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Abstract. A procedure for sampling lattice vectors is at the heart of
many lattice constructions, and the algorithm of Klein (SODA 2000)
and Gentry, Peikert, Vaikuntanathan (STOC 2008) is currently the one
that produces the shortest vectors. But due to the fact that its most
time-efficient (quadratic-time) variant requires the storage of the Gram-
Schmidt basis, the asymptotic space requirements of this algorithm are
the same for general and ideal lattices. The main result of the current
work is a series of algorithms that ultimately lead to a sampling proce-
dure producing the same outputs as the Klein/GPV one, but requiring
only linear-storage when working on lattices used in ideal-lattice cryp-
tography. The reduced storage directly leads to a reduction in key-sizes
by a factor of Ω(d), and makes cryptographic constructions requiring
lattice sampling much more suitable for practical applications.

At the core of our improvements is a new, faster algorithm for computing
the Gram-Schmidt orthogonalization of a set of vectors that are related
via a linear isometry. In particular, for a linear isometry r : Rd → Rd

which is computable in time O(d) and a d-dimensional vector b, our algo-
rithm for computing the orthogonalization of (b, r(b), r2(b), . . . , rd−1(b))
uses O(d2) floating point operations. This is in contrast to O(d3) such op-
erations that are required by the standard Gram-Schmidt algorithm. This
improvement is directly applicable to bases that appear in ideal-lattice
cryptography because those bases exhibit such “isometric structure”.
The above-mentioned algorithm improves on a previous one of Gama,
Howgrave-Graham, Nguyen (EUROCRYPT 2006) which used different
techniques to achieve only a constant-factor speed-up for similar lattice
bases. Interestingly, our present ideas can be combined with those from
Gama et al. to achieve an even an larger practical speed-up.

We next show how this new Gram-Schmidt algorithm can be applied to-
wards lattice sampling in quadratic time using only linear space. The
main idea is that rather than pre-computing and storing the Gram-
Schmidt vectors, one can compute them “on-the-fly” while running the

⋆ This research was partially supported by the ANR JCJC grant “CLE”.
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sampling algorithm. We also rigorously analyze the required arithmetic
precision necessary for achieving negligible statistical distance between
the outputs of our sampling algorithm and the desired Gaussian distri-
bution. The results of our experiments involving NTRU lattices show
that the practical performance improvements of our algorithms are as
predicted in theory.

1 Introduction

Sampling lattice points is one of the fundamental procedures in lattice cryptog-
raphy. It is used in hash-and-sign signatures [GPV08], (hierarchical) identity-
based encryption schemes [GPV08,CHKP10,ABB10], standard-model signatures
[ABB10,Boy10], attribute-based encryption [BGG+14], and many other con-
structions. Being able to output shorter vectors leads to more secure schemes,
and the algorithm that produces the currently-shortest samples is the random-
ized version of Babai’s nearest-plane algorithm [Bab86] due to Klein [Kle00] and
Gentry, Peikert, Vaikuntanathan [GPV08].

The main inefficiency of cryptography based on general lattices is that the
key size is usually (at least) quadratic in the security parameter, which is related
to the fact that a d-dimensional lattice is generated by d vectors. For security,
the lattice dimension is usually taken to be on the order of 512, and this re-
sults in keys that are larger than one megabyte in size and unsuitable for most
real-world applications. For this reason, all practical implementations of lattice
schemes (e.g. [HPS98,LMPR08,LPR13a,DDLL13,DLP14]) rely on the hardness
of problems involving polynomial rings [PR06,LM06,LPR13a], in which lattices
can be represented by a few polynomials. Due to the fact that solving certain
average-case problems over polynomial rings was shown to be as hard as solving
worst-case problems in ideal lattices [SSTX09,LPR13a], building cryptographic
systems using polynomimals is often referred to as ideal lattice cryptography.

During its execution, the Klein/GPV algorithm is implicitly computing the
Gram-Schmidt orthogonalization of the input basis.1 Since the Gram-Schmidt
procedure requires Θ(d3) operations, the Klein/GPV sampler also requires at
least this much time. For improving the time-complexity, one can pre-compute
and store the Gram-Schmidt basis, which results in a sampling procedure that
uses only Θ(d2) operations. The Gram-Schmidt basis, however, requires the stor-
age of Θ(d2) elements, and so the key size is, as mentioned above, unacceptably
large. One may hope that, again, using polynomials results in a decrease of the
required storage. In this case, unfortunately, such rings do not help. The Gram-
Schmidt orthogonalization procedure completely destroys the nice structure of
polynomial lattices. So while a polynomial lattice basis can be represented by
a few vectors, its Gram-Schmidt basis will have d vectors. Thus the Θ(d2)-
operation Klein/GPV algorithm requires as much storage when using polyno-

1 The Gram-Schmidt procedure produces a mutually-orthogonal set of vectors
(b̃1, . . . , b̃d) that span the same inner-product space as the input vectors (b1, . . . ,bd)



3

mial lattices as when using general lattices, and is equally unsuitable for practical
purposes. Therefore the only realistic solution is to not store the pre-processed
Gram-Schmidt basis, which would then allow for the polynomial lattice algo-
rithm to be linear-space (since only the original, compact-representation basis
needs to be stored), but require at least Ω(d3) time due to the fact that the
Gram-Schmidt basis will need to be computed.

1.1 Our Results

Our main result is an algorithm that computes the Gram-Schmidt basis of certain
algebraic lattices using Θ(d2), instead of Θ(d3), arithmetic operations. We then
show how this new procedure can be combined with the Klein/GPV sampler
to achieve a “best-of-both-worlds” result – a sampling algorithm that requires
Θ(d2) operations, which does not require storing a pre-processed Gram-Schmidt
basis. In ideal lattice cryptography, this implies being able to have keys that
consist of just the compact algebraic basis requiring only linear storage. Not
pre-computing the Gram-Schmidt basis of course necessarily slows down our
sampling algorithm versus the one where this basis is already stored in memory.
But our new orthogonalization algorithm is rather efficient, and the slowdown
in some practical applications is by less than a factor of 4 (see the performance
table in Section 9.1). In case of amortization (i.e. sampling more than one vector
at a time), the running time of our new algorithm becomes essentially the same
as that of the one requiring the storage of the orthogonalized basis. As a side
note, since the Klein/GPV algorithm is just a randomized version of the classic
Babai nearest plane algorithm [Bab86], all our improvements apply to the latter
as well.

While analyzing the running-time of lattice algorithms, it is very important
to not only consider the number of arithmetic operations, but also the arithmetic
precision required for the algorithms to be stable. The run-time of algorithms
that are not numerically stable may suffer due to the high precision required dur-
ing their execution. A second important issue is understanding how the precision
affects the statistical closeness of the distribution of the outputted vectors ver-
sus the desired distribution. We rigorously show that in order to have statistical
closeness between the output distribution and the desired discrete Gaussian one
be at most 2−λ, the required precision of the Gram-Schmidt basis needs to be a
little more (in practice, less than a hundred bits) than λ. We then experimentally
show that our new Gram-Schmidt procedure is rather numerically stable, and
the intermediate storage is not much more than the final required precision.2

2 The reason that we only do experimental analysis of this second part, rather than a
rigorous theoretical one, is because the precision required in practice will be much
less than in theory due to the fact that theoretically, there could exist bases on
which the Gram-Schmidt procedure is rather unstable. When using this procedure
in cryptographic schemes, we can always test our basis for numerical stability by
comparing the output of the exact Gram-Schmidt algorithm versus the “approxi-
mate” Gram-Schmidt algorithm that will be actually used.
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A third issue that also needs to be considered in practice is the space require-
ments of the algorithm during run-time. While the stored basis is very short, it
could be that the intermediate computations require much larger storage (e.g.
if the intermediate computation requires storing the entire Gram-Schmidt ba-
sis to a high precision). Our sampling algorithm, however, is rather efficient in
this regard because it only requires storing one Gram-Schmidt vector at a time.
The storage requirement during run-time is therefore less than 64KB for typical
dimensions used in cryptographic applications.

Isometries and Ideal Lattices. Interestingly, our improved orthogonalization
algorithm for polynomial lattices does not have much to do with their algebraic
structure, but rather relies on their implicit geometric properties. The types of
bases whose Gram-Schmidt orthogonalization we speed up are those that consist
of a set of vectors that are related via a linear isometry. In particular, if H is
a d-dimensional Hermitian inner-product space and r : H → H is a linear
map that preserves the norm and is computable using O(d) operations, then we
show (both theoretically and via implementations) that orthogonalizing a set
of vectors {b, r(b), r2(b) . . . , rd−1(b)} can be done using Θ(d2) floating point
operations.

We now explain the connection between isometries and ideal lattices. Con-
sider the cyclotomic number field, with the usual polynomial addition and mul-
tiplication operations, F = Q[X]/〈Φm(X)〉 where Φm(X) is the mth cyclotomic
polynomial (and so it has degree φ(m)). Elements in F can be represented via
a canonical embedding3 into Cφ(m), and in that case F becomes isomorphic, as
an inner product space, to Rφ(m) where the inner product 〈a,b〉 of a,b ∈ F is
defined as

〈a,b〉 =
∑

1≤i≤m,gcd(i,m)=1

a(ζim) · b(ζim),

where ζm ∈ C is an mth root of unity (c.f. [LPR13b, Sections 2.2, 2.5.2]).4

With the above definition of inner product (which is in fact the usual in-
ner product over Cφ(m) when elements in F are represented via the canonical
embedding), the norm of an element b ∈ F is

‖b‖ =
√

∑

1≤i≤m,gcd(i,m)=1

|b(ζim)|2.

3 The canonical embedding of a polynomial b ∈ F is a vector in Cφ(m) whose coeff-
cients are the evaluations of b on each of the φ(m) complex roots of Φm(X). Due
to the fact that half of the roots of Φm(X) are conjugates of the other half, the
resulting embedded vector in Cφ(m) can be represented by φ(m) real numbers.

4 We point out that the actual computation of the inner product does not require any
operations over C. The reason is that 〈a,b〉 =

∑

1≤i≤m,gcd(i,m)=1 a(ζ
i
m) · b(ζim) can

be rewritten as (V a)TV b = aTV TV b for a Vandermonde matrix V with coefficients
in C. The matrix V TV , however, is a simple integer matrix, multiplication by which
can be performed in linear time for most “interesting” cyclotomic polynomials (e.g.
m is prime or a power of 2).
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Since all ζim, where gcd(i,m) = 1, are roots of Φm(X) and |ζim| = 1, one
can check that for any b ∈ F , ‖b‖ = ‖bX‖. Since the function r : F → F
defined as r(b) = bX is linear, it is also an isometry (since it preserves the
norm). Furthermore, since F is a field, for any non-zero b ∈ F , the elements
b,bX,bX2, . . . ,bXφ(m)−1 are all linearly-independent. When b is an element
of R = Z[X]/〈Φm(X)〉, the set

{b,bX,bX2, . . . ,bXφ(m)−1} = {b, r(b), r2(b), . . . , rφ(m)−1(b)}

therefore generates the ideal 〈b〉 as an additive group. Such bases containing
short elements can serve as private keys in cryptographic schemes.5

Paper Organization. In Section 2, we set up the notations and definitions that
will be used throughout the paper. In Section 3.1, we describe a simple version
of our new algorithm that efficiently orthogonalizes a given set of vectors, and
in Section 3.2 we give the full, optimized algorithm. In Section 4, we describe an
algorithm that, given the orthogonalization, returns the transformation matrix µ
that converts the set {b, r(b), . . . , r(b)} to {b̃1, b̃2, . . . , b̃n}. In Section 5, we ex-
tend our basic algorithms to those that can more efficiently orthogonalize sets of
vectors of the form b1, r(b1), . . . , r

n−1(b1),b2, r(b2), . . . , r
n−1(b2),b3, r(b3), . . ..

These types of sets are the ones that normally occur as secret keys in lattice
cryptography. A particular example of such a set is the NTRU lattice, which
we discuss in Section 7. In that section, we also give timing comparisons be-
tween the exact version of our orthogonalization algorithm (which is analyzed
in Section 6), and that of [GHN06], for computing the Gram-Schmidt orthogo-
nalization of NTRU lattices. Since the two algorithms use different techniques
to achieve speed-ups, we demonstrate that the two improvements can comple-
ment each other in the form of an even faster algorithm. In Section 8, we show
how to implement Babai’s nearest plane algorithm and the Klein/GPV sampling
in linear space for lattices whose basis contains vectors that are related via an
isometry. In Section 9 we focus on the implementation aspects of our results. In
particular, we analyze the required precision to insure the correct functionality
of our sampling algorithm.

1.2 Related Work

Computing faster orthogonalization for vectors that are somehow related has
been considered in the past. For example, Sweet [Swe84] demonstrated an algo-
rithm that orthogonalizes d× d Toeplitz matrices using O(d2) operations. This
is the same linear-time speed-up as for our algorithm, but for a different class of

5 Normally, the bases used in schemes have slightly different forms, such as consisting
of a concatenation of elements from R, or being formed by several elements in R.
Such bases still contain large components that are related via an isometry, and we
discuss this in more detail in Section 7.
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structured matrices.6 The techniques in that paper seem to be rather different
than in ours – [Swe84] works with the concrete representation of Toeplitz ma-
trices, whereas we only rely on the abstract geometric properties of isometries.

For the special case of NTRU lattices, Gama, Howgrave-Graham, and Nguyen
[GHN06] devised algorithms that take advantage of a structure of NTRU bases
called symplecticity. This allows them to be faster (by a constant factor) than
standard Gram-Schmidt orthogonalization when performing orthogonalization
in exact arithmetic. We adapt our algorithms for the same application and they
outperform those from [GHN06].7 And since our algorithm and that of [GHN06]
relies on different ideas, it turns out that we can combine the two techniques to
achieve a greater overall improvement (see Figure 1 in Section 7).

2 Preliminaries

2.1 Notations

Throughout the paper, we will be working over a d-dimensional inner product
spaceH (usuallyH = Rd or Cd), with 〈·, ·〉 and ‖·‖ being a scalar product and the
associated norm over H. Except when stated otherwise, vectors will be written
in bold, matrices and bases in capital bold, and scalars in non-bold letters.
B = {b1, ...,bn} will be either an ordered set of independent vectors, also called a
basis, or the n×dmatrix whose rows are the bi. We denoteBk = Span(b1, ...,bk)
to be the vector space spanned by the vectors b1, ...,bk.

Definition 2.1. A linear isometry is a linear map r : H → H such that for any
x,y ∈ H :

〈r(x), r(y)〉 = 〈x,y〉,
or equivalently

‖x‖ = ‖r(x)‖.
For conciseness, we will sometimes say isometry instead of linear isometry. Since
the dimension of H is finite, it is immediate that r is invertible. We will be
assuming throughout the work that both r and r−1 are computable in time O(d).

Definition 2.2. Let x ∈ H, and F be a subspace of H. Then Proj(x, F ), the
projection of x over F , is the unique vector y ∈ F such that ‖x−y‖ = min

z∈F
‖x−z‖

6 One may imagine that it may be possible to somehow adapt the results of [Swe84]
to the orthogonalization of bases of ideal lattices. The idea would be to embed
elements of F = Q[X]/〈Φm(X)〉 into C = Q[X]/〈Xm − 1〉 and then try to use the
fact that in the coefficient representation, the elements b,bX,bX2, . . . in C form a
Toeplitz matrix. One would have to also take care to make sure that the norm in F
corresponds to the coefficient norm in C. We are not sure whether this direction is
viable, and even if it is, the algorithm would necessarily involve computations over
dimensionm, rather than φ(m), which would unnecessarily increase the running-time
of all algorithms.

7 We mention that [GHN06] also contains other results which are independent of
Gram-Schmidt orthogonalization and are therefore not improved by our work.
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Proposition 2.3. Let r be an isometry and and F be a subspace of H. Then :
1. x ⊥ F ⇒ r(x) ⊥ r(F )
2. r(Proj(x, F )) = Proj(r(x), r(F ))

Proof. We prove the two claims separately :
1. Since r preserves the dot product, it also preserves orthogonality between

vectors.
2. r preserves the norm, so

‖x− y‖ = min
z∈F

‖x− z‖ =⇒ ‖r(x)− r(y)‖ = min
z∈r(F )

‖r(x)− z‖

⊓⊔

2.2 The Gram-Schmidt Orthogonalization

We provide three equivalent definitions of the Gram-Schmidt orthogonalization
of an ordered basis. The first one is geometrical, the second one is a mathematical
formula, and the third one looks at each vector of the basis as its decomposition
over two orthogonal vector spaces. Although the two first definitions are standard
and useful for comprehension and computation, the third one is less common
and we will mostly use it to prove that a basis is indeed the orthogonalization
of another one.

Definition 2.4. Let the basis B = {b1, ...,bn} be an ordered set of vectors in H.
Its Gram-Schmidt orthogonalization (GSO) is the unique basis B̃ = {b̃1, ..., b̃n}
verifying one of these properties :

– ∀k ∈ J1, nK, b̃k = bk −Proj(bk,Bk−1)

– ∀k ∈ J1, nK, b̃k = bk −
k−1
∑

j=1

〈bk,b̃j〉
‖b̃j‖2

b̃j

– ∀k ∈ J1, nK, b̃k ⊥ Bk−1 and (bk − b̃k) ∈ Bk−1

The bases B and B̃ then satisfy : ∀k ∈ J1, nK,Bk = B̃k. For a vector bk, we will
say that b̃k is its Gram-Schmidt reduction (GSR).

Algorithm 1 describes the Gram-Schmidt process as it is usually presented.

2.3 The Gram-Schmidt and LQ Decompositions

The Gram-Schmidt decomposition (GSD) is a natural side-product of the Gram-
Schmidt orthogonalization which gives the relation between the input and output
bases in the form of a matrix µ. Such a matrix is useful in many cases – for ex-
ample, it is crucially used in the LLL algorithm [LLL82]. Outside cryptography,
applications include solving undetermined linear systems, least square problems
and computing eigenvalues.
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Algorithm 1 GramSchmidt Process(B)

Require: Basis B = {b1, ...,bn}
Ensure: Gram-Schmidt reduced basis B̃ = {b̃1, ..., b̃n}
1: for i = 1, ..., n do

2: b̃i ← bi

3: for j = 1, ..., i− 1 do

4: µi,j =
〈bi,b̃j〉

‖b̃j‖2

5: b̃i ← b̃i − µi,jb̃j

6: end for

7: end for

8: return B̃ = {b̃1, ..., b̃n}

Definition 2.5 (Gram-Schmidt Decomposition). Let B be a d×n matrix.
B can be uniquely decomposed as B = µ × B̃, where B̃ is the GSO of B and
µ = (µi,j)16i,j6n is the lower triangular matrix such that

µi,j =











〈bi,b̃j〉
‖b̃j‖2

if i > j

1 if i = j
0 otherwise

Notice that the matrix µ is automatically constructed in Algorithm 1 while
computing the GSO. This, however, will not be the case in our improved GSO
algorithm, and this is why in this paper we will differentiate between GSO and
GSD.

We now recall the definition of LQ decomposition and give its natural relation
to the B = µ× B̃ decomposition.

Definition 2.6 (LQ decomposition). Let B be a square invertible matrix. B
can be decomposed as B = L×Q, where L is a lower triangular matrix and Q is
an orthonormal matrix. If we request the diagonal coefficients of L to be positive,
then this decomposition is unique.

Fact 2.7 Let B be a square invertible matrix, and B = µ× B̃ its GSD. An LQ
decomposition of B can be computed in time O(n2) by taking Q = D−1× B̃ and
L = µ×D, where D = Diag(‖b̃1‖, ..., ‖b̃n‖).

2.4 Discrete Gaussians

Discrete Gaussians are n-dimensional Gaussians discretized over some lattice Λ.

Definition 2.8. The n-dimensional Gaussian function ρσ,c : Rn → (0, 1] of
standard deviation σ and center c is defined by :

ρσ,c(x)
∆
=

1

(σ
√
2π)n

exp

(

−‖x− c‖2
2σ2

)
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For any lattice Λ ⊂ Rn, ρσ,c(Λ)
∆
=

∑

x∈Λ ρσ,c(x). Normalizing ρσ,c(x) by ρσ,c(Λ),
we obtain the probability distribution function of the discrete Gaussian distribu-
tion DΛ,σ,c.

Gaussian Sampling was introduced in [Kle00,GPV08] as a technique to sample
from discrete Gaussian distributions, and has since found numerous applications
in lattice-based cryptography. In [GPV08], it requires a basis B of the lattice Λ
being sampled from, as well as the GSO B̃ of B.

3 Gram-Schmidt Orthogonalization over Isometric Bases

In this section we present our improved isometric Gram-Schmidt algorithm. In
Section 3.1, we present a first simple version which we believe is very intuitive
to understand, and then present a slightly faster, more involved, version of it in
Section 3.2.

Definition 3.1. Let B = {b1, ...,bn} be an ordered basis of a lattice Λ ⊆ H.
We say that B is isometric if there exists an isometry r such that

∀k ∈ J2, nK,bk = r(bk−1)

3.1 A Quadratic-Time algorithm

We now describe a simple algorithm that computes the GSO of any isometric
basis in time Θ(nd) (or Θ(n2) when n = d).

We briefly expose the general idea behind the algorithm before presenting it
formally. If b̃k is the GSR of bk, then r(b̃k) is almost the GSR of bk+1 : it is
orthogonal to b2, ...,bk, but not to b1. However, reducing r(b̃k) with respect to
b1 would break its orthogonality to b2, ...,bk, so what we really need to do is to
reduce it with respect to b1−Proj(b1, Span(b2...bk)). Indeed, this latter vector
is orthogonal to b2, ...,bk, so reducing r(b̃k) with respect to it won’t break the
orthogonality of r(b̃k) to b2, ...,bk. Fortunately, b1 − Proj(b1, Span(b2...bk))
can itself be updated quickly. Definition 3.2 and Algorithm 2 formalize this idea.

Definition 3.2. Let B = {b1, ...,bn} be an ordered basis and k ∈ J1, nK. We
denote vB,k = b1−Proj(b1, r(Bk−1)). When B is obvious from the context, we
simply write vk.

Proposition 3.3. Let B be an isometric basis with respect to r. Algorithm 2
returns the GSO of B. Moreover, if r(v) can be computed in time O(d) for any
v ∈ H, then Algorithm 2 terminates in time O(nd).

Proof. We first prove the correctness of the scheme by proving by induction that
for every k ∈ J1, nK, we have the following :
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Algorithm 2 Isometric GSO(B)

Require: Basis B = {b1, ...,bn}
Ensure: Gram-Schmidt reduced basis B̃ = {b̃1, ..., b̃n}
1: b̃1 ← b1

2: v1 ← b1

3: for k = 1, ..., n− 1 do

4: b̃k+1 ← r(b̃k)−
〈vk,r(b̃k)〉

‖vk‖
2 vk

5: vk+1 ← vk −
〈vk,r(b̃k)〉

‖b̃k‖
2 r(b̃k)

6: end for

7: return B̃ = {b̃1, ..., b̃n}

b1 b̃1 b̃2 b̃3 b̃4 ...b̃4

f v1 v2 v3 v4 ...v4

Fig. 1. Computing all the orthogonalized vectors from the first one in Algorithm 2

– vk = b1 −Proj(b1, r(Bk−1)) (1)
– b̃k = bk −Proj(bk,Bk−1) (2)

This is trivially true for k = 1. Assuming (1) and (2) are true at step k, we have:

– Since vk and b̃k are already orthogonal to r(Bk−1), vk+1 also is as a linear
combination of the two. But vk+1 is also the orthogonalization of vk w.r.t.
r(b̃k), so it is orthogonal to r(Bk−1) + Span(r(b̃k)) = r(Bk). On the other
hand, b1−vk is in r(Bk−1) so b1−vk+1 is in r(Bk). By applying Definition
2.4, we can conclude that (1) is true for k + 1.

– The same reasoning holds for b̃k+1 : it is orthogonal to r(Bk−1) because
both vk and r(b̃k) are. But since it also is orthogonalized w.r.t. vk (in line
4 of the algorithm), it then is orthogonal to r(Bk−1) + Span(vk) = Bk. On

the other hand, bk+1− b̃k+1 = r(bk− b̃k)+
〈r(b̃k),vk〉
〈vk,vk〉 vk is in Bk. As before,

we can conclude that (2) is true for k + 1.

Since (2) is verified for any k ∈ J1, nK, B̃ is the GSO of B.
The time complexity of the algorithm is straightforward : assuming additions,

subtractions, multiplications and divisions are done in constant time, each scalar
product or square norm takes time O(d). Since there are 3(n−1) norms or scalar
products, and 2(n−1) computations of r(.), the total complexity is O(nd). ⊓⊔

3.2 Making Isometric GSO Faster

Algorithm 2 is already O(n) times faster than the classical Gram-Schmidt pro-
cess. In this subsection, we show that intermediate values are strongly interde-
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pendent and that this fact can be used to speed up our GSO implementation by
about 67%.

Lemma 3.4. Let B be an isometric basis. For any k in J1, nK, we have the
following equalities:
– 〈v1, r(b̃k)〉 = 〈vk, r(b̃k)〉
– ‖vk‖2 = 〈vk,v1〉 = ‖b̃k‖2

When implicit from context, we will denote Ck = 〈vk, r(b̃k)〉 and Dk = ‖b̃k‖2.
We have the following recursive formula :

∀k ∈ J1, n− 1K, Dk+1 = Dk −
C2

k

Dk

Proof. We prove each of the three equalities separately :
– The equality 〈v1, r(b̃k)〉 = 〈vk, r(b̃k)〉 is equivalent to 〈vk − v1, r(b̃k)〉 = 0,

which is true since vk −v1 = Proj(b1, r(Bk−1)) is in the subspace r(Bk−1)
and b̃k is orthogonal to r(Bk−1)

– The equality ‖vk‖2 = 〈vk,v1〉 is obtained by following the same reasoning
as above

– The equality ‖vk‖2 = ‖b̃k‖2 is shown by induction : it is the case for k =
1. By observing that b̃k+1 is orthogonal to vk from line 4 of Algorithm
2(resp. vk+1 is orthogonal to r(bk) from line 5)), we can use the Pythagorean
theorem to compute ‖b̃k+1‖2 and ‖vk+1‖2 :

‖b̃k+1‖2 = ‖b̃k‖2 −
〈vk, r(b̃k)〉2
‖vk‖2

and ‖vk+1‖2 = ‖vk‖2 −
〈vk, r(b̃k)〉2
‖b̃k‖2

At which point we can conclude by induction that ‖vk+1‖2 = ‖b̃k+1‖2, and
these equalities also yield the recursive formula Dk+1 = Dk − C2

k

Dk
.

⊓⊔

This result allows us to speed up further the GSO for isometric bases. At
each iteration of the algorithm Isometric GSO, instead of computing 〈vk, r(b̃k)〉,
‖b̃k‖2 and ‖vk‖2, one only needs to compute 〈v1, r(b̃k)〉, and can instantly
compute ‖b̃k‖2 = ‖vk‖2 from previously known values. We choose 〈v1, r(b̃k)〉
rather than 〈vk, r(b̃k)〉 because v1 has a much smaller bitsize than vk, resulting
in a better complexity in exact arithmetic. Moreover, in the case where we use
floating-point arithmetic, v1 does not introduce any floating-point error, unlike
vk. Algorithm 3 sums up these enhancements.

Proposition 3.5. If B is an isometric basis, then Algorithm 3 returns the GSO
of B. Moreover, if we disregard the computational cost of r, then Algorithm 3
performs essentially 3n2 multiplications (resp. additions), whereas Algorithm 2
performs essentially 5n2 multiplications (resp. additions).

Proof. For the correctness of Algorithm 3, one only needs to show that at each
step, Ck = 〈vk, r(b̃k)〉 and Dk = ‖b̃k‖2 = ‖vk‖2. The first and third equalities
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Algorithm 3 Faster Isometric GSO(B)

Require: Basis B = {b1, ...,bn}
Ensure: Gram-Schmidt reduced basis B̃ = {b̃1, ..., b̃n}(, (Ck)16k<n, (Dk)16k<n)
1: b̃1 ← b1

2: v1 ← b1

3: C1 ← 〈v1, r(b̃1)〉
4: D1 ← ‖b1‖

2

5: for k = 1, ..., n− 1 do

6: b̃k+1 ← r(b̃k)−
Ck

Dk
vk

7: vk+1 ← vk −
Ck

Dk
r(b̃k)

8: Ck+1 ← 〈v1, r(b̃k+1)〉

9: Dk+1 ← Dk −
C2

k

Dk

10: end for

are given by lemma 3.4, and the second one by induction : assuming that Ck, Dk

are correct, Dk+1 is correct, once again from lemma 3.4.

⊓⊔

4 Gram-Schmidt Decomposition over Isometric Bases

In this section, we show that the computation of the matrix µ from the Gram-
Schmidt decomposition (or GSD, see Definition 2.5) can be sped up by a O(n)
factor in the case of isometric matrices by using tricks similar to those which led
to the speeding-up of GSO. The proof of the following theorem explains how to
compute the GSD of an isometric basis/matrix in quadratic time.

Theorem 4.1. Let B = (b1, ...,bn) be an isometric basis and B̃ = (b̃1, ..., b̃n)
its GSO. For the sake of simplicity, we identify the basis B (resp. B̃) to the (not
necessarily square) matrix which rows are the vectors of the basis. Assume we
already have B and B̃, along with the values Cj = 〈vj , r(b̃j)〉, Dj = ‖b̃j‖2 for
1 6 j < n. Then the matrix µ associated to B can be computed in time O(n2).

Proof. For 1 6 i < j 6 n, let Xi,j = 〈bi, b̃j〉 and Yi,j = 〈r(bi),vj〉. All the
nontrivial values of µi,j (that is, the values µi,j for 1 6 j < i 6 n) can be

expressed as µi,j =
Xi,j

Dj
. The values Xi,j , Yi,j satisfy these recursive formulae:

{

Xi+1,j+1 = Xi,j − Cj

Dj
Yi,j

Yi,j+1 = Yi,j − Cj

Dj
Xi,j

These formulae allow us to compute all the values of Xi,j , Yi,j from the 2(n− 1)
values Xi,1, Yi,1. Once all of these values are computed, one can simply obtain
the µi,j from the Xi,j . Algorithm 4 puts this idea into practice.
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Algorithm 4 Isometric GSD(B, B̃, (Ci), (Di))

Require: Basis B and its orthogonalization B̃, values Cj = 〈vj , r(b̃j)〉, Dj = ‖b̃j‖
2

for 1 6 j < n
Ensure: Matrix µ = B× B̃−1

1: Set the diagonal values of µ to 1 and the values above the diagonal to 0
2: for i = 2...n do {Computing the (Xi,1), (Yi,1)}
3: Xi,1 ← 〈bi, b̃1〉
4: Yi,1 ← 〈r(bi),b1〉
5: for j = 2...i− 1 do

6: Xi,j ← Xi−1,j−1 −
Cj−1

Dj−1
Yi−1,j−1

7: Yi,j ← Yi,j−1 −
Cj−1

Dj−1
Xi,j−1

8: end for

9: end for

10: for i = 2...n do {Filling out the non-trivial values of µi,j}
11: for j = 1...i− 1 do

12: µi,j ←
Xi,j

Dj

13: end for

14: end for

The idea of this algorithm is somewhat similar to the one behind Algorithms 2
and 3: the only values that we really need to compute are the Xi,j ’s, but in order
to do that efficiently we resort to a mutual recursion involving the Yi,j ’s.

The time complexity is straightforward. Each Xi,j , Yi,j takes time O(1) to
be computed, except for 2n of them which need time O(n) each. So the overall
cost is O(n2). ⊓⊔

As an example, the matrices Xsteps and Xchrono below show, for n = 5, in
which order the matrices X,Y are filled. The two matrices use different metrics:
Xchrono displays the chronological order in which the matrices are filled by the
algorithm, whereas Xsteps display the minimal depth of the computational tree
necessary in order to compute an Xi,j (resp. Yi,j). If a box contains ×, it means
that the corresponding value is trivial (see step 1 of the algorithm).

Xsteps =

× × × × ×
1 × × × ×
1 2 × × ×
1 2 3 × ×
1 2 3 4 ×

Xchrono =

× × × × ×
1 × × × ×
2 3 × × ×
4 5 6 × ×
7 8 9 10 ×

As Xchrono shows, the algorithm fills the matrices X,Y row after row, but if
necessary, it could be rewritten in order to fill X,Y column after column, as
shown by Xsteps.
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5 Extending the Results to Block Isometric Bases

In previous sections, we showed that we can gain a factor O(n) improvement
when performing operations such as Gram-Schmidt decomposition on isometric
bases. In this section, we show that these results can be extended to block
isometric bases, that is bases that are concatenations of isometric bases.

Definition 5.1. Let B = {b1, ...,bkn} be a basis. We say that B is block isomet-
ric if there exist k isometric bases B(1), ...,B(k) such that B is the concatenation
of all these bases.

The main idea of Algorithm 5 is to use the hypothesis that r(Span(B(i))) =
Span(B(i)) (which in practice is always verified for ideal lattices) in conjunction
with part 2 of Proposition 2.3 : if b̃ is the GSR of b w.r.t. a block B(i), then
r(b̃) will be the GSR of r(b) w.r.t. that same block B(i).

Lemma 5.2. Assume :
– B(1), ...,B(k) are matrices isometric for the same isometry r, and of same

rank n
– ∀i ∈ J1, k − 1K, r(Span(B(i))) = Span(B(i))

Then Algorithm 5 compute the GSO of B = {B(1), ...,B(k)} = {b1, ...,bkn} in
O(k2nd) elementary operations over the scalars.

Algorithm 5 Block GSO(B)

Require: Block isometric basis B = {B(1), ...,B(k)} = {b1, ...,bkn}
Ensure: Gram-Schmidt reduced basis B̃
1: for i = 0, ..., k − 1 do

2: b̃ni+1 ← bni+1

3: for j = 1, ..., ni do

4: b̃ni+1 ← bni+1 −
〈bni+1,b̃j〉

‖b̃j‖2
b̃j {Make b̃ni+1 orthogonal to previous vectors}

5: end for

6: B̃(i+1) ← {bni+1, r(bni+1), ..., r
n−1(bni+1)}

7: B̃(i+1) ← Faster Isometric GSO(B̃(i+1))
8: end for

Proof. We prove correctness by showing inductively that at the end of each
iteration i of the outer loop, the n(i+1) first vectors b̃1, ..., b̃n(i+1) are the GSO

of b̃1, ..., b̃n(i+1) :

– For i = 0, this is the case since B̃(1) is simply the GSO of B(i)

– If it is verified until step i − 1, then at step i the vector b̃ni+1 computed
in lines 2-5 of the algorithm is exactly the GSR of bni+1. Its rotations are
orthogonal to the vectors of the previous blocks because r preserves the
dot product and ∀i, r(Span(B(i))) = Span(B(i)), and one can verify that



15

bni+j − rj−1(b̃ni+1) ∈ Span{B̃(1)...B̃(i−1)}, so rj−1(b̃ni+1) is exactly the

orthogonalization of bni+j w.r.t. b1, ..., b̃ni. The basis computed at line 6 is
isometric, so applying Faster Isometric GSO effectively orthogonalize it.

We now study the complexity of algorithm 5. At each iteration i of the algorithm,
the orthogonalization of bni+1 w.r.t. previous vectors (steps 3 to 5) take time
O(nid), and steps 6-7 take time O(nd). So the total complexity is O(k2nd),
gaining a factor n when compared to the complexity O((kn)2d) of the naive
Gram-Schmidt orthogonalisation. ⊓⊔

The GSD can be sped up too. We will not detail it, but Fig. 2 gives the
outline on how to use Algorithm 4 on a two-blocks isometric basis.

B̃ =

[

B(1)

B(2)

]

⇒

[

B̃(1)

B(2)

]

⇒

[

B̃(1)

{b̃n+1, ..., r
n−1(b̃n+1)}

]

⇒

[

B̃(1)

B̃(2)

]

µ =

[

In 0n
0n In

]

⇒

[

µ1 0n
0n In

]

⇒

[

µ1 0n
µ3 In

]

⇒

[

µ1 0n
µ3 µ4

]

Fig. 2. Computing the GSD of a two-block isometric basis. B̃ and µ always satisfy
µ× B̃ = B

6 GSO and GSD in Exact Arithmetic

Generally, GSO and GSD are performed over real bases, so the standard way of
implementing it is by using floating-point arithmetic. However, this can result
in rounding errors: several books and articles discuss this problem with a good
introduction being [Hig02].

When the input vectors are in Zd, as it is very often the case in lattice-
based cryptography, then the GSD can be performed using only exact arithmetic
over Q. Moreover, some algorithms such as the original LLL algorithm [LLL82]
explicitely perform exact GSD.

However, this gain in precision comes at the cost of reduced efficiency: when
an integer basis undergoes GSO, the reduced vectors’ bitsize quickly escalates
in the dimension of the basis and of the underlying space. This phenomenom
is called coefficient explosion and impacts the space and computational cost of
GSD. In this section, we adapt Algorithms 3 and 4 to the exact arithmetic setting
and show that we still gain a O(d) factor compared to classical GSO/GSD.
Moreover, our adapted algorithms completely avoid rational arithmetic.

Through this section, we make an additional “niceness” assumption over the
isometry r, namely we suppose that it maps integer vectors into integer vectors:
∀b ∈ Zd, r(b) ∈ Zd.
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6.1 GSO in Exact Arithmetic

Definition 6.1. Let B = (bj)16j6n be an isometric basis, and for j ∈ J1, nK,

b̃j ,vj , Cj , Dj be defined as in Section 3. We then define, ∀i, j ∈ J1, nK, the
following values:

• λj,j =
∏

16k6j ‖b̃k‖2
• d̃bj = λj−1,j−1b̃j

• cj = λj−1,j−1Cj

• λi,j = µi,jλj,j

• dvj = λj−1,j−1vj

• dj = λj−1,j−1Dj

Proposition 6.2. Using notations of Definition 6.1, ∀i, j ∈ J1, nK, we have:

1. λi,j ∈ Z

2. d̃bj ,dvj ∈ Zd

3. cj , dj ∈ Z

Proof. Proofs for assertions 1 and 2 can be found per example in [Gal12, chapter
17, theorem 17.3.2]. As for assertion 3, dj = λj,j and cj = 〈v1, r(d̃bj)〉, where
v1 and r(d̃bj) are in Zd. ⊓⊔

With these results in hand, we can now devise an integer version of Algo-
rithm 3. Instead of outputting rational values, Algorithm 6 outputs only inte-
gers and integer vectors, and one can then retrieve any vector b̃k by computing
b̃k = 1√

dk−1

d̃bk. Algorithm 6 uses no rational number and all the internal op-

erations, including exact divisions in steps 6,7 and 9, output integer values. The
following lemma shows that in the case we use exact arithmetic, Algorithm 6 is
still at least O(n) faster than standard GSO.

Algorithm 6 Integer Isometric GSO(B)

Require: Basis B = {b1, ...,bn}
Ensure: (d̃bk,dvk, ck, dk)k=1...n as defined in Definition 6.1
1: d̃b1 ← b1

2: dv1 ← b1

3: c1 ← 〈r(b̃1),dv1〉
4: d1 ← ‖b1‖

2

5: for k = 1, ..., n− 1 do

6: d̃bk+1 ←
[

dkr(d̃bk)− ckdvk

]

/dk−1

7: dvk+1 ←
[

dkdvk − ckr(d̃bk)
]

/dk−1

8: ck+1 ← 〈v1, r(d̃bk+1)〉

9: dk+1 ←
d2k−c2k
dk−1

10: end for
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Lemma 6.3. Let B = {b1, ...,bn} ∈ (Zd)n be an integral isometric basis, |B| =
max

k=1...n
(‖bk‖) andM(X) denote the time complexity for multiplying two integers

of at most X bits. Suppose the isometry r associated to B can be computed in
time and space linear to the size of the input. Then Algorithm 6 performs in
time O(dnM(n log |B|)).

Proof. By definition, dk =
∏

16i6k ‖b̃i‖2 so |dk| 6 |B|2k. Moreover, |Ck| < Dk

implies |ck| < dk and therefore ck, dk both have bitsizes O(k log |B|). On the
other hand, d̃bk (resp. dvk) has its norm less than |B|2k−1 so the four scalar-
vectors products performed on steps 6,7 have complexity O(dM(k log |B|)), as
well as the two divisions of vectors by scalars (we recall that euclidean division of
X bit numbers can be performed in time O(M(X))). Overall, each iteration k of
the for loop takes time O(dM(k log |B|)), so the total complexity of Algorithm 6
is O(dnM(n log |B|)).

⊓⊔

6.2 GSD in Exact Arithmetic

The isometric GSD can also naturally be converted into an efficient, “rational-

free” version. Let xi,j
∆
= λj−1Xi,j = 〈bi, d̃bj〉 ∈ Z and yi,j

∆
= λj−1Yi,j =

〈r(bi),dvj〉 ∈ Z. The relations

{

Xi+1,j+1 = Xi,j − Cj

Dj
Yi,j

Yi,j+1 = Yi,j − Cj

Dj
Xi,j

then become
{

xi+1,j+1 =
djxi,j−cjyi,j

dj−1

yi,j+1 =
djyi,j−cjxi,j

dj−1

The xi,j ’s actually are the λi,j ’s, but in Algorithm 7 we continue to write xi,j

since it highlights the natural transformation of Algorithm 4 to Algorithm 7.

Algorithm 7 Integer Isometric GSD(B, (ck, dk)k=1...n)

Require: Basis B and the values (ck, dk)k=1...n

Ensure: xi,j ’s,yi,j ’s as defined above
1: for i = 2...n do {Computing the (xi,1), (yi,1)}
2: xi,1 ← 〈bi, b̃1〉
3: yi,1 ← 〈r(bi),b1〉
4: for j = 2...i− 1 do

5: xi,j ← [dj−1xi−1,j−1 − cj−1yi−1,j−1] /dj−2

6: yi,j ← [dj−1yi,j−1 − cj−1xi,j−1] /dj−2

7: end for

8: end for
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Lemma 6.4. Following the notations of Lemma 6.3, the time complexity of Al-
gorithm 7 is O(n2M(n log |B|) + ndM(log |B|)).

Proof. The costliest operations of Algorithm 7 are either the 2(n− 1) dot prod-
ucts in steps 2 and 3, which cost O(dM(log |B|)) each, or the essentially 3n2

multiplications and divisions made at steps 5 and 6, which cost O(M(j log |B|))
each. Summing these costs yields the result. ⊓⊔

Note that in practice d is not much bigger than n, so the complexity of Algo-
rithm 7 becomes O(n2M(n log |B|)). Even in exact arithmetic, our GSO and
GSD algorithms still perform O(n) times faster than standard GSD, which com-
plexity is O(dn2M(n log |B|)) (implicit in the proof of [Gal12, Theorem 17.3.4]).
Moreover, we manage to avoid the use of any rational number, making our al-
gorithms both efficient and easy to implement.

7 NTRU Lattices

NTRU lattices are a special class of lattices widely used in cryptography, because
their ideal structure allows a gain of a factor n both in time and space when
performing usual operations over lattices. This results in efficient and compact
cryptosystems (e.g. [HPS98,LTV12,DDLL13]).

Definition 7.1. Let N, q ∈ N∗ and f, g, F,G ∈ ZN [x] such that fG − gF = q
mod (xN + 1). The NTRU lattice generated by f, g, F,G is the lattice generated
by the rows of the block matrix

[

A(f) A(g)
A(F ) A(G)

]

Where A(p) is the N ×N matrix which i-th row is the coefficients of xi−1 · p(x)
mod (xN + 1).

In [GHN06], Gama et al. considered exact GSD of NTRU bases. They showed
that these lattices verify an algebraic property called symplecticity, which allows
them to compute the exact GSD faster than with the standard algorithm, using
[GHN06, Corollary 1].

But in addition to being q-symplectic, NTRU bases are also block isometric.
So we devised an algorithm to compute the exact GSD of a NTRU basis, by
combining three strategies:

– use Algorithms 6 and 7 in order to avoid rational arithmetic (as in [Gal12]
and [GHN06])

– use the GSO/GSD strategies for isometric bases detailed in Section 5
– use [GHN06, Corollary 1] to compute only one half of the GSO and get the

other for free
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We compared our exact reduction algorithm with the ones from [GHN06]. It
turns out that our algorithm is faster, both theoretically and in practice, despite
computing more information: it provides B̃ and µ, whereas the algorithms in
[GHN06] only provide µ. The timings are summarized in Table 1 and the full
implementation can be found at https://github.com/tprest/Fast-GSD.

Table 1. Timings for Gram-Schmidt over NTRU bases, in seconds. The implementa-
tion was done on Sage 5.3. Timings were performed on an Intel Core i5-3210M laptop
with a 2.5GHz CPU and 6GB RAM. Isometric GSD is “standard” GSD for block
isometric bases, whereas Iso.+Symp. GSD takes into account the observations from
[GHN06].

Dimension n = 2N 128 256 512 1024

Standard GS [GHN06] 3.22 30.7 390 4536
Dual GS [GHN06] 2.39 17 214 2496
Symplectic GS [GHN06] 0.89 5.73 33.9 279
Isometric GSD 0.48 2.05 12.4 89
Iso.+Symp. GSD 0.312 1.4 8.18 57.8

8 Reversibility and Application to Linear-Storage

Gaussian Sampling

Gaussian Sampling [Kle00,GPV08] is a cornerstone of lattice cryptography. It
can either serve to find approximately close lattice points close to a vector
[Kle00], or to sample a lattice point close to a target point without leaking
any information about the basis used [GPV08]. We recall the definition of the
Gaussian Sampler:

A drawback of applying the Gaussian Sampler over ideal lattices is that, even
though the basis B of an ideal lattice can be stored using O(1) vectors, this is
not the case for the reduced basis B̃, which needs n vectors. This can quickly
impede the practicality of the Gaussian Sampler: for example, for n = 1024 (a
typical dimension for cryptographic lattices), if B̃ is stored using 128 bits of
precision, the bitsize of B̃ then exceeds 128 Mbits.

Our algorithm allows to overcome this problem by computing the reduced
basis B̃ on-the-fly. An obstacle is that Gaussian Sampling needs the vectors of
B̃ in reverse order, so a straightforward use of Algorithm 2 or 3 does not solve
the problem since it provides the basis in direct order. Fortunately, as Fig. 1
suggests, Algorithms 2 and 3 can be “reversed” in the sense that provided with
the last vector b̃n of the basis B̃ and a few extra pieces of information, one can
compute b̃n−1, ..., b̃1 on-the-fly.
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Algorithm 8 Gaussian Sampler(B, B̃, σ, c)

Require: Basis B = {b1, ...,bn}, its GSO B̃ = {b̃1, ..., b̃n}, σ > 0, center c ∈ Zm

Ensure: z sampled in DΛ(B),σ,c

1: cn ← c

2: for i← n, ..., 1 do

3: di ← 〈ci, b̃i〉/‖b̃i‖
2

4: σi ← σ/‖b̃i‖
5: zi ← DZ,σi,di

6: ci−1 ← ci − zibi
7: end for

8: return c− c0

Definition 8.1. For a basis B, we denote, for any i ∈ J1;n−1K, Ci = 〈vi, r(b̃i)〉
and Di = ‖b̃i‖2. We also define Hi =

1
1−(Ci/Di)2

= Di

Di+1
and Ii =

Ci/Di

1−(Ci/Di)2
=

Ci

Di+1
.

Algorithm 9 Compact Gaussian Sampler(B, B̃, σ, c, b̃n,vn,H, I)

Require: Basis B = {b1, ...,bn}, center c ∈ Zm, precomputed vectors b̃n,vn, pre-
computed values (Hi, Ii)16i<n from definition 8.1

Ensure: z sampled in DΛ(B),σ,c

1: cn ← c

2: for i← n, ..., 1 do

3: di ← 〈ci, b̃i〉/‖b̃i‖
2

4: σi ← σ/‖b̃i‖
5: zi ← DZ,σi,di

6: ci−1 ← ci − zibi

7: b̃i−1 ← r−1(Hi−1b̃i + Ii−1vi)
8: vi−1 ← Ii−1b̃i +Hi−1vi

9: end for

10: return c− c0

Lemma 8.2. Algorithms 8 and 9 produce the same output when they have the
same input B and c (assuming the associated precomputed values are correct).

Proof. First, observe that ∀i = 1...n − 1, |Ci| < Di, because otherwise Di+1

would be zero and B would not be a basis. One can see that the ”linear system”
– b̃i+1 = r(b̃i)− Ci

Di
vi

– vi+1 = vi − Ci

Di
r(b̃i)
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is invertible :
– b̃i = r−1(Hib̃i+1 + Iivi+1)
– vi = Iib̃i+1 +Hivi+1

Hi and Ii are always defined since |Ci| < Di. Therefore, the same way the values
Ci, Di allow to compute b̃i+1,vi+1 from b̃i,vi, Hi, Ii allow to compute b̃i,vi

from b̃i+1,vi+1. ⊓⊔

This allows us to perform Gaussian Sampling using O(m) memory space
instead of O(mn) for the classic version. The overhead in time is reasonable :
– Classic Sampler: 2mn additions, 2mn multiplications, n samplings in Z

– Compact Sampler: 4mn additions , 6mn multiplications, n samplings in Z

Therefore, the compact Gaussian Sampler is at most three times slower than the
classic one. This is confirmed by experiments summarised in Table ??. Moreover,
in Algorithm 9, it is possible to sample around several c’s at the same time: this
then makes negligible the overhead induced by the addition (in Algorithm 9) of
lines 7 and 8. This time-memory trade-off allows to do Gaussian Sampling for k
targets in space O(km) and in time at most

(

1 + 2
k

)

times the time required by
the classic Gaussian Sampler.

8.1 Analysis of the Space Requirement for the Gaussian Sampler

Suppose that B̃ needs to be known up to | log2 ǫ| bits, for some ǫ < 1. In order
to be able to run Algorithm 9 any time (without having to undergo the GSO
beforehand), one only needs to store (Hi, Ii, ‖b̃i‖)i=1...n as well as b̃n,vn. How-

ever, it is straightforward to use the relation ‖b̃i+1‖2

‖b̃i‖2
= 1−

(

Ci

Di

)2

to save even

more space by just storing the ‖b̃i‖’s and deriving the Hi’s, Ii’s from them.
During the execution of Algorithm 9, one also needs to store the current b̃i,vi.
So overall the space requirement of Algorithm 9 is 5n(| log2 ǫ| + b), where b is
less the “number of bits lost” in steps 6, 7 of Algorithm 9: in other words, b
is such that if b̃n,vn, (‖b̃i‖)i=1...n are known up to | log2 ǫ| + b bits, then B̃ is
guaranteed to be known up to | log2 ǫ| bits.

For NTRU lattices, this analysis can be refined: only half of the ‖b̃i‖ need
to be known, and b̃n,vn can be determined from b1 = b̃1 [GHN06, Corollary
1]. Instead of needing to know 3n(| log2 ǫ| + b) bits beforehand, we just need
n
2 (| log2 ǫ|+ b), so the total space requirement is 2.5n(| log2 ǫ|+ b).

9 Precision of the Gaussian Sampler

It is known [GPV08] that for σ big enough, the output f of Algorithm 8 is
statistically close to the distribution DΛ(B),σ,c. However, the proof holds only

when B, B̃, σ, c and the values ‖b̃i‖’s are known exactly. But in practice, one
can not afford to do computations with the exact representation of B̃ and of the
‖b̃i‖’s, as it would be too costly in terms of space and computational resources.
Therefore, B̃ and the ‖b̃i‖’s are stored up to some finite precision, and this



22

finite precision introduces errors ǫ, δ1 which impact the output distribution of
the algorithm. Theorem 9.1 bounds the statistical distance ∆(f, fǫ,δ1) between
the output distribution f of the “perfect” algorithm, and the output distribution
fǫ,δ1 of the “imperfect” algorithm.

Theorem 9.1. Let m,n, q ∈ N⋆, B = {b1, ...,bn} ∈ Zn×m be a basis of a
lattice Λ ⊆ Zm, B̃ = {b̃1, ..., b̃n} be the exact GSO of B and c ∈ Zm

q . Let

δ, ǫ, k > 0, σ > max ‖b̃i‖ and for any i = 1...n, let σi =
σ

‖b̃i‖
. Let fǫ,δ1 be the

output distribution of Algorithm 8 ran on input (B, B̃, σ, (‖b̃i‖)i, c), where the
coefficients of B̃ are known with absolute precision at least δ1, and the values
‖b̃i‖ are known with relative precision at least ǫ. When B̃ and the ‖b̃i‖ are
known exactly, we simply refer to the output distribution as f .

Let δ3 = 2kǫq
√
m

σ + ǫk2 + mqδ1k

σmini ‖b̃i‖
. If δ3 6 1/2, then:

∆(f, fǫ,δ1) 6 2n(δ3 + 3e−k2/2)

In particular, if we want ∆(f, fǫ,δ1) to be less than 2−λ for some λ > 0, it is
enough that:

δ1, ǫ 6
2−λ

2n
√

λ+ log2 n
(

√

λ+ log2 n+ 2q
√
m

σ + mq

σmini ‖b̃i‖

)

Proof. f is the output distribution of Algorithm 8 executed on exact input
(B, B̃, σ, (‖b̃i‖)i, c), and fǫ,δ1 is the output distribution of Algorithm 8 executed

on input (B, B̃′, σ, (‖b̃i‖′)i, c), where:
– each vector b̃′

i of B̃
′ is correct up to log2 δ1 bits after the comma:

∀i, ‖b̃i − b̃′
i‖∞ 6 δ1

– each ‖bi‖′ is correct up to log2 ǫ bits:
∣

∣

∣

‖b̃i‖
‖bi‖′

− 1
∣

∣

∣
6 ǫ

– since σi =
σ

‖b̃i‖
, σ′

i =
σ

‖b̃i‖′
, each σ′

i is also correct up to log2 ǫ bits

Let g = fǫ,δ1 . Out goal is make f and g fall into the conditions of Lemma A.1
for some X,X ′, γ, δ5, so that we can get a bound on their statistical distance.
Let X = {∑i=1...n zibi|(z1, ..., zn) ∈ Zn}. Each possible output z =

∑

i zibi

implicitely defines (d1, ...dn). Let X ′ = {z =
∑

i zibi

∣

∣∀i, |zi − di| 6 kσi}. From
[Lyu12, Lemma 4.4, part 1], f(X\X ′), g(X\X ′) 6 1−(1−4e−k2/2)n 6 4ne−k2/2.

On the other hand, Lemma A.5 tells us that for δ4 ≈ 4δ3 + 4e−k2/2, ∀z =
∑

i=1...n zibi ∈ X and ∀i = 1...n:

1− δ4 6
DZ,σ′

i
,d′

i
(zi)

DZ,σi,di
(zi)

6 1 + δ4

Combining this with f(z) =
∏

i=1...n

DZ,σi,di
(z) and g(z) =

∏

i=1...n

DZ,σ′

i
,d′

i
(z), we

have a bounded ratio g
f over X ′:

∀z ∈ X ′, 1− nδ4 6 (1− δ4)
n
6

g(z)

f(z)
6 (1 + δ4)

n = 1 + nδ4 +O(δ24)
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Taking γ = 4ne−k2/2 and δ5 = nδ4, we can now apply Lemma A.1:

2∆(f, g) 6 nδ4 + 2γ

⊓⊔

The proof of Theorem 9.1 resorts to several lemmas that can be found in
Appendix A.

9.1 Application to NTRU Lattices

We use the formula obtained in Theorem 9.1 in order to derive concrete bounds
in the case of NTRU lattices. In this particular case, m = n, σmin ‖b̃i‖ > q
[GHN06, Corollary 1] and σ >

√
q (because

∏

i ‖b̃i‖ = qn/2). We can also
reasonably assume that log2 n < λ < qn/2, so

ǫ, δ1 <
2−λ

8n
√
λqn

=⇒ ∆(f, fǫ,δ1) 6 2−λ

As an example, for n = 1024, q 6 226 and λ 6 256, this means that ∆(f, fǫ,δ1) 6

2−128 provided that B̃ (resp. the ‖b̃i‖’s) is known up to λ+35+log2(maxi ‖b̃i‖)
(resp. λ+ 35) bits of precision.

We now use the results from Subsection 8.1 to determine the space require-
ments for the parameters as above. Algorithm 9 requires 2.5n(λ+35+ b) bits of
space. In experiments we launched on NTRU lattices, we always get b 6 30. We
will therefore take this value for b.

Table 2. Timings (in milliseconds) and space requirements (in bits and mega-bits)
of the classic and compact Gaussian Samplers (Classic GS and Compact GS). The
implementation was done in C++ using GMP. Timings were performed on an Intel Core
i5-3210M laptop with a 2.5GHz CPU and 6GB RAM.

Statistical distance from ideal 2−80 2−128 2−192

Precision needed
Classic GS 115 bits 163 bits 223 bits
Compact GS 145 bits 193 bits 253 bits

Running time
Classic GS 115 ms 170 ms 203 ms
Compact GS 446 ms 521 ms 523 ms

Space requirements
Classic GS 115 Mb 163 Mb 223 Mb
Compact GS 0.35 Mb 0.47 Mb 0.63 Mb

As a test for the practicality of our compact Gaussian Sampler, we imple-
mented both the classic and compact Gaussian Samplers and compared their
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timings and space requirements. As predicted by our computations, the com-
pact Gaussian Sampler is no more than thrice slower than the classic one, while
having space requirements smaller by between two and three orders of magni-
tude. Our results are summarized in Table 2 and the complete implementation
can be found on https://github.com/tprest/Compact-Sampler.
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[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly
multiparty computation on the cloud via multikey fully homomorphic en-
cryption. In STOC, pages 1219–1234, 2012.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EURO-
CRYPT, pages 738–755, 2012.

[MS07] Vladimir Maz’ya and Gunther Schmidt. Approximate Approximations.
AMS, 1st edition, 2007.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from
worst-case assumptions on cyclic lattices. In TCC, pages 145–166, 2006.
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A Lemmas used in the Precision Analysis of the Gaussian

Sampler

This section regroups the lemmas used by Theorem 9.1 in order to bound the sta-
tistical distance. We will sometimes resort to approximations such as ρd,σ(Z) ≈ 1

in order to simplify computations: indeed, |ρd′,σ(Z)− 1| < 1.04·10−8σ2

whenever
σ > 1√

2
(see e.g. [MS07, Sect. 1.1]), and that will always be the case through this

section. In the same way, we always assume ǫ and δi’s to be very small and will
therefore discard δ terms whenever possible. Each time such an approximation
is done, it is indicated with signs such as O(·) or ≈, and has a negligible impact.
More precisely, it never adds “hidden errors” to the result being proven.
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The first lemma gives a simple bound on the statistical distance between two
distributions f and g which are both in a set X ′ with probability 1 − γ, and

enjoy a relative error bound 1−δ5 6
g(z)
f(z) 6 1+δ5 over this set X ′. As one could

expect, the statistical distance between f and g becomes linear in δ5 + γ when
δ5, γ → 0.

Lemma A.1. Let f, g be two distributions over a set X. Let X ′ ⊆ X, δ5, γ > 0

such that
∑

z∈X\X′ f(z),
∑

z∈X\X′ g(z) 6 γ, and ∀z ∈ X ′, 1−δ5 6
g(z)
f(z) 6 1+δ5.

Then:

2∆(f, g) 6 2γ + δ5.

Proof. We separate the statistical distance sum into two sums overX ′ andX\X ′:

2∆(f, g) 6
∑

z∈X\X′ f(z) +
∑

z∈X\X′ g(z) +
∑

z∈X′ |f(z)− g(z)|
6 2γ + δ5

∑

z∈X′

f(z)

6 2γ + δ5

⊓⊔

The following lemma bounds the error occurring in step 3 of Algorithm 8,
when the center di is computed. In the floating-point version, the b̃i are known
up to absolute precision δ1 (ie log2 δ1 bits after the comma) and their norms
‖b̃i‖ are known up to relative precision ǫ (ie log2 ǫ − log2 ‖b̃i‖ bits after the
comma), where δ1 and ǫ are not necessarily equal.

Lemma A.2. Let 0 < δ1, ǫ≪ 1, c ∈ Zm
q ,b,b′ ∈ Rm such that ‖b− b′‖∞ 6 δ1

and
∣

∣

∣

‖b‖
‖b′‖ − 1

∣

∣

∣
6 ǫ. Let d = 〈c,b〉

‖b‖2 , d
′ = 〈c,b′〉

‖b′‖2 . Then |d − d′| 6 δ2, where δ2 ≈
2ǫ q

√
m

‖b‖ + mqδ1
‖b‖2 .

Proof. d′ =
(

〈c,b〉
‖b‖2 + 〈c,b′−b〉

‖b‖2

)

‖b‖2

‖b′‖2 , so

|d′ − d| 6 ((1 + ǫ)2 − 1)d+ ‖c‖1‖b′−b‖∞

‖b‖2 (1 + ǫ)2

6 2 q
√
m

‖b‖ (ǫ+O(ǫ2)) + mq
‖b‖2 (δ1 +O(δ21))

⊓⊔

In the three next lemmas, we study the difference of behaviour between a
perfect gaussian over Z of center d and standard deviation σ, and the same
gaussian with a slightly perturbed center d′ and standard deviation σ′. For any
center d, DZ,σ,d can be exactly simulated from DZ,σ,d−1 (and reciprocally), so we
can suppose w.l.o.g. that d ∈ (−1/2, 1/2]. The Lemmas A.3, A.4 progressively
build up to establish in Lemma A.5 a bound over the ratio of DZ,σ,d and DZ,σ′,d′ ,
which are the distributions from which Algorithm 8 samples in step 5 (DZ,σ,d in
the “perfect” algorithm, DZ,σ′,d′ in the “imperfect” one).
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Lemma A.3. Let ǫ, δ2, k > 0, σ, σ′ > 1 and d, d′ ∈ (−1/2, 1/2] such that |d −
d′| 6 δ2 and

∣

∣

σ
σ′
− 1

∣

∣ 6 ǫ. Let z ∈ Z such that |z − d| 6 kσ. Then

e−δ3 6
ρσ′,d′(z)

ρσ,d(z)
6 eδ3

where δ3 = δ2k
σ + ǫ(k2 + 1) + O(ǫ, δ22 , ǫδ2). In particular, if δ3 6 1/2, then

∣

∣

∣

ρσ′,d′ (z)

ρσ,d(z)
− 1

∣

∣

∣
6 2δ3

Proof.
ρσ′,d′(z)

ρσ,d(z)
=

ρσ′,d′(z)

ρσ′,d(z)
× ρσ,d′(z)

ρσ,d(z)

One one hand,

ρσ,d′(z)

ρσ,d(z)
= e

(d′−d)(2z−d′+d)

2σ2 , and

∣

∣

∣

∣

(d′ − d)(2z − d′ + d)

2σ2

∣

∣

∣

∣

6
k

σ
(δ2 +O(δ22))

On the other hand,

ρσ′,d′(z)

ρσ,d′(z)
=

σ

σ′ × e
(z−d′)2

2σ2 − (z−d′)2

2σ′2

and
∣

∣

∣

∣

(z − d′)2

2σ2
− (z − d′)2

2σ′2

∣

∣

∣

∣

=
(z − d′)2

2σ2

∣

∣

∣

∣

1− σ2

σ′2

∣

∣

∣

∣

6 k2(ǫ+O(ǫ2))

Combining both inequalities and using ex = 1 + x+O(x2) yield:

ρσ′,d′ (z)

ρσ,d(z)
6 (1 + k

σ (δ2 +O(δ22)) (1 + ǫ)
(

1 + k2(ǫ+O(ǫ2)
)

6 1 + δ2k
σ + ǫ(k2 + 1) +O(ǫ, δ22 , ǫδ2)

⊓⊔

Lemma A.4. Let σ, σ′ > 1 and d, d′ ∈ (−1/2, 1/2]. Let k > 0 and Z = {z ∈
Z, |z − d| 6 kσ}. Suppose ∃δ3 ∈ (0, 1/2), ∀z ∈ Z,

∣

∣

∣

ρσ′,d′ (z)

ρσ,d(z)
− 1

∣

∣

∣
6 2δ3. Then:

∑

z∈Z

|ρσ′,d′(z)− ρσ,d(z)| 6 2δ3 + 4e−k2/2

Proof. We separate the sum in two sums over Z and Z\Z. For the first sum:

∑

z∈Z

|ρσ′,d′(z)− ρσ,d(z)| 6 2δ3
∑

z∈Z

|ρσ,d(z)| 6 2δ3(1 + 1.01 · 10−8) ≈ 2δ3

Now, for the second sum, Lemma 4.4, part 1, from [Lyu12] states that8:

For any k > 0,P [|z − d| > kσ; z ← DZ,σ,d] 6 2e−k2/2

8 It is actually stated only for d = 0, but the proofs holds ∀d ∈ R.
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Using this lemma, it is straightforward that

∑

z∈Z\Z
|ρσ,d(z)− ρσ,d′(z)| 6 ∑

z∈Z\Z
ρσ,d(z) + ρσ,d(z)

6 4e−k2/2 (ρσ,c(Z) + ρσ′,c′(Z))

6 8e−k2/2δ3(1 + 1.01 · 10−8) ≈ 8e−k2/2

⊓⊔

Lemma A.5 (Bounded ratio of discrete gaussians over a finite set). Let
σ, σ′ > 1 and d, d′ ∈ (−1/2, 1/2]. Let k > 0 and z ∈ Z such that |z − d| 6 kσ.

Suppose ∃δ3 ∈ (0, 1/2) such that 1− 2δ3 6
ρσ′,d′ (z)

ρσ,d(z)
6 1 + 2δ3. Then:

∣

∣

∣

∣

DZ,σ′,c′(z)

DZ,σ,c(z)
− 1

∣

∣

∣

∣

6 δ4

where δ4 = 4δ3 + 4e−k2/2 + 4δ23 + 8δ3e
−k2/2. In practice δ3 is small and k is

“somewhat” big, so δ4 ≈ 4δ3 + 4e−k2/2.

Proof.

|DZ,σ,c(z)−DZ,σ′,c′(z)| =
∣

∣

∣

ρσ,c(z)
ρσ,c(Z)

− ρσ′,c′ (z)

ρσ′,c′ (Z)

∣

∣

∣

=
ρσ,c(z)
ρσ,c(Z)

∣

∣

∣
1− ρσ′,c′ (z)

ρσ,c(z)
× ρσ,c(Z)

ρσ′,c′ (Z)

∣

∣

∣

6
ρσ,c(z)
ρσ,c(Z)

∣

∣

∣
1− (1 + 2δ3)(1 + 2δ3 + 4e−k2/2)

∣

∣

∣

6 DZ,σ,c(z)
(

4δ3 + 4e−k2/2 + 4δ23 + 8δ3e
−k2/2

)

where the penultimate line is obtained by bounding
ρσ,c(Z)
ρσ′,c′ (Z)

via Lemma A.4.
⊓⊔


