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ABSTRACT
This paper uses a new decomposition of the fluid ve-

locity in terms of a large-scale continuous component with
respect to time and a small-scale non continuous random
component. Within this general framework, a stochas-
tic representation of the Reynolds transport theorem and
Navier-Stokes equations can be derived, based on physi-
cal conservation laws. This physically relevant stochas-
tic model is applied in the context of the POD-Galerkin
method. In both the stochastic Navier-Stokes equation and
its reduced model, a possibly time-dependent, inhomoge-
neous and anisotropic diffusive subgrid tensor appears natu-
rally and generalizes classical subgrid models. We proposed
two ways of estimating its parametrization in the context of
POD-Galerkin. This method has shown to be able to suc-
cessfully reconstruct energetic Chronos for a wake flow at
Reynolds 3900, whereas standard POD-Galerkin diverged
systematically.

1 Introduction
Modeling accurately and understanding high Reynolds

flow is a main issue in current researches. Indeed, beyond
economic applications, turbulence needs still to be deeper
understood. A classical way of modeling 3D turbulence
consists to rely on the Boussinesq ”eddy viscosity” assump-
tion. However, the Eddy Viscosity matrix or coefficient and
its temporal and spatial dependence has to be determined.
In many cases, this is done empirically and/or using scal-
ing assumptions. There may be mentioned LES (Lesieur &
Metais (1996), Pope (2010)), or RANS (Wilcox (1988)).
The study Mémin (2014) and this paper follow another ap-
proach. The aim is to make appear naturally a physically
based subgrid-tensor through a stochastic representation. In
this approach, the small-scale velocity is assumed to be ran-
dom and partially decorrelated in time. Using Stochastic
Calculus , one can prove a stochastic representation of the
so-called Reynolds transport theorem. Afterward, this the-
orem applied to momentum, and the 2nd Newton Law leads
to a stochastic version of Navier-Stokes equations.

For some industrial applications, the resolution of a large-
scale system of Navier-Stokes equations (such as LES or
RANS) may be even too time consuming. A solution to alle-
viate this issue consists to derive a model of reduced dimen-
sion, as in the case of the Proper Orthogonal Decomposition
(POD) (Holmes et al. (1998)). It is composed of a finite set
of coupled ordinary differential equations which describe
the time evolution of the spatio-temporal decomposition of
the velocity fields. However, keeping a too small number
of modes ignores the small-scale contributions. Therefore,
it usually destabilizes the system. To overcome this is-
sue, some authors add empirically, to the reduced model,
an Eddy Viscosity term (Aubry et al. (1988) , Rempfer &
Fasel (1994), Östh et al. (2014), Protas et al. (2014)). Other
authors (Carlberg et al. (2011)) perform non-linear Galerkin
methods, with the same spatial modes. This leads to another
form of the reduced model, that will not be investigated in
this paper.
In our approach, the unresolved temporal modes are as-
sumed to be random and decorrelated in time whereas the
resolved one are deterministic. According to our stochas-
tic Navier-Stokes model, an explicit sub-grid tensor appears
both in the PDE and in the associated reduced model. The
parameters of this sub-grid tensor can then be estimated on
the residual velocity, through a statistical estimator. As we
will see it, this subgrid tensor successfully stabilizes the re-
duced system.
The papers is organized as follow. The second section ex-
plains the stochastic Fluid Dynamics model, on which we
rely. The third one presents our POD based reduced model
under uncertainty. The fourth section presents some numer-
ical results and comparisons. Finally, the last section con-
cludes and gives perspectives.

2 The proposed stochastic model
This article will use an Eulerian stochastic representa-

tion of the velocity and tracer evolution law, as proposed
in Mémin (2014). In most of classical stochastic represen-
tation of the Navier-Stokes equations, some parameters of
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the deterministic model are randomized. Here, on the con-
trary, a random component, encoding an uncertainty on the
velocity expression, is added to the Lagrangian velocity be-
fore any model derivation. Thanks to this decomposition,
one can derive a stochastic representation of the so-called
Reynolds transport theorem, cornerstone of the determinis-
tic fluid dynamic theory. Applying this theorem to encode
the conservation of mass and momentum transported by the
random flow and assuming a dynamical balance similar to
the 2nd Newton law, enable us to exhibit a stochastic Navier-
Stokes representation. This flow dynamics is hence derived
in a very similar way as the deterministic one. Before de-
scribing in deeper details the form of this evolution law, we
first present the stochastic flow representation we will deal
with, and the corresponding Reynolds transport theorem.

2.1 Stochastic flow
In a Lagrangian stochastic picture, the infinitesimal

displacement associated to the trajectory Xt of a particle is
noted:

dX t = w(X t , t)dt +σ(X t , t)dBt (1)

Function Bt denotes a d-dimentional Brownian function1

and the resulting d-dimensional random field, σ(x, t)dBt , is
a centered Gaussian random field correlated in space and
uncorrelated in time with covariance tensor:

Qi j(x,y) =
d

∑
k=1

∫

Ω
σ̆ ik(x,y′, t) σ̆ jk(y′,y, t)dy′δ (t− t ′)dt

(2)
In the following we will note the diagonal of the covariance
tensor as: a(x) =Q(x,x). This tensor that will be referred to
as the variance tensor is a symmetric positive definite matrix
at all spacial points, x. This quantity corresponds to the time
derivative of the so-called quadratic variation process:

a(x)dt = d

〈∫ t

0
σ(x,s)dBs,

(∫ t

0
σ(x,r)dBr

)T
〉

(3)

= σ(x)σ(y)T dt
4
=
∫

Ω
σ̆(x,z)σ̆ T (x,z)dzdt (4)

The notation 〈 f ,g〉 stands for the quadratic cross-variation
process of f and g. This central object of Stochastic Calcu-
lus can be interpreted as the covariance of time increments
dt f and dtg along time. Furthermore, 〈 f ,g〉= 0 if f or g is
differentiable w.r.t. (with respect to) time.
The drift term, w, of Lagrangian expression (1), represents
the large-scale part of the velocity. It can be random but it is
continuous w.r.t. time, since it varies slowly with time. At
high Reynolds number, the small-scale velocity component
lives at a much thinner time-scale than the former. This ac-
tual physical small-scale velocity is continuous w.r.t. time.
But, the time sampling used for large-scale modeling or as-
sociated to the observation frame rate is often much big-
ger than the turn over time of the smallest eddies. Thus, at
this time sampling, the smallest scales appear discontinuous
w.r.t. time. Therefore, we model them through a random
field uncorrelated in time.

1Formally it is a cylindrical Id -Wiener process (see Da Prato &
Zabczyk (1992) and Prévôt & Röckner (2007) for more information
on infinite dimensional Wiener process and cylindrical Id -Wiener
process).

2.2 Stochastic representation of the
Reynolds-transport theorem

Thanks to the decomposition (1), it is possible to de-
rive a stochastic representation of the so-called Reynolds
transport theorem (Mémin (2014)):

dt

∫

V (t)
q(x, t)dx =

∫

V (t)

(
dtq+∇ · (q(w∗dt +σdBt))−∇ ·

(a
2

∇q
)

dt
)

dx

(5)

where V (t) is a volume of fluid transported by the flow and:

w∗
4
= w− 1

2
(∇ ·a)T +σ(∇ ·σ)T (6)

A physical conservation of an extensive property,
∫
V (t) q,

such as mass or intern energy (neglecting diabatic and com-
pressive effects) leads to the evolution of an intensive prop-
erty, q :

dtq+∇ · (q(w∗dt +σdBt)) = ∇ ·
(a

2
∇q
)

dt (7)

If w is deterministic, the evolution of all the statistical mo-
ments of the intensive property can be formalized through
it. For instance, the equation of the expectation, q̄, is:

∂ q̄
∂ t

+∇ · (q̄w∗) = ∇ ·
(a

2
∇q̄
)

(8)

The equation of the evolution of q̄ is a classical advection-
diffusion equation. The expectation, q̄, is advected by
the effective drift, w∗, (skew diffusion (Vallis (2006))) and
undergoes a diffusion through the point-wise symmetric
positive-definite tensor a

2 . This advection-diffusion equa-
tion, derived from physical laws, has the same form than
widely used large-scale advection-diffusion equation setup
through an Eddy Diffusivity assumption (Vallis (2006),
Kraichnan (1987)). However, unlike most of classical
models, the subgrid diffusion we get is time-dependent,
anisotropic and inhomogeneous.
In Stochastic Calculus theory, each function f (t) can be
decomposed uniquely into the sum of a smooth compo-
nent (differentiable)

∫ t
0 f1(t)dt and a non differentiable one∫ t

0 f2(t)dBt . For a constant density ρ , equation (7) for q= ρ
and the uniqueness of the decomposition leads to:

0 = ∇ ·σ (9)

0 = ∇ ·w∗ = ∇ ·
(

w− 1
2
(∇ ·a)T

)
(10)

2.3 Stochastic Navier-Stokes model
Similarly to the Newton 2nd law, a dynamical balance,

between the temporal differentiation of the stochastic mo-
mentum, ρdXt , and general stochastic forces action, is as-
sumed. This leads, applying (5) to ρdXt and ρ , to a stochas-
tic Navier-Stokes representation.
To derive this stochastic dynamical model, in Mémin
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(2014), it is assumed that w is differentiable w.r.t. time,
which corresponds to a time scale separation assumption.
Moreover, regarding to our application case, we will assume
that the density ρ is constant. These assumptions leads to
the incompressible Navier-Stokes model, for the smooth ve-
locity component:

∂w
∂ t

+P ((w∗ ·∇)w) = P

(
1
ρ

τ(w)
)
+g+ν4w (11)

where

1
ρ

τk(w) = ∇ ·
(a

2
∇wk

)
(12)

w∗ = w− 1
2
(∇ ·a) (13)

P
4
= Id −4−1∇∇T (14)

Expression (11) can be seen as a generalization
of several classical turbulence model. For instance, if
the (divergence-free) small-scale infinitesimal displacement
σdBt is homogeneous, the subgrid tensor simplifies to
τ(w) = ρ a

24w. Therefore, we retrieve the simplest expres-
sion of the Boussinesq assumption, with a constant Eddy
Viscosity given by a

2 . In a more general case, the effective
advection does not affect the energy budget and the subgrid
tensor τ is dissipative, as in a 3D direct energy cascade.
Equations (5) and (11) provides the foundations of a physi-
cally relevant stochastic Fluid Dynamics framework. In this
paper, we will rely on it for the construction of reduced or-
der dynamical systems.

3 Stochastic POD-ROM
Dimensional reduction are methods allowing simplifi-

cation of partial differential equations (PDE), using dedi-
cated basis specified from observed data. The Proper Or-
thogonal Decomposition (POD) is one of these methods.
However, classical POD reduced order models (ROM) of-
ten suffers from stability issues. Our stochastic version of
the POD-ROM helps overcoming this drawback. After in-
troducing some notations, we explain how our model is de-
rived. Then, we propose solutions to fix the simulation time
step and for estimating the uncertainty variance tensor.

3.1 Classical model reduction using POD
In POD method, the velocity u is approximated by a

linear combinations of n modes (Holmes et al. (1998)):

u(x, t)≈
n

∑
i=0

bi(t)φi(x) with n� N (15)

The functions (φi(x))16i6N constitute the spatial modes.
They are referred to as Topos and are computed from a
Karunen-Loeve decomposition on a series of available ve-
locity snapshots. The Topos are sorted by decreasing order
of the snapshots covariance eigenvalues: λ1 > ... > λN , with
N the number of observed snapshots. The (bi(t))16i6N cor-
respond to the temporal modes or Chronos. Function φ0 is

the time average velocity and b0
4
= λ0

4
= 1. The time-space

evolution equation of u (a PDE) is then expressed as the

time evolution equations (a finite set of coupled ODEs) of
Chronos. Because of the advection non-linearity, the tem-
poral modes strongly interact with each others. In particu-
lar, even though the original model (with n=N) is computa-
tionally stable for moderate Reynolds number, the reduced
one is not, in general. The method, we propose in the next
section, allows us to tackle these drawbacks.

3.2 Stochastic reduced order model
To overcome the difficulties explained previously, we

proposed to use our stochastic Navier-Stokes model, instead
of the classical Reynolds average Navier-Stokes equation.
Let us outline that both systems address the same Physics.
They both rely on mass and momentum conservation and
differ only on the way they are taking into account small-
scale missing information.
To tackle the problem of modes interactions, Mémin (2014)
proposed to decompose u as follow: udt =wdt+σdBt with
w = ∑n

i=0 biφi (projection on the truncated subspace) and
∑N

i=n+1 biφidt a realization of σdBt (projection on the com-
plementary ”small-scale” subspace). Since ∇ · u = 0, for
all i, ∇ · φi = 0 and, then, ∇ ·w = 0. The drift, w, follows
the incompressible stochastic Navier-Stokes equation (11).
Projecting this equation along φi leads to:

dbi

dt
= ii +

(
l•i + f̆ (a)•i

)T b+btc••ib (16)

where the coefficients i, f̆ (a), l and c are computed through
projection on the Topos basis functions of the terms of (11).
Let us note that f̆ (a) is linear and is the only function which
depends on the variance tensor a. This system includes
a natural small-scales dissipation mechanism, through the
tensor τ . To fully specify this system, we need to estimate
the quadratic variance tensor a. This main issue is devel-
oped in subsection 3.4. But before that we elaborate further
on the choice of a characteristic time step related to the trun-
cation operated.

3.3 Choice of the time step
For several applications, the simulation of the most en-

ergetic large-scale components of the solution is sufficient.
However, this simulation needs to be fast, meaning both a
low complexity evolution model and a large time step. Our
stochastic model enables to reach both goals.
Indeed, as long as the resolved modes, which represent w,
are differentiable w.r.t. time, our stochastic reduced model
is valid. Thus, we choose the biggest time step ensuring
that these modes remains smooth. Qualitatively, the small-
est time scale of the resolved Chronos and their derivatives
is a good target. It is associated to the frequencies of their
last energetic Fourier modes. Quantitatively, the Shannon-
Nyquist theorem provides us a natural upper bound to fix
this time step. If the resolved POD modes and their evolu-
tion equations are not affected by aliasing phenomena, the
required smoothness is assumed to be reach. Since the evo-
lution equations are quadratic, a sufficient condition for the
necessary smoothness is:

1
∆t

> 4 maxi6n ( fmax (bi)) (17)

where fmax (bi) is the maximum frequency of the i-th mode.
Of course, aliasing will occur in the unresolved temporal
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modes, associated to smaller time scales. However, our
stochastic model is built from a decorrelation assumption
of the small-scale unresolved part of the velocity. A strong
subsampling of these components strengthen thus the decor-
relation property of these modes.

3.4 Estimation of the uncertainty variance
tensor

After having estimated the Topos and fixed the time
step, we need to estimate the uncertainty variance tensor a.
This estimation will enable getting a full expression of the
dynamical coefficients of the Chronos evolution equations
(16). To that end additional modeling assumptions must be
imposed. The first natural hypothesis consists to assume an
uncertainty field that is stationary in time. In this stationary
case, the uncertainty variance tensor is constant in time (and
spatially non-homogeneous).

3.4.1 The uncertainty variance tensor is
constant in time This case corresponds to the as-
sumption used in Mémin (2014). To understand the conse-
quence of this hypothesis, we recall that a

∆t is the variance
of the residual velocity u−w. This function is decorrelated
in time. The snapshots are hence independent. Therefore,
the variance, a

∆t , can be computed averaging the snapshots
(u−w)(u−w)T (ti).

3.4.2 The uncertainty variance tensor is
in the span of the Chronos Assuming constant
value for the tensor a(x) means that the turbulence is not in-
termittent. In the context of POD, it would mean that all the
unresolved modes have a constant variance. It is a good first
approximation. But, one can wonder whether it is possible
to do better.
If the uncertainty variance tensor a does depend of time,
the estimation is more involved, since only one realization
of the small scale velocity, (u(x, t)−w(x, t)), is available.
However, Stochastic Calculus theory helps to overcome this
difficulty. Indeed, at a fixed point x, it allows to estimate the
coefficients, zi(x), of the tensor, a(x, t), in basis of func-
tion of time (Genon-Catalot et al. (1992)). If we choose the
Chronos reduced basis:

a(x, t) =
d

∑
i=0

bi(t)zi(x) (18)

Then, the coefficients can be estimated as:

zi(x) =
∫ T

0

bi(t)
T λi

a(x, t)dt

=
∫ T

0

bi(t)
T λi

d
〈∫ t

0
σ(x, t ′)dBt ′ ,

(∫ t

0
σ(x, t ′)dBt ′

)T〉

= lim
∆t→0

∑
tk=0

bi(tk)
T λi

σ(x, tk)dBtk (σ(x, tk)dBtk )
T

≈ (∆t)2
T

∑
tk=0

bi(tk)
T λi

(u−w)(x, tk)((u−w)(x, tk))
T (19)

y

x

Vo r t i c i ty

4 6 8 10 12 14 16 18 20

−2

0

2

Figure 1. Vorticity along z at the first time step in the hor-
izontal section z = 0 .

Thus, (16) stays a quadratic autonomous system:

dbi

dt
= ii + l.Ti b+bT (c..i + f ..i)b (20)

with fpqi
4
= f̆qi

(
zp
)

4 Numerical results
The different variations of the approach proposed have

been assessed and compared numerically on numerical data,
from a LES simulation of a wake behind a cylinder, at
Reynolds 3900 (Parnaudeau et al. (2008)).

4.1 Characteristics of the data
The fluid is incompressible. At x = 0, there is a con-

stant velocity U = 1 directed along x > 0. At (x,y) = (5,0),
there is motionless cylinder with an axis along the z axis.
In permanent regime, it creates a Von Kármán vortex street.
Figure 1 shows the z component of the vorticity on hori-
zontal section of the fluid. Kelvin-Helmholtz instabilities
at the top right and bottom right of the cylinder can also
be observed just before the vortex creation zone. At this
Reynolds, the turbulence is relatively important. Thus, in
the context of POD, the Chronos live at different time scale.
It makes our stochastic model, based on a separation be-
tween smooth and highly oscillating parts of the velocity,
more relevant. In the study, we use N = 251 time steps to
observe 3 vortex shedings.

4.2 Reconstruction of Chronos
To reconstruct the Chronos, the reduced order dynami-

cal system (20) is used. The modes mean energy, (λi)16i6n,
and the Topos, (φi)06i6n, are computed from the whole se-
quence of snapshots (N = 251). As for the initial condition,
we used the referenced values of the Chronos computed di-
rectly from the scalar product of the initial velocity with
the Topos. Then, regarding the Chronos spectra, an opti-
mal time sub-sampling is chosen, as explained in subsec-
tion 3.3. Afterward, using the residual velocity and possi-
bly the Chronos, the variance tensor, a, or its decomposition
is estimated. The coefficients of the reduced order dynam-
ical system of Chronos, (20), are computed, using discrete
derivation schemes and integration. Finally, the Chronos
trajectories are simulated, integrating (20) with a 4-th order
Runge-Kutta method, with bre f (t = 0) as initial condition.

Figure 2 shows an example of the reconstruction of the
Chronos for n = 10 with the classical POD method (blue
plot) and our method with a variance tensor defined as a
linear combination of Chronos (red plot). The reference
(bre f

i )16i6n (black plot) are superimposed for comparison
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Figure 2. Reconstruction of the 10 first modes (n=10)
with a variance tensor expressed as a linear function of
the Chronos. The black plots are the observed references.
The blue lines corresponds to the solutions computed with a
standard POD-Galerkin whereas the red ones are computed
with the stochastic representation, without any corrective
coefficient. The initial condition, at t = 0, is common.

purpose. It can be observed that our model follows the ref-
erences quite well whereas the deterministic model blows
up very quickly. Let us point out that here both reduced
models are parameter free. No constant has been tuned to
adapt any viscosity model.
Figure 3 shows the error of the solution along time. Approx-
imating the square of the actual unresolved Chronos by the
time average of their square, the error is defined as follows:

err(t) = T

∥∥ure f −u
∥∥

L2(Ω)∥∥ure f
∥∥

L2(Ω×[0,T ])

≈




∑n
i=1

(
bre f

i −bi

)2
+∑N

i=n+1 λi

‖φ0‖2
L2(Ω)+∑N

i=1 λi




1/2

(21)

which is greater than the minimal error associated to the
modal truncation:

err(t) >
(

∑N
i=n+1 λi

‖φ0‖2
L2(Ω)+∑N

i=1 λi

)1/2

(22)

Equation (21) defines the criterion error plotted in Figure 3,
whereas (22) constitutes a lower bound of this error.

In Figure 3, we show the error, obtained for the standard
POD Galerkin model without subgrid dissipative term, and
our model for a variance tensor which is either fixed con-
stant along time or expressed as a linear combination of the
Chronos. The doted line is the minimal error associated to
the reduced subspace truncation error. The black solid line
is the error considering only the time mean velocity – if we
set all the Chronos to 0. In this case:

err|b=0(t) ≈
(

∑N
i=1 λi

‖φ0‖2
L2(Ω)+∑N

i=1 λi

)1/2

This term does not constitute an upper bound of the error.
However, if this limit is crossed, it means that the model
is completely useless. In Figure 2, knowing that the y axis
has a log scale, one can see the exponential divergence of
the standard POD reduced order (in blue). Conversely, our
methods, based on a physically relevant stochastic represen-
tation of the small scale component, work quite well, even
though no learning or tuning was used. There is only a slight
difference between a constant and a linear representation of
the variance tensor. A drawback of the second method is
that a(x, t) is not ensured to be a positive definite matrix.
When the number of modes increases, the basis, (bi)06i6n,
used for the projection of the tensor, a, is larger. Thus, the
projection approximates better the identity, and the estima-
tion of a(x, t) becomes closer to a positive matrix and close
to real value of the tensor. This may explain the difference
between the two methods.
Whatever their differences, both methods provide very en-
couraging result, as such representations enables clearly the
construction of autonomous subgrid models. This consti-
tutes an essential point for the devising of autonomous re-
duced order dynamical systems.

5 Conclusion
In this paper, a Fluid Dynamics model, built from fun-

damental physical principles applied to a stochastic repre-
sentation of the flow, has been used. In this representation,
the fluid velocity is random and partially decorraleted in
time. This time decorrelation can be interpreted as com-
ing from a subsampling in time of a fast oscillating part
of the velocity. In this framework, mass and momentum
conservation principles can be constituted from Stochastic
Calculus to derive a complete fluid flow dynamics model.
This framework brings a strong theoretical support to clas-
sical empirical models, while generalizing them through the
incorporation of an anisotropic, inhomogeneous and time-
dependent diffusion. Thanks to our stochastic represen-
tation of fluid dynamics, a reduced model, describing the
resolved modes evolution, has been derived. This model
takes explicitly into account the unresolved modes influ-
ence. Since our model enables to deal with aliasing effects,
we have chosen a time step as big as possible to improve
the efficiency of the reduced model simulation. A criterion
based on Shannon-Nyquist theorem has been proposed to
set the time step. Two different methods have been pro-
posed to estimate the variance tensor. The first one relies
on the assumption of a constant variance tensor along time,
whereas the second one decomposes this tensor as a lin-
ear combination of the Chronos basis. From both meth-
ods, closed autonomous reduced systems have been derived.
Finally, both methods have been tested on numerical data
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Figure 3. Normalized error for n = 2, 4, 6, 8, 10, 12, 14
and 16 modes. The error is normalized by the energy of the
solution: ∑N

i=1 λi. The blue line corresponds to the standard
POD Galerkin. The red one stands for our model with a
constant variance tensor along time. The magenta one rep-
resents our model with linear representation of the variance
tensor. The doted line indicates the error associated to the
mode truncation : ∑N

i=n+1 λi. The black solid line is the
error considering only the time mean velocity.

from LES simulation at Reynolds 3900 of wake flow. The
two kinds of reduced models have been compared to POD
Galerkin reduced system. The standard reduced system ex-
hibits very fast diverging trajectories. At the opposite, our
models have shown to provide much better results without
any parameter tuning.
Those results are very encouraging. However, a lot of im-
provements are possible and may be considered. Here, the
small-scale velocity has been assumed to be constant in time
or linear in the temporal modes. But, one can also assumes
that it is a quadratic or a cubic function of the temporal
modes. Another improvement can be brought by time sam-
pling adapted to each resolved modes, in order to make the
most of the time-decorraleted unresolved velocity explicit
influence. Finally, it could be suitable to remove the dif-
ferentiability assumption for the large-scale drift, w. This
would enable uncertainty quantification and to take into
account partially time-correlated sub-grid velocity compo-

nents influence, such as energy back-scatterings.
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