx et al. (2004); Koenig et al. (2002); Gao
et al. (2006)] (for more information see references therein).
Besides this topic, state estimation for hybrid systems
has been largely studied with various applications such
as target tracking [Bar-Shalom et al. (1988); Blom et al.
(1988)], signal processing [Doucet et al. (2001)], and fault
diagnosis [Hanlon et al. (2000); Koutsoukos et al. (2002)].
These reported results concern hybrid systems involving
modes described by state space equations. To our knowl-
edge, no study has been reported about hybrid systems
with working modes described by descriptor equations.

In the case of stochastic hybrid systems with working
modes described by classical linear Gaussian state space
equations, it is known that the complexity of the opti-
mal state estimator increases exponentially with time. In
practice, heuristic algorithms of reduced complexity are
used, without convergence proof. Among such algorithms,
is the interacting multiple model (IMM for short) estima-
tor [Bar-Shalom et al. (2001), C. E. Seah et al. (2009)].



It is based on multiple Kalman filters, each assuming a
particular working mode. At each iteration, in addition to
the classical prediction and update steps of the Kalman
filter, all the Kalman filters are modified based on the
knowledge about the mode transition mechanism modeled
as a Markov chain.

In the present paper, the algorithm proposed for hybrid
descriptor system state estimation follows also the IMM
approach. The main novelties in this algorithm reside in
the replacement of the classical state space system Kalman
filter by the descriptor system Kalman filter, and in a new
method for the evaluation of the likelihood of each Kalman
filter at each iteration. Of course, like the classical IMM
estimator for state-space hybrid systems, no convergence
proof of the algorithm is known.

This paper is organized as follows: In Section 2 we present
a formal formulation of the estimation problem for a
stochastic linear hybrid descriptor system. In Section 3,
we make a comparison between the Kalman filter for
classical situation and the descriptor one. We state the
IMM algorithm in the framework of descriptor system in
4. In Section 5, we provide numerical examples. Finally,
conclusions are presented in Section 6.

2. PROBLEM FORMULATION

The stochastic hybrid systems considered in this paper are
modeled at two levels. At the top level, each system has a
finite number of working modes. At each time instant, one
of the modes is active, and random transitions between
different modes are characterized by a Markov model. At
the bottom level, each mode of the system is described by
a stochastic descriptor system model.

2.1 Top level Markov Transition Model

Let {M1,M2, . . . ,Mr} be the set of r possible modes of a
hybrid system, and m (k) ∈ {1, 2, . . . , r} denote the index
of the mode at time instant k = 0, 1, 2, . . .. The mode
evolution, corresponding to the sequence m(0),m(1), · · · ,
is a Markov chain described by the mode transition matrix

Π = {pij}i,j=1,··· ,r ,

where
pi,j = P [m(k + 1) = j|m(k) = i] ,

with known transition probabilities pi,j independent of k
and satisfying

r∑
j=1

pi,j = 1, i = 1, 2, . . . , r.

For the initial time instant k = 0, the prior probability
that Mj is active is

P [m(0) = j] = µj(0)

with known probabilities µ1(0), µ2(0), . . . , µr(0) satisfying
r∑

j=1

µj(0) = 1.

2.2 Bottom level Stochastic Descriptor System Model

At the bottom level, the state x(k) ∈ Rn, the input
u(k) ∈ Rq and the output y(k) ∈ Rp of the hybrid system
satisfy the stochastic descriptor equations

EMj
x(k + 1) =AMj

x(k)

+BMj
u(k) +WMj

(k), (3)

y(k) =CMjx(k)

+DMju(k) + VMj (k), (4)

where the time index k = 0, 1, 2, · · · ., the descriptor
system matrices EMj ∈ Rl×n, AMj ∈ Rl×n, BMj ∈
Rl×q, CMj

∈ Rp×n, DMj
∈ Rp×q, and the state and

output white noises WMj
(k) ∈ Rl, VMj

(k) ∈ Rp, with
WMj

(k) ∼ N (0, QMj
), VMj

(k) ∼ N (0, SMj
) which are

mutually independent to each other.

When the mode of the hybrid system stays unchanged,
say at Mj , the mode index m(k) = j, then the system de-
scribed by equation (3) behaves like a stochastic descriptor
system characterized by the matrices Aj , Bj , Cj , Dj , Ej ,
Qj , Sj . Within each mode, it is assumed that descriptor
system (3)-(4) is observable and controllable by the state
noise. See [Nikoukhah et al. (1992)] for the definitions of
descriptor system observability and controllability.

Other other hand, the mode Mj may evolve, so that
the mode index sequence m(0),m(1), · · · forms a Markov
chain, as described at the top level. In particular, during
every mode change, say from Mm(k) = Mj to Mm(k+1) =
Mi, the evolution of the state x(k+1) and the output y(k+
1) are also described by equation (4), given a realization
of the mode sequence Markov chain.

Let Zk = [u(0), y (0) , u(1), y(1), . . . , u(k), y(k)] denote the
measurements up to time k.

The following assumptions are made in this paper.

(A1): Assume that x(0) ∼ N (0, P0) is independent of
WMj

(k) and VMj
(k);

(A2): For j ∈ {1, 2, . . . , r} , HMj
=

[
EMj

CMj

]
is full column

rank;
(A3): For j ∈ {1, 2, . . . , r} , the matrices QMj and SMj

are symmetric positive definite.

3. KALMAN FILTER FOR DESCRIPTOR SYSTEMS

In this section, let us consider the single-mode descriptor
system

Ek+1x(k + 1) =Akx(k) +Bku(k) +W (k), (5)

y(k + 1) =Ck+1x(k + 1) +Dk+1u(k + 1)

+V (k + 1). (6)

First recall the classical Kalman filter for state space
systems corresponding to the case l = n and Ek+1 = In×n.

x̂(0|0) = E(x0), P (0, 0) = V ar(x0),
P (k + 1|k) = A(k)P (k|k)AT (k) +Q(k),
G(k + 1) = P (k + 1|k)CT (k + 1)
·(C(k + 1)P (k + 1|k)CT (k + 1) + S(k + 1))−1,

x̂(k + 1|k) = A(k)x̂(k|k) +B(k)u(k),
x̂(k + 1|k + 1) = x̂(k + 1|k) +G(k + 1)(y(k + 1)
−D(k + 1)u(k + 1)− C (k + 1) x̂(k + 1|k)),

where the innovation process, also known as the prediction
error, v(k + 1) = y(k + 1)− ŷ(k + 1|k) with

ŷ(k + 1|k) = C(k + 1)x̂(k + 1|k) +D(k + 1)u(k + 1),



is a white Gaussian sequence. The associated likelihood
function can be computed by using the innovation v(k+1).

Now let us consider the more general descriptor system
(5)-(6). Its Kalman filter [Nikoukhah et al. (1992)] writes
(d in subscript short for descriptor systems),



x̂d(0|0) = E(x0),
Σd(k) = A(k)Pd(k|k)AT (k) +Qd(k),
Gd(k + 1)
= (ET (k + 1)Σ−1d (k)E(k + 1))−1CT (k + 1)
·(C(k + 1)(ET (k + 1)Σ−1d (k)E(k + 1))−1

·CT (k + 1) + Sd(k))−1,
Ld(k + 1) = (ET (k + 1)Σ−1d (k)E(k + 1))−1

·ET (k + 1)Σ−1d (k)−Gd(k + 1)C(k + 1)
·(ET (k + 1)Σ−1d (k)E(k + 1))−1

·ET (k + 1)Σ−1d (k),
x̂d(k + 1|k + 1) = Ld(k + 1)A(k)x̂d(k|k)

+Ld(k + 1)B(k)u(k)
−Gd(k + 1)D(k + 1)u(k + 1)
+Gd(k + 1)yd(k + 1),

Pd(k + 1|k + 1) = Ld(k + 1)A(k)Pd(k|k)AT (k)
·LT

d (k + 1) + Ld(k + 1)Qd(k)LT
d (k + 1)

+Gd(k + 1)Sd(k)GT
d (k + 1).

(7)

In [Nikoukhah et al. (1992); Ali et al. (2014)] the gain
matrices Gd(k + 1) and Ld(k + 1) were given in implicit
forms. Their explicit forms presented here are proved
in Appendix A. Unlike the classical state space system
Kalman filter which was formulated in two steps known as
prediction and update, computing respectively x̂(k + 1|k)
and x̂(k + 1|k + 1). Here for descriptor systems the filter
is written in a single step. It is thus not obvious if the
computed state estimate x̂d(k+ 1|k+ 1) in every iteration
is the predicted state or the filtered state. In Appendix
A it is shown that x̂d(k + 1|k + 1) is indeed the filtered
state. Consequently, the output estimation error v̄d(k +
1) = yd(k + 1)− ŷd(k + 1|k + 1) where

ŷd(k+1|k+1) = C(k+1)x̂d(k+1|k+1)+D(k+1)u(k+1).

is not the innovation sequence in the sense of prediction
error as defined in the classical Kalman filter. Usually the
innovation sequence is used for likelihood evaluation in the
IMM approach to hybrid system estimation. Fortunately,
like the innovation sequence, this estimation error vd(k+1)
is a white Gaussain sequence in [Ali et al. (2014)]. This
result is important for the new IMM estimator presented
in this paper for hybrid systems, at the step of likelihood
computation.

4. HYBRID DESCRIPTOR SYSTEM IMM
ESTIMATOR

The algorithm presented below for hybrid descriptor sys-
tems is quite similar to the IMM estimator for classical
hybrid state space systems [Bar-Shalom et al. (2001)], the
main differences reside in the Kalman filter for descriptor
systems and in the evaluation of the likelihood at each
iteration.

The key feature of IMM we point out is that it consists of
r interacting filters operating in parallel.

The algorithm consists of the following steps.

1. Calculation of the mixing probabilities (i, j =
1, . . . , r). The probability that mode Mi was in effect at k
given that Mj is in effect at k + 1 conditioned on Zk+1 is

µi|j(k|k + 1) = P{Mi (k) |Mj(k + 1), Zk+1}

=
1

c̄j
pi,jµj(k),

where

c̄j =

r∑
i=1

pi,jµi(k).

2. Intermediate results mixing (j = 1, . . . , r).

During the last iteration, r descriptor system Kalman
filters were run in parallel, each assuming a different active
mode at instant k, yielding r state estimates x̂ (k|k) and r
covariance matrices P i (k|k) . Based on these results, the
mixed state estimates and covariance matrices are

x̂0,j(k|k) =

r∑
i=1

x̂(k|k)µi|j(k|k),

P 0,j(k|k) =

r∑
i=1

µi|j(k|k){P i(k|k)

+[x̂(k|k)− x̂0,j(k|k)]

·[x̂(k|k)− x̂0,j(k|k)]T }.

3. Mode-matched filtering (j = 1, . . . , r).

For each of the r assumed active modes at instant k + 1,
say Mj , a descriptor system Kalman filter delivers a state
estimate x̂j(k + 1|k + 1) as follows:

x̂j(0|0) = E(x0),

Σj(k) =AMjP
0,j(k|k)AT

Mj
+QMj ,

GMj
(k + 1) = (ET

Mj
(Σj(k))−1EMj

)−1CT
Mj

·(CMj
(ET

Mj
(Σj(k))−1EMj

)−1CT
Mj

+SMj
)−1,

LMj
(k + 1) = (ET

Mj
(Σj(k))−1EMj

)−1

·ET
Mj

(Σj(k))−1 −GMj
(k + 1)CMj

·(ET
Mj

(Σj(k))−1EMj )−1ET
Mj

(Σj(k))−1,

x̂j(k + 1|k + 1) =LMj (k + 1)AMj x̂
0,j(k|k)

+LMj
(k + 1)BMj

u(k)

−GMj
(k + 1)DMj

u(k + 1)

+GMj
(k + 1)y(k + 1),

P j(k + 1|k + 1) =LMj (k + 1)AMjP
0,j(k|k)AT

Mj

·LT
Mj

(k + 1)

+LMj
(k + 1)QMj

LT
Mj

(k + 1)

+GMj
(k + 1)SMj

GT
Mj

(k + 1).

The likelihood of the mode Mj , given the input-output
data up to instant k + 1, is evaluated through the “inno-
vation”



v̄j(k + 1) = y(k + 1)− ŷj(k + 1|k + 1)

= y(k + 1)−DMju(k + 1)

−CMj
x̂j(k + 1|k + 1),

Λj(k + 1) =
1√

(2π)p det(Σj (k + 1))

· exp(Υj(k + 1)),

where

Υj(k + 1) = −1

2

(
v̄j(k + 1)

)T (
Σj(k + 1)

)−1
v̄j(k + 1).

4. Mode probability update.

The mode probabilities are updated as

µj(k + 1) =
1

c
Λj(k + 1)c̄j

with

c̄j =

r∑
i=1

pi,jµi(k), c =

r∑
j=1

Λj(k + 1)c̄j .

5. Estimate and covariance combination.

Combination of the model-conditioned estimates and co-
variances is completed according to the mixture equations

x̂(k + 1|k + 1) =

r∑
j=1

x̂j(k + 1|k + 1)µj(k + 1)

and

P (k + 1|k + 1)

=

r∑
j=1

µj(k + 1)
{
P j(k + 1|k + 1)

+
[
x̂j(k + 1|k + 1)− x̂(k + 1|k + 1)

]
·
[
x̂j(k + 1|k + 1)− x̂(k + 1|k + 1)

]T }
.

5. NUMERICAL EXAMPLES

Consider a hybrid descriptor stochastic system as formu-
lated in Section 2, with (3) and (4), where r = 3, the mode
dependent system matrices Ai, Bi, Ci, Di, Ei, Qi, Si, Π
and the control u are as follows:

A1 =

[
0 1 0

0.5 0 1
0 0 −0.1

]
, A2 =

[
0.1 0 0.3
0 0.6 0
0 0.3 0.9

]
,

A3 =

[
0 1 0
0 0 1

−0.05 −0.1 1

]
, Bi =

[
1
2
3

]
, Di =

[
0
0

]
;

C1 =

[
0 0 1
1 1 0

]
, C2 =

[
1 0 1
1 1 0

]
, C3 =

[
0 1 1
1 1 0

]
;

E1 =

[
1 0 0
0 1 1
0 0 0

]
, E2 =

[
2 0 3
0 2 4
0 0 0

]
, E3 =

[
3 0 0
0 4 0
0 0 0

]
;

Qi = 0.001 ·

[
1 0 0
0 2 0
0 0 3

]
, Si = 10 ·

[
4 0
0 1

]
, i = 1, 2, 3;
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Fig. 1. Markov mode sequence.

0 50 100 150 200 250 300
−100

−50

0

50

100

150
State

 

 
x1
x2
x3

0 50 100 150 200 250 300
−100

0

100

200

300
Output

 

 
y1
y2

Fig. 2. System states and outputs.

Π =

[
0.5 0.1 0.4
0.3 0.6 0.1
0.1 0.3 0.5

]
, u(k) =

 1,

{
if, 21 ≤ k ≤ 60;
if, 101 ≤ k ≤ 140;
if, 181 ≤ k ≤ 220;

0, otherwise.

We will denote xi, i = 1, 2, 3, y1, y2 as the components of
vector x and y, respectively in the above figures.

The simulation runs from k = 1 till k = 300. The
IMM estimator for hybrid descriptor systems proposed in
this paper is applied to the simulated system for state
estimation. The Markov mode sequence can be seen in
Fig. 1. System states and outputs are presented in Fig. 2,
and the state estimates in Fig. 3.

In Fig. 2, the results attained by the time varying descrip-
tor system for Kalman filter [Ali et al. (2014); Nikoukhah
et al. (1992)] are also presented in the aim of comparison.
This descriptor system Kalman filter assumes that the
actual mode sequence is known, which is not the case of
the IMM estimator.

The results shown in Fig. 3 are based on one random
realization of the simulated stochastic system. In order
to illustrate the statistic properties of the proposed IMM
estimator, 1000 random realizations have been made, and
the histograms of the state estimation errors at instants
k = 50, 140, 200, are shown in Figs. 4, 5, 6.

6. CONCLUSIONS

In this paper the existing interacting multiple model esti-
mator has been extended to the case of stochastic hybrid
systems with modes described by descriptor equations. We
have presented a numerical example to show the perfor-
mance of our method. Among future research directions,
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Fig. 3. States estimates by descriptor IMM estimator and
by descriptor Kalman filter (TVKF for short).

joint estimation of state and parameters in descriptor
hybrid systems will be studied, notably for the purpose
of fault diagnosis.

Appendix A. GAIN MATRICES AND ESTIMATED
STATE

In this appendix, we will check that the state estimation
x̂d(k + 1|k + 1) computed in (7) is indeed the filtered
state, not the predicted state, by showing that, in the
particular case of Ek+1 = I, it coincides with the filtered
state of the classical Kalman filter. The explicit forms of
the gain matrices Gd(k + 1) and Ld(k + 1) in (7) are also
derived in this appendix. For simplicity of notation, we
omit Mi (k + 1), and set

[Lk+1,Kk+1] =
[
LMi(k+1),KMi(k+1)

]
, etc,

and Bk = Dk = 0. We are going to compute explicitly Lk,
and Kk which were defined in [Ali et al. (2014)] as

[Lk+1,Kk+1] = (HT
k+1R

−1
k Hk+1)−1HT

k+1R
−1
k , (A.1)

where

Rk =

[
Σk O
O Sk

]
and

Σk = AkPkA
T
k +Qk.

Then, we have

HT
k+1R

−1
k Hk+1

=
[
ET

k+1, C
T
k+1

] [Σ−1k O
O S−1k

] [
Ek+1

Ck+1

]
=ET

k+1Σ−1k Ek+1 + CT
k+1S

−1
k Ck+1.

Recall the matrix inverse formula,

(A+BCD)−1 =A−1 −A−1B
·(DA−1B + C−1)−1DA−1

where A−1, C−1, and (DA−1B + C−1) are assumed to
exist.

Using the matrix inverse formula, we obtain

(HT
k+1R

−1
k Hk+1)−1

= (ET
k+1Σ−1k Ek+1 + CT

k+1S
−1
k Ck+1)−1

= (ET
k+1Σ−1k Ek+1)−1

−(ET
k+1Σ−1k Ek+1)−1CT

k+1

·
(
Ck+1

(
ET

k+1Σ−1k Ek+1

)−1
CT

k+1 + Sk

)−1
·Ck+1(ET

k+1Σ−1k Ek+1)−1.

Let us define

Gk+1 = (ET
k+1Σ−1k Ek+1)−1CT

k+1

·(Ck+1(ET
k+1Σ−1k Ek+1)−1CT

k+1

+Sk)−1. (A.2)

Further,

(HT
k+1R

−1
k Hk+1)−1HT

k+1R
−1
k

=
[
(ET

k+1Σ−1k Ek+1)−1

−Gk+1Ck+1(ET
k+1Σ−1k Ek+1)−1

]
·
[
ET

k+1, C
T
k+1

] [Σ−1k O
O S−1k

]
=
[
(ET

k+1Σ−1k Ek+1)−1ET
k+1Σ−1k

−Gk+1Ck+1(ET
k+1Σ−1k Ek+1)−1ET

k+1Σ−1k ,

(ET
k+1Σ−1k Ek+1)−1CT

k+1S
−1
k

−Gk+1Ck+1(ET
k+1Σ−1k Ek+1)−1CT

k+1S
−1
k

]
.



Immediately, from (A.1), we get

Lk+1 = (ET
k+1Σ−1k Ek+1)−1ET

k+1Σ−1k

−Gk+1Ck+1(ET
k+1Σ−1k Ek+1)−1ET

k+1Σ−1k ,

and

Kk+1 = (ET
k+1Σ−1k Ek+1)−1CT

k+1S
−1
k

−Gk+1Ck+1(ET
k+1Σ−1k Ek+1)−1

·CT
k+1S

−1
k . (A.3)

Substituting (A.2) into (A.3), we have

Kk+1 = (ET
k+1Σ−1k Ek+1)−1CT

k+1

·(Ck+1(ET
k+1Σ−1k Ek+1)−1CT

k+1

+Sk)−1,

which is exactly equals to Gk+1 expressed by (A.2). To
obtain this result, the following equalities are used(

Ck+1(ET
k+1Σ−1k Ek+1)−1CT

k+1 + Sk

)−1
= S−1k − (Ck+1(ET

k+1Σ−1k Ek+1)−1CT
k+1 + Sk)−1

·Ck+1(ET
k+1Σ−1k Ek+1)−1CT

k+1S
−1
k . (A.4)

Indeed,

(Ck+1(ET
k+1Σ−1k Ek+1)−1CT

k+1 + Sk) ·(
(S−1k − (Ck+1(ET

k+1Σ−1k Ek+1)−1CT
k+1 + Sk)−1

·Ck+1(ET
k+1Σ−1k Ek+1)−1CT

k+1S
−1
k

)
=Ck+1

(
ET

k+1Σ−1k Ek+1

)−1
CT

k+1S
−1
k + I

−Ck+1

(
ET

k+1Σ−1k Ek+1

)−1
CT

k+1S
−1
k

= I.

Hence, in particular, if we set Ek+1 = I, one can get

Lk+1 = I −Gk+1Ck+1,

Gk+1 = ΣkC
T
k+1(Ck+1ΣkC

T
k+1 + Sk)−1,

which is just the Kalman gain. At last, we have

x̂(k + 1) =Lk+1Akx̂(k) +Gk+1y(k + 1)

=Akx̂(k) +Gk+1[y(k + 1)

−Ck+1Ak+1x̂(k)].

The associated variance can be verified similarly.
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