Complexity of greedy edge-colouring

Frédéric Havet, A Karolinna Maia, Min-Li Yu

To cite this version:

Frédéric Havet, A Karolinna Maia, Min-Li Yu. Complexity of greedy edge-colouring. Journal of the Brazilian Computer Society, Springer Verlag, 2015, 21 (18), 10.1186/s13173-015-0036-x . hal01233312

HAL Id: hal-01233312
https://hal.inria.fr/hal-01233312
Submitted on 18 Dec 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Complexity of greedy edge-colouring

Frédéric Havet*

A. Karolinna Maia* ${ }^{*}$

Min-Li Yu^{\ddagger}

December 18, 2015

Abstract

The Grundy index of a graph $G=(V, E)$ is the greatest number of colours that the greedy edge-colouring algorithm can use on G. We prove that the problem of determining the Grundy index of a graph $G=(V, E)$ is NP-hard for general graphs. We also show that this problem is polynomial-time solvable for caterpillars. More specifically, we prove that the Grundy index of a caterpillar is $\Delta(G)$ or $\Delta(G)+1$ and present a polynomial-time algorithm to determine it exactly.

1 Introduction

All the graphs considered in this paper are loopless, but may have multiple edges.
A (proper) k-colouring of a graph $G=(V, E)$ is a surjective mapping $c: V \rightarrow\{1,2, \ldots, k\}$ such that $c(u) \neq c(v)$ for any edge $u v \in E$. The chromatic number is $\chi(G)=\min \{k \mid G$ admits a k-colouring $\}$. On the algorithmic point of view, finding the chromatic number of a graph is a hard problem. For all $k \geq 3$ it is NP-complete to decide whether a graph admits a k-colouring (see [2]). Furthermore, it is NP-hard to approximate the chromatic number within $|V(G)|^{\varepsilon_{0}}$ for some positive constant ε_{0}, as shown by Lund and Yannakakis [5].

Hence lots of heuristics have been developed to colour a graph. The most basic and widespread because it works on-line is the greedy algorithm. Given a vertex ordering $\sigma=v_{1}<\cdots<v_{n}$ of $V(G)$, this algorithm colours the vertices in the order v_{1}, \ldots, v_{n}, assigning to v_{i} the smallest positive integer not used on its lower-indexed neighbours. A colouring resulting of the greedy algorithm is called a greedy colouring. The Grundy number $\Gamma(G)$ is the largest k such that G has a greedy k-colouring. Easily, $\chi(G) \leq \Gamma(G) \leq \Delta(G)+1$.

Zaker [6] showed that for any fixed k, one can decide in polynomial time whether a given graph has Grundy number at most k. However determining the Grundy number of a graph is NP-hard [6], and given a graph G, it is even NP-complete to decide whether $\Gamma(G)=\Delta(G)+1$ as shown by Havet and Sampaio [3]. In addition, Asté et al. [1] showed that for any constant $c \geq 1$, it is NP-complete to decide whether $\Gamma(G) \leq c \cdot \chi(G)$.

Graph colouring of many graph classes has also been studied. One of the classes is the one of line graphs. The line graph of a graph G, denoted $L(G)$, is the graph whose vertices are the edges of G, with ef $\in E(L(G))$ whenever e and f share an endvertex. Colouring line graphs corresponds to edge-colouring. A k-edge-colouring of a graph G is a surjective mapping $\phi: E(G) \rightarrow\{1, \ldots, k\}$ such that if two edges e and f are adjacent (i.e share an endvertex), then $\phi(e) \neq \phi(f)$. A k-edge colouring may also be seen as a partition of the edge set of G into k disjoint matchings $M_{i}=\{e \mid \phi(e)=i\}$, $1 \leq i \leq k$. By edge-colouring we mean either the mapping ϕ or the partition.

The chromatic index $\chi^{\prime}(G)$ of a graph G is the least k such that G admits a k-edge-colouring. It is easy to see that $\chi^{\prime}(G)=\chi(L(G))$. Obviously, $\Delta(G) \leq \chi^{\prime}(G)$ and Shannon's and Vizing's theorems state that $\chi^{\prime}(G) \leq \max \left\{\frac{3}{2} \Delta(G) ; \Delta(G)+\mu(G)\right\}$, where $\mu(G)$ is the maximum number of edges between two vertices of G. Holyer [4] showed that for any $k \geq 3$, it is NP-complete to decide if a k-regular graph has chromatic index k.

Edge colouring naturally arises in modelling some channel assignment problems in wireless network. From such a network, one can construct the communication graph whose vertices are the

[^0]nodes of the network, and two vertices are connected by an edge whenever they communicate. In order to avoid interferences between the different signals arriving at a node, we need to assign distinct frequencies to the communications at each node. This corresponds to finding an edge colouring of the communication graph.

Usually the communications begin at different dates, and we need to assign the frequencies online. Usually, the frequencies are assigned greedily according to the following the greedy algorithm for edge-colouring, which corresponds to the greedy algorithm to colour a line graph. Given a graph $G=(V, E)$ and an edge ordering $\theta=e_{1}<\cdots<e_{n}$, assign to e_{i} the least positive integer that was not already assigned to lower-indexed edges adjacent to it. An edge-colouring obtained by this process is called a greedy edge-colouring and it has the following property: For every $j<i$, every edge e in M_{i} is adjacent to an edge in M_{j}.
Note that an edge-colouring satisfying (P) is a greedy edge-colouring relative to any edge ordering in which the edges of M_{i} precede those of M_{j} when $i<j$.

The Grundy index $\Gamma^{\prime}(G)$ of a graph G is the largest number of colours of a greedy edge-colouring of G. Notice that $\Gamma^{\prime}(G)=\Gamma(L(G))$. By definition, $\chi^{\prime}(G) \leq \Gamma^{\prime}(G)$. Furthermore, as an edge is incident to at most $2 \Delta(G)-2$ other edges $(\Delta(G)-1$ at each endvertex), colouring the edges greedily uses at most $2 \Delta(G)-1$ colours. So $\Delta(G) \leq \Gamma^{\prime}(G) \leq 2 \Delta(G)-1$. There are graphs for which the Grundy index equals the maximum degree: stars for example. On the opposite, for any Δ there is a tree with maximum degree Δ and Grundy index $2 \Delta-1$. Indeed, consider the trees B_{k}^{\prime} defined recursively as follows: $B_{1}^{\prime}=P_{2}, B_{2}^{\prime}=P_{3}$ and the root of P_{2} is one of its vertex and the root of P_{3} is one of its leaves; B_{k}^{\prime} is obtained from the disjoint union of B_{k-1}^{\prime} and B_{k-2}^{\prime} by adding an edge between their roots, and the root of B_{k}^{\prime} is the root of B_{k-2}^{\prime}. An easy induction shows that for every positive $k, \Delta\left(B_{2 k}^{\prime}\right)=\Delta\left(B_{2 k+1}^{\prime}\right)=k+1$ and that the root of $B_{2 k}^{\prime}$ has degree k and the root of $B_{2 k+1}^{\prime}$ has degree $k+1$. Now, $\Gamma^{\prime}\left(B_{k}^{\prime}\right)=k$ for every k, because one can show easily by induction the following stronger statement.

Proposition 1. For every positive integer k, there is a greedy k-edge colouring of B_{k}^{\prime} such that the colours assigned to the edges incident to the root are all the odd numbers up to k, if k is odd, and all the even numbers up to k if k is even.

In this paper, we study the complexity of finding the Grundy index of a graph. We prove that it is NP-hard by showing that the following problem is co-NP-complete.

Minimum Greedy Edge-Colouring

Instance: A graph G.
Question: $\Gamma^{\prime}(G)=\Delta(G)$?
The proof is a reduction from 3-Edge-Colourability of Cubic Graphs which was proved to be NP-complete by Holyer [4]. We recall that a cubic graph is a 3 -regular graph. The reduction also proves that it is co-NP-complete to decide if $\Gamma^{\prime}(G)=\chi^{\prime}(G)$.
3-Edge-Colourability of Cubic Graphs
Instance: A cubic graph G.
Question: Is $G 3$-edge colourable?
We then extend the result to a more general problem.

f-Greedy Edge-Colouring

Instance: A graph G.
Question: $\Gamma^{\prime}(G) \leq f(\Delta(G))$?
We show that for any function f such that $k \leq f(k) \leq 2 k-2$, the problem f-Greedy EdgeColouring is co-NP-Complete.

Since determining the Grundy index is NP-hard, a natural question to ask is for which class of graphs it can be done in polynomial time. Obviously it is the case for the class of graphs with maximum degree k. Indeed the Grundy index of a graph G in this class is at most $2 k-1$ and for every $1 \leq i \leq 2 k-1$, one can check in polynomial time whether $\Gamma^{\prime}(G) \leq j$. So we must look at classes for which the maximum degree is not bounded. In Section 3, we consider caterpillars which are trees such that the deletion of all leaves results in a path, called backbone. We show that if T is a caterpillar then $\Gamma^{\prime}(T) \leq \Delta(T)+1$ and then give a linear-time algorithm to compute the Grundy index of a caterpillar. In view of this result, a natural question is the following:

Problem 2. Can we compute in polynomial time the Grundy index of a given tree?

2 Co-NP-completeness results

The aim of this section is to prove that f-Greedy Edge-Colouring is co-NP-complete for every function f such that $k \leq f(k) \leq 2 k-2$ for all k.

For sake of clarity, we first show that Minimum Greedy Edge-Colouring is co-NP-Complete. Minimum Greedy Edge-Colouring is clearly in co-NP, because a greedy edge-colouring of a graph G with at least $\Delta(G)+1$ colours is a certificate that $\Gamma^{\prime}(G)>\Delta(G)$. We show that it is co-NP-Complete.

Theorem 3. Minimum Greedy Edge-Colouring is co-NP-Complete.
We now prove the co-NP-completeness by reduction from 3-Edge-Colourability of Cubic Graphs.

Let H be a cubic graph on n vertices $w_{1}, \ldots w_{n}$. Let G be the graph defined by $V(G)=$ $V(H) \cup\left\{u_{1}, \ldots, u_{n}\right\} \cup\{v, a, b, c\}$ and $E(G)=E(H) \cup\left\{u_{i} w_{i} \mid 1 \leq i \leq n\right\} \cup\left\{v u_{i} \mid 1 \leq i \leq\right.$ $n\} \cup\{a v, b v, c v\}$. See Figure 1 .

Figure 1: Graph G obtained from a cubic graph H.

In $G, d(v)=n+3$, while the degree of all other vertices is at most 4 . Thus, $\Delta(G)=d(v)=n+3$ because $n \geq 4$ has H is cubic. Moreover, every edge of G is adjacent to at most $n+3$ edges so $\Gamma^{\prime}(G) \leq n+4=\Delta(G)+1$. Hence the Grundy index of G is either $\Delta(G)$ or $\Delta(G)+1$. The co-NP-completeness of Minimum Greedy Edge-Colouring follows directly from the following claim.

Claim 3.1. $\chi^{\prime}(H)=3$ if and only if $\Gamma^{\prime}(G)=\Delta(G)+1$.
Proof. (\Rightarrow) Suppose that there exists a 3 -edge-colouring ϕ of H. Let us extend ϕ into a greedy edge-colouring of G with $\Delta(G)+1=n+4$ colours. Set $\phi(a v)=1, \phi(b v)=2, \phi(c v)=3$, and for all $1 \leq i \leq n, \phi\left(u_{i} w_{i}\right)=4$ and $\phi\left(u_{i} v\right)=i+4$. Notice that every vertex w_{i} is incident to an edge of H of each colour in $\{1,2,3\}$ since H is cubic. Then it is straightforward to check that ϕ is a greedy $(n+4)$-edge-colouring of G.
(\Leftarrow) Suppose that there is a greedy $(n+4)$-edge-colouring of G. Some edge is coloured $n+4$. But such an edge has to be adjacent to at least $n+3$ edges and thus to be one of the $v u_{i}$, say $v u_{n}$. The edge $v u_{n}$ is adjacent to exactly $n+3$ edges. So by Property (P), all edges adjacent to $v u_{n}$ receive distinct colours in $\{1, \ldots, n+3\}$.

Let us first prove by induction on $1 \leq j \leq n$ that the edge e_{j} incident to $v u_{n}$ labelled $n+5-j$ is one of the $v u_{i}$, the result holding for $j=1$. Suppose now that $j \geq 2$. The edge e_{j} must have degree at least $n+5-j$ since it is adjacent to $v u_{n}$ and one edge of each colour in $\{1, \ldots, n+4-j\}$ by Property (P). Hence e_{j} must be incident to v since $u_{n} w_{n}$ is adjacent to four edges. Then e_{j} must have degree at least $n+3$ since it is adjacent to the $j-1$ edges e_{l} for $1 \leq l<j$ and one edge of each colour in $\{1, \ldots, n+4-j\}$. Hence e_{j} is one of the $v u_{i}$.

Hence, without loss of generality, we may assume that $\phi\left(v u_{i}\right)=i+4$ for all $1 \leq i \leq n$. The edge $v u_{i}$ is adjacent to an edge coloured 4. This edge must be $u_{i} w_{i}$ since the edges $a v, b v$ and $c v$ are adjacent to at most 2 edges coloured in $\{1,2,3\}$. Thus $\phi\left(u_{i} w_{i}\right)=4$ for all $1 \leq i \leq n$.

Now every edge $u_{i} w_{i}$ is adjacent to three edges, one of each colour in $\{1,2,3\}$. Since $\phi\left(v u_{i}\right) \geq 5$, these three edges must be the three edges incident to w_{i} in H. Thus all the edges of H are coloured in $\{1,2,3\}$. Hence the restriction of ϕ to H is a 3-edge-colouring.

Remark 4. Observe that the graph G has chromatic index $\Delta(G)$. Indeed colour the edges adjacent to v with the colours $1, \ldots, \Delta(G)$ and then extend greedily this colouring to the other edges. Since all the remaining edges are adjacent to at most four edges they will all get a colour less or equal to 5. Since $\Delta(G) \geq 5$, we obtain a $\Delta(G)$-edge colouring. Hence the above reduction shows that it is co-NP-complete to decide whether $\Gamma^{\prime}(G)=\chi^{\prime}(G)$.

Theorem 3 may be generalized as follows.
Theorem 5. Let f be a function such that $k \leq f(k) \leq 2 k-2$ for all $k \in \mathbb{N}$. f-Greedy EdgeColouring is co-NP-Complete.

Proof. f-Greedy Edge-Colouring is clearly in co-NP, because a greedy edge-colouring of a graph G with more than $f(\Delta(G))$ colours is a certificate that $\Gamma^{\prime}(G)>f(\Delta(G))$.

We now prove the co-NP-completeness by reduction from 3-Edge-Colou- Rability of Cubic Graphs.

Let H be a cubic graph on n vertices w_{1}, \ldots, w_{n} and let G be the graph defined as in the proof of Theorem 3. Set $p=f(n+3)-(n+3)$. Then $0 \leq p \leq n+1$. For $1 \leq i \leq p$, let T_{i} be the tree with vertex set $\left\{a_{i}, b_{i}, c_{i}, t_{i}\right\} \cup\left\{a_{i, j}, b_{i, j}, c_{i, j}, s_{i, j}, t_{i, j} \mid 1 \leq j \leq n-1\right\}$ and edge set $\left\{a_{i} t_{i}, b_{i} t_{i}, c_{i} t_{i}\right\} \cup \bigcup_{j=1}^{n-1}\left\{a_{i, j} t_{i, j}, b_{i, j} t_{i, j}, c_{i, j} t_{i j}, t_{i, j} s_{i, j}, s_{i, j} t_{i}\right\}$. Let G^{\prime} be a graph obtained from the disjoint union of G and the T_{i} by adding the edge $u_{n} t_{i}$ for all $1 \leq i \leq p$. See Figure 2 .

Figure 2: The graph G^{\prime} obtained from a cubic graph H.

Observe that $\Delta\left(G^{\prime}\right)=n+3$ and the vertices of degree $n+3$ are v, t_{1}, \ldots, t_{p} and u_{n} when $p=n+1$. Moreover every edge is adjacent to at most $n+3+p$, so $\Gamma^{\prime}(G) \leq n+3+p+1=f\left(\Delta\left(G^{\prime}\right)+1\right.$. The co-NP-completeness of f-Greedy Edge-Colouring follows directly from the following claim.
Claim 5.1. $\chi^{\prime}(H)=3$ if and only if $\Gamma^{\prime}\left(G^{\prime}\right)=f\left(\Delta\left(G^{\prime}\right)\right)+1$.
(\Rightarrow) Suppose that there exists a 3 -edge-colouring ϕ of H. Let us extend ϕ into a greedy edgecolouring of G^{\prime} with $f\left(\Delta\left(G^{\prime}\right)\right)+1=n+p+4$ colours. We first extend it into a greedy ($n+4$)-colouring of G as we did in the proof of Theorem 3. In particular, we have $\phi\left(u_{n} w_{n}\right)=4$ and $\phi\left(u_{n} v\right)=n+4$. For all $1 \leq i \leq p$ and all $1 \leq j \leq n-1$, we set $\phi\left(t_{i} a_{i}\right)=1, \phi\left(t_{i} b_{i}\right)=2, \phi\left(t_{i} c_{i}\right)=3, \phi\left(t_{i, j} a_{i, j}\right)=1$, $\phi\left(t_{i, j} b_{i, j}\right)=2, \phi\left(t_{i, j} c_{i, j}\right)=3, \phi\left(t_{i, j} s_{i, j}\right)=j+3$, and $\phi\left(t_{i} u_{n}\right)=n+4+i$. Then it is straightforward to check that ϕ is a greedy $(n+p+4)$-edge-colouring of G^{\prime}.
(\Leftarrow) Suppose that G^{\prime} admits a greedy $(n+p+4)$-edge-colouring ϕ. For all $1 \leq i \leq p$, there is an edge e_{i} coloured $n+4+i$. This edge must has to be adjacent to at least $n+3+i$ edges by

Property (P). So all the e_{i} must be in $F=\left\{v u_{n}\right\} \cup\left\{u_{n} t_{i} \mid 1 \leq i \leq p\right\}$. Now the edge e_{p} is adjacent to an edge e_{0} coloured $n+4$. This edge is adjacent to at least $n+4$ edges: one of each colour in $\{1, \ldots, n+3\}$ and e_{p}. Hence e_{0} also has to be in F. Since $|F|=p+1$, all the edges in F are coloured with distinct labels in $\{n+4, \ldots, n+p+4\}$.

Now applying the same reasoning as in the proof of Theorem 3, we derive that the restriction to ϕ to H is a 3-edge-colouring.

3 Greedy edge-colouring of caterpillars

In this section, we show a polynomial-time algorithm solving Greedy Edge-Colouring for caterpillars. A caterpillar is a tree such that the deletion of all leaves results in a path, called backbone.

We first show that the Grundy index of a caterpillar T is at mots $\Delta(T)+1$, and so it it either $\Delta(T)$ or $\Delta(T)+1$. some properties of a greedy edge-colouring of a caterpillar. We then give a polynomial-time algorithm that computes the Grundy index of a caterpillar.

3.1 Grundy index of a caterpillar

Lemma 6. Let T be a caterpillar and v a vertex in its backbone. In every greedy edge-colouring of T, the colours $1, \ldots, d(v)-2$ appear on the edges incident to v.

Proof. By the contrapositive. Let c be an edge-colouring of T. Suppose that a colour $\alpha \in$ $\{1, \ldots, d(v)-2\}$ is not assigned to any edge incident to v. Then, since all the edges incident to v have different colours, at least three colours strictly greater than $d(v)-2$ appear on three edges incidents to v. One of these colours, say β, must appear on an edge e incident with a leaf. But e is uniquely adjacent to edges incident to v. So e is adjacent to no edge coloured α. Since $\alpha \leq d(v)-2<\beta$, the edge-colouring c is not greedy.

Lemma 7. Let c be a greedy edge-colouring of a caterpillar T and v a vertex in the backbone of T. If two edges e_{1} and e_{2} incident to v receive colours greater than $d(v)-1$, then e_{1} and e_{2} are two edges of the backbone and the edges incident to v and leaves are coloured $1, \ldots, d(v)-2$.

Proof. Suppose by way of contradiction that one of these two edges, say e_{1}, is incident to a leaf. Then e_{1} is adjacent to $d(v)-1$ other edges, and one of them, namely e_{2}, is assigned a colour greater than $d(v)-1$. Thus e_{1} is adjacent to at most $d(v)-2$ edges whose colour is less or equal to $d(v)-1$. So, there is a colour α in $\{1, \ldots, d(v)-1\}$ such that no edge incident to e_{1} is coloured α. This contradicts the fact that c is greedy. Hence e_{1} and e_{2} are edges of the backbone.

Now by Lemma 6, there must be edges incident to v of each colour in $\{1, \ldots, d(v)-2\}$. So the $d(v)-2$ edges distinct form e_{1} and e_{2}, which are the edges linking v and leaves are coloured must be coloured in $\{1, \ldots, d(v)-2\}$.
Theorem 8. If T is a caterpillar, then $\Gamma^{\prime}(T) \leq \Delta(T)+1$.
Proof. Set $\Delta(T)=\Delta$. Suppose by way of contradiction that it is possible to greedily colour T with $\Delta+2$ colours. Let e be an edge coloured $\Delta+2$. It must be adjacent to at least $\Delta+1$ edges, one of each colour $1, \ldots, \Delta+1$. Thus, the edge e is in the backbone. According to Lemma 7 , the edges e_{1} and e_{2} adjacent to e with colours Δ and $\Delta+1$ are in the backbone. Furthermore all the edges adjacent to e which are neither e_{1} nor e_{2} are coloured in $\{1, \ldots, \Delta-2\}$. Hence e is adjacent to no edge coloured $\Delta-1$, a contradiction.

Theorem 8 is tight since there are caterpillars T whose Grundy index is greater than their maximum degree. For example, consider the caterpillar C_{k} with backbone (t, u, v, w) for which all the vertices t has degree $k-1$, and v and w degree k. An edge-colouring in which the $k-2$ edges incident to t and a leaf are coloured with $1, \ldots, k-2$, the $k-1$ edges incident to w and a leaf with $1, \ldots, k-1$, the $k-2$ edges incident to v and a leaf with $1, \ldots, k-2$, the edge $t u$ with $k-1$, the edge $v w$ with k and the edge $u v$ with $k+1$ is greedy. See Figure 3 for $k=5$.

Figure 3: The caterpillar C_{5} and a greedy edge-colouring with 6 colours.

3.2 Finding the Grundy index of a caterpillar

Theorem 8 implies that the Grundy index of a caterpillar T is either $\Delta(T)$ or $\Delta(T)+1$. Hence determining the Grundy index of a caterpillar is equivalent to solve Minimum Greedy EdgeColouring for it. The aim of this subsection is to prove that it can be done in linear time.

Theorem 9. Determining the Grundy index of a caterpillar T can be done in $O(|V(T)|)$.
In order to prove these theorems we first give some definitions and prove some lemmas. Let T be a caterpillar with backbone $P=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$. The first edge of P is $v_{1} v_{2}$. For any edge $e=v_{i} v_{i+1} \in P$, removing e from T gives two caterpillars T_{e}^{-}and $T^{+} e$, the first one containing v_{i} and the second one containing v_{i+1}. For convenience, the backbone of T_{e}^{-}is $P^{-}(e)=\left(v_{i}, v_{i-1}, \ldots, v_{1}\right)$ and the backbone of T_{e}^{+}is $P_{e}^{+}=\left(v_{i}, v_{i+1}, \ldots, v_{n}\right)$. Hence the first edge of T_{e}^{-}is $\left(v_{i}, v_{i-1}\right)$ and the first edge of $T^{+}(e)$ is $\left(v_{i+1}, v_{i+2}\right)$.

Lemma 10. Let T be a caterpillar of maximum degree Δ with backbone $P=\left(v_{1}, \ldots, v_{n}\right)$. Then $\Gamma^{\prime}(T)=\Delta+1$ if and only if there is an edge $e \in E(P) \backslash\left\{v_{1} v_{2}, v_{n-1} v_{n}\right\}$ such that
(i) one endvertex of e has degree Δ, and
(ii) one of the two caterpillars T_{e}^{-}and T_{e}^{+}has a greedy edge-colouring such that the first edge of its backbone is coloured Δ and the other has a greedy edge-colouring such that its first edge of its backbone is coloured $\Delta-1$.

Proof. Assume that T has a greedy $(\Delta+1)$-edge-colouring. Let e be an edge coloured $\Delta+1$. By Lemma $7, e$ is in the backbone and incident to a vertex of degree Δ, proving (i). Moreover, the edge e is adjacent to an edge coloured Δ and another one labelled $\Delta-1$. Again by Lemma 7 these two edges must also be in the backbone. In particular, e is not $v_{1} v_{2}$ nor $v_{n-1} v_{n}$ because these two edges are adjacent to a unique edge of the backbone. Moreover the greedy edge-colourings induced on T_{e}^{-}and T_{e}^{+}clearly satisfy (ii).

Conversely, assume that there is an edge $e \in E(P) \backslash\left\{v_{1} v_{2}, v_{n-1} v_{n}\right\}$ satisfying (i) and (ii). Let ϕ^{-}and ϕ^{+}be the greedy edge-colourings of T_{e}^{-}and T_{e}^{+}respectively as in (ii). Let ϕ be the edgecolouring of T defined by $\phi(e)=\Delta+1, \phi(f)=\phi^{-}(f)$ for all $f \in T_{e}^{-}$and $\phi(f)=\phi^{+}(f)$ for all $f \in T_{e}^{+}$. We claim that ϕ is a greedy edge-colouring. Clearly, since ϕ^{-}and ϕ^{+}are greedy, it suffices to prove that e is adjacent to an edge of every colour i in $\{1, \ldots, \Delta\}$. Since ϕ^{+}and ϕ^{-}satisfy (ii), then e is adjacent to an edge labelled Δ and an edge labelled $\Delta-1$, Now, e is incident to a vertex v of degree Δ. This vertex is incident to e and an edge f in the backbone. The edge f is the first edge a tree T_{f} in $\left\{T_{e}^{+}, T_{e}^{-}\right\}$. In the greedy edge-colouring of T_{f}, the edge f has a colour greater than $\Delta-2$, so the $\Delta-2$ edges incident to v which are not e nor f have all one colour in $1, \ldots, \Delta-2$. Hence e is adjacent to an edge of every colour in $\{1, \ldots, \Delta\}$.

Lemma 11. Let T be a caterpillar with backbone P with first edge is $e=u v$. Then T has a greedy edge-colouring such that e is coloured k if and only if one of the following holds:
(i) $d(u) \geq k$ or $d(v) \geq k$;
(ii) $d(u)=k-1$ and T_{e}^{+}admits a greedy edge-colouring such that the first edge of P_{e}^{+}is coloured $k-1$.

Proof. Let $e=u v$ with u the first vertex of P. Assume first that T has a greedy edge-colouring such that e is coloured k and that e is incident to no vertex of degree k. Then the edges incident to u must be coloured by $1, \ldots, d(u)-1$ and the edges incident to u and a leaf are coloured by
$1, \ldots d(v)-2$. Hence the edge incident to e and coloured $k-1$ must be the first edge of P_{e}^{+}is coloured $k-1$ by Property (P). So the edge incident to e and coloured $k-2$ must be incident to u, and thus $d(u)-1 \geq k-2$, that is $d(u) \geq k-1$.

Assume now that (i) holds. Let x be a vertex in $\{u, v\}$ with degree at least k. One can colour all the edges incident to x with $1, \ldots, d(v)$ such that e is coloured k and then extend this edge-colouring greedily to obtain the desired greedy edge-colouring of T.

Finally assume that (ii) holds. Let ϕ be a greedy-edge colouring of T_{e}^{+}such that the first edge of P_{e}^{+}is coloured $k-1$. One can extend it by assigning k to $e, 1, \ldots, k-2$ to the $k-2$ edges incident to u and leaves and $1, \ldots, d(v)-2$ to the edges incident to v. It is routine to check that this a a greedy-edge colouring of T.

Proof of Theorem 9. Theorem 8 and Lemma 10 imply that Algorithm 1 return the Grundy index of T provided that we have a subroutine FirstEdge (T, P, k) that returns 'yes' if a caterpillar T with backbone P admits a greedy-edge colouring such that the first edge of P is coloured k.

```
Algorithm 1: GrundyIndex(T)
    Input: A caterpillar \(T\).
    Output: \(\Gamma^{\prime}(T)\).
    Let \(P=\left(v_{1}, v_{2}, \ldots, v_{n}\right)\) be the backbone of \(T\). Compute \(d\left(v_{i}\right)\) for all \(1 \leq v_{n}\) and compute
    \(\Delta=\Delta(T)\).
    for \(i=2\) to \(n-2\) do
        \(e:=v_{i} v_{i+1} ;\)
        if \(d\left(v_{i}\right)=\Delta\) or \(d\left(v_{i+1}\right)=\Delta\) then
            if FirstEdge \(\left(T_{e}^{+}, P_{e}^{+}, \Delta\right)=T R U E\) and FirstEdge \(\left(T_{e}^{-}, P_{e}^{-}, \Delta-1\right)=T R U E\) then
                return \(\Delta+1\);
            if \(\operatorname{FirstEdge}\left(T_{e}^{+}, P_{e}^{+}, \Delta-1\right)=T R U E\) and FirstEdge \(\left(T_{e}^{-}, P_{e}^{-}, \Delta\right)=T R U E\) then
                return \(\Delta+1\);
    Return \(\Delta\);
```

Such a subroutine FirstEdge may be obtained by Algorithm 2 according to Lemma 11.

```
Algorithm 2: FirstEdge( \(T, P, k\) )
    Input: A caterpillar \(T\) with backbone \(P\) and an integer \(k\).
    Output: \(T R U E\) if there is a greedy \(k\)-edge-colouring of \(T\) with first edge of \(P\) coloured \(k\),
                and \(F A L S E\) otherwise.
    Let \(u\) be the first vertex of \(P\) and \(v\) its second. (So \(u v\) is the first edge.)
    if \(d(u) \geq k\) or \(d(v) \geq k\) then
        return TRUE;
    if \(d(u) \geq k-1\) then
        return FirstEdge \((T-u, P-u, k-1)\);
    return \(F A L S E\);
```

Let us now examine the complexity of Algorithm 1. Let us first observe that FirstEdge (T, P, k) makes a constant number of operations before calling FirstEdge ($T-u, P-u, k-1$). Hence an easy induction show that it makes $O(k)$ operations in total.

Algorithm 1 first computes (line 1) the degrees of all the v_{i}, which can be done in time $O(|V(T)|)$ and then takes the maximum of all these values which can also be done in time $O(|V(T)|)$.

In a second phase (line 2 to 8), for each edge $e \in P$ which is incident to a vertex of degree Δ, Algorithm 1 makes at most four calls of FirstEdge with last parameter $\Delta-1$ or Δ. Hence for each $e \in P$ it makes $O(\Delta)$ operations. Let S be the set of vertices of degree Δ. The number of edges of P incident to a vertex of degree Δ is at most $2|S|$. But every vertex in S is adjacent to at least $\Delta-2$ leaves. Hence $|V(T)| \geq|S|+(\Delta-2)|S|$, so $|S| \leq|V(T)| /(\Delta-1)$. Hence, in this second phase, the algorithm makes at most $O\left(2 \times \frac{|V(T)|}{\Delta-1} \Delta\right)=O(|V(T)|)$ operations.

Thus, in total, Algorithm 1 makes $O(|V(T)|)$ operations.

References

[1] M. Asté, F. Havet and C. Linhares-Sales. Grundy number and products of graphs. Discrete Mathematics 310(9):1482-1490, 2010.
[2] M. R. Garey and D. S. Johnson, Computers and intractability. A guide to the theory of NPcompleteness. A Series of Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco, Calif., 1979.
[3] F. Havet and L. Sampaio. On the Grundy number of a graph. In Proceedings of the International Symposium on Parameterized and Exact Computation(IPEC), Lecture Notes on Computer science 6478, December 2010.
[4] I. Holyer. The NP-completeness of edge-coloring. SIAM J. Computing 2:225-231, 1981.
[5] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. In Proc. 25th ACM Symposium on Theory of Computing, pages 286-293, 1993.
[6] M. Zaker. Results on the Grundy chromatic number of graphs. Discrete Math. 306(23):31663173, 2006.

[^0]: *Projet Coati I3S (CNRS, UNSA) and INRIA, Sophia Antipolis.
 \dagger Partly supported by CAPES/Brazil.
 \ddagger Deparment of Maths and Statistics University of the Fraser Valley, Abbotsford, BC, Canada.

