
HAL Id: hal-01236734
https://hal.inria.fr/hal-01236734

Submitted on 2 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Futex based locks for C11’s generic atomics
Jens Gustedt

To cite this version:
Jens Gustedt. Futex based locks for C11’s generic atomics. [Research Report] RR-8818, INRIA Nancy.
2015. �hal-01236734�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49451473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01236734
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
88

18
--

FR
+E

N
G

RESEARCH
REPORT
N° 8818
December 2015

Project-Team Camus

Futex based locks for
C11’s generic atomics
Jens Gustedt

A

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lès-Nancy Cedex

Futex based locks for C11’s generic
atomics*

Jens Gustedt†‡

Project-Team Camus

Research Report n° 8818 — December 2015 — 13 pages

Abstract: We present a new algorithm and implementation of a lock primitive that is based
on Linux’ native lock interface, the futex system call. It allows us to assemble compiler sup-
port for atomic data structures that can not be handled through specific hardware instruc-
tions. Such a tool is needed for C11’s atomics interface because here an Atomic qualification
can be attached to almost any data type. Our lock data structure for that purpose meets very
specific criteria concerning its field of operation and its performance. By that we are able to
outperform gcc’s libatomic library by around 60%.

Key-words: lock primitives, atomics, C11, futex, Linux

* A short version of this paper is accepted for publication in SAC’16, see [Gustedt 2016]
† Inria, France
‡ Université de Strasbourg, ICube, France

Verrous basés sur futex pour les opérations
atomiques génériques de C11

Résumé : Nous présentons un nouveau algorithme pour une primitive de verrouillage
et son implantation qui se basent sur l’interface natif de Linux, l’appel système futex.
Ceci nous permet d’assembler le support à la compilation de structures de données
atomiques tant qu’il ne peut pas être réalisé par une instruction matérielle. Une tel
outil est nécessaire pour l’interface atomique de C11, car ici la qualification Atomic
peut être attribuée à presque tous les types de données. Notre structure de verrouillage
vérifie des propriétés spécifiques pour son champ opérationnel et ses besoins de perfor-
mance. Ainsi nous sommes en mesure surpasser les performances de la bibliothèque
libatomic de gcc par 60%.

Mots-clés : primitives de verrouillage, opérations atomiques, C11, futex, Linux

Futex based locks for C11’s generic atomics 3

1. INTRODUCTION
Only very recently (with C11, see JTC1/SC22/WG14) the C language has integrated
threads and atomic operations into the core of the language. Support for these features
is still partial: where the main open source compilers gcc and Clang now offer atomics,
most Linux platforms still use glibc as their C library which does not implement C11
threads. Only platforms that are based on musl as C library, e.g Alpine, are feature
complete.

The implementation of the C11 atomic interface typically sits in the middle between
the implementation of the core language by the C compiler and the implementation
of the C library. It needs compiler support for the individual atomic operations and a
generic atomic lock interface in the C library when no low-level atomic instruction is
available.

Since Linux’ open source C libraries do not implement the generic interface, the com-
pilers currently provide a library stub that implements the necessary lock by means of
a combination of atomics and POSIX pthread_mutex_t.

By consensus in the community an API interface has emerged that both, gcc and
clang, implement.

These library stubs can rely on all their knowledge of the architecture specific atom-
ics for the non-contended part of the implementation, finally that is the context in
which they were created. But since they are generic, in case of contention these library
stubs rely on generic OS interfaces to put threads to sleep. From a point of view of the
C language the natural interface for that would be C11 threads, but since these are
still missing in glibc, they fall back to POSIX threads for which there are reliable and
efficient implementations.

This situation is less than ideal, a language interface should map to platform specific
properties and draw the best performance from any given hardware. In this work we
present a specific algorithm for the generic lock that relies on a specific Linux utility,
the futex system call.

A futex combines one atomic integer and OS scheduling. In our approach, we use
one unsigned to implement the lock and a waiter count at the same time. The resulting
data type of minimal size (32 bit on all architectures) and the algorithm can take
advantage by minimizing the number of CPU to memory transfers. In most cases one
such transfer is sufficient, where other algorithms have to update a lock and a waiter
counter separately.

To our knowledge pursuing this approach to a complete solution is new. Previously
urban myth had it that such approaches would risk deadlocks if confronted to heavy
load, because repeated failures of calls to futex wait could lead to unbounded loops. We
are able to prove that such unbounded loops will not happen for our algorithm. Also,
our measurements have shown that such an approach can be very effective: failed
system calls to futex wait are much less costly than commonly thought.

Our algorithm and its implementation is part of a larger open source project to pro-
vide the necessary interfaces (header files) and library support for C11’s <stdatomic.h>.
It is available at http://stdatomic.gforge.inria.fr/. The benchmarks that are presented
in this paper come with the reference implementation of Modular C, see http://cmod.
gforge.inria.fr/. The code is functional to be used with gcc and clang, even for older ver-
sion without full support for atomic operations. In a later stage, we intent to integrate
the whole project into the musl C library.

RR n° 8818

http://stdatomic.gforge.inria.fr/
http://cmod.gforge.inria.fr/
http://cmod.gforge.inria.fr/

4 Jens Gustedt

2. TOOLS FOR DATA CONSISTENCY AND RACES
Data races are the most difficult challenge for parallel programming. They often lead
to hard to trace erratic errors. The main problems are:

atomicity:. Writes to memory may or may be not split by the hardware into several
chunks that are written separately. A reader may occasionally see inconsistent val-
ues, for example a high and a low word of a wide integer that originate from different
writes.

divisibility:. A read-modify-write operations such as a simple i++ may be split into
several CPU instructions, e.g a read, an increment and a write. If a first write of
another threads falls sometime between the read and the write, the new write will
erase the value with one that is outdated.

memory ordering:. The results of read and writes to different objects in memory might
be perceived by different threads in different order. Reordering of instructions may
originate from optimization (compiler) or occur at run time (processor).

A data type that is guaranteed to avoid the first problem is called atomic. Before
the C11 revision C only had one data type, sig atomic t, that had this guaranty to be
read and written in one chunk. It can be used to communicate state between a user
program and a signal handler.

For the second problem, divisibility, C had no standard tool. No other operation than
read or write of sig atomic t was guaranteed to be indivisible. The indivisible oper-
ations that most computing hardware offer could not be accessed through language
features. Usually they had to be programmed through extensions such as inline as-
sembler or special compiler builtins.

Before C11, C also had no thread concept, so the memory ordering problem could not
even be formalized within the vocabulary of the C standard. Obviously, it also could
not provide tools to deal with it.

2.1. C atomics and its library interfaces
With modern multi-processor and multi-core hardware, parallel programming is an
imperative for many if not most user applications that are used on a larger scale.
Therefore it was crucial for C to provide the concepts and tools that are necessary to
deal with it. So C11 introduces a lot of vocabulary and two optional features: threads
through the <threads.h> interface, and atomics trough the <stdatomic.h> interface. Ev-
idently here we are more interested in the latter, but it is important to note that both
features need each other to unfold all of their potential.

C11 introduced a new qualifier, Atomic. A such qualified object guarantees that any
read or write access to it is atomic in the sense we have defined above. This qualifica-
tion also guarantees that between different threads all standard operations (defined
through operators such as += or functional such as atomic exchange) are perceived as
indivisible. Note well that this guarantee is only given between threads and in percep-
tion: in reality an operation can well be divided into several processor instructions and
the perception guarantee does not extend to visibility between the main program and
signal handlers. An operation that extends perception of indivisibility to signal han-
dlers is called lock-free in the jargon of the C standard. Below we will see where this
choice of words originates.

C11 also introduces different concepts of memory order for atomic operations. The
whole of that specification is much too complex to unfold, here. In the following we will
assume sequential consistency (memory order seq cst) for all atomic operations. This
forces all atomic operations to appear totally ordered between all threads.

We will use the following atomic operations:

Inria

Futex based locks for C11’s generic atomics 5

atomic store: store a new value
atomic exchange: store a new value and return previous
atomic fetch add: add value and return previous
atomic fetch sub: subtract value and return previous
atomic compare exchange weak: compare to desired, then exchange, may fail

2.2. Atomic instructions on modern hardware
Almost since the beginning of modern computing, parallelism was implemented in
hardware and the consistency problems that we introduced above became apparent.
An early overview of the problem had been given by [Netzer and Miller 1992]. Modern
hardware (which almost always is inherently parallel) deals with this by providing
special instructions, usually referred to as atomic instructions. It is important to note
that these are not the same as the atomic operations on the level of the C language.

word size:. Usually atomic instructions are limited to word sized data types. Available
on most platforms are instructions for 8, 16, 32 and 64 bit data types. Some also
extend to 128 bit.

primitives:. The instructions that are implemented may or may not directly corre-
spond to atomic operations. E.g some CPU may have a proper instruction for the
increment operator ++, e.g x86 64, on others, e.g arm, such an operation will have to
be composed from primitives.

boundedness:. Atomic instructions may give a guarantee to succeed within a bounded
time (usually some memory cycles) or just return success or failure. For the latter,
this may result in C level operations that have an unbounded response time.

state:. Atomic instructions may operate on an internal state of the platform. E.g arm
CPU work with a feature called monitors that memorize state of previous atomic
access to memory.

Due to all these differences, programming with atomic instructions directly on as-
sembly level is a mess, and in general it is very tedious to provide portability between
different architectures. Such code has to ensure

— the correct composition of atomic primitives to obtain sensible semantics of the op-
erations,

— the correct alignment of all atomic object such that they do not cross cache line
boundaries,

— the correct ordering of instructions, e.g it has to ensure that neighboring store in-
structions are not reordered by the CPU,

— that the unboundedness of some operation may not result in application deadlocks,
— and that the OS correctly restores processor state when the execution context

switches from one thread to another or to a signal handler.

Luckily, C11 now ensures that only C compiler and C library Implementers have to
consider all the glorious details of a specific architecture. One problem remains though,
and this is what this paper is all about. Because of the limited word size for atomic
instructions, the implemented compiler operations cannot just resort to a composition
of atomic primitives on the atomic object itself. If an object is large, say 128 bit wide,
or has a size that is not a power of 2, they must rely on external or internal locks
that protect a critical section, CS. That is they need an auxiliary object that protects
the data object by means of some lock primitives and by memorizing a state of the
application.

Typically such locks can be made invisible between different threads, but remain
visible between a thread and its signal handler. So the access to an object that is qual-
ified with Atomic but that needs a lock for operation may be divisible with respect

RR n° 8818

6 Jens Gustedt

to a signal handler. This property is what coined C’s terminology of lock-free that we
already mentioned above.

2.3. Fast user space mutexes
In a singular toolbox called Fast User space muTEXes, futex for short, the Linux ker-
nel combines two levels of operations for the implementation of lock primitives, see
[Hutton et al. 2002; Hart 2009]:

(1) User space atomic integers with lock-free operations are used to regulate access to
the lock as long as it is not congested.

(2) Wait and wake-up system calls resolve conflicts when the lock is under congestion
by multiple threads or processes. They relate to such integers by address (user space
or kernel space addresses) and are guaranteed to be perceived as indivisible by the
caller.

In the beginning, when futex were first introduced they needed non-standard fea-
tures: assembly extensions for the atomic instructions, and a system call interface into
the Linux kernel. Fortunately with the atomics interface of C11 we now have a stan-
dardized tool for the first. For the second, in the following we will assume that we
have two library calls futex wait and futex wake at our disposal. This is only a very
restricted set of the available futex operations that is simple to master and avoids
most of the complexity of the interface as it was described by [Drepper 2011]. The only
difficulty that remains is that a call to futex wait is only successful if the kernel can
guarantee that the value of the atomic object still is as expected. With these interfaces
a simple but inefficient lock structure smpl could look as follows:

typedef Atomic(int) smpl;
void smpl lock(smpl* lck) {

for (;;) {
int prev = atomic exchange(lck , 1);
i f (!prev) break;
futex wait(lck , prev);

}
}
void smpl unlock(smpl* lck) {

atomic store(lck , 0);
futex wake(lck , 1);

}

Here the second parameter to futex wait guarantees that the thread will only be
set to sleep if the value of the atomic object *lck still is prev. As a consequence the
smpl lock function will iterate until the atomic exchange succeeds in modifying the
value from a previous value of 0 to the value of 1.

The second parameter of futex wake corresponds to the maximal number of threads
that are to be woken up. So here, the thread that holds the lock restores the object *lck
to the value 0 and wakes up one possible waiter.

Both functions as described above are simplistic and not very efficient. The first,
smpl lock, is inefficient because each failed attempt to acquire the lock will result in
a call into the OS kernel, even if the lock would be available almost instantly. The
second, smpl unlock, tries to wake up another thread without any knowledge if there
even is such a thread that is waiting for it.

To avoid these two shortcomings, system libraries that implement locks (such as e.g
glibc and musl) usually combine two strategies:

Inria

Futex based locks for C11’s generic atomics 7

— A first spinning phase attempts the atomic operation several times. Thereby an
application with a very short CS can mostly avoid sending threads into sleep.

— They use at least two Atomic objects, one for the lock itself and a second one that
counts the waiters. By checking if the counter is 0, this allows to avoid useless calls
to futex wake.

Even though these additions enlarge the lock data structure and add one atomic
operation to the unlock function these strategies have proven to be much more efficient
then our simplistic versions, above.

3. A NEW GENERIC LOCK ALGORITHM USING FUTEX SYSTEM CALLS
To construct and adapted lock data structure for our situation, we want to have the
following properties:

— The size of the data structure should be minimal: it should use just one 32 bit word
as it is needed by the futex calls.

— When there is no contention, the number of atomic operations should be minimal.
That is one such operation for each, lock and unlock, should suffice in that case.

— The procedure should be efficient, that is it should not unnecessarily waste re-
sources. In particular, threads that have no chance to acquire the lock should be
put into an OS sleep state.

— The procedure should be optimized for the use case, namely a CS that is very short,
just the time to a copy operation of a small object.

— If the number of threads is bounded, the procedure should be deadlock free.

Typical OS lock structures also have the problem of fairness, that is that they should
ensure that no single thread has an waiting time for the lock that is much longer than
for others. For a lock that is used for atomics, this is only a secondary concern if we
can guarantee liveness. As we will see below in the benchmark section, congestion
here only is noticeable for an extremely high load, for which we may not expect any
reasonable application responsiveness.

3.1. The algorithm
For our strategy, see Listing 1, we use a single unsigned value that at the same time
holds the lock bit (HO bit) and a 31 bit counter.1 That counter is not viewed as a counter
of the threads that are in a kernel wait, but counts the number of threads inside the
critical section. An update of the counter part is done once when a thread enters the
CS. Compared to the number of times the counter is accessed under congestion such
events are relatively rare. Thereby we save memory bandwidth for the update, and
we also avoid too much interaction between the different threads that compete for the
lock.

(1) A thread is on the fast path for the lock when the overall value is 0. The lock can be
acquired with one atomic operation which sets the counter and the lock bit simulta-
neously, if successful.

(2) Otherwise, we increment the lock value atomically and enter an acquisition loop.
(a) First, we spin E times (E determined below) to set the HO bit as well, and thus

acquire the lock.
(b) If that fails, we suppose that the lock is under congestion and we go into a

futex wait.

1On Linux, unsigned is always 32 bit wide.

RR n° 8818

8 Jens Gustedt

Listing 1. A lock algorithm using a single Atomic unsigned.

typedef Atomic(unsigned) ftx ;
#define f tx set (VAL) (0 x80000000u | (VAL))
#define ftx lkd (VAL) (0 x80000000u & (VAL))

void ftx lock (ftx * lck) {
unsigned cur = 0;
i f (!atomic compare exchange weak(lck , &cur , f tx set (1))) {
cur = ftx fetch add(lck , 1) + 1;
for (;;) {

while (! ftx lkd (cur)) {
i f (atomic compare exchange weak(lck , &cur , f tx set (cur)))

return;
for (unsigned i = 0; i < E && ftx lkd (cur); i++)
cur = atomic load(lck);

}
while (ftx lkd (cur)) {

futex wait(lck , cur);
cur = atomic load(lck);

}
}

}
}

Going into the futex wait may fail if the value changes, but since additional threads
only change the counter when they arrive, this will not happen too often and the thread
goes to sleep, eventually. Unlocking is a very simple operation. The locker has con-
tributed ftx set(1u) to the value, and just has to decrement the value atomically by
that amount. The return value of the operation reveals if other threads still are in the
CS, and a futex wake call can be placed accordingly.

void ftx unlock(ftx * lck) {
unsigned prev = atomic fetch sub(lck , f tx set (1u));
i f (prev != f tx set (1u)) futex wake(lck , 1);

}

3.2. Analysis
It is relatively easy to see that this new strategy provides a functional lock primi-
tive using just a 32 bit data structure and one atomic operation for fast ftx lock and
ftx unlock. It remains to show that it cannot deadlock. The worst case scenario for our
use of our lock primitive is that the thread that holds the lock, say T0, is unscheduled
while inside the CS. Suppose further that there are N other threads that are ready to
be scheduled, and that once they are scheduled they start to compete for the lock.

Different quantities are interesting for an analysis of the runtime behavior of the
algorithm. We can control one of them, namely the time tmono that a scheduled thread
spends spinning before trying to switch to futex wait. Three others are platform de-
pendent:

tfail. is the maximum of two system specific times: the time a thread T1 may either
spend in a failed attempt to futex wait or that the system needs to put T1 to sleep
and start another thread T2.

Inria

Futex based locks for C11’s generic atomics 9

P . is the number of processor cores, which is viewed to be equal to the maximum num-
ber of threads that are scheduled simultaneously.

tpara. is the time that P threads need for a spinning phase that they perform in paral-
lel.

A value tpara close to tmono indicates a perfect parallelism, a value of P ⋅ tmono means
that there is none at all. Usually it will be greater than tmono, e.g because of memory
contention or contention on other shared resources (execution pipelines, caches). We
derive some other quantities from the above:

P̂ . given as P ⋅tmono
tpara

is the parallelism of the platform.

E. given as tmono
tpara

=
P̂
P

is the efficiency of the platform.

For example, on a modern hyperthreaded machine with 4 cores in total, P̂ is typically
between 2.5 and 3, E is between 0.625 and 0.75.

Remark 3.1. On a platform where P̂ is close to one, the spinning phase of the algo-
rithm should entirely be skipped.

This is simply because there no other thread can make progress while a thread is
spinning. Thus spinning would just waste resources and the state of the application
would not progress. So from now on we may assume that P̂ ≥ 1 + ε for some reasonable
value of ε > 0.

LEMMA 3.2. Provided that no other threads are unscheduled, after at most

tpara + (P − 1) ⋅ tfail

seconds a first thread successfully calls futex wait.

PROOF. For the first term, observe that after tpara time, at least one thread has
finished the spinning phase, and attempts futex wait.

While no thread is unscheduled at most P scheduled threads can enter the CS. There
are at most P − 1 atomic increments that change the futex value. Thus the first thread
that enters the CS will need at most tpara time for spinning and then futex wait may
fail at most P − 1 times in a row.

This already shows that, provided no other descheduling takes place, our algorithm
is deadlock-free.

Now, once a thread successfully goes into futex wait a new thread TP can be sched-
uled, compete for the lock and change the futex value. It may disturb all other threads
that are trying to go into futex wait, forcing them to restart their attempt.

Remark 3.3. Provided that no threads are unscheduled otherwise, that there are
always P threads inside the CS and that at least one of them has finished spinning,
after a time of tfail another threads succeeds his call to futex wait.

That is, under these circumstances we have a stable regime where each tfail seconds
a thread enters futex wait.

To be able to ensure that there is always at least one thread that has finished spin-
ning, we observe that if tpara ≤ tfail (or equivalently tmono ≤ E ⋅ tfail) a newly scheduled
thread has finished spinning when the next thread successfully goes into futex wait.

LEMMA 3.4. Provided that no threads are unscheduled otherwise, that there are al-
ways P threads inside the CS and that tpara ≤ tfail, threads succeed calls to futex wait
at a rate of 1/tfail per second.

RR n° 8818

10 Jens Gustedt

Or, roughly if P ≪ N the time for all threads to calm down and successfully call
futex wait is N ⋅ tfail.

THEOREM 3.5. Let be T0 a thread out of N ≫ P that is unscheduled when holding
the lock. Provided that none of the threads is unscheduled by other means and that
tpara ≤ tfail, after a time of N ⋅ tfail the application makes progress.

PROOF. This progress can be of two forms. Either there is another thread than
T0 that does not enter the the CS and thus progresses the application, or T0 will be
rescheduled and finishes its CS.

The time tmono has not only an influence for this worst case, but is also responsible for
the response time in the non-congested situation. The longer we spin, the higher the
probability to acquire the lock without going into futex wait. So the best compromise
would be to choose tmono = E ⋅ tfail. Practically a factor of 0.9 always guarantees liveness
of the application and shows good performance on average.

4. BENCHMARKS
4.1. The framework
We have run a long series of benchmarks to validate the approach. The code for the
benchmark is integrated in p11 with comes with Modular C, see Cmod. For compilation
of that benchmark we also need a C11 compliant library, that has C11 threads, and a
C11 compiler that also has gcc extension. We used musl for the first and gcc and clang
for the latter.

The implementation of our algorithm is a bit more sophisticated than what may
appear above. In particular it takes care of reducing the number of atomic operations
to a minimum and to use memory ordering for the locks that is adapted to the case.

4.2. The test program
The test in p11 is called p11#test#lifo. It is based on a stack implementation (Last In
First Out) that uses an atomic pair of pointers for the head to avoid the ABA problem,
[IBM 1983; Michael 2004]. For the benchmarks, the size of the atomic data structure
has been chosen in such a way that the generic atomic functions based on locks are
chosen.

The idea of this benchmark is to have a application that runs under full load, stresses
the platform with a lot of allocations and deallocations and in the middle of that does
a lot of locking and unlocking. It works as follows:

It creates or deletes a random number of list elements for the lifo inside a loop. All
test runs last 10s and were repeated at least 10 times. The measure that is reported is
the number of list elements that have been handled per second on average.

The parameters of the runs are the number of threads that run in parallel, values
ranging from 1 up to 256. Different lock primitives can be chosen at compile time to
protect the head of the LIFO:

futex. the futex based algorithm described here
mutex. based on a standard mutex
musl. musl’s low-level lock/unlock functions
spin. a spin lock using atomic exchange
native. the compilers ”native” generic lock, also a mutex

4.3. The test platforms
4.3.1. An arm7 machine with 4 cores. This machine has 4 symmetric arm7 cores at a 1.3

GHz with 2 GiB of RAM. This system is equipped with Alpine Linux, so it has musl as

Inria

http://cmod.gforge.inria.fr

Futex based locks for C11’s generic atomics 11

(a) lock throughput (b) relative performance compared to mutex

Fig. 1. benchmarks on arm

a native C library. The processor has atomic instructions for word sizes up to 64 bit.
The compiler is gcc version 5.2. Here, the native C library is musl and so the atomic
library of gcc are compatible. Therefore the benchmarks include “native”.

4.3.2. A x86 64 machine with 2x2 hyperthreaded cores. This is a i7-4600U CPU at 2.10GHz
and with 8 GiB of RAM. The OS is Debian Linux, with glibc as native library. The
processor has atomic instructions for word sizes up to 128 bit. The compiler is gcc
version 4.9. Because musl is not the native C library, the atomic library of gcc is not
compatible. Therefore the benchmark “native” is missing.

4.4. Performance comparison
Fig. 1(a) shows the results on the arm platform. We see that all lock implementations
allow for an acceleration of the application when a small number of threads is used.
But what is also clear that the ”native” lock performs worst for the case that is the
most interesting: the range where each thread has its own CPU core at its disposal.
Even the ”mutex” lock performs better.

We also see that musl’s internal lock structure shows a drastic performance loss
when it comes to congestion. This is due to a switch of the spinning strategy: as soon as
congestion is detected, spinning is abandoned and threads directly attempt futex wait.
This is meant to ensure fairness of lock acquisition, but as we can see for our use case
it has a dramatic impact on the application throughput.

Fig. 1(b) shows the relative performance of the same experiments, where the ”mutex”
implementation is taken as a base. We see that our new implementation is about 60%
better than the ”native” version, or 40% than a direct implementation with mutex. It
combines the good performance of a spinlock for the less congested range with a good
policy for strong congestion.

To finish let us consider the x86 64 platform, Fig. 2. Although it has more compute
power than the other, the atomics of the hardware are much less performing. This is
due to the fact that here an atomic instruction usually enforces a complete synchro-
nization at a cost of about 50 CPU cycles. Basically, the CPU is blocked for this number
of cycles. Compared to that, in a monitor based approach as on the arm architecture
part of these cycles can be used for other computations. So on the x86 64 platform any
atomic operation incurs a strong latency penalty. Thereby, our application is not even
able to accelerate for 2, 3 or 4 threads as it was the case on arm. In the contrary it

RR n° 8818

12 Jens Gustedt

(a) lock throughput (b) relative performance compared to mutex

Fig. 2. benchmarks on x86 64

even decelerates. Nevertheless the relative performance difference between the differ-
ent lock implementations look very similar.

5. CONCLUSION
We have presented a new locking algorithm that combines consequent use of C11 atom-
ics with Linux’ futex system calls. We have proven that it is deadlock free. is deadlock
free, and that it shows better performance than other lock implementations.

This is not surprising, an implementation that is tuned for the purpose (very short
CS) and that may avoid stacked calls into the C library should always perform bet-
ter than a generic one. Surprising to us was the wide performance gap between the
implementations.

By pursuing this research we learned to mistrust some of the urban legends that
turn around atomics, futexes and lock structures in general. At least when we stick to
the basics (futex wait and futex wake) and if we have a decent interface for atomics,
programming them is not as difficult as the legends suggest. Also using a system call
is not so much worse that spinning around an atomic access. The performance factor
between the two is only about 10, and so spinlocks in the order of 10 should be sufficient
in many cases.

This support library is now available as open source at http://stdatomic.gforge.inria.
fr. We hope to integrate it into the C library that we used for most of our experiments,
musl.

References

Alpine. http://alpinelinux.org/
Clang. http://clang.llvm.org/
Ulrich Drepper. 2011. Futexes are tricky. Red Hat Inc., rev. 1.6. (2011). http://www.

akkadia.org/drepper/futex.pdf
gcc. GNU Compiler Collection. https://gcc.gnu.org/
glibc. GNU C library. https://www.gnu.org/software/libc/
Jens Gustedt. 2016. Futex based locks for C11’s generic atomics, extended abstract.

In Proceedings of the 31st Annual ACM Symposium on Applied Computing. ACM.
accepted for publication.

Darren Hart. 2009. A futex overview and update. LWN.net (2009). https://lwn.net/
Articles/360699/

Inria

http://stdatomic.gforge.inria.fr
http://stdatomic.gforge.inria.fr
http://alpinelinux.org/
http://clang.llvm.org/
http://www.akkadia.org/drepper/futex.pdf
http://www.akkadia.org/drepper/futex.pdf
https://gcc.gnu.org/
https://www.gnu.org/software/libc/
https://lwn.net/Articles/360699/
https://lwn.net/Articles/360699/

Futex based locks for C11’s generic atomics 13

Andrew J. Hutton, Stephanie Donovan, C. Craig Ross, Hubertus Franke, Rusty Rus-
sell, and Matthew Kirkwood. 2002. Fuss, Futexes and Furwocks: Fast Userlevel
Locking in Linux. In Proceedings of the Ottawa Linux Symposium. 479–495. https:
//www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf

IBM 1983. IBM System/370 Extended Architecture, Principles of Operation. IBM.
SA22-7085.

JTC1/SC22/WG14 (Ed.). 2011. Programming languages - C (cor. 1:2012 ed.). Number
ISO/IEC 9899. ISO. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

Maged M. Michael. 2004. ABA Prevention Using Single-Word Instructions. Technical
Report RC23089. IBM Research.

musl libc. http://musl-libc.org
Robert H. B. Netzer and Barton P. Miller. 1992. What Are Race Conditions? Some

Issues and Formalizations. ACM Lett. Program. Lang. Syst. 1, 1 (March 1992), 74–
88. DOI:http://dx.doi.org/10.1145/130616.130623

POSIX. 2009. ISO/IEC/IEEE Information technology – Portable Operating Systems
Interface (POSIX®) Base Specifications. Vol. 9945:2009. ISO, Geneva, Switzerland.
Issue 7.

RR n° 8818

https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://musl-libc.org
http://dx.doi.org/10.1145/130616.130623

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lès-Nancy Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Tools for data consistency and races
	C atomics and its library interfaces
	Atomic instructions on modern hardware
	Fast user space mutexes

	A new generic lock algorithm using futex system calls
	The algorithm
	Analysis

	Benchmarks
	The framework
	The test program
	The test platforms
	Performance comparison

	Conclusion

