
HAL Id: hal-01235602
https://hal.archives-ouvertes.fr/hal-01235602

Submitted on 30 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe reconfiguration of Coqcots and Pycots components
Jérémy Buisson, Fabien Dagnat, Elena Leroux, Sébastien Martinez

To cite this version:
Jérémy Buisson, Fabien Dagnat, Elena Leroux, Sébastien Martinez. Safe reconfiguration of Coq-
cots and Pycots components. Journal of Systems and Software, Elsevier, 2016, 122, pp.430-444.
�10.1016/j.jss.2015.11.039�. �hal-01235602�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49452436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01235602
https://hal.archives-ouvertes.fr

Safe reconfiguration of Coqcots and Pycots components

Jérémy Buissona,b,∗, Fabien Dagnata,c, Elena Lerouxa,d, Sébastien Martineza,c

aIRISA, Brest – Rennes – Vannes, France
bSt-Cyr Coëtquidan Schools, Guer, France

cTélécom Bretagne, Brest, France
dUniversity of South Brittany, Vannes, France

Abstract

Software systems have to face evolutions of their running context and users.
Therefore, the so-called dynamic reconfiguration has been commonly adopted
for modifying some components and/or the architecture at runtime. Traditional
approaches typically stop the needed components, apply the changes, and restart
the components. However, this scheme is not suitable for critical systems and
degrades user experience. This paper proposes to switch from the stop/restart
scheme to dynamic software updating (DSU) techniques. Instead of stopping a
component, its implementation is replaced by another one specifically built to
apply the modifications while maintaining the best quality of service possible.
The major contributions of this work are: (i) the integration of DSU techniques
in a component model; (ii) a reconfiguration development process including
specification, proof of correctness using Coq, and; (iii) a systematic method to
produce the executable script. In this perspective, the use of DSU techniques
brings higher quality of service when reconfiguring component-based software.
Moreover, the formalization allows ensuring the safety and consistency of the
reconfiguration process.

Keywords: Dynamic reconfiguration, component model, dynamic software
updating, DSU, Python, Coq, runtime evolution

1. Introduction

Software systems need to be highly available and should be built using se-
cure, safe, performant, and robust components. These components must be
regularly modified to fix vulnerabilities and bugs, to face new environments,
and to offer new services. Enabling these evolutions, while maintaining a high
level of availability, requires changing the architecture of such a system during

∗Corresponding author
Email addresses: jeremy.buisson@irisa.fr (Jérémy Buisson),

fabien.dagnat@irisa.fr (Fabien Dagnat), elena.leroux@irisa.fr (Elena Leroux),
sebatien.martinez@telecom-bretagne.eu (Sébastien Martinez)

Preprint submitted to Journal of Systems and Software November 30, 2015

its execution. This capability is especially important for critical systems such
as air-traffic control systems and networks, in which stopping systems is not an
option due to financial or human costs. It also improves user experience as a
user can continue to use a software system being updated without noticing the
update, i.e., the updating process is transparent to the users.

In software engineering, dynamic reconfiguration was introduced to build
component-based software systems that can be modified during their execution,
with minimal or no interruption. In this approach, components and connectors
of a system can be inserted, removed or replaced at runtime, thus fostering the
continuity of the provided services.

Since the proposition of the quiescence concept [1], reconfiguring a system
typically requires the suspension of a set of components that will be affected
by the reconfiguration. Maintaining the system in an operational status while
stopping part of its components leads to a visible degradation of its quality of
service [2, 3] due to component dependencies. Another essential issue to be
considered is to preserve the consistency of the component assembly through-
out the reconfiguration process. Some works in the literature have faced these
challenges by minimizing the set of suspended components and/or decreasing
the duration of their suspension [4, 5]. Focusing on consistency, Boyer et al. [6]
propose a scheme in which an invariant requires to stop any component that
depends on a stopped component. However, such dependencies often propagate
up to the user frontend, and then the system may be almost entirely stopped.

To maintain service continuity, we must refrain from stopping components
when reconfiguring a system. In this paper, we propose to use dynamic soft-
ware updating (DSU) techniques [7, 8] instead of suspending components. The
main idea is to mitigate the effect of any reconfiguration action by dynamically
updating the implementation of directly and indirectly affected components.
For example, if a component B used by a component A needs to be reconfig-
ured, then the component A can be updated with a new implementation that
no longer uses B before reconfiguring B. Once the reconfiguration involving B
terminates, A may switch again its implementation either to fall back on the
original behavior or to assume a new one better suited to the new configuration.
Two important facts to notice are:

• The temporary update of A depends on the current state of execution
and, therefore, is hard to foresee. Hence the dynamic update is needed.

• The better the temporary update hides the absence of B to the rest of the
application, the more transparent the reconfiguration will be.

While changing the interconnection of the components seems easy and can
possibly be generated by some algorithm, this small example highlights that
dynamic reconfiguration incurs additional issues. The temporary behavior of
A must be carefully designed such that application services are degraded as
little as possible despite the absence of B. Whether this temporary behavior
of A hides the absence of B or propagates part of the effects to the rest of
the application greatly affects how the other components must be rearranged

2

too. Furthermore, this temporary behavior may need new components such as
for example a component offering a service of B that A currently needs. By
consequences, the temporary behavior of A can hardly be designed without
the changes of architecture needed in mind, and conversely. In this context,
producing a reconfiguration for an application consists in not only specifying
the various components to create, the ones to modify and the ones to remove [6,
9, 10, 11] but also in specifying and implementing the various pieces of code
required to maintain the activities of the application. When the architecture
of the application becomes larger than a few components and connectors, the
design and implementation of a reconfiguration become difficult. Using the
example above, if the update of the component A is not finished when stopping
B, the application may enter an inconsistent mode that may propagate to a user
visible crash [12, 13]. Clearly, if a dynamic reconfiguration leads to a (visible)
degradation of service, it becomes easier and equivalent to stop the application.

Our second idea is to guarantee the correct execution of a dynamic recon-
figuration by proposing a complete reconfiguration design and implementation
process that includes the use of a proof assistant to require a proof of the correct-
ness of the reconfiguration. To reduce the cost of this development, this process
is completely automated by tools ensuring the exchange of information between
the running application, the proof assistant and the execution platform of the
application. Using reflection, the current running architecture of the application
is extracted and assertions describing this architecture are generated. Working
in the proof assistant, the designer of the reconfiguration builds simultaneously
the reconfiguration and its correctness proof. Once the designer is satisfied, the
code of the reconfiguration is extracted from the proof and sent back to the
platform executing the application. On receiving the reconfiguration script, the
platform can apply it.

To validate practically this approach, we have designed a component model
supporting DSU, Pycots. This component model is implemented in Python to
reuse Pymoult1 which is a DSU platform we have proposed in [14]. The compo-
nent model includes a reflection level to extract the current running architecture
and translate it into the chosen proof assistant, Coq2. This translation process
uses an abstract version of the component model named Coqcots aimed at being
the version the designer will use when building a reconfiguration.

The purpose of this paper is to report on this complete reconfiguration devel-
opment process and describe precisely the various models and tools developed
to support its automation. Therefore the contributions presented here will be:

1. A concrete component model Pycots to support execution and abstract
component model Coqcots to support proving reconfiguration. A fully
bidirectional translation is supported by a reflective feature of the concrete
component model on one side and the extraction facilities of Coq for the
other side.

1https://bitbucket.org/smartinezgd/pymoult
2http://coq.inria.fr/

3

https://bitbucket.org/smartinezgd/pymoult
http://coq.inria.fr/

2. An implementation of Pycots integrating DSU techniques.

3. A complete engineering process to help the design of a correct recon-
figuration and its application to a running software. The enactment of
this process is supported by tools automating the translation processes,
Python code generation and the possibility to generate repetitive parts of
the proof.

In this paper, Section 2 describes the domains involved in the presented
work. Section 3 gives an overview of our proposal along with the supported
reconfiguration scenarios. Section 4 describes our approach in details. Section 5
summarizes the main steps of the reconfiguration process. Section 6 compares
our approach to related work. Section 7 concludes the paper with our main
contributions and future directions.

All the material is available at http://coqcots.gforge.inria.fr.

2. Background

Before describing our contribution, we need to describe the three domains
on which our proposal is built. First, our paper focuses on component-based ap-
plications and their reconfiguration. Then, we propose a new component model
relying on mechanisms coming from the Dynamic Software Update community.
At last, our methodology relies on the Coq proof assistant requiring the reader
to understand the basics of Coq.

2.1. Component Architectures

Software components were proposed as a solution to increase productivity
by promoting reuse to a large scale. Components foster reuse by enforcing a
very low coupling between a component and its environment through the use
of architecture as a key artifact during the development life cycle. In the early
stage of the development, software architects use very abstract components
without taking into account the physical underlying infrastructure. Later on,
when the infrastructure is defined, these abstract concepts can be realised as
actual software entities. This clean separation between functional architecture
and code and the interaction with physical resources enables to build really
reusable functional entities (both at abstract and code level).

The different concepts and their usage rules are defined through so-called
component models. Many component models are currently available [15]. They
can be either generic, such as CCM [16], SOFA [17] or domain specific such
as PECOS [18]. They range from simple models relying on basic notion of
component as UML2.0 [19] to very complex models atop of sophisticated in-
frastructures such as Fractal [20]. Component paradigm is built upon two main
concepts. First, components, which encapsulate treatments and provide func-
tionalities called services through access points named ports. Then, architec-
tures, which describe an application as a set of components and their relations.

4

http://coqcots.gforge.inria.fr

In this article, we use the component paradigm to be able to reconfigure a
running application. Our focus is therefore on running component instances.
Each link between components models a reference. This executable model,
called Pycots, defines how our Python components are defined and executed.
Reconfiguring an application in our approach consists in creating new compo-
nent instances, removing existing instances and modifying the running code of
existing components. The central concept to define such a representation is the
architecture of the application with an abstract model describing the running
instances and their dependencies. In our proposal, this abstract model is named
Coqcots and is aimed at being manipulated with the proof assistant Coq. To
depict such an abstract component architecture, we reuse the graphical repre-
sentation of UML for depicting (Figure 2 on page 8 or 4 on page 10 for example).
Following a common practice (see [20] for example), our executable model of-
fers a reflection facility that supports the extraction of an abstract architecture
representing a running application.

2.2. Dynamic Software Update

Updating applications is mandatory to apply bug fixes and vulnerability
patches, and more generally to support software evolution. Generally, such
updates require to stop the software, patch it and then restart it. This results in
downtime and state / data loss, which are at best undesirable, sometimes costly,
at worst unacceptable for critical systems. Following this observation, a large
collection of mechanisms have been proposed to update software systems while
they are running with no or little service interruption. To update dynamically
an application, one has to handle different tasks such as transforming the data
(e.g. adding or removing fields in objects, changing data representation) or
rerouting the control flow (e.g. changing instructions in functions and methods).
Many platforms addressing that issue can be found in the literature [7, 8] each of
them using different techniques for applying dynamic updates. These techniques
address the updates of elements of the program such as classes or functions, most
of them do not aim to modify the architecture of the application.

This section presents the main tasks of a dynamic update and the most
common techniques used for handling them. We also present the way Pymoult,
the Python DSU platform used by Pycots, implements these techniques.

The first task is to detect the right moment for applying the update. The
application has to be in a stable state where updating wouldn’t make it enter
an inconsistent state, e.g., out of date function using updated data, because
this may lead to a crash. The moment when the elements to be updated are
quiescent is an example of right moment for applying an update. There are
several ways to detect the right moment for an update. The detection can be:
(1) static as in Kitsune [21] or Ginseng [22] where the application developer has
to indicate a point in the program where the application is globally quiescent,
i.e., most of the elements of the application are quiescent, or (2) dynamic as in
Hotswap [23] or ReCaml [24] where the virtual machine running the application
can detect specific VM safe points that are proper for updating. The right

5

moment for updating can also depend on the update to apply. In Ksplice [25],
a function can be updated only when it is not in the stack.

After the right moment for updating has been detected, we have to update
the data and the control flow. Again, there are many ways to handle this
two tasks. All the data can be transformed at once as in Kitsune or it can
be transformed only when accessed, e.g., a variable will be updated when a
function reads from it, as in Ginseng. We call these methods eager and lazy
data update. For updating the control flow, Hotswap and Ginseng redefine the
functions and methods of the program, replacing the old functions by their new
version. Ginseng introduces indirection using function pointers while Hotswap
uses a specifically enhanced JVM for that purpose. ReCaml and Kitsune reboot
the threads, making them run the new code while keeping the data. Both
platforms allow the threads to start at a given point instead of rebooting from
the beginning. ReCaml enables the stack to be reconstructed while Kitsune
allows the execution of a rebooted thread to be guided for that purpose.

Pymoult provides these mechanisms among others and wraps them in a
set of Manager classes. For example, an EagerConversionManager takes in
charge the eager update of data. A manager instance is responsible of the
choreography of a set of updates. A manager works in synergy with an Update

class instance that supplies the information necessary for carrying out an update.
For instance, suppose we want to update all the instances of a class A and an
EagerConversionManager has been set up when developing the application.
We can use an instance of EagerConversionUpdate to specify that we want to
update the instances of the class A and describe the transformation that should
be applied to them.

Using Pymoult, it is possible to develop custom Manager and Update classes
by combining basic mechanisms provided by the platform through a low level
API. For example, one can use the function isFunctionInAnyStack to check if
a function can be updated safely as in Ksplice.

2.3. Proof Assistant

Based on formal calculi that formalize the notions of proposition and proof,
proof assistants are software that help proving theorems. They mechanically
verify proofs according to the rules of an underlying formal calculus. The proof
assistants usually provide environments for interactive proof development that
embed decision procedures to generate automatically some parts of the proofs.

A typical approach to proof assistants consists in relying on the Curry-
Howard isomorphism, which states that the relation between a proof of a propo-
sition and this proposition is the same as the relation between a λ-term and its
type. For instance, the modus ponens deduction rule corresponds to the typing
rule for function application; the rule for implication introduction corresponds
to the typing rule for λ-abstraction. Following this approach, verifying a proof
is the same task as type-checking a λ-term.

Coq is such a proof assistant based on the calculus of inductive constructions,
a typed λ-calculus with dependent types. Furthermore, type expressions are

6

Definition x: (nat → bool) →
nat → bool := fun a b ⇒ a b.

Definition x: (nat → bool) →
nat → bool.
intros a b.
apply a.
apply b.

Defined.

Figure 1: A Coq definition with the expression language (left) and proof-mode (right).

first-class expressions, hence types can be used like any other value. Intuitively,
it allows the type of the return value of a function to depend on the effective
value of the parameters. A typical example for dependent types is the type
of the C-like printf function: the types of the to-be-formatted parameters
depend on the content of the formatting string. Dependent types can also convey
correctness properties, which we use in this paper to express preconditions and
postconditions in the abstract component model Coqcots.

Since Coq proofs are λ-terms, they are executable and conversely programs
contain proofs. Coq defines two types of types to make an explicit distinction
between: Prop for logical types, i.e., propositions; and Set for computational
types. Based on this distinction, the extraction mechanism automatically trans-
lates the computational Set parts of a program / proof to a standard program-
ming language, while it leaves the logical Prop parts out. This approach provides
an engineering process to develop formally verified programs, like illustrated by
the CompCert project [26].

To define proofs and programs, Coq comes with two languages. Functional
expressions follow a syntax close to usual functional programming languages;
while the proof mode lets build an expression by the means of sequentially
applying the rules of the calculus of inductive constructions. Figure 1 shows side-
by-side the two languages for the same example, where intros is implication
introduction and apply is the modus ponens rule.

To automate (parts of) the proofs, Coq introduces tactics, which can be
considered as macros. It is therefore possible to program procedures that auto-
matically apply rules and other tactics during a proof step.

3. An overview of our proposal

The objective of this section is to give an overview of our process to build
correct reconfiguration. This process is illustrated by the example shown on
Figure 2. The upper left part of this figure presents a part of an architecture.
This part is composed of six components A, B and C1 to C4. Each component
Ci (where i = [1..4]) uses a service of the component A. These four dependen-
cies will be used to illustrate some of the possible situations encountered when
reconfiguring a real application. Notice that all these components may also be
used by or use other components not represented here. The only constraint is
that no other component uses a service offered by A.

7

nat.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
bool.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
bool.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
bool.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
nat.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
bool.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes

C1

C2

C3

C4

A

B

ImplC1

ImplC2

ImplC3

ImplC4

ImplA

1

2

Before reconfiguration

C1

C2

C3

C4

A

B

ImplC1

ImplC2

ImplC3

ImplC4’

ImplA’’

After reconfiguration

C1

C2

C3

C4

A

B

D
ImplC1

ImplC2’

ImplC3

ImplC4’

ImplA’

An intermediary state

3 4

•apply DSU to A, C2, C4

•create D

•disconnect C2 from A

•connect C1 to D

•connect C4 to B

•apply DSU to A, C2

•disconnect C1 from D

•connect C1 to A

•connect C2 to A

Figure 2: Architecture of a part of an application before, during and after a reconfiguration.

Suppose that we need to reconfigure the component A in order to remove
one of the services it provides. For example, the fourth port used by C4 will be
removed. The first step is to detect the set of components to be reconfigured. In
our example this set will contain the component A (see 1 of Figure 2). 3 Once A
is found, the designer of the reconfiguration must identify all components using
its services. For our example we obtain the set containing the components from
C1 to C4 (see 2 of Figure 2). Then, we must decide how we are going to hide
to the rest of the application the fact that A is going to be only partly available.
For our example, we have decided to:

1. Use a transient stub: keep C1 unchanged, create a new transient compo-
nent D, and connect C1 to this new component D instead of using A.

3For real reconfiguration finding the set of components to modify may be a little harder.

8

extract architecture

1

reconfiguration
proved correct

model and prove
reconfiguration until...

2

extract from Coq
3

develop DSU
4

apply reconfiguration

5

P
y
co

ts
a
p
p
li
ca

ti
o
n

ex
ec

u
ti

n
g

Pycots

Coqcots

Figure 3: Overview of the proposed approach.

2. Propagate service degradation to the client: modify the implementation
of C2 to make it independent of A permitting to disconnect C2 from A.

3. No impact on the client: keep C3 exactly the same, it still uses A.

4. Switch to a new provider: update the implementation of C4 to make it
use the existing component B instead of A.

Making such design decisions usually requires human intervention. In step 3 ,
we have to realize all the operations needed to support the previous choices.
Each modification of the implementation is done using DSU mechanisms. We
also have to update the implementation of A to prepare it for the intended
modification, e.g., stopping some threads. Notice that A cannot be completly
stopped here as C3 is still using it (ImplA’ has to take it into account).

Finally, A can be updated as intended and the various temporary operations
may be reverted (see 4 of Figure 2). Here for example, we have chosen that:
(i) C1 is reverted to using A; (ii) C2 is reverted to its previous behavior using
A; (iii) C3 is still unchanged; and (iv) C4 will continue to use the component B.

The example concretizes the process of reconfiguring an application and
illustrates the fact that a reconfiguration script is a complex piece of program.
To help the designer of such a reconfiguration, we propose a process including
the proof assistant Coq to foster the construction of correct reconfigurations.
This process is depicted in Figure 3. The left arrow represents the execution flow
of the application we need to reconfigure. When a reconfiguration is needed, its
design and execution follow the five steps on the right of the figure. Steps 2 and
3 of this process are performed in Coq using our abstract component model,
Coqots. The other three steps use our concrete component model Pycots.

1 The current architecture of the target software system is extracted using
the reflexive feature of the Pycots execution platform. The result of this
operation is a Coq module containing a Coqcots architecture. This part
of our process is described in details in subsection 4.1 on page 11.

9

receiver dispatcher

serverHello

serverFile

dispatch/dispatch

serveFile/serve

serveHello/serve

Figure 4: The initial software architecture of the web server.

2 The designer works to define the reconfiguration and build the proof of
its correctness within Coq as described in subsection 4.2 on page 15. Like
previously illustrated by the example of Figure 2, this step can involve the
design and creation of new components and new implementations. Human
intervention is mandatory to carry out this step.

3 Once the reconfiguration has been proved, the reconfiguration script is ex-
tracted from this proof using Coq facilities (see subsection 4.3 on page 21).

4 All the glue code need to be developed in Python. The various DSU pieces
of code must be implemented as described in subsection 4.4 on page 22.

5 Finally, the Python (reconfiguration) script is submitted to the Pycots
manager, which is a platform component that receives and applies recon-
figuration scripts to the target software system. This last step is detailled
in subsection 4.5 on page 24.

4. The complete process in details

In Section 3 we informally described the main steps of our reconfiguration
approach shown on Figure 3. The purpose of this section is to provide the details
of this reconfiguration development process. To illustrate each of its steps, we
use a simple web server case study. Figure 4 contains the initial architecture
of our web server which contains four components: (1) the receiver wraps an
instance of BaseHTTPServer, which receives and decodes HTTP requests; (2)
the dispatcher dispatches requests to handlers according to the requested URL;
(3) serverHello generates a dynamic web page with a “Hello, world” greeting,
and; (4) serverFile detects that the given URL is a file name whose content is
sent as a response. The purpose of this case study is twofold. First, it aims
at explaining concretely our process. And second, it demonstrates that our
approach enables the continuity of service of the web server without stopping it
during the reconfiguration process.

10

content

component

client

content

component

server

stub for unbound ports

reference cell
closure object

refers to
calls

Figure 5: Anatomy of a simple client server Pycots architecture.

4.1. Generating Coqcots architecture from a Pycots execution state

The first step of the process, which is shown as 1 in Figure 3 on page 9
consists in introspecting the execution state according to the Pycots framework
in order to generate a reified architecture in Coqcots. For the sake of simplic-
ity, in this subsection we use a client-server example instead of the web server
whose Pycots and Coqcots architectures are more complex and, therefore, more
difficult to explain. In the first two parts of this subsection we describe the client-
server architecture using respectively the Pycots and the Coqcots formalisms.
Then, we explain how to realize the introspection of the Pycots architecture. To
close this subsection, we briefly present an extract of the Coqcots architecture
for our web server case study.

Overview of Pycots. In Pycots, each component is a black-box content object
wrapped in a component object, as depicted in Figure 5. Each wrapper com-
ponent object has a reference to its wrapped content object. The granularity
level for dependencies is the method level. Provided methods are methods im-
plemented by the content object for which a proxy (implemented by closure) is
provided by the component object. Dependencies are reference cells injected by
the framework in the content object: when bound, the reference cell refers to a
proxy of another component; when unbound, the reference cell refers to a stub
provided by the framework.

In this context, programming a component amounts to providing the class
of its content object (Client or Server in the code below). This class must
include the code of the provided ports (Server defines the method echo_port).
Finally, the developer must use functions provided by the framework to create
the component (pycots.create) using its implementation class, the list of its
provided ports and the list of its required ports. Once at least two components
are created, it is possible to bind them using pycots.bind.

11

client server

cst iP U

srv port/echo port

optional port

Figure 6: Anatomy of a simple client server Coqcots architecture.

1 import pycots

2 class Client(object):

3 def __init__(self): super(object, self).__init__()

4 def run(self): self.srv_port()

5 class Server(object):

6 def __init__(self): super(object, self).__init__()

7 def echo_port(self): print "hello"

8 c = pycots.create(Client, [], ["srv_port","optional_port"])

9 s = pycots.create(Server, ["echo_port"], [])

10 pycots.bind(c, "srv_port", s, "echo_port")

11 pycots.call(c, "run")

Coqcots architectures. Figure 6 depicts the same architecture as Figure 5 with
the Coqcots point of view. As illustrated, a component (client) has an associated
implementation (i) that uses a set of used services (U, which contains only the
srv port and optional port services in the case of the client component) to provide
a set of provided services (P, which is empty for the client component). The
architecture instance contains the client and server components and defines the
binding between the used service of the client and the provided service of the
server (srv port/echo port). When a used service of a component is not bound,
the implementation of that component cannot use this unbound service.

In our approach, the implementation of a component may come with a pre-
condition that specifies its assumption on the architecture in which the compo-
nent is instantiated. This architectural constraint (cst for the client component)
is an invariant that ensures that the implementation will only run in the ex-
pected situation. For example, a given component may require that some of
its used services must be bound (the mandatory services), while the other ser-
vices are allowed to become unbound (the optional services). The component
implementation can then assume that only optional services may be unbound.
Using architectural constraints enables the designer to assume the mandatory
semantics discussed by Boyer et al. [6] and Bruneton et al. [27].

Formally, Coqcots comes with two predicates, contains and binds, which re-
spectively state that an architecture contains a given component and a given
binding. The contains predicate takes as first argument an architecture a, fol-
lowed by the five elements of a component: (1) the name of the component c,

12

(2) the set4 of its used services U, (3) the set of its provided services P, (4) its
architectural constraint cst, and (5) its implementation i. Its definition is:

Parameter contains:
∀ (a: arch) (c: comp) (U: facet) (P: facet) (cst: arch → comp → Prop)

(i: ∀ (u: facet record U), cst a c → no exc if bound a c u → facet record P),
Prop.

The architectural constraint is a function that maps an architecture a and a com-
ponent c to a proposition. It is used by the implementation as a precondition to
the component’s services (term cst a c). The other precondition no exc if bound
relieves the implementation from defensively checking for availability when a
used service is guaranteed to be bound according to the constraint cst.

The binds predicate formally states that a binding exists in an architecture
a. The binding is represented by six values: three for the client component (the
user of the binding) and three for the server component (the provider of the
binding). Both components are represented by (1) their identity respectively clt
and srv, (2) the set of their involved services clt U and srv P, and (3) the ports
clt port and srv port bound by the predicate. The definition of binds is:

Parameter binds:
∀ (a: arch) (clt: comp) (clt U: Type) (clt port: namedport clt U)

(srv: comp) (srv P: Type) (srv port: namedport srv P),
Prop.

Using these predicates, the designer can define an architecture. For example,
the architecture presented in Figure 6 is an element of the following type:

Definition client server :=
{ a | ∃ client server,

contains a client client use facet client provide facet
client constraint (client implementation a client)

∧ contains a server server use facet server provide facet
server constraint (server implementation a server)

∧ binds a client srv port server echo port }.
Definition client constraint (self arch: arch) (self: comp) :=

∃ s provs port, binds self arch self srv port s provs port.
Definition server constraint (self arch: arch) (self: comp) :=True.

In this example, the client srv port must be bound as it is a mandatory depen-
dency, and the server has no constraint. For the binding, the set of used and
provided ports (third and sixth arguments elided as) are inferred by Coq.

Coqcots invariants. Coqcots is equipped with a set of invariants to ensure the
soundness of the architecture definition:

• Correct typing of bindings. This invariant excludes all architectures con-
taining at least two ports bound together having incompatible types.

• Existence of bound components. This invariant checks that bound com-
ponents belong to the architecture.

4In our model, we define a set of ports as a facet.

13

:type scope:'x7B' x '|' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif
:type scope:'x7B' x '|' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:'x7B' x '|' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
True.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic

• Unicity of used service bindings. This invariant checks that the architec-
ture does not contain a used port bound to two different provided ports.5

• Unicity of components characteristics. This invariant ensures that, for
each component, the set of ports, constraints, and implementation are
defined only once.6

• Satisfaction of component constraints. This invariant ensures that for each
component, the architectural constraint given in its definition holds.

An architecture is consistent if the five previously defined invariants hold. We
have proved that any architecture, obtained by applying Coqcots reconfigura-
tion operations starting from the empty architecture, is consistent. It relies
on two sub-proofs: (1) the empty architecture is consistent and (2) any of the
five proposed reconfiguration operations (detailed in Section 4.2) preserves the
invariants and then consistency. The length of the proofs is about 2500 lines7.

Introspection in Pycots. The introspection of the architecture of a running Py-
cots application relies on the native facilities of Python. Namely, for each com-
ponent, the methods and fields of the wrapper and content objects are scanned.
Regarding the wrapper, the code object8 of each method is compared to the
one of the proxy to detect the methods that are provided by the component.
Regarding the content, the code object of each method is compared to the one
of the proxy as well as the one of the stub. In the former case, a bound depen-
dency is detected, and the binding can be introspected in the values captured
by the closure object of the proxy. In the latter case, an unbound dependency
is detected. The whole architecture is traversed following the bindings from an
initial set of root components.

The extracted architecture of the web server. Finally, we automatically apply
the introspection method described above to the web server Pycots architecture
in order to obtain its reified Coqcots architecture shown on Figure 4. An extract
of this architecture expressed as a Coq definition is given below. For the sake
of simplicity, only an extract is presented here.

5This invariant restricts the component model to 1 − 1 bindings. To enable other cardi-
nalities, one can either remove this invariant, use reconfiguration to create or remove ports
on need like, e.g., Fractal’s collection interfaces, or introduce communicating elements, e.g.,
connectors responsible to balance, broadcast, gather or scatter communications.

6Despite this invariant seems to state the obvious, without it, Coq would not prevent from
writing a proposition stating that a component has two different definitions. This invariant is
also useful in proofs as it allows to deduce the equality of two component definitions: when
the differences are manifest the invariant can be used to complete the proof by contradiction;
otherwise, one definition can be replaced with the other one in other hypotheses and/or proof
goals in order to make the proof progress.

7The proof script is in the coqcots/Consistency.v file of the source code.
8In Python, the instructions of a function, closure or method are wrapped in a code object.

14

Definition architecture := { a & { dispatcher & { receiver & { serverFile & { serverHello |
(* list of all the components *)
(∀ c U P (C: arch → comp → Prop) (i: ∀ a c u, C a c → no exc if bound a c u →),

contains a c U P C (i a c)→ c=dispatcher ∨ c=receiver ∨ c=serverFile ∨ c=serverHello)
(* all the components are distinct *)
∧ dispatcher 6= receiver
(* existence component dispatcher *)
∧ contains a dispatcher dispatcher usefacet dispatcher provfacet

dispatcher constraint (dispatcher impl a dispatcher)
(* characteristics of component dispatcher *)
∧ (∀ U P (C: arch → comp → Prop) (i: ∀ a c u, C a c → no exc if bound a c u →),

contains a dispatcher U P C (i a dispatcher) → U = dispatcher usefacet)

∧ ((* ... *) P = dispatcher provfacet) ∧ ((* ... *) C = dispatcher constraint)

∧ (∀ i, contains a dispatcher dispatcher usefacet dispatcher provfacet
dispatcher constraint (i a dispatcher) → i = dispatcher impl)

(* existence of the binding from receiver to dispatcher *)
∧ binds a receiver dispatch0 dispatcher dispatch
(* list of all the bindings (excerpt) *)
∧ (∀ c ct cp s st sp, binds a c ct cp s st sp → c=dispatcher ∨ c=receiver)
∧ (* ... *)

The complete description for the architecture of Figure 4 is the conjunction of
44 such facts. It can be found at http://coqcots.gforge.inria.fr/demojss/
coqcots-coqdoc/Webserver.html.

4.2. Developing a proved reconfiguration

In the previous subsection we explained how to introspect the execution
state of a system using Pycots and how to obtain a reified Coqcots architecture.
The purpose of this subsection is to explain how to realize the reconfiguration
of this architecture (the step 2 in Figure 3 on page 9). For this purpose we
need to introduce several primitive reconfiguration operations as well as some
proof patterns in order to build and to validate the reconfiguration. Developed
reconfigurations should be correct with respect to the preconditions expected
by reconfiguration operations, as well as to the constraints required by the
components. To illustrate the reconfiguration operations, we describe how the
reconfiguration leading to Figure 7 on the next page involves the operations we
define.

Reconfiguration operations. The five primitive reconfiguration operations, which
we formally define in this section, are:

1. create adds a new component to the current architecture by taking its
used and provided ports, constraint and implementation.

2. destroy removes an existing component from the current architecture by
taking the name of the component.

3. link creates a binding from a used port of a component to a provided port
of another component by taking the requiring component and its used
port and the providing component and its provided port.

15

:type scope:'x7B' x ':' x 'x26' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x 'x26' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x 'x26' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x 'x26' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x 'x26' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x 'x26' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x 'x26' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x 'x26' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x '|' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x '|' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Specif
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x 'x5C/' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x 'x5C/' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x 'x5C/' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '<>' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x 'x5C/' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
http://coqcots.gforge.inria.fr/demojss/coqcots-coqdoc/Webserver.html
http://coqcots.gforge.inria.fr/demojss/coqcots-coqdoc/Webserver.html

receiver dispatcher

serverFile

(((((serverHello

dynEngine dynHello

dispatch/dispatch

serveFile/serve

serveHello/serve

serveHello/serve

hello/hello

Figure 7: The software architecture of the web server after dynamic reconfiguration.

4. unlink destroys a binding from the current architecture by using the same
parameters as link.

5. hotswap changes the behavior of an existing component by taking the
component’s name, the four new elements of the component, and two
functions mapping respectively the used ports and the provided ports of
previous version to the ones of the new version.

In following, we first explain in details the create operation, whose Coq code
is quite compact and easy to understand. Then we give a bief description of
the hotswap operation and we underline the importance of this operation in our
reconfiguration process. We omit the descriptions of all the other operations as
they can be presented in the similar way as the create operation.

The create operation is a function that returns a pair r composed of the new
architecture new a and the newly created component new c. They satisfy the
create post postcondition described later in this section. The create function
takes seven parameters: (1) the current architecture a, (2) the set of used ser-
vices of the new component U, (3) a proof U all opt that the used services are
all of the type optional9, (4) the set of provided services P, (5) the constraint
cst, (6) the implementation i, and (7) a proof cst all hold that in the resulting
architecture the architectural constraints of all the components (including the
created one) are satisfied. The create operation is defined by:

Parameter create:
∀ (a: arch) (U: facet)

(U all opt: List.Forall (fun p ⇒ ∃ t, p = optional t) (ports of (facet spec U)))
(P: facet) (cst: arch → comp → Prop)
(i: ∀ self arch self u, cst self arch self

9The optional type models that used services can be unbound, thus having no value.

16

Forall.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Lists.List
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic

→ no exc if bound self arch self u → facet record P)
(cst all hold: ∀ new a new c, create post a U U all opt P cst i new a new c

→ ∀ c’ U’ P’ (cst’: arch → comp → Prop)
(i’: ∀ a’’ c’’ u, cst’ a’’ c’’ → no exc if bound a’’ c’’ u →),

contains new a c’ U’ P’ cst’ (i’ new a c’) → cst’ new a c’),
{ r: arch × comp | let (new a, new c) := r in

create post a U U all opt P cst i new a new c }.
The postcondition of the create operation is the conjunction of six parts:

(1) The previous architecture a does not contain the newly created component
new c. (2) The new component new c exists in the new architecture new a
with the given elements (used U and provided P services, constraint cst and
implementation i). (3) The new architecture new a contains all the components
of the previous architecture a. (4) The new architecture new a contains only the
components contained by the previous architecture a and the new component
new c. (5-8) In the new architecture new a, the new component new c is well-
defined, i.e. it has unique elements (U, P, cst and i). (9-10) The previous a and
new new a architectures contain exactly the same bindings.
Definition create post

(* same parameters as create *) (new a: arch) (new c: comp) :=
1 (∀ U’ P’ cst’ i’, ¬ contains a new c U’ P’ cst’ i’)
2 ∧ (contains new a new c U P cst (i new a new c))
3 ∧ (∀ c’ U’ P’ (cst’: arch → comp → Prop)

(i’: ∀ a’’ c’’ u, cst’ a’’ c’’ → no exc if bound a’’ c’’ u → facet record P’),
contains a c’ U’ P’ cst’ (i’ a c’) → contains new a c’ U’ P’ cst’ (i’ new a c’))

4 ∧ (∀ c’ U’ P’ (cst’: arch → comp → Prop)
(i’: ∀ a’’ c’’ u, cst’ a’’ c’’ → no exc if bound a’’ c’’ u → facet record P’),
contains new a c’ U’ P’ cst’ (i’ new a c’)
→ c’ = new c ∨ contains a c’ U’ P’ cst’ (i’ a c’))

5 ∧ (∀ U’ P’ cst’ i’, contains new a new c U’ P’ cst’ i’ → U’ = U)
6 ∧ (∀ U’ P’ cst’ i’, contains new a new c U’ P’ cst’ i’ → P’ = P)
7 ∧ (∀ U’ P’ cst’ i’, contains new a new c U’ P’ cst’ i’ → cst’ = cst)
8 ∧ (∀ (i’: ∀ a’’ c’’ u, cst a’’ c’’ → no exc if bound a’’ c’’ u → facet record P),

contains new a new c U P cst (i’ new a new c) → i’ = i)
9 ∧ (∀ clt clt U clt port srv srv P srv port,

binds a clt clt U clt port srv srv P srv port
→ binds new a clt clt U clt port srv srv P srv port)

10 ∧ (∀ clt clt U clt port srv srv P srv port,
binds new a clt clt U clt port srv srv P srv port
→ binds a clt clt U clt port srv srv P srv port).

It is important to notice that a reconfiguration operation should preserve
constraints and bindings of unaffected components. We address this point with
the so-called frame axiom approach [28] in postcondition of reconfiguration op-
erations. For example, regarding the create operation, postconditions 3, 4, 9
and 10 above are the frame axioms.

The hotswap operation is the key point of Coqcots. The goal of this opera-
tion is to replace ports, constraints and implementation of a given component.
It is important to notice that all of these replacements must be done at once.
This constraint of our model comes from the fact that the type of an implemen-

17

:type scope:'x7B' x ':' x '|' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x '|' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif
:type scope:x '*' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Datatypes
:type scope:'x7B' x ':' x '|' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x '|' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:'x7E' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x 'x5C/' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '/x5C' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic

tation depends on ports and constraints. For example, changing a port while
keeping the implementation unchanged, is not well-typed. For the same reason,
the bindings must also be adjusted. To do so, the hotswap operation takes two
additional parameters map U and map P, which map bound ports of the old
set of ports to the new set of ports. As these mappings are restricted to bound
ports (hypothesis p bound in the definitions of portmap u and portmap p), it is
possible to remove ports as long as they are not bound in the architecture. Our
definition of the hotswap operation is therefore consistent with contextual sub-
stitutability as defined by Brada [29]. Port mappings are required to map old
ports to distinct new ports (map U injective and map P injective); the map-
ping must be independent of its p bound parameter, i.e., the mapping must
not depend on the structure of the proof that the port denoted by parame-
ter p is bound10 (map U proof irrel and map P proof irrel); the returned port
must be in the new facet (map U valid and map P valid); and the types of the
mapped ports must remain unchanged accross the mapping (map U preserve
and map P preserve).

Note that, for the sake of space, in the two calls of hotswap post, we omit
the 21 parameters of hotswap which are passed as is.

Definition portmap u (a: arch) (c: comp) (new: Type) (old: Type) :=
∀ (p: namedport old) (p bound: ∃ srv st stp, binds a c old p srv st stp),

namedport new.

Definition portmap p (a: arch) (c: comp) (new: Type) (old: Type) :=
∀ (p: namedport old) (p bound: ∃ clt ct ctp, binds a clt ct ctp c old p),

namedport new.
Parameter hotswap:
∀ (a: arch) (c: comp) (prev U: facet) (prev P: facet)

(existed: ∃ C i, contains a c prev U prev P C i)
(new U: facet)
(new U all opt: List.Forall (fun p ⇒ ∃ t, p = optional t)

(ports of (facet spec new U)))
(map U: portmap u a c (facet record new U) (facet record prev U))
(map U injective: ∀ p1 p2 pb1 pb2, map U p1 pb1 = map U p2 pb2 → p1 = p2)
(map U proof irrel: ∀ p pb1 pb2, map U p pb1 = map U p pb2)
(map U valid: ∀ p pb, List.In (map U p pb) (facet spec new U))
(map U preserve: ∀ p pb, np type (map U p pb) = np type p)
(new P: facet)
(map P: portmap p a c (facet record new P) (facet record prev P))
(map P injective: (* ... *)) (map P proof irrel: (* ... *))
(map P valid: (* ... *)) (map P preserve: (* ... *))

10Since preconditions are given as parameters, Coq considers that the return of a function
may depend on the structure of the proof of its preconditions. In the case of map U and
map P, this behavior prevents from proving the Coqcots invariants (page 13) as well as the
coalesced hypotheses (page 19). The Coq standard library comes with a general axiom of
proof irrelevance inherited from the classical logic. Here we prefer to require its specific cases
(map U proof irrel and map P proof irrel, and therefore it’s up to the implementers of map U
and map P decide whether they can prove the property in that specific case, or rely on the
general proof irrelevance axiom.

18

:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
Forall.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Lists.List
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:'exists' x '..' x ',' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
In.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Lists.List
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic

(new cst: arch → comp → Prop)
(new i: ∀ self a self c (u: facet record new U), new cst self a self c

→ no exc if bound self a self c u → facet record new P)
(new cst all hold: ∀ new a, hotswap post (* the parameters of hotswap *) new a

→ ∀ c’ U’ P’ (cst’: arch → comp → Prop)
(i’: ∀ a” c” u, cst a” c” → no exc if bound a” c” u →),

contains new a c’ U’ P’ cst’ (i’ new a c’) → cst’ new a c’),
{ new a: arch | hotswap post (* the parameters of hotswap *) new a }.

The hotswap operation replaces the classical start/stop operations. Using
this operation, the developer is able to offer a better continuity of service during
a reconfiguration. Indeed, the developer can define a new behavior for the com-
ponent providing partial services or all of its services by using other providers for
its used services. Notice that this is possible even if the component initial design
has not anticipated the situation. Last but not least, behavioral changes must
consistently reflect in the type of the component, so that any service degrada-
tion is explicit in the component type. Hence, it is possible to check whether the
other components still meet their quality of service requirements. This makes
service degradation controllable.

Proof patterns. Using the frame axiom approach in the postconditions of the
operations (as illustrated in create post) makes their use inconvenient. Indeed,
the proof environment accumulates the successive states of the architecture,
with hypotheses linking each state to its predecessor state. Therefore any proof
on the last state of architecture involves all the preceding states: the length of
the proofs increases with the number of steps in the reconfiguration. To avoid
this issue, we propose to wrap the reconfiguration operations in tactics, which
automatically coalesce the proof environment such that it no longer refers to
previous states of the architecture. The proof environment thus looks like the
initial architecture given in Section 4.1 on page 15.

To illustrate this, consider the create operation. After the operation has
been applied, the proof environment contains the two following hypotheses:

• From the previous architecture, prev H states that (see 1 of Figure 8 on
the next page) if a component c’ is contained in the previous architec-
ture prev a, it is one of the components previously created (here they are
denoted c1 to cn).

• From the frame axiom, frame states that (see 2 of Figure 8), in the new
architecture new a, any component is either the newly created component
new c or it was already contained in the previous architecture prev a.

The tactic coalesces these two hypotheses into the equivalent single one
presented at the bottom of the Figure 8 on the following page. Notice that
3 is now the combination of 1 and 2 and no longer refers to the previous
state prev a of the architecture. This coalesced hypothesis can be proved by the
following proof script:

19

:type scope:'x7B' x ':' x '|' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x '|' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x '|' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif
:type scope:'x7B' x ':' x '|' x 'x7D'.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Specif

prev H: ∀ c’ U’ P’ (cst’: arch → comp → Prop) (i’: ∀ a” c” u, cst’ a” c” → no exc if bound a”
c” u →), contains prev a c’ U’ P’ cst’ (i’ prev a c’) → c’=c1 ∨ (* ... *) ∨ c’=cn

frame: ∀ c’ U’ P’ (cst’: arch → comp → Prop) (i’: ∀ a’’ c’’ u, cst’ a’’ c’’ → no exc if bound a’’
c’’ u → facet record P’),
contains new a c’ U’ P’ cst’ (i’ new a c’) → c’ = new c ∨ contains prev a c’ U’ P’ cst’ (i’ a c’)

∀ c’ U’ P’ (cst’: arch → comp → Prop) (i’: ∀ a” c” u, cst’ a” c” → no exc if bound a” c” u →
), contains new a c’ U’ P’ cst’ (i’ a c’) → c’=c1 ∨ (* ... *) ∨ c’=cn ∨ c’=new c

1

2

3

Figure 8: Two hypotheses and their coalesced form.

intros c’ U’ P’ cst’ i’ new a contains c’.
destruct (frame new a contains c’) as [H | H].
- auto.
- destruct (prev H H); auto.

For each operation, we define the coalesced hypotheses such that the previ-
ous state of the architecture is no longer referred to. As all of these coalesced
hypotheses can be systematically proved, we developed a tool to generate auto-
matically the tactics that apply the operations then coalesce the proof environ-
ment.

Reconfiguration of the web server. The reconfiguration depicted in Figure 7 on
page 16 splits the serverHello component into two components: dynEngine, a
generic engine that generates dynamic pages, and dynHello, the greetings han-
dler. Since the serverFile component is not affected by this reconfiguration, it
will continue to handle requests during the reconfiguration. The main idea is
to temporarily hotswap the implementation of the dispatcher component such
that it continues to serve the requests targeting the serverFile component while
it enqueues those for serverHello. Since this step is manual in the process (see
Figure 3 on page 9), the reconfiguration developer can decide to design this new
implementation. But if she/he attempts to use hotswap on dispatcher without
any preparation, she/he would be unable to prove that the binding between
receiver and dispatcher remains well typed, as requested by Coq as part of the
proof obligations. Indeed this binding would not be well typed anymore. This
error highlights that either receiver must be changed to accomodate the service
provided by the new implementation of dispatcher, or the change of dispatcher
must be reconsidered such that the type of its dispatch port is not modified. In
our example, we choose the former fix: we modify receiver. The main steps of
this reconfiguration are:

1. The implementation of the receiver component is modified using hotswap
such that it spawns a new thread for each request. Therefore, it will be

20

:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x 'x5C/' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x 'x5C/' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x 'x5C/' x.html#http://coq.inria.fr/distrib/8.4pl2/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x 'x5C/' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x 'x5C/' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x 'x5C/' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic
:type scope:x '=' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Logic

possible to suspend a thread to delay a request while the other requests
are served with no delay.

2. Using hotswap, the implementation of the dispatcher component is replaced
by the following one: (1) it suspends the current thread (the request-
handler thread) by using a global event object, if it receives a request for
the serverHello component, and (2) it works as before, if a request for the
serverFile component is received.

3. Once the two previous steps are completed, the serveHello port of dis-
patcher is no longer used: the web server is ready for the architectural
changes. The binding between the dispatcher and serverHello components
is removed (unlink) then the component serverHello itself is removed (de-
stroy). The dynEngine and dynHello components are instantiated (create)
and bound (link), and then dynEngine is (hotswap) to add its provided
port. Last dispatcher is bound (link) to dynEngine.

4. Lastly, dispatcher is (hotswap) back to its initial implementation and sus-
pended threads are resumed.

The definition of this reconfiguration contains about 200 lines. It proves that
the reconfiguration is correct and that requests targeting the serverFile com-
ponent are handled immediately, even during reconfiguration. The complete
reconfiguration script is available online at: http://coqcots.gforge.inria.

fr/demojss/coqcots-coqdoc/Reconfiguration.html.

4.3. Extracting the reconfiguration script

Once we have obtained a valid Coqcots reconfiguration, we need to trans-
forme it back to an executable Pycots script (step 3 of Figure 3 on page 9).

The Coq extraction plugin translates the computational parts of Coq defi-
nitions while leaving logical parts out. This plugin proceeds first to an interme-
diate language MiniML, which is a variant of the λ-calculus with a fixed-point
combinator, inductive and coinductive types, pattern matching, and a module
and functor system. Then several backends generate concrete code for OCaml,
Haskell and Scheme.

In this section, we present a new backend we have developed to target the
Python language. The main problems to overcome in this backend concern
(co)inductive types and pattern matching, which are missing features in the
Python language.

Inductive and coinductive types. The approach we follow is based on the Scott
encoding of data types into the λ-calculus [30]. With this approach, each induc-
tive type defined by n constructors denoted {Ci}ni=1, where each constructor Ci

has arity ai, is translated to the functions:
{λx1 . . . λxai

λc1 . . . λcn · cix1 . . . xai
}ni=1.

For instance, the list type defined by:

21

http://coqcots.gforge.inria.fr/demojss/coqcots-coqdoc/Reconfiguration.html
http://coqcots.gforge.inria.fr/demojss/coqcots-coqdoc/Reconfiguration.html
list.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A → list A → list A.

is translated to the following Python functions:

1 nil = lambda if_nil, if_cons: if_nil()

2 cons = lambda head, tail, if_nil, if_cons: if_cons(head, tail)

Each function has the parameters of the corresponding constructor (none for
nil and head and tail in the case of cons) plus one functional parameter for
each constructor of the type (if_nil and if_cons in this case). As result,
the function calls the functional parameter corresponding to the constructor
it encodes (nil calls if_nil; cons calls if_cons) with the parameters of the
constructor. With this encoding, a value is a closure resulting from the partial
application of the function, where the if_xxx parameters are not supplied. The
closure stores the effective parameters of the constructor.

Pattern matching. Following Scott encoding of inductive types, pattern match-
ing is encoded as a function call to the matched object (which is encoded as a
closure). All the cases are rearranged in a decision tree, such that each test is
performed at most once.

For instance, the following definition:
Fixpoint count (A: Type) (l: list A) :=
match l with
| cons t ⇒ 1 + count t
| nil ⇒ 0
end.

is translated to the following Python function:

1 count=lambda l: l(lambda: 0, lambda _,t: 1+count(t))

The matching on list l is implemented by a call to the closure encoding this
list. Each case is provided as a function whose parameters are the parameters
of the constructor, i.e., no parameter in the nil case and the head and tail of
the list in the cons case.

4.4. Develop DSU and glue the reconfiguration script to the application

At step 4 of Figure 3 on page 9, the Python script extracted from the
Coq code needs to be glued with the Pycots framework, as well as concrete
Python objects (components, implementation objects and facets). The approach
we follow is to wrap the script in a Coq functor, such that these objects are
abstracted in module parameters. The script itself is a function parameterized
by the reified architecture in Python, obtained as described in 4.1 then mapped
to the Coqcots representation. Facets and implementation objects are mapped
from Python classes: the class for a facet is a record type; the class for an
implementation object is the class of the content object for a component.

The following code written by the reconfiguration developer shows the main
tasks in the glue between the Coq-extracted script and Python. The functions

22

list.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
cons.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
:nat scope:x '+' x.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Peano
nil.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
nil.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes
cons.html#http://coq.inria.fr/distrib/8.4pl4/stdlib/Coq.Init.Datatypes

make_facet, make_impl_of_class and make_arch map Python objects to data
types extracted from Coq, calling their constructors. First the facets are pro-
grammed as classes and mapped to their Coqcots representation (lines 1-9).
Then the same is done with implementations (lines 11-16). Then the archi-
tecture is reified and mapped to its Coqcots representation (lines 18-21). Last
the reconfiguration script is called with all of these objects as parameters (lines
23-25).

1 # map facets

2 F = module("F")

3 class dispatcher_provfacet(object):

4 def __init__(self, dispatch):

5 self._dispatch = dispatch

6 def dispatch(self):

7 return self._dispatch

8 F.dispatcher__provfacet = make_facet(dispatcher_provfacet)

9 (F.dispatch,) = namedports_of_facet(F.dispatcher__provfacet)

10

11 # map implementation objects

12 I = module("I")

13 class Dispatcher(object):

14 def dispatch(self, req):

15 # ...

16 I.dispatcher__impl = make_impl_of_class(Dispatcher)

17

18 # map the architecture

19 r = reify(application.receiver)

20 components = dict((d.name,c) for (c,d) in r.iteritems())

21 architecture = make_arch(architecture, components)

22

23 # apply the reconfiguration script

24 R = Reconfiguration.R(RCM, D).R(F).R(I).R(XF).R(XI)

25 R.reconfigure(architecture)

The hotswap operation is handled specifically. Indeed this operation is ex-
pected to dynamically hotswap the implementation of a component, i.e., to
apply DSU to the implementation of the content object of the component as
depicted in Figure 5. To do so we rely on Pymoult [14], a dynamic software
updating platform for Python, i.e., reconfiguration at the function-and-object
level. Pymoult advocates that, at this level, each reconfiguration may use spe-
cific mechanisms in order to accomodate to specific requirements. To follow
this recommendation, the hotswap operation looks up in a table for a specific
hotswapper function provided by the glue code. That hotswapper function can
use any of the Pymoult mechanisms to detect / force alterability, update the
code, update data, update types and classes, and introspect / reboot / re-
construct thread stacks. The hotswapper function includes all the objects it
depends on, including new implementations and code blobs for the component.

23

In the implementation of the hotswapper, the reconfiguration developer is
free to use any update mechanism on a per-operation basis. For instance, if
quiescence is required when updating the dispatcher component, the recon-
figuration developer can use Pymoult’s isClassInAnyStack predicate in or-
der to detect whether its implementation class is active. If the reconfigu-
ration developer prefers the behavior of Java Hotswap (i.e., the reconfigu-
ration occurs immediately; new calls execute the new implementation while
ongoing activities complet at the old implementation), she/he has to code
the hotswapper accordingly. The following code implements an update func-
tion for the latter alternative, the behavior of Java Hotswap. For any com-
ponent running the Dispatcher implementation, and requested to swap to
the Dispatcher_helloSuspended implementation, it uses Pymoult’s class re-
linking mechanism (hotswap_implementation_class); and it completes when
no method of the old Dispatcher implementation is on the runtime stacks
(isClassInAnyStack).

1 def hotswapper__dispatcher__impl_onlyfile(dispatcher):

2 updateDispatcher = BasicUpdate(manager,

3 lambda : True,

4 lambda : hotswap_implementation_class(dispatcher,

5 Dispatcher_helloSuspended)

6 lambda : not isClassInAnyStack(Dispatcher))

7 updateDispatcher.setup()

8 updateDispatcher.apply()

9 updateDispatcher.wait_update()

10 register_hotswapper(Dispatcher, Dispatcher,

11 Dispatcher_helloSuspended,

12 hotswapper__dispatcher__impl_onlyfile)

4.5. Applying the reconfiguration

The purpose of the step 5 of our reconfiguration approach shown on Figure 3
on page 9 is to apply the reconfiguration script obtained during the previous
step to the target software system.

As already described, Pycots is depicted by Figure 5. The framework is
composed of (1) a Component class, which is used to encapsulate components
into black boxes, and (2) functions for reconfiguration operations. A component
is basically an object that encapsulates its implementation, which is also an
object. Each port is a method of this implementation object, which is either
injected by the framework (used port) or coded by the developer (provided
port). The provided ports are exposed through public proxy methods of the
component object, which redirect method calls to their destinations.

With this framework, the link and unlink operations are as simple as field
assignment. The two alternatives are: (1) when the used port is bound, the
field is assigned to a stub function; (2) otherwise, it refers to the proxy of the
provided port it is bound to.

24

Core PycotsPymoult

Pycots-Coqcots
interoperability layer

Pycots
reification

Extraction from
Coqcots script

Reconfiguration glue

Figure 9: Architecture of Pycots.

The hotswap operation is splited in several primitive steps. First, added used
ports are injected to the component and removed provided ports are erased.
Then, the registered hotswapper function (see Section 4.4) is executed to realize
the DSU tasks within the component. Finally, the symmetric of the first step
is applied: added provided ports are created and removed used ports are erased
from the component. This sequence of operations ensures that at any time, all
the provided ports are implemented and all the requirements of the implementa-
tion exist as used ports. The primitive port manipulation operations (addition
and removal) are implemented using the native ability of Python to dynamically
add and remove members to objects.

In summary, the overall structure of the framework is depicted by Figure 9.
The core Pycots provides the component concept and primitive operations; the
Pycots-Coqcots interoperability layer makes the core functionalities available
for code extracted from Coq; Pycots reification introspects a running system to
build a representation of its architecture. Here Pymoult is used as a black-box
toolset. The script is automatically extracted from the Coqcots reconfigura-
tion script. The reconfiguration glue is written by-hand to gather everything
altogether and implement the design choices (especially regarding DSU steps)
of the reconfiguration. It is important to notice that the Pycots framework is
relieved from runtime verification of constraints, typing and invariants. Indeed,
we assume that these issues have been proved with Coq. It results that the core
Pycots framework is as tiny as 65 SLOC; the interoperability layer with Coq-
extracted code is 205 SLOC; the architecture reification module is 335 SLOC.

5. Summary of the process

In summary, the process depicted on Figure 3 on page 9 is as follow. 1 The
architecture of the application is first described as a Coq type denoting the set
of architectures a such that a given proposition P(a) holds. This proposition is
built as the conjunction of the facts describing all the components and all the
bindings in the architecture. It can be automatically generated. 2 In Coq, a
reconfiguration is a function that applies the reconfiguration operations to an
architecture. The Coq proof mode provides an interactive reconfiguration de-
velopment environment, which generates proof obligations for each precondition

25

as well as for the preservation of architectural constraints requested by the com-
ponents. Unprovable subgoals provide hints to the reconfiguration developer to
decide what components and implementations could be designed in order to suc-
cessfully implement the reconfiguration. The return type of the reconfiguration
gives a specification of the resulting architecture, describing the components and
bindings that are desired as the result of the reconfiguration. Again, Coq’s proof
mode provides an interactive environment to ensure that the specification holds.
In addition to the reconfiguration and its proof of correctness, the Coq code de-
fines the types of the components and of their interfaces. These types can be
considered a specification that can be later used when writing the Python code
for the component implementations11. 3 Once the reconfiguration developer is
satisfied, she/he uses Coq’s automatic code extraction mechanism to generate
the executable reconfiguration script. 4 Following the Coq specification, the
reconfiguration developer has to develop Python code for the artifacts that are
not programmed in Coq. These artifacts are mainly the implementations of the
components as well as the behavior of hotswap. 5 Last the reconfiguration is
executed.

The web page http://coqcots.gforge.inria.fr contains the complete
source code of Coqcots and Pycots. It also gives instructions to reproduce the
web server scenario (reconfiguring from Figure 4 on page 10 to 7 on page 16)
used as an example along Section 4.

6. Related work

6.1. Component platforms supporting reconfiguration

OpenCOM [31], Fractal [27] and FraSCAti [32] are well-known component
platforms with similar capabilities for managing and reconfiguring component
assemblies at runtime. For each component, controller elements are responsible
for managing the reconfiguration operations and ensure their safety and con-
sistency. To achieve these guarantees, components can be stopped such that
they are led to a quiescent state. A typical reconfiguration scenario is (1) stop
affected components, (2) change bindings, and (3) (re)start components. Unaf-
fected components are not stopped hence their services remain available during
reconfiguration.

When a component A attempts to use a stopped component B, while the
behavior is said undefined in the Fractal textual description, most implementa-
tions suspend the calling thread until B is restarted. Even if A is not explicitly
stopped, its services are unavailable and unavailability propagates back in the
architecture. In our case study, at least the dispatcher component must be
stopped. But even if the receiver component is not stopped, its thread is sus-
pended as soon as a request is received and until the end of the reconfiguration,
thus preventing servicing the requests to serverFile. In practice the whole web

11The use of this specification is informal in the current version of Coqcots and Pycots. We
consider improving in this regard in future work.

26

http://coqcots.gforge.inria.fr

server is therefore disrupted. Alternatively, in the Boyer et al.’s work [6], a con-
sistency invariant requires that mandatory dependencies of started components
are bound to started components only: in this case, A must be stopped before
B can be. While this approach is better founded, in practice applications are of-
ten stopped entirely. In our case study, this invariant forces to stop the receiver
component prior to stopping the dispatcher component. With this approach
too the whole web server is disrupted. OSGi [33] proposes yet another alterna-
tive: the framework-provided getService method, used by a bundle to resolve
a dependency, informs the bundle when the dependency is missing. To some
extent, OSGi supports only optional bindings. While this approach effectively
avoids disruption, it is hard to satistify in practice as providing such component
implementations that support any unsatisfied dependency is a difficult task.
Furthermore, as already stated in this paper, it is not possible to foresee all the
ways to avoid disruption when developing the application. Indeed, it highly de-
pends on the currently available resources and the current operating conditions.
For example, in our case study, if the current state of the server forbids to use
of serverHello, it is safe to apply the reconfiguration without modification of
the dispatcher. Another very different situation would be the case when there
are two instances of the dispatcher. In this case, we could elaborate a scheme
to update a first instance by modifying the receiver so that it routes all the
requests to the second dispatcher and then proceed equally for updating the
second dispatcher.

6.2. Verification of reconfiguration

Regarding the verification aspect, none of OpenCOM, Fractal or FraSCAti
initially addresses the problem. Léger et al. [34] proposed a model of the se-
mantics of Fractal using Alloy. They focus solely on the global consistency of
architectural constraints, which is similar to the verification of the Coqcots in-
variants as described in Section 4.1. For other aspects, Léger et al. rely on
the runtime verification of preconditions during the application of a reconfigu-
ration script, while this verification is achieved statically when developing the
reconfiguration with Coqcots.

FracL [35] is another formalization of Fractal for the Focal framework, which
in turn relies on Coq. Similarly to Léger et al. they define the invariants of the
Fractal component model as well as the semantics of reconfiguration operations
as pre-and-postconditions. Then they prove that these reconfiguration oper-
ations preserve the invariants. While the invariants from Léger et al. seem
more precise (for instance FracL ignores optional ports), the list of invariants is
similar. Coqcots is a bit simpler since we do not take into account composite
components. In addition to the preservation of invariants, FracL allows specify-
ing reconfiguration scripts by pre-and-postconditions, then develop them using
a simple procedural language and prove their conformance. In Coqcots, the
language we use is no more no less the Coq language with no restriction.

Still in the context of Fractal, Merle and Stefani [36] formalize the specifica-
tion of the component model in order to prove that it is consistent. They encode
the invariants of the component model as well as the dynamic behavior of the

27

specified middleware. The Fractal specification is structured in controllers to
provide modularity to the model: for instance some components may not have
some of the controllers when the corresponding reconfiguration capabilities are
not required. In this context, the question thus arises whether the controllers
are consistent altogether, i.e., whether their combination does not lead to con-
tradiction. To address this question, Merle and Stefani use the Alloy Analyzer
to find at least one instance of the component model. This work is compara-
ble to the proof of consistency of Coqcots described in Section 4.1 on page 13.
Merle and Stefani acknowledge that, due to limitations of Alloy and its first-
order logic, the behavior of the components cannot be taken into account in the
specification of the start/stop operations. While Coq does not suffer the same
limitations, we still make this simplification in our specification of the hotswap
operation. We intend to improve this point in future work.

Mefresa [37] performs a similar task using Coq in the context of the GCM
component model, a component model derived from Fractal. While the empha-
sis is put on the preservation of the invariants, Mefresa formalizes a complete
reconfiguration language with an operational semantics, which is rather differ-
ent from the pre-and-postcondition followed in other works and in Coqcots.
While Mefresa uses Coq as a tool to study dynamic reconfigurations, Coq-
cots uses Coq as the language for reconfiguration hence enabling its extraction
mechanism. Following this philosphy leads us leave the specification of Coq-
cots abstract, such that the extracted scripts are functors parameterized by the
concrete Pycots implementation.

Because Boyer et al. [6] aim at providing an automatic reconfiguration pro-
tocol, they focus their verification tasks on proving that their protocol conforms
to integrity constraints of their component model. Thanks to this, they prove
once and for all that any reconfiguration generated by their protocol is correct
with respect to this criteria. Our goal is different: we intend to improve ser-
vice availability as offered by hotswap in comparison to start/stop, rather than
automate the generation of reconfiguration scripts.

In addition to the formalization of a component model and reconfiguration
operations similar to Fractal, Lanoix et al. [38] define a component substitution
reconfiguration operation. While in appearance this operation is similar to our
hotswap operation, they differ in the following way: component substitution
works at the architectural level, while hotswap relies on DSU within a single
primitive component. Thus hotswap is able to preserve the component state
accross the operation, while substitution is not.

The proposal of Bialek and Jul [39] envisions to facilitate the reconfigura-
tion of component-based distributed applications. To take into account the
requirement of non-stopping components while reconfiguring, they maintain at
the same time the previous and the new versions of a component that needs to
be changed. This strategy introduces complexity for managing these elements
and may bring up scalability issues, especially when state must be preserved
accross component versions. Moreover, the proposal lacks a strong formalism
that would ensure important properties throughout the reconfiguration process,
such as consistency.

28

The position paper of La Manna [40] proposes to model the current and
new versions of the components using interface automata. These models are
then used to automatically generate state transformers, which are functions
that map states between the two versions of the interface automata. A state
transformer tells when a component can switch from its current version to its
new version. This promising approach provides timely, not-disruptive and safe
reconfiguration, but the proposal does not consider the implementation aspects.

The work of Andova et al. [41, 42] relies on collaboration models by us-
ing the Paradigm coordination language. Each component is described by a
state-transition diagram. A collaboration among components follows a set of
synchronization constraints that controls the detailed steps of the involved com-
ponents. As Paradigm is reflective, Andova et al. design a generic component
named McPal to migrate the system to new state-transition diagrams (hence
changing the behavior of components) and new constraints (hence replacing col-
laborations) without interrupting any component. Reconfiguration scripts are
seen like any other collaboration between the components. Paradigm models
and their reconfiguration scripts can be translated to a process algebra where
they can be verified. However, the use of state-transition diagrams for modeling
the behavior of components is not as expressive as a mainstream language like
Python.

In the context of real-time critical embedded systems, Apvrille et al. [43]
propose to model a software system and its reconfiguration using a UML profile
based on the formal timed process algebra RT-LOTOS. The system is com-
posed with additional components named observers. Each observer models a
property and can detect erroneous execution traces or missed deadlines because
it is synchronized with the system. For reconfiguration, observers can detect
service (un)availability and timeliness. Then a reachability analysis checks au-
tomatically that no such incorrect situation can occur. However, a reachability
analysis expects that the modeled system is a bounded RT-LOTOS model, hence
expressivity is restricted.

6.3. Alternatives to proof assistants

Instead of Coq, graph transformations are often used as a formalism for
dynamic reconfiguration, like in the work of Heinzemann and Becker [44]. With
graph transformation, checking that the resulting architecture conforms to a
given graph grammar is as simple as finding a graph morphism. In this paper
we address mainly the verification of structural properties, which is left as future
work by Heinzemann and Becker [44]. Conversely, Coqcots does not address the
verification they perform. The two works are complementary.

The verifications allowed by Coqcots are similar to the ones studied by Cabot
et al. [45] in the field of model transformation based on triple graph grammars
(TGG). The verification of the TGG rules is translated to the problems of
consistency and satisfiability of OCL constraints. They find that the generated
constraints are at best EXP-complete, and even undecidable and/or incomplete.
Consequently, the verification task is either performed by model-checking when
possible (i.e. when the verification problem is bounded) or by a proof assistant.

29

The direct use of a proof assistant in Coqcots avoids the translation between
multiple formalisms.

Automatic generation of the reconfiguration script would make the verifi-
cation unneeded when the generator is trusted. Arshad [46, 47] and Méhus
et al. [48] for instance use PDDL-based planning to generate reconfiguration
scripts. The preservation of invariants, to ensure the generation of correct
scripts, is encoded in the pre-and-postconditions in the definition of reconfigura-
tion operations. This is similar to Coqcots, and, like we have done in Section 4.1,
these pre-and-postconditions must be proved consistent with the desired invari-
ants. Like Boyer et al. [6] did, the generation algorithm must be proved as well.
PDDL-based work do not provide these proofs.

While Coqcots has the drawback of needing manual effort, we see a clear ad-
vantage advantage. Automatic techniques like PDDL-based planning or model-
checking require to anticipate the maximum number of components and all their
possible types and implementations. If not, a planner simply answers that no
solution exists and gives no hint about the causes of the problem. To illustrate
this, consider the reconfiguration of the web server example of Section 4.2 on
page 20: automatic techniques have no chance to guess that the developer is
able, if needed, to provide an alternative implementation of the dispatcher com-
ponent that handles some of the requests and enqueues the other requests. If
this change of behavior is encoded as a change in the type of the provided ser-
vices of dispatcher12, the automatic tool is stuck once again as it cannot guess
that the developer could provide a new implementation of receiver. Unless in-
structed that these implementations exist, an automatic tool is unable to gener-
ate the reconfiguration. But to do so, the update developer needs to anticipate
all of these implementations. Except for the very general stopped implemen-
tation like in OpenCOM or Fractal, doing so consists merely in designing the
reconfiguration. In contrast with the interactive process of Coqcots, the recon-
figuration developer can observe the architecture when stuck. The unprovable
proof obligations provide some indications, for instance, about what component
implementation might be missing to achieve the desired reconfiguration. The
reconfiguration developer can therefore decide to design new implementations
or to provide new components in order to complete the reconfiguration. Consid-
ering the same example of Section 4.2 on page 20, when the update developer
tries to unbind the serveHello port of dispatcher, Coq enforces that she/he proves
the architectural constraint assumed by the implementation of dispatcher. Since
this constraint requires the serveHello port be bound, the update developer can-
not prove it. Observing that the constraint is unprovable, she/he gets a hint
that the implementation of dispatcher must be changed in order to weaken the
constraint before the port is unbound. Then because this change breaks type
consistency of the binding between receiver and dispatcher, which Coq requests

12If this is not done, too many details might be abstracted to ensure correctness. In our
example, switching dispatcher to an implementation that might suspend the thread must
clearly be taken into account by its client components.

30

to be proved as a precondition of hotswap, the update developer gets a hint that
a new implementation is needed for receiver in order to accomodate the new
behavior of dispatcher.

6.4. Summary

Although the cited approaches support the dynamic reconfiguration of com-
ponent-based applications, most of them do not address the requirement of
service continuity while performing the reconfiguration actions. Unlike the pro-
posals discussed in this section, our approach relies on DSU instead of the con-
ventional start/stop operations. Coqcots focuses on maintaining safety and con-
sistency throughout a reconfiguration process and the Coq proof environment
allows to alleviate the complexity of performing DSU operations and enforce
properties. Thus, correctness properties and service continuity can be proved
by using this approach. Other formalisms could be used to model architectures
and reconfigurations, such as graph transformations. Yet it appears that such
formalisms still require classical proving techniques to overcome the inherent
difficulty of the verification task. While using an interactive approach requires
manual effort, it has the advantage to allow dealing with open environments. In
such environments the designer is able to imagine new elements to try to keep
a high level of quality of service during reconfiguration. When requesting for
the proof of architectural invariants, the involved proof assistant gives helpful
hints about what new elements might be relevant, as it points out issues. On
the other side, automatic tools better suit closed world, where no new compo-
nent or behavior can be added. In this regard, automatic tools and interactive
approaches address two different and complementary situations.

7. Conclusion

Dynamic reconfiguration provides a solution when stopping a component-
based software system is not an option. Unlike previous work, our proposal
relies on DSU to avoid the conventional start/stop operations over components.
Specific component implementations are used during reconfiguration in order to
continuously provide the best possible service. These implementations do not
need to be anticipated at design time as DSU let us embed them in the recon-
figuration. In this paper, we support verification and validation aspects with
Coqcots using the Coq proof assistant. By forcing the reconfiguration devel-
oper to explicitly reflect any service degradation in the type of the components,
Coqcots makes service continuity controllable and provable. We also describe
Pycots, an implementation framework developed using the Python language
and the Pymoult library. Our case study demonstrates the advantages of the
approach.

In the end, our paper contains numerous contributions:

1. A concrete component model Pycots for Python. This simple component
model offers a complete reflective framework supporting the introspection
of a running application to get its current architecture. It also offers a

31

runtime platform able to execute reconfiguration scripts written in Python.
Lastly, Pycots relies on the DSU Pymoult platform to offer hotswap feature
of component implementation.

2. An abstract component model Coqcots aimed at proving properties on
architectures or on manipulations of architectures in the proof assistant
Coq. Coqcots supports all the usual operations on architecture: creation
or removal of components and bindings, the modification of components
including changing their type (the kind of ports they offer) and lastly the
hotswapping of the component implementation.

3. A fully bidirectional translation is supported by the reflective feature of
Pycots on one side and the extraction facilities of Coq on the other side.

4. A simple tool to automatically manipulate repetitive parts of the Coq
proofs. Here we have presented the ability to compress the proof environ-
ment by applying a specific coalescing tactic.

5. An extension of the Coq extraction mechanism to enable the generation
of Python code. This new backend is intended to be contributed to the
Coq community.

6. A method to integrate smoothly the DSU code that needs to be written
within the reconfiguration script extracted from Coq. We follow a functor
like method to parameterize all the implementation elements. Notice that
the DSU function have full access to the Python capabilities but also to the
full Pymoult API allowing to write highly tailored and efficient updates.

7. A complete engineering process to help the design of a correct reconfigu-
ration and its application to a running software. The enactment of this
process is supported by all the previous contributions.

Our work on Pycots and Coqcots is going on and will continue in mainly
four areas:

1. One of the main objectives of the work presented here is to offer a smooth
process to be able to validate our approach on more serious applications.
The idea here is to try to apply our method to a bigger Python application.
Some work has already been done on using Pymoult with Django “a high-
level (. . .) Web framework that encourages rapid development and clean,
pragmatic design”13. The size of the application would enable to validate
the scalability of the proof methods.

2. Since a Coqcots architecture is modeled by a proposition, we envision that
we could apply our approach to architectural patterns. As consequence,
a reconfiguration developer could develop a reconfiguration script that

13https://www.djangoproject.com

32

https://www.djangoproject.com

would be proved correct for any instance of the architectural pattern.
This work will greatly improve the reusability of reconfiguration scripts
with high confidence.

3. As we work on DSU mechanism, we intend to explore ways to describe
in more details the semantics of the hotswap operation. This objective
would enable to prove more fine grain properties on reconfiguration. It
would also allow to extract a larger part of the final reconfiguration script.
In the end, specifying the DSU part of the glue could be also done within
Coq.

4. One feature that Pycots / Coqcots are both lacking is the support for
composite component. A component could be an assembly of other com-
ponents and not only a blackbox element (A group of objects for example
in Pycots). This extension requires to revise the proof methodology and to
study its impact on the size on the proof environment. Once, the compos-
ite feature will be available, we would like to connect the reconfiguration
proof engine to another component platform to evaluate its generality. As
Fractal is used by a lot of works on reconfiguration of component based
applications, it would be a good candidate. Notice that there already
exists some DSU functionalities for the execution platform of the main
implementation of Fractal: the JVM ([49] or more recently [50]).

[1] J. Kramer, J. Magee, The evolving philosophers problem: Dynamic change
management, IEEE Trans. on Software Engineering 16 (11) (1990) 1293–
1306. doi:10.1109/32.60317.
URL http://dx.doi.org/10.1109/32.60317

[2] K. Gama, W. Rudametkin, D. Donsez, Resilience in dynamic component-
based applications, in: Proc. of the 26th Brazilian Symposium on Software
Engineering, SBES 2012, IEEE, Piscataway, NJ, USA, 2012, pp. 191–195.
doi:10.1109/SBES.2012.32.

[3] W. Li, QoS assurance for dynamic reconfiguration of component-based soft-
ware systems, IEEE Trans. on Software Engineering 38 (3) (2012) 658–676.
doi:10.1109/TSE.2011.37.

[4] M. Ghafari, P. Jamshidi, S. Shahbazi, H. Haghighi, An architectural ap-
proach to ensure globally consistent dynamic reconfiguration of component-
based systems, in: Proc. of the 15th ACM SIGSOFT Symposium on
Component-Based Software Engineering, CBSE’12, ACM, New York, NY,
USA, 2012, pp. 177–182. doi:10.1145/2304736.2304765.
URL http://doi.acm.org/10.1145/2304736.2304765

[5] Y. Vandewoude, P. Ebraert, Y. Berbers, T. D’Hondt, Tranquility: A
low disruptive alternative to quiescence for ensuring safe dynamic up-
dates, IEEE Trans. on Software Engineering 33 (12) (2007) 856–868.
doi:10.1109/TSE.2007.70733.
URL http://dx.doi.org/10.1109/TSE.2007.70733

33

http://dx.doi.org/10.1109/32.60317
http://dx.doi.org/10.1109/32.60317
http://dx.doi.org/10.1109/32.60317
http://dx.doi.org/10.1109/32.60317
http://dx.doi.org/10.1109/SBES.2012.32
http://dx.doi.org/10.1109/TSE.2011.37
http://doi.acm.org/10.1145/2304736.2304765
http://doi.acm.org/10.1145/2304736.2304765
http://doi.acm.org/10.1145/2304736.2304765
http://dx.doi.org/10.1145/2304736.2304765
http://doi.acm.org/10.1145/2304736.2304765
http://dx.doi.org/10.1109/TSE.2007.70733
http://dx.doi.org/10.1109/TSE.2007.70733
http://dx.doi.org/10.1109/TSE.2007.70733
http://dx.doi.org/10.1109/TSE.2007.70733
http://dx.doi.org/10.1109/TSE.2007.70733

[6] F. Boyer, O. Gruber, D. Pous, Robust reconfigurations of component as-
semblies, in: Proc. of the 35th International Conference on Software Engi-
neering, ICSE’13, IEEE Press, Piscataway, NJ, USA, 2013, pp. 13–22.
URL http://dl.acm.org/citation.cfm?id=2486788.2486791

[7] E. Miedes, F. D. Muñoz-Escóı, A survey about dynamic software updating,
Tech. Rep. ITI-SIDI-2012/003, Instituto Universitario Mixto Tecnológico
de Informática, Universitat Politècnica de València, Valencia, Spain (May
2012).

[8] H. Seifzadeh, H. Abolhassani, M. S. Moshkenani, A survey of dynamic soft-
ware updating, Journal of Software: Evolution and Process 25 (5) (2012)
535–568. doi:10.1002/smr.1556.
URL http://dx.doi.org/10.1002/smr.1556

[9] J. Purtilo, C. Hofmeister, Dynamic reconfiguration of distributed programs,
in: International Conference on Distributed Computing Systems, Arling-
ton, Texas, USA, 1991, pp. 560–571. doi:10.1109/ICDCS.1991.148726.

[10] P. Oreizy, N. Medvidovic, R. N. Taylor, Architecture-based runtime soft-
ware evolution, in: Proceedings of the 20th International Conference on
Software Engineering, ICSE ’98, IEEE Computer Society, Washington, DC,
USA, 1998, pp. 177–186.
URL http://dl.acm.org/citation.cfm?id=302163.302181

[11] J. Kramer, J. Magee, Self-managed systems: An architectural challenge, in:
2007 Future of Software Engineering, FOSE ’07, IEEE Computer Society,
Washington, DC, USA, 2007, pp. 259–268. doi:10.1109/FOSE.2007.19.
URL http://dx.doi.org/10.1109/FOSE.2007.19

[12] A. Cruz, Official Gmail Blog: Update on today’s Gmail outage, http://
gmailblog.blogspot.com/2009/02/update-on-todays-gmail-outage.

html (Feb. 2009).

[13] C. Giuffrida, A. S. Tanenbaum, Prepare to die: A new paradigm for live up-
date, Technical Report IR-CS-51, Department of Computer Science, Vrije
Universiteit, Amsterdam (April 2009).

[14] S. Martinez, F. Dagnat, J. Buisson, Prototyping DSU techniques using
Python, in: Proc. of the 5th Workshop on Hot Topics in Software Upgrades,
HotSWUp’13, USENIX, Berkeley, CA, USA, 2013.

[15] K.-K. Lau, Z. Wang, Software component models, IEEE Transactions on
Software Engineering 33 (10) (2007) 709–724.

[16] OMG, Common Object Request Broker Architecture (CORBA) Specifica-
tion, Version 3.1, Part 3: CORBA Component Model, http://www.omg.
org/spec/CORBA/3.1/Components/PDF (Jan. 2008).

34

http://dl.acm.org/citation.cfm?id=2486788.2486791
http://dl.acm.org/citation.cfm?id=2486788.2486791
http://dl.acm.org/citation.cfm?id=2486788.2486791
http://dx.doi.org/10.1002/smr.1556
http://dx.doi.org/10.1002/smr.1556
http://dx.doi.org/10.1002/smr.1556
http://dx.doi.org/10.1002/smr.1556
http://dx.doi.org/10.1109/ICDCS.1991.148726
http://dl.acm.org/citation.cfm?id=302163.302181
http://dl.acm.org/citation.cfm?id=302163.302181
http://dl.acm.org/citation.cfm?id=302163.302181
http://dx.doi.org/10.1109/FOSE.2007.19
http://dx.doi.org/10.1109/FOSE.2007.19
http://dx.doi.org/10.1109/FOSE.2007.19
http://gmailblog.blogspot.com/2009/02/update-on-todays-gmail-outage.html
http://gmailblog.blogspot.com/2009/02/update-on-todays-gmail-outage.html
http://gmailblog.blogspot.com/2009/02/update-on-todays-gmail-outage.html
http://www.omg.org/spec/CORBA/3.1/Components/PDF
http://www.omg.org/spec/CORBA/3.1/Components/PDF

[17] T. Bures, P. Hnetynka, F. Plasil, Sofa 2.0: Balancing advanced features
in a hierarchical component model., in: SERA, IEEE Computer Society,
2006, pp. 40–48.

[18] T. Genßler, A. Christoph, M. Winter, O. Nierstrasz, S. Ducasse, R. Wuyts,
G. Arévalo, B. Schönhage, P. Müller, C. Stich, Components for embed-
ded software: the pecos approach, in: CASES ’02: Proceedings of the
2002 international conference on Compilers, architecture, and synthesis
for embedded systems, ACM, New York, NY, USA, 2002, pp. 19–26.
doi:http://doi.acm.org/10.1145/581630.581634.

[19] OMG, Unified Modeling Language Specification, version 2.0 (July 2003).

[20] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, J.-B. Stefani, The Frac-
tal component model and its support in Java, Software: Practice and Ex-
perience 36 (11-12) (2006) 1257–1284.

[21] C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks, J. S. Foster, Kitsune:
efficient, general-purpose dynamic software updating for C, in: G. T. Leav-
ens, M. B. Dwyer (Eds.), OOPSLA, ACM, 2012, pp. 249–264.
URL http://dblp.uni-trier.de/db/conf/oopsla/oopsla2012.html#

HaydenSDHF12

[22] I. Neamtiu, M. Hicks, G. Stoyle, M. Oriol, Practical dynamic software
updating for C, in: Proc of the ACM SIGPLAN conference on Program-
ming language design and implementation, PLDI ’06, 2006, pp. 72–83.
doi:10.1145/1133981.1133991.
URL http://doi.acm.org/10.1145/1133981.1133991

[23] M. Dmitriev, Safe class and data evolution in large and long-lived java[tm]
applications, Tech. rep., Sun Microsystems, Inc., Mountain View, CA, USA
(2001).

[24] J. Buisson, F. Dagnat, Recaml: execution state as the cornerstone of
reconfigurations, in: Proceedings of the 15th ACM SIGPLAN interna-
tional conference on Functional programming, ICFP ’10, 2010, pp. 27–38.
doi:10.1145/1863543.1863550.
URL http://doi.acm.org/10.1145/1863543.1863550

[25] J. Arnold, M. F. Kaashoek, Ksplice: automatic rebootless kernel updates,
in: European Conference on Computer Systems, 2009, pp. 187–198. doi:

10.1145/1519065.1519085.

[26] X. Leroy, Formal verification of a realistic compiler, Commun. ACM 52 (7)
(2009) 107–115. doi:10.1145/1538788.1538814.
URL http://doi.acm.org/10.1145/1538788.1538814

[27] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, J.-B. Stefani, The
FRACTAL component model and its support in Java, Software: Practice

35

http://dx.doi.org/http://doi.acm.org/10.1145/581630.581634
http://dblp.uni-trier.de/db/conf/oopsla/oopsla2012.html#HaydenSDHF12
http://dblp.uni-trier.de/db/conf/oopsla/oopsla2012.html#HaydenSDHF12
http://dblp.uni-trier.de/db/conf/oopsla/oopsla2012.html#HaydenSDHF12
http://dblp.uni-trier.de/db/conf/oopsla/oopsla2012.html#HaydenSDHF12
http://doi.acm.org/10.1145/1133981.1133991
http://doi.acm.org/10.1145/1133981.1133991
http://dx.doi.org/10.1145/1133981.1133991
http://doi.acm.org/10.1145/1133981.1133991
http://doi.acm.org/10.1145/1863543.1863550
http://doi.acm.org/10.1145/1863543.1863550
http://dx.doi.org/10.1145/1863543.1863550
http://doi.acm.org/10.1145/1863543.1863550
http://dx.doi.org/10.1145/1519065.1519085
http://dx.doi.org/10.1145/1519065.1519085
http://doi.acm.org/10.1145/1538788.1538814
http://dx.doi.org/10.1145/1538788.1538814
http://doi.acm.org/10.1145/1538788.1538814
http://dx.doi.org/10.1002/spe.767
http://dx.doi.org/10.1002/spe.767

and Experience 36 (11-12) (2006) 1257–1284. doi:10.1002/spe.767.
URL http://dx.doi.org/10.1002/spe.767

[28] P. J. Hayes, The frame problem and related problems in Artificial Intelli-
gence, Tech. rep., Stanford University, Stanford, CA, USA (1971).

[29] P. Brada, Enhanced type-based component compatibility using deployment
context information, Electronic Notes in Theoretical Computer Science
279 (2) (2011) 17–31. doi:10.1016/j.entcs.2011.11.009.
URL http://dx.doi.org/10.1016/j.entcs.2011.11.009

[30] D. Scott, A system of functional abstraction, lectures delivered at Uni-
versity of California, Berkeley, Cal., 1962/63. Photocopy of a preliminary
version, issued by Stanford University (sep 1963).

[31] P. Pissias, G. Coulson, Framework for quiescence management in support
of reconfigurable multi-threaded component-based systems, IET Software
2 (4) (2008) 348–361. doi:10.1049/iet-sen:20070046.

[32] L. Seinturier, P. Merle, R. Rouvoy, D. Romero, V. Schiavoni, J.-B. Ste-
fani, A component-based middleware platform for reconfigurable service-
oriented architectures, Software: Practice & Experience 42 (5) (2012) 559–
583. doi:10.1002/spe.1077.
URL http://dx.doi.org/10.1002/spe.1077

[33] A. L. Tavares, M. T. Valente, A gentle introduction to osgi, SIGSOFT
Softw. Eng. Notes 33 (5) (2008) 8:1–8:5. doi:10.1145/1402521.1402526.
URL http://doi.acm.org/10.1145/1402521.1402526

[34] M. Léger, T. Ledoux, T. Coupaye, Reliable dynamic reconfigurations
in a reflective component model, in: Proceedings of the 13th Interna-
tional Conference on Component-Based Software Engineering, CBSE’10,
Springer-Verlag, Berlin, Heidelberg, 2010, pp. 74–92. doi:10.1007/

978-3-642-13238-4_5.
URL http://dx.doi.org/10.1007/978-3-642-13238-4_5

[35] M. Simonot, V. Aponte, A declarative formal approach to dynamic re-
configuration, in: Proceedings of the 1st International Workshop on Open
Component Ecosystems, IWOCE ’09, ACM, New York, NY, USA, 2009,
pp. 1–10. doi:10.1145/1595800.1595802.
URL http://doi.acm.org/10.1145/1595800.1595802

[36] P. Merle, J.-B. Stefani, A formal specification of the Fractal component
model in Alloy, Research Report RR-6721 (2008).
URL https://hal.inria.fr/inria-00338987

[37] N. Gaspar, L. Henrio, E. Madelaine, Bringing coq into the world of gcm dis-
tributed applications, International Journal of Parallel Programming 42 (4)
(2014) 643–662. doi:10.1007/s10766-013-0264-7.
URL http://dx.doi.org/10.1007/s10766-013-0264-7

36

http://dx.doi.org/10.1002/spe.767
http://dx.doi.org/10.1002/spe.767
http://dx.doi.org/10.1016/j.entcs.2011.11.009
http://dx.doi.org/10.1016/j.entcs.2011.11.009
http://dx.doi.org/10.1016/j.entcs.2011.11.009
http://dx.doi.org/10.1016/j.entcs.2011.11.009
http://dx.doi.org/10.1049/iet-sen:20070046
http://dx.doi.org/10.1002/spe.1077
http://dx.doi.org/10.1002/spe.1077
http://dx.doi.org/10.1002/spe.1077
http://dx.doi.org/10.1002/spe.1077
http://doi.acm.org/10.1145/1402521.1402526
http://dx.doi.org/10.1145/1402521.1402526
http://doi.acm.org/10.1145/1402521.1402526
http://dx.doi.org/10.1007/978-3-642-13238-4_5
http://dx.doi.org/10.1007/978-3-642-13238-4_5
http://dx.doi.org/10.1007/978-3-642-13238-4_5
http://dx.doi.org/10.1007/978-3-642-13238-4_5
http://dx.doi.org/10.1007/978-3-642-13238-4_5
http://doi.acm.org/10.1145/1595800.1595802
http://doi.acm.org/10.1145/1595800.1595802
http://dx.doi.org/10.1145/1595800.1595802
http://doi.acm.org/10.1145/1595800.1595802
https://hal.inria.fr/inria-00338987
https://hal.inria.fr/inria-00338987
https://hal.inria.fr/inria-00338987
http://dx.doi.org/10.1007/s10766-013-0264-7
http://dx.doi.org/10.1007/s10766-013-0264-7
http://dx.doi.org/10.1007/s10766-013-0264-7
http://dx.doi.org/10.1007/s10766-013-0264-7

[38] A. Lanoix, O. Kouchnarenko, Component substitution through dynamic
reconfigurations, in: B. Buhnova, L. Happe, J. Kofron (Eds.), Proceed-
ings 11th International Workshop on Formal Engineering approaches to
Software Components and Architectures, FESCA 2014, Grenoble, France,
12th April 2014, Vol. 147 of EPTCS, 2014, pp. 32–46. doi:10.4204/EPTCS.
147.3.
URL http://dx.doi.org/10.4204/EPTCS.147.3

[39] R. Bialek, E. Jul, A framework for evolutionary, dynamically updatable,
component-based systems, in: Proc. of the Workshops at the 24th Interna-
tional Conference on Distributed Computing Systems, ICDCS 2004, IEEE,
USA, 2004, pp. 326–331. doi:10.1109/ICDCSW.2004.1284050.

[40] V. P. L. Manna, Local dynamic update for component-based distributed
systems, in: Proc. of the 15th ACM SIGSOFT Symposium on Component-
Based Software Engineering, CBSE’12, ACM, New York, NY, USA, 2012,
pp. 167–176. doi:10.1145/2304736.2304764.
URL http://doi.acm.org/10.1145/2304736.2304764

[41] S. Andova, L. P. J. Groenewegen, J. Stafleu, E. P. de Vink, Formalizing
adaptation on-the-fly, Electronic Notes in Theoretical Computer Science
255 (2009) 23–44. doi:10.1016/j.entcs.2009.10.023.
URL http://dx.doi.org/10.1016/j.entcs.2009.10.023

[42] S. Andova, L. P. J. Groenewegen, E. P. de Vink, Distributed adaption
of dining philosophers, in: Proc. of the 7th International Conference on
Formal Aspects of Component Software, FACS’10, Springer-Verlag, Berlin,
Heidelberg, 2012, pp. 125–144. doi:10.1007/978-3-642-27269-1_8.
URL http://dx.doi.org/10.1007/978-3-642-27269-1_8

[43] L. Apvrille, P. De Saqui-Sannes, P. Sénac, C. Lohr, Verifying service con-
tinuity in a dynamic reconfiguration procedure: Application to a satellite
system, Automated Software Engineering 11 (2) (2004) 167–191. doi:

10.1023/B:AUSE.0000017742.47984.6c.
URL http://dx.doi.org/10.1023/B:AUSE.0000017742.47984.6c

[44] C. Heinzemann, S. Becker, Executing reconfigurations in hierarchical com-
ponent architectures, in: Proceedings of the 16th International ACM Sig-
soft Symposium on Component-based Software Engineering, CBSE ’13,
ACM, New York, NY, USA, 2013, pp. 3–12. doi:10.1145/2465449.

2465452.
URL http://doi.acm.org/10.1145/2465449.2465452

[45] J. Cabot, R. Clarisó, E. Guerra, J. de Lara, Verification and validation
of declarative model-to-model transformations through invariants, J. Syst.
Softw. 83 (2) (2010) 283–302. doi:10.1016/j.jss.2009.08.012.
URL http://dx.doi.org/10.1016/j.jss.2009.08.012

37

http://dx.doi.org/10.4204/EPTCS.147.3
http://dx.doi.org/10.4204/EPTCS.147.3
http://dx.doi.org/10.4204/EPTCS.147.3
http://dx.doi.org/10.4204/EPTCS.147.3
http://dx.doi.org/10.4204/EPTCS.147.3
http://dx.doi.org/10.1109/ICDCSW.2004.1284050
http://doi.acm.org/10.1145/2304736.2304764
http://doi.acm.org/10.1145/2304736.2304764
http://dx.doi.org/10.1145/2304736.2304764
http://doi.acm.org/10.1145/2304736.2304764
http://dx.doi.org/10.1016/j.entcs.2009.10.023
http://dx.doi.org/10.1016/j.entcs.2009.10.023
http://dx.doi.org/10.1016/j.entcs.2009.10.023
http://dx.doi.org/10.1016/j.entcs.2009.10.023
http://dx.doi.org/10.1007/978-3-642-27269-1_8
http://dx.doi.org/10.1007/978-3-642-27269-1_8
http://dx.doi.org/10.1007/978-3-642-27269-1_8
http://dx.doi.org/10.1007/978-3-642-27269-1_8
http://dx.doi.org/10.1023/B:AUSE.0000017742.47984.6c
http://dx.doi.org/10.1023/B:AUSE.0000017742.47984.6c
http://dx.doi.org/10.1023/B:AUSE.0000017742.47984.6c
http://dx.doi.org/10.1023/B:AUSE.0000017742.47984.6c
http://dx.doi.org/10.1023/B:AUSE.0000017742.47984.6c
http://dx.doi.org/10.1023/B:AUSE.0000017742.47984.6c
http://doi.acm.org/10.1145/2465449.2465452
http://doi.acm.org/10.1145/2465449.2465452
http://dx.doi.org/10.1145/2465449.2465452
http://dx.doi.org/10.1145/2465449.2465452
http://doi.acm.org/10.1145/2465449.2465452
http://dx.doi.org/10.1016/j.jss.2009.08.012
http://dx.doi.org/10.1016/j.jss.2009.08.012
http://dx.doi.org/10.1016/j.jss.2009.08.012
http://dx.doi.org/10.1016/j.jss.2009.08.012

[46] N. Arshad, Automated dynamic reconfiguration using ai planning, in: Pro-
ceedings of the 19th IEEE International Conference on Automated Software
Engineering, ASE ’04, IEEE Computer Society, Washington, DC, USA,
2004, pp. 402–405. doi:10.1109/ASE.2004.16.
URL http://dx.doi.org/10.1109/ASE.2004.16

[47] N. Arshad, D. Heimbigner, A. L. Wolf, Deployment and dynamic reconfig-
uration planning for distributed software systems, in: Proceedings of the
15th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI ’03, IEEE Computer Society, Washington, DC, USA, 2003, pp. 39–.
URL http://dl.acm.org/citation.cfm?id=951951.952269

[48] J.-E. Méhus, T. Batista, J. Buisson, ACME vs PDDL: support for dynamic
reconfiguration of software architectures, in: 6ème édition de la Conférence
Francophone sur les Architectures Logicielles (CAL 2012), Montpellier,
France, 2012, pp. 48–57.
URL https://hal.archives-ouvertes.fr/hal-00703176

[49] S. Subramanian, M. Hicks, K. S. McKinley, Dynamic software updates: A
vm-centric approach, in: Proceedings of the 2009 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’09,
ACM, New York, NY, USA, 2009, pp. 1–12. doi:10.1145/1542476.

1542478.
URL http://doi.acm.org/10.1145/1542476.1542478

[50] T. Gu, C. Cao, C. Xu, X. Ma, L. Zhang, J. L, Low-disruptive dynamic
updating of java applications, Information and Software Technology 56 (9)
(2014) 1086 – 1098, special Sections from Asia-Pacific Software Engineering
Conference (APSEC), 2012 and Software Product Line conference (SPLC),
2012. doi:http://dx.doi.org/10.1016/j.infsof.2014.04.003.
URL http://www.sciencedirect.com/science/article/pii/

S0950584914000846

38

http://dx.doi.org/10.1109/ASE.2004.16
http://dx.doi.org/10.1109/ASE.2004.16
http://dx.doi.org/10.1109/ASE.2004.16
http://dl.acm.org/citation.cfm?id=951951.952269
http://dl.acm.org/citation.cfm?id=951951.952269
http://dl.acm.org/citation.cfm?id=951951.952269
https://hal.archives-ouvertes.fr/hal-00703176
https://hal.archives-ouvertes.fr/hal-00703176
https://hal.archives-ouvertes.fr/hal-00703176
http://doi.acm.org/10.1145/1542476.1542478
http://doi.acm.org/10.1145/1542476.1542478
http://dx.doi.org/10.1145/1542476.1542478
http://dx.doi.org/10.1145/1542476.1542478
http://doi.acm.org/10.1145/1542476.1542478
http://www.sciencedirect.com/science/article/pii/S0950584914000846
http://www.sciencedirect.com/science/article/pii/S0950584914000846
http://dx.doi.org/http://dx.doi.org/10.1016/j.infsof.2014.04.003
http://www.sciencedirect.com/science/article/pii/S0950584914000846
http://www.sciencedirect.com/science/article/pii/S0950584914000846

	Introduction
	Background
	Component Architectures
	Dynamic Software Update
	Proof Assistant

	An overview of our proposal
	The complete process in details
	Generating Coqcots architecture from a Pycots execution state
	Developing a proved reconfiguration
	Extracting the reconfiguration script
	Develop DSU and glue the reconfiguration script to the application
	Applying the reconfiguration

	Summary of the process
	Related work
	Component platforms supporting reconfiguration
	Verification of reconfiguration
	Alternatives to proof assistants
	Summary

	Conclusion

