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K. Brenner∗, R. Masson†, L. Trenty‡, Y. Zhang§

October 27, 2015

Abstract

A model coupling a three dimensional gas liquid compositional Darcy flow and a one di-
mensional compositional free gas flow is presented. The coupling conditions at the interface
between the gallery and the porous medium account for the molar normal fluxes continuity for
each component, the gas liquid thermodynamical equilibrium, the gas pressure continuity and
the gas and liquid molar fractions continuity. This model is applied to the simulation of the
mass exchanges at the interface between the repository and the ventilation excavated gallery in
a nuclear waste geological repository. The spatial discretization is essentially nodal and based
on the Vertex Approximate Gradient (VAG) scheme. Compared with classical nodal approaches
such as the Control Volume Finite Element method, the VAG scheme has the advantage to avoid
the mixture of different material properties and models in the control volumes located at the
interfaces. The discrete model is validated using a quasi analytical solution for the stationary
state, and the convergence of the VAG discretization is analysed for a simplified model coupling
the Richards approximation in the porous medium and the gas pressure equation in the gallery.

1 Introduction

Flow and transport processes in domains composed of a porous medium and an adjacent free-flow
region appear in a wide range of industrial and environmental applications. This is in particular the
case for radioactive waste deep geological repositories where such models must be used to predict
the mass and energy exchanges occurring at the interface between the repository and the ventilation
excavated galleries. Typically, in this example, the porous medium initially saturated with the liquid
phase is dried by suction in the neighbourhood of the interface. To model such physical processes,
one needs to account in the porous medium for the flow of the liquid and gas phases including the
vaporization of the water component in the gas phase and the dissolution of the gaseous components
in the liquid phase. In the gallery, a single phase gas free flow can be considered assuming that the
liquid phase is instantaneously vaporized at the interface. This single phase gas free flow has to be
compositional to account for the change of the relative humidity in the gallery which has a strong
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feedback on the liquid flow rate at the interface.

If many works have been performed to model and discretize the coupling of single phase Darcy
and free flows (see the review [12]), there is very little work so far on the coupling of a two phase gas
liquid compositional Darcy flow with a single phase compositional free flow. Such a coupled model
has been recently proposed in [5, 14] using proper matching conditions at the interface between the
porous medium and the free flow regions. This model will be the starting point of our work and will
be simplified taking into account the physical characteristics of our problem focusing on the drying
processes at the interface between the nuclear waste repository and the ventilation excavated gallery.

To obtain our simplified model, it is first assumed that the longitudinal dimensions of the galleries
are large compared with their diameters allowing to reduce the model in the gallery to a 1D free
flow. Considering the low Mach flow regime in the galleries, a classical compositional No Pressure
Wave (NPW) 1D approximation of the Navier Stokes equations is used [17]. This model corresponds
to the low Mach number limit of the 1D Navier Stokes equations. The matching conditions at the
porous medium gallery interface proposed in [5, 14] will also be simplified taking into account the
low permeability of the repository. In this case, it can be assumed that the gas pressure, and the
gas molar fractions are both continuous at the interface. In addition, following [5, 14], the thermo-
dynamical equilibrium between the gas and liquid phases is assumed to hold at the interface. These
assumptions lead to our reduced model using a 3D two phase compositional Darcy flow in the porous
medium coupled to a 1D compositional NPW gas flow.

This reduced model is formulated in terms of a single set of unknowns used both in the porous
medium and in the gallery. This set of unknowns is based on the formulation introduced in [9, 10]
for a two components model and extended to an arbitrary number of components in [4]. It uses the
gas pressure (extended in the single liquid phase region), the liquid pressure (extended in the single
gas phase region) and the component fugacities as set of primary unknowns. The main advantage
of this formulation is to use a unique set of unknowns and of equations whatever the set of present
phases. In our coupled model, this set of unknowns is also used at the interface to formulate the 1D
NPW model in the gallery taking into account the matching conditions.

The discretization of our coupled model is based on the Vertex Approximated Gradient (VAG)
scheme introduced in [1] for the single phase Darcy flow and in [3] for compositional Darcy flows.
The VAG scheme is roughly speaking a finite volume nodal approximation. Its main advantage
compared with typical nodal finite volume schemes such as Control Volume Finite Element (CVFE)
methods [14] is to avoid the mixing of different material properties inside the control volumes. The
VAG scheme is here extended to take into account the coupling with the 1D free gas flow. It will be
seen to offer a natural framework to keep a single model in the control volumes corresponding to the
nodes located at the interface between the porous medium and the gallery.

In order to validate our discretization, the solution obtained numerically is compared with a quasi
analytical stationary solution derived from a simplified model. A very good match is obtained at
convergence. Then, a more complex geological test case is presented including two rocktypes and an
anisotropic permeability field. A more advanced model is also tested including on the gallery side a
gas molar fraction at the interface and a normal diffusion term between the interface and the gallery
modelling the concentration boundary layer in the spirit of [5], [15]. The previous model corresponds
to the limit when the diffusion coefficient tends to infinity.

The convergence of the VAG discretization is also analysed mathematically using a simplified
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model coupling the Richards approximation in the porous medium coupled with a single phase Darcy
flow in the gallery with fixed composition. The convergence of the VAG scheme to a weak solution is
proved by compactness arguments adapting the techniques used in [7, 6] and exploiting the two point
flux approximation in the gallery. The main new difficulty is related to the non linear dependence
between the liquid and gas pressure at the interface accounting for the thermodynamical equilibrium.

The outline of the article is the following: section 2 details our reduced 3D-1D coupled model and
its formulation using a single set of unknowns corresponding to the gas pressure, the liquid pressure
and the component fugacities. In section 3, the VAG discretisation is extended to our coupled model.
The VAG fluxes are first derived using a linear coupled model problem. Then, our discrete model is
assessed numerically in section 4 on three test cases including a comparison with a quasi analytical
stationary solution. Finally, we prove in section 5 the convergence of the scheme to a weak solution
for a simplified model.

2 Coupled Model

Let ω and S ⊂ ω be two simply connected domains of R2 and Ω = (0, L)× (ω \S) be the cylindrical
domain defining the porous medium. The curvilinear coordinate along ∂S will be denoted by s while
x denotes the coordinate along (0, L). The excavated gallery corresponds to the domain (0, L) × S
and it is assumed that the free flow in the gallery depends only on the x coordinate along the gallery
and on the time t ∈ (0, T ). Let us denote by Γ = (0, L)× ∂S the interface between the gallery and
the porous medium, by ΓN = ({0}× (ω \S))∪ ({L}× (ω \S)) and ΓD = ((0, L)× ∂ω) the remaining
boundaries of Ω.

Let us denote by 1∂S the function equal to 1 on ∂S. In order to avoid heavy notations, we shall
keep in the following the same notation for a function v ∈ L2(0, L) and its prolongation v ⊗ 1∂S in
L2(Γ). Likewise, for any function u ∈ L2(Γ) which is constant along ∂S, we will keep the notation u
for its restriction to L2(0, L).

Let α = g, l denote the gas and liquid phases assumed to be both defined by a mixture of com-
ponents i ∈ C among which the water component denoted by e which can vaporize in the gas phase,
and a set of gaseous components j ∈ C \ {e} which can dissolve in the liquid phase. For the sake
of simplicity, the model is assumed to be isothermal with a fixed temperature Te. Following [4], the
gas liquid Darcy flow formulation uses the gas pressure pg, the liquid pressure pl, and the component
fugacities f = (fi)i∈C as primary unknowns, denoted by u = (pg, pl, f) in the following. In this
formulation, following [16], the component molar fractions cα = (cαi )i∈C of each phase α = g, l are
the functions cαi (u) of u defined by inversion of the equations fαi (cα, pg, pl) = fi, i ∈ C, where fαi is
the fugacity of the component i in the phase α. In addition, for α = g, l, the phase pressure pα is
extended in the absence of the phase in such a way that the closure law

∑
i∈C c

α
i (u) = 1 is always

imposed. The phase molar and mass densities, as well as the phase viscosities are denoted in the
following by respectively ζα(pα, cα), ρα(pα, cα), µα(pα, cα) for α = g, l. For the sake of simplicity, for
ξ = ζα, ρα, or µα, we will still use the notation ξ(u) for the function ξ(pα, cα(u)).
Finally, we define the liquid saturation sl as the function sl(x, pl−pg) of −pc = pl−pg defined by the
inverse of the monotone graph extension of the opposite of the capillary pressure function −pc(x, .),
and we set sg(x, .) = 1− sl(x, .).
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This leads to the following set of equations for the unknowns u in the porous medium:
φ∂t

∑
α=g,l

ζα(u)sα(x, pl − pg)cαi (u) + div
( ∑
α=g,l

ζα(u)cαi (u)Vα
)

= 0, i ∈ C, on Ω× (0, T ),∑
i∈C

cαi (u) = 1, α = g, l, on Ω× (0, T ),
(1)

coupled with the two phase Darcy laws

Vα = −kαr (x,sα(x,pl−pg))
µα(u)

K(x)
(
∇pα − ρα(u)g

)
, α = g, l, on Ω× (0, T ), (2)

where the function kαr (x, sα) of the phase saturation sα is the relative permeability of the phase
α = g, l, g is the gravity vector, φ(x) is the porosity of the porous medium and K(x) its permeability
tensor. The Dirichlet boundary conditions on ΓD are denoted by uext(x) and the initial conditions
in the porous medium are denoted by uinit(x). They both typically correspond to pure water and
imposed liquid pressure. At the boundary ΓN , a zero flux boundary condition is imposed for all
components.

In the gallery, the primary unknowns, depending only on the x coordinate along the gallery and
on the time t, are the gas pressure p and the gas molar fractions c = (ci, i ∈ C). The constant gas
molar fraction assumption in the section of the gallery corresponds to a strong turbulent diffusivity
assumption leading to well-mixed conditions. Note that in Subsection 4.3, this model will be im-
proved by the introduction of an additional gas molar fraction at the interface on the gallery side
corresponding to the gas molar fraction in the viscous boundary layer. The gas flow model is defined
by a No Pressure Wave (NPW) [17] isothermal pipe flow model. To fix ideas a Forchheimer law is
used for the pressure drop given by the two parameters αg > 0, βg > 0. The mass conservation of
each component i ∈ C involves the porous media fluxes at the interface Γ integrated over ∂S and
summed over both phases α = g, l assuming an instantaneous vaporization of the liquid phase in
the gallery. Denoting by n the unit normal vector at Γ outward to Ω, and by |S| the surface of the
section S, we obtain the following set of equations set on (0, L)× (0, T ):

∂t

(
|S|ζg(p, c)ci

)
+ ∂x

(
|S|ζg(p, c)ciw

)
=

∫
∂S

∑
α=g,l

ζα(u)cαi (u)Vα · n ds, i ∈ C, on (0, L)× (0, T ),∑
i∈C

ci = 1, on (0, L)× (0, T ),

(αgw + βg|w|w) = −∂xp, on (0, L)× (0, T ).

(3)

The boundary conditions are typically defined by the input gas velocity win and the input gas molar
fractions cin = (ci,in, i ∈ C) at the left side of the gallery x = 0, and by the output gas pressure pout
at the right side of the gallery x = L. The initial conditions in the gallery are given by cinit = cin
and pinit = pout (see Figure 1).

Figure 1: Geometry of the cylindrical domain, and set of unknowns in the porous medium and in
the gallery.
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At the interface Γ between the gallery and the porous medium the coupling conditions are an
adaptation to a 1D configuration for the free flow to those stated in [5]. Compared with [5], the gas
pressure jump p− pg at the interface is neglected since a small flow rate between the porous medium
and the gallery is assumed due to the low permeability of the disposal. Hence the coupling conditions
account first for the continuity of the gas phase pressure pg = p. Second, as in [5], we impose the
continuity of the gas molar fractions cg = c. Third, the thermodynamical equilibrium between the
gas phase and the liquid phase at the interface Γ is assumed leading to fi = f li = f gi = pci for all i ∈ C
together with

∑
i∈C c

l
i(p

g, pl, f) = 1 which provides the additional equation for the liquid pressure pl

at the interface. All together, we obtain the following set of coupling conditions at the interface Γ
pg = p,
f = pc,∑

i∈C c
l
i(p

g, pl, f) = 1.
(4)

Let γ denote formally the trace operator on Γ. Using the coupling conditions (4), we can refor-
mulate the model in the gallery (3) as the following set of Ventcel type boundary conditions (see
[18]) at the interface Γ for the unknowns u:

∂t

(
|S|ζg(γu)cgi (γu)

)
+ ∂x

(
|S|ζg(γu)cgi (γu)w

)
=

∫
∂S

∑
α=g,l

ζα(u)cαi (u)Vα · n ds, i ∈ C, on Γ× (0, T ),∑
i∈C

cαi (γu) = 1, α = g, l, on Γ× (0, T ),

∂sγu = 0, on Γ× (0, T ),

(5)

coupled with the closure law

(αgw + βg|w|w) = −∂xγpg, on Γ× (0, T ). (6)

In summary, the coupled model amounts to find u on Ω× (0, T ) satisfying the set of equations (1),
the closure laws (2), the boundary conditions (5)-(6) at the interface Γ, together with the boundary
conditions for u on ΓD and ΓN , for γu at {x = 0} and at {x = L}, and the initial conditions at t = 0
for u on Ω, and for γu on (0, L).

3 Vertex Approximate Gradient (VAG) Discretization

In order to introduce the VAG discretization of our model let us first consider the coupling of a
single phase Darcy flow in the porous medium with a 1D single phase Darcy flow in the gallery. The
discretization of the VAG fluxes and control volumes will be derived from this simple model and then
used for the discretization of the previous full model.

3.1 Linear Model Problem

Let us define γ the trace operator from H1(Ω) to L2(Γ), and the function space

V = {u ∈ H1(Ω) | γu ∈ H1(Γ), ∂sγu = 0}.

Keeping the same notation for convenience, the trace operator γ maps V to H1(0, L). The subspace
of V taking into account homogeneous Dirichlet boundary conditions on ΓD, and at x = L is denoted
by

V 0 = {u ∈ V |u = 0 on ΓD, (γu)(L) = 0}.
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The space V 0 is endowed with the Hilbertian norm

‖u‖V 0 =
(∫

Ω

|∇u(x)|2dx +

∫ L

0

| d
dx
γu(x)|2dx

) 1
2
.

Let Q ∈ L2(Ω) and q ∈ L2(0, L) denote respectively the source terms in the porous medium and
in the gallery. Let ū ∈ V , win ∈ R, we consider the following linear model coupling a single phase
Darcy flow in the porous medium with a single phase Darcy flow in the gallery:

div
(
−K∇u) = Q on Ω,

∂sγu = 0 on Γ,

∂x

(
−|S|
αg
∂xγu

)
= |S|q +

∫
∂S

−K∇u · n ds on (0, L),

u = ū on ΓD,
−K∇u · n = 0 on ΓN ,

− 1

αg
∂xγu(0) = win,

γu(L) = γū(L).

(7)

Its variational formulation amounts to find u ∈ V such that u− ū ∈ V 0 and∫
Ω

K∇u · ∇v dx +

∫ L

0

|S|
αg
∂xγu ∂xγv dx+ |S|winγv(0) =

∫
Ω

Qv dx +

∫ L

0

|S|qγv dx. (8)

for all v ∈ V 0. The existence and uniqueness of a solution to (8) is readily obtained from the Lax
Milgram theorem.

3.2 VAG Discretization of the Linear Model Problem

The VAG discretization [1] is a finite volume discretization of diffusion problem adapted to general
meshes and heterogeneous anisotropic media. It is here extended to our model problem coupling the
3D Darcy flow in the porous medium with the 1D Darcy flow in the gallery.

We assume that ω and S are polygonal domains of R2 and we consider a conforming polyhedral
mesh of the domain Ω. It is assumed that the intersection of the mesh with the boundary Γ of the
gallery is the tensor product of the 1D mesh of (0, L) defined by 0 = x0 < x1 < · · · < xmx+1 = L
by the 1D mesh of ∂S defined by the set of distinct points s1, s2 · · · , smS , smS+1 = s1 of ∂S in cyclic
order.

Let M denote the set of cells K, V the set of vertices s, E the set of edges e, and F the set of
faces σ, of the mesh. We denote by VK the set of vertices of each cell K ∈ M, by Ms the set of
cells sharing the node s, by Vσ the set of nodes and by Eσ the set of edges of the face σ ∈ F . The
set of vertices of the mesh belonging to {xm} × ∂S is denoted by Vm for all m = 0, · · · ,mx + 1,
and we denote by VΓ =

⋃
m=0,··· ,mx+1 Vm the set of nodes of the boundary Γ of the gallery, and by

VD = V ∩ ΓD the set of Dirichlet boundary nodes.
It is assumed that for each face σ ∈ F , there exists a so-called “centre” of the face xσ such that

xσ =
∑

s∈Vσ βσ,s xs, with
∑

s∈Vσ βσ,s = 1, where βσ,s ≥ 0 for all s ∈ Vσ. The face σ is assumed to be
star-shaped w.r.t. its centre xσ. Denoting by τσ,e the triangle joining the face centre xσ to the edge
e ∈ Eσ, it means that the face σ matches with the union for e ∈ Eσ of the triangles τσ,e.

The previous discretization is denoted by D. Let us define the vector space

YD = {vK ∈ R, vs ∈ R, K ∈M, s ∈ V}.
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The vector space XD of discrete unknowns is the subspace of YD defined by

XD = {vD ∈ YD | vs = vs′ for all s, s′ ∈ Vm,m = 0, · · · ,mx + 1}.

In the following, for any vD ∈ XD and for all m = 0, · · · ,mx + 1, the notation vm will stand for the
value vs, for all s ∈ Vm.

The subspace of XD with homogeneous Dirichlet boundary conditions on ΓD and at x = L is
defined by

X0
D = {vD ∈ XD | vs = 0 for all s ∈ VD ∪ Vmx+1}.

Following [1], the extension of the VAG discretization to the coupled model is based on conforming
Finite Element reconstructions of the gradient operators on Ω and on (0, L), and on non conforming
piecewise constant function reconstructions on Ω and on (0, L).

For all σ ∈ F , let us first define the operator Iσ : YD → R such that Iσ(vD) =
∑

s∈Vσ βσ,svs, which
is by definition of xσ a second order interpolation operator at point xσ.

Let us introduce the tetrahedral sub-mesh T = {TK,σ,e, e ∈ Eσ, σ ∈ FK , K ∈ M} of the mesh
M, where TK,σ,e is the tetrahedron defined by the cell center xK and the triangle τσ,e. For a given
vD ∈ YD, we define the function ΠT vD ∈ C0(Ω) as the continuous piecewise affine function on each
tetrahedron T of T such that ΠT vD(xK) = vK , ΠT vD(s) = vs, and ΠT vD(xσ) = Iσ(vD) for all
K ∈M, s ∈ V , σ ∈ F .

It is easily checked that ∂sγΠT vD = 0 for all vD ∈ XD which shows that ΠT vD ∈ V for all
vD ∈ XD and we denote by VT = ΠTXD the finite element subspace of V . Let ηK , and ηs, s ∈ VK ,
K ∈ M be the finite element nodal functions in ΠT YD such that ηK(xL) = δK,L, ηs(xL) = 0 for all
L ∈ M, and ηK(s′) = 0, ηs(s

′) = δs,s′ for all s′ ∈ V . Then, the nodal basis of VT is defined by ηK ,
K ∈M, ηs, s ∈ V \ VΓ, and ηm =

∑
s∈Vm ηs, m = 0, · · · ,mx + 1.

Then, we define for all vD ∈ XD the following gradient operators:

∇DpvD : XD → L2(Ω)d such that ∇DpvD = ∇ΠT vD,

and
∇DgvD : XD → L2(0, L) such that ∇DgvD = ∂xγΠT vD.

One can easily check that

∇DgvD =
vm+1 − vm
xm+1 − xm

on (xm, xm+1) for all m = 0, · · · ,mx. (9)

In addition to the conforming finite element discretization, the VAG discretization uses two non
conforming piecewise constant reconstructions of functions from XD into respectively L2(Ω) and
L2(0, L). The definition of the first operator ΠDpvD(x) from XD to L2(Ω) is based on the following
partition of each cell K ∈M

K = ωK
⋃ ( ⋃

s∈VK\(VD∪VΓ)

ωK,s

)
Then, we set

ΠDpvD(x) =

{
vK for all x ∈ ωK , K ∈M,
vs for all x ∈ ωK,s, s ∈ VK \ (VD ∪ VΓ), K ∈M.

(10)

Note that, in the practical case of piecewise constant source terms on the above partition, as it will
be the case in the following discretization of the compositional model, the above partition does not
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need to be built explicitely. Only the volumes of ωK and ωK,s must be prescribed by definition of the

coefficients αK,s =
|ωK,s|
|K| from which we derive |ωK,s| = αK,s|K| and |ωK | = (1 −

∑
s∈VK\(VD∪VΓ))|K|

(constrained to be positive) for all s ∈ VK \ (VD ∪ VΓ) and K ∈M.
For the second reconstruction operator, let us define the points xm+ 1

2
= xm+xm+1

2
for all m =

0, · · · ,mx− 1, xmx+ 1
2

= xmx+1 = L, and ∆x0 = x 1
2
−x0, ∆xm = xm+ 1

2
−xm− 1

2
for all m = 1, · · · ,mx.

Then, we set

ΠDgvD(x) =

{
v0 for all x ∈ (x0, x 1

2
),

vm for all x ∈ (xm− 1
2
, xm+ 1

2
), m = 1, · · · ,mx.

(11)

The VAG discretization of our model problem is obtained by the following non conforming vari-
ational formulation: given ūD ∈ XD, find uD ∈ XD such that uD − ūD ∈ X0

D and∫
Ω

K∇DpuD · ∇DpvDdx +

∫ L

0

|S|
αg
∇DguD∇DgvDdx+ |S|winv0

=

∫
Ω

QΠDpvDdx +

∫ L

0

|S|qΠDgvDdx,
(12)

for all vD ∈ X0
D.

On the porous medium side, let us define for all uD ∈ XD the VAG fluxes

VK,s(uD) =

∫
K

−K∇DpuD · ∇ηsdx =
∑
s′∈VK

T s,s′

K (uK − us′), (13)

connecting each cell K to its vertices s ∈ VK where T s,s′

K = −
∫
K

K∇ηs · ∇ηs′dx.
On the gallery side, we similarly define for all uD ∈ XD the VAG fluxes

Vm,m+1(uD) =

∫ xm+1

xm

−|S|
αg

(∇DguD)(∂xηm+1)dx = Tm+ 1
2
(um − um+1), (14)

connecting m to m+ 1 for all m = 0, · · · ,mx, where

Tm+ 1
2

=

∫ xm+1

xm

|S|
αg

(∂xηm+1)2dx =
|S|

(xm+1 − xm)2

∫ xm+1

xm

dx

αg
.

Let us set QK = 1
|ωK |

∫
ωK
Q(x)dx, QK,s = 1

|ωK,s|

∫
ωK,s

Q(x)dx for all s ∈ VK \ (VD ∪ VΓ) and

K ∈M. Then, the variational formulation (12) is equivalent to find uD ∈ XD satisfying the discrete
conservation equations in the porous medium

∑
s∈VK

VK,s(uD) = |K|(1−
∑

s∈VK\(VD∪VΓ)

αK,s)QK , for all K ∈M,∑
K∈Ms

−VK,s(uD) =
∑
K∈Ms

|K|αK,sQK,s, for all s ∈ V \ (VD ∪ VΓ),

us = ūs, for all s ∈ VD,

(15)

coupled with the conservation equations in the gallery

∑
s∈V0

∑
K∈Ms

−VK,s(uD) + V0,1(uD)− |S|win =

∫ x1/2

x0

|S|qdx,∑
s∈Vm

∑
K∈Ms

−VK,s(uD) + Vm,m+1(uD)− Vm−1,m(uD) =

∫ xm+1/2

xm−1/2

|S|qdx for all m = 1, · · · ,mx,

umx+1 = ūmx+1.

(16)
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Note that the right hand side Q does not appear in the conservation equations in the gallery. This
is due to our choice of the operator ΠDp which avoids the mixing of the porous medium and the
gallery in the control volumes located at nodes s ∈ VΓ. This is a crucial property to extend the VAG
discretization to the compositional model taking into account the different models and the highly
contrasted material properties in the gallery and in the porous medium.

3.3 Extension to the Compositional Model

The VAG scheme has been extended to multiphase Darcy flows in [3] for compositional models. In
[2, 4] it is adapted to the case of discontinuous capillary pressures using a phase pressure formula-
tion in order to take into account accurately the saturation jump at the interfaces between different
rocktypes. This motivates the choice of the phase pressures as primary unknowns in our model. The
current discretization uses ideas of [2, 4] and extends them to the coupling with the 1D free gas flow.

Let us define uD = (pgD, p
l
D, fD) ∈ (XD)2 × (XD)C as the vector of the discrete unknowns of

the coupled model (1)-(2)-(5)-(6). The discretization of the Darcy fluxes for each component i ∈ C
combines the VAG single phase fluxes, and a phase by phase upwinding of the mobility terms w.r.t.
the sign of the flux:

V α
K,s,i(uD) = mα

i (xK ,u
α,up
K,s )

(
VK,s(p

α
D) + gραK,sVK,s(zD)

)
,

with the mobility mα
i (x,u) = ζα(u)cαi (u)k

α
r (x,sα(x,pl−pg))

µα(u)
, the upwinding

uα,upK,s =

{
uK if VK,s(p

α
D) + gραK,sVK,s(zD) ≥ 0,

us else ,

the averaged density ραK,s = ρα(uK)+ρα(us)
2

, and the vector of the vertical coordinates at all d.o.f.

zD =
(
zK , K ∈M, zs, s ∈ V

)
.

On the gallery side, the momentum equation (αgw + βg|w|w) = −∂xpg can be inverted as

w = h(αg, βg, ∂xp
g) =

αg −
√
α2
g + 4βg|∂xpg|

2βg

∂xp
g

|∂xpg|
.

The VAG fluxes in the gallery (14) are extended to this Darcy-Forchheimer law using a one quadrature
point formula as follows

Vm,m+1(pgD) = |S|h
(
αg(xm+ 1

2
), βg(xm+ 1

2
),
pgm+1 − pgm
xm+1 − xm

)
,

and the discretization of the Darcy-Forchheimer fluxes for each component i ∈ C is defined by

Vm,m+1,i(uD) = ζg(uupm,m+1)cgi (u
up
m,m+1)Vm,m+1(pgD),

with the upwinding

uupm,m+1 =

{
um, if Vm,m+1(pgD) ≥ 0,
um+1, else ,

for all m = 0, · · · ,mx.
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For N ∈ N∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 < tn · · · < tN = T of
the time interval [0, T ]. We denote the time steps by ∆tn = tn − tn−1 for all n = 1, · · · , N .

The initial conditions are given in the porous medium by u0
ν = uinit(xν) for all ν ∈ M ∪

(
V \

(VD ∪VΓ)
)

. In the gallery, they are defined for all m = 0, · · · ,mx by pg,0m = pinit, f
0
m = pinitcinit, and

pl,0m obtained from the equation
∑

i∈C c
l
i(u

0
m) = 1.

The system of discrete equations in the porous medium at time step tn accounts for the discrete
molar conservation of each component i ∈ C and the sum to one of the molar fractions of each
phase in each control volume K ∈ M and s ∈ V \ (VD ∪ VΓ), together with the Dirichlet boundary
conditions for s ∈ VD:

(1−
∑

s∈VK\(VD∪VΓ)

αK,s)φK
ni(xK ,u

n
K)− ni(xK ,un−1

K )

∆tn
+
∑
α=g,l

∑
s∈VK

V α
K,s,i(u

n
D) = 0, K ∈M,

∑
K∈Ms

αK,sφK
ni(xK ,u

n
s )− ni(xK ,un−1

s )

∆tn
−
∑
α=g,l

∑
K∈Ms

V α
K,s,i(u

n
D) = 0, s ∈ V \ (VD ∪ VΓ),∑

i∈C

cαi (unν ) = 1, ν ∈M∪
(
V \ (VD ∪ VΓ)

)
, α = g, l,

uns = uext(xs), s ∈ VD,

with φK =
∫
K
φ(x)dx, and the number of moles per unit matrix volume of the components i ∈ C

ni(x,u) =
∑
α=g,l

ζα(u)sα(x, pl − pg)cαi (u).

This system is coupled to the following equations in the gallery at time step tn accounting for the
discrete molar conservation of each component i ∈ C, the sum to one of the molar fractions, and the
Dirichlet conditions at the right side of the gallery:

∆x0

∆tn
|S|
(
ζg(un0 )cgi (u

n
0 )− ζg(un−1

0 )cgi (u
n−1
0 )

)
+ V0,1,i(u

n
D)− |S|ζg(un0 )ci,inwin

=
∑
s∈V0

∑
α=g,l

∑
K∈Ms

V α
K,s,i(u

n
D),

∆xm
∆tn
|S|
(
ζg(unm)cgi (u

n
m)− ζg(un−1

m )cgi (u
n−1
m )

)
+ Vm,m+1,i(u

n
D)− Vm−1,m,i(u

n
D)

=
∑
s∈Vm

∑
α=g,l

∑
K∈Ms

V α
K,s,i(u

n
D), m = 1, · · · ,mx,∑

i∈C

cli(u
n
m) = 1, m = 0, · · · ,mx + 1,∑

i∈C

cgi (u
n
m) = 1, m = 0, · · · ,mx,

cg(unmx+1) = cg(unmx), pg,nmx+1 = pout.

4 Numerical experiments

To assess the coupled model and its discretisation, let us consider in this section three test cases all
sharing the following setting.

Let ω and S be the disks of center 0 and radius respectively rω = 10 m and rS = 2 m. We consider
a polyhedral radial mesh of size nx × nθ × nr of the domain Ω = (0, L)× (ω \ S), L = 1000 m. The
mesh is exponentially refined in the radial direction at the interface of the gallery Γ to account for
the steep gradient of the capillary pressure at the porous medium gallery interface (see Figure 2). In

10



addition to the water component e, we consider the air gaseous component denoted by a with the
Henry constant Ha = 6 109 Pa at the fixed temperature Te = 300 K. The gas molar density is given
by ζg(pg) = pg

RTe
mol.m−3, and the liquid molar density is fixed to ζ l = 55555 mol.m−3. The phase

viscosities are fixed to µg = 18.51 10−6 Pa.s−1 and µl = 10−3 Pa.s−1. The mass densities are defined
by ρα = ζα

∑
i∈C c

α
iMi with the molar masses of the components Ma = 29 10−3 Kg, Me = 18 10−3

Kg. The fugacities of the components in the gas phase are given by Dalton’s law for an ideal mixture
of perfect gas f gi = cgi p

g, i = e, a. The fugacities of the components in the liquid phase are given
by Henry’s law for the dissolution of the air component in the liquid phase f la = claHa(Te), and by

Raoult-Kelvin’s law for the water component in the liquid phase f le = clePsat(Te)exp
(
−(pg−pl)
ζl(pl)RTe

)
, where

Psat(Te) is the vapour pressure of the pure water. The solution of the equation fα(cα, pg, pl) = f
leads to the following component molar fractions cα as functions of u:

cle(u) =
fe

Psat(Te)
exp
( (pg − pl)
ζ l(pl)RTe

)
, cla(u) =

fa
Ha(Te)

,

cge(u) =
fe
pg
, cga(u) =

fa
pg
.

(17)

Figure 2: Radial mesh nx× nθ × nr of the domain Ω with nr = nθ = nx = 20 refined at the interface
Γ in the radial direction. The figure is zoomed by a factor 50 in the (y, z) directions.

The porous medium is initially saturated by the liquid phase with imposed pressure plinit = 40 105

Pa and composition cla,init = 0, cle,init = 1. At the external boundary r = rω the water pressure is
fixed to plext = plinit, with an input composition cla,ext = 0, cle,ext = 1. On both sides x = 0 and x = L
of the porous medium, zero flux boundary conditions are imposed for all components. The initial
condition in the gallery is given by pinit = 105 Pa and ce,init is defined by the relative humidity

Hr,init =
ce,initpinit
Psat(Te)

= 0.5.

We consider an input gas velocity win depending on time (see Figures 4, 9), a fixed input water molar
fraction ce,in = ce,init at the left side x = 0 of the gallery, and a fixed output pressure pout = pinit at
the right side x = L of the gallery (see Figure 3). The relative permeabilities and capillary pressure
in the porous medium are given by the following Van-Genuchten laws

klr(s
l) =


0 if sl < slr,
1 if sl > 1− sgr ,√

s̄l
(

1− (1− (s̄l)1/m)m
)2

if slr ≤ sl ≤ 1− sgr ,

kgr (s
g) =


0 if sg < sgr ,
1 if sg > 1− slr,√

1− s̄l
(

1− (s̄l)1/m
)2m

if sgr ≤ sg ≤ 1− slr,

11



and

sl(−pc) = slr + (1− slr − sgr)
1(

1 + ( pc
Pr

)n
)m ,

with

s̄l =
sl − slr

1− slr − s
g
r
.

The Darcy Forchheimer parameters defining the pressure drop in the gallery are set to αg = 0 and
βg = 10−3 Kg.m−4.

Figure 3: (x, r) cut of the disposal and initial and boundary conditions of the test case.

4.1 Comparison with a quasi analytical stationary solution

In this first test case, we consider a single rocktype in the porous medium defined by the parameters
n = 1.49, slr = 0.4, sgr = 0, Pr = 15 106 Pa of the Van-Genuchten laws accounting for the Callovo-
Oxfordian argillites (COx). The permeability is assumed isotropic with K = 5 10−20 m2 the porosity
is set to φ = 0.15.

The input velocity win is fixed to 1 m.s−1 during the first 4000 days, 0.01 m.s−1 during the next
4000 days, and 0 m.s−1 during the remaining simulation (see Figure 4). The simulation is run over a
period of 10000 days with an initial time step of 100 seconds and a maximum time step of 50 days.
The time step is also refined down to 0.1 day in the neighbouhood of t = 4000 days and t = 8000
days. The time stepping is fixed for all meshes and chosen fine enough in order to provide a time
discretization error smaller than the space discretization error.

Figure 4: Input velocity win as a function of time.

4.1.1 Approximate Stationary Solution

In order to validate the simulation, an approximate stationary solution is computed for each value
of the input gas velocity win. In this approximate model, the vaporization of the water component is
kept but the dissolution of air is neglected. The gravity is also set to zero since the gravity forces are
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small compared with the capillary and pressure gradient forces. The pressure drop along the gallery
can also be neglected meaning that the pressure in the gallery is equal to pinit. Last but not least,
it is observed in the porous medium that the longitudinal derivatives are small compared with the
radial derivatives due to the strong gradient of the capillary pressure at the porous medium gallery
interface. Hence they will be neglected in our approximate model. Thanks to these assumptions,
the stationary solution can be reduced to a single ordinary differential equation (ODE) for the water
molar fraction in the gas phase along the gallery ce(x).

From the above assumptions, the approximate stationary solution u(x, r) depends only on x and
r and satisfies the following simplified system in the porous medium

∂
∂r

(
ζgkgr
µg

Kr ∂
∂r
pg
)

+ ∂
∂r

(
ζlklr
µl

Kr ∂
∂r
pl
)

= 0,

∂
∂r

(
cgaζ

gkgr
µg

Kr ∂
∂r
pg
)

= 0.
(18)

From the coupling conditions, at the porous medium gallery interface r = rS, the gas pressure is
fixed to pg(x, rS) = p(x) = pinit and cge(x, rS) = ce(x). From the thermodynamical equilibrium of
the water component at the interface, we can compute the capillary pressure at the interface as a
function of ce(x) by the following formula:

pc(ce(x)) = −ζ lRTe ln

(
ce(x)pinit
Psat(Te)

)
Let us define Va = cgaζ

gkgr
µg

Kr ∂
∂r
pg and the total velocity VT =

∑
α=l,g

ζαkαr
µα

Kr
∂

∂r
pα. We can deduce by

integration of (18) taking into account the boundary conditions pg(x, rS) = pinit, c
g
e(x, rS) = ce(x),

cga(x, rS) = 1 − ce(x), pc(x, rS) = pc(ce(x)), pl(x, rω) = plext, c
l
e(x, rω) = 1, cla(x, rω) = 0, that Va = 0

and that VT depends only on x and is given by the following function of ce(x):

VT (ce(x)) =
ζ lK

µl log( rω
rS

)

(
plext − pinit +

∫ pc(ce(x))

0

klr(s
l(−u))du

)
.

Turning to the equations in the gallery, ce(x) and w(x) are solutions of the following system of ODEs
d
dx

(
ζg(pinit)w(x)ce(x)

)
= 2

r2
S
VT (ce(x)), x ∈ (0, L),

d
dx

(
ζg(pinit)w(x)(1− ce(x))

)
= 0, x ∈ (0, L),

ce(0) = ce,in,
w(0) = win.

The second equation yields w(x) = win
(1−ce,in)

1−ce(x)
, ∀x ∈ (0, L) and the above system reduces to the

following ODE for ce(x): ζg(pinit)win(1− ce,in)
d

dx

(
ce(x)

1− ce(x)

)
=

2

r2
S

VT (ce(x)), x ∈ (0, L),

ce(0) = ce,in,
(19)

which is numerically integrated.

4.1.2 Numerical results

The numerical solution obtained with the mesh 80×50×80 is exhibited in Figures 5, 6 and 7. Figure
5 plots the average relative humidity in the gallery defined by Hr(t) = 1

L

∫ L
0

ce(x,t)p(x,t)
Psat(Te)

dx as a function
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of time. It also compares the numerical stationary relative humidities obtained as a function of x
for each value of win with the ones obtained with the approximate stationary analytical model (19).
A very good match can be checked in Figure 5 for the three input velocities. Figure 6 plots as a
function of time the gas volume in the porous medium and the volumetric flow rates at the porous
medium gallery interface for both phases. Figure 7 plots the stationary numerical liquid saturation
at the porous medium gallery interface (represented in the gallery) and in the porous medium for
each value of win. At the opening of the gallery at t = 0, we observe in Figures 5 an increase of the
average relative humidity Hr(t) up to almost 0.95 in a few seconds due to a large liquid flow rate (see
Figure 6) at the interface. Then, the flow rate decreases and we observe a drying of the gallery due
to the ventilation at win = 1 m.s−1 down to an average relative humidity slightly above Hr,init in a
few days. Meanwhile the gas penetrates slowly into the porous medium reaching a stationary state
with around 167 m3 of gas in say 4000 days (see Figure 6). When the input velocity is reduced to
0.01 m.s−1, we observe first a rapid increase of Hr(t) in say 100 days due to the reduced ventilation
followed by a convergence to a second stationary state with Hr(t) = 0.74 in the gallery and around
137 m3 of gas in the porous medium. Note in Figure 6 that the gas flow rate is entering in the porous
medium between say 4600 and 7000 days although the volume of gas in the porous medium is still
decreasing. This is due to a larger mass of air dissolved in the liquid phase entering into the gallery
than the mass of air entering into the porous medium in the gas phase. At equilibrium, at time say
between 7000 and 8000 days, the mass of air entering into the gallery dissolved in the liquid phase
is compensated by the mass of air entering into the porous media in the gas phase. When win is set
to 0 m.s−1, Hr(t) reaches a value above 1 corresponding to a negative capillary pressure and sl = 1
at the interface and the gas disappears from the porous medium in around 1400 days. The value
above 1 of the relative humidity is due to the fact that the model does not take into account the
appearance of the liquid phase in the gallery side.

Figure 5: Stationary relative humidity in the gallery for each value of win compared with its approxi-
mate “analytical” solution (left); average of the relative humidity in the gallery as a function of time
(right).
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Figure 6: Gas Volume in the porous medium as a function of time (left); input and output flow rates
at the interface Γ for the gas and liquid phases (right) as a function of time (an input flow rate enters
into the porous medium).

(a) win = 1 m.s−1 (b) win = 0.01 m.s−1

Figure 7: Stationary liquid saturation sl obtained for win = 1 m.s−1 (a) and for win = 0.01 m.s−1

(b). The bottom figures zoom the liquid saturation in the porous medium below the threshold value
0.99. In the gallery the liquid saturation corresponds to the saturation at the interface function of x.

Figure 8 exhibits the convergence of the volume of gas in the porous medium as a function of
time and of Hr(t) for the five different meshes 20× 20× 20, 40× 40× 40, 60× 50× 60, 70× 50× 70
and 80× 50× 80. Table 1 shows the numerical behaviour of the simulations for these five meshes. A
rather good scalability of the linear and nonlinear solvers and of the CPU time w.r.t. the mesh size
is obtained. The linear system is solved using the GMRES iterative solver preconditioned by ILU0,
and the linear and nonlinear stopping criteria are fixed to respectively 10−6 and 10−5 for the relative
residuals.
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mesh N∆t NChop NNewton NGMRes CPU(s)
20× 20× 20 615 0 3.12 11.5 890
30× 30× 30 615 0 3.12 15 3250
40× 40× 40 615 0 3.12 19 8050
60× 50× 60 615 0 3.15 24.5 17300
70× 50× 70 640 6 3.27 57 105200
80× 50× 80 666 10 3.35 77 135300

Table 1: For each mesh : number N∆t of successful time steps, number NChop of time step chops,
number NNewton of Newton iterations per successful time step, number NGMRes of GMRes iterations
by Newton iteration, CPU time in seconds.

Figure 8: Average relative humidity in the gallery Hr(t) (left) and gas volume in the porous medium
as a function of time (right) for the five meshes.

4.2 Heterogeneous anisotropic test case

This second test case considers two different rocktypes in the porous medium. For rS < r < rI = 3
m we consider a damaged rock with isotropic permeability K = 5 10−18 m2 and a porosity φ = 0.15,
and for r > rI we consider the Callovo-Oxfordian argillites (COx) with the same porosity φ = 0.15

and the anisotropic permeability defined by K =

 λ 0 0
0 λ 0
0 0 λ

10

 with λ = 5 10−20 m2 in the x, y, z

Cartesian coordinates where z is the vertical coordinate and x the direction of the Gallery. The
Van-Genuchten parameters are defined by n = 1.50, slr = 0.2, sgr = 0, Pr = 5 106 Pa in the damaged
zone, and by n = 1.49, slr = 0.4, sgr = 0, Pr = 15 106 Pa in the COx region.

The input velocity win is fixed to 1 m.s−1 during the first 3000 days, to 0.1 m.s−1 during the next
3000 days, and to 0.01 m.s−1 during the remaining simulation (see Figure 9). The simulation is run
over a period of 20000 days with an initial time step of 100 seconds and a maximum time step of
1000 days. The time step is also refined down to 0.1 day in the neighbouhood of t = 3000 days and
t = 6000 days. This time stepping is fixed for all meshes and chosen fine enough in order to provide
a time discretization error smaller than the space discretization error on all meshes. All the other
parameters of the data set are the same as in the previous test case.
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Figure 9: Input velocity win as a function of time.

As in the previous test case, the Figures 10, 11, and 12 exhibit the numerical solution obtained
with the mesh 60 × 60 × 60. Figure 10 plots the relative humidity in the gallery at the end of the
simulation as a function of x, as well as the average relative humidity Hr(t). Figure 11 shows the gas
volume in the porous medium as a function of time, and the volumetric flow rates for both phases at
the porous medium gallery interface as a function of time. Figure 12 plots the liquid saturation at
the end of the simulation. Compared with the previous test case, a larger volume of gas enters into
the porous medium due to the larger permeability of the damaged zone. The effect of the anisotropy
along the vertical direction in the COx region is also clear in the right liquid saturation plot in Figure
12.

Figure 10: Relative humidity in the gallery at the end of the simulation (left); average of the relative
humidity in the gallery as a function of time (right).
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Figure 11: Gas Volume in the porous medium as a function of time (left); input and output flow
rates at the interface Γ for the gas and liquid phases (right) as a function of time (an input flow rate
enters into the porous medium).

Figure 12: Liquid saturation sl at the end of the simulation. At the right, the liquid saturation in the
porous medium is plotted only below the threshold value 0.99. In the gallery the liquid saturation
corresponds to the saturation at the interface function of x.

Figure 13 exhibits the convergence of the volume of gas in the porous medium as a function of
time and of Hr(t) for the five different meshes 30× 30× 30, 40× 40× 40, 50× 50× 50, 60× 60× 60
and 70 × 70 × 70. Table 2 shows the numerical behaviour of the simulations for these five meshes
with again a rather good scalability of the linear and nonlinear solvers and of the CPU time w.r.t.
the mesh size.

mesh N∆t NChop NNewton NGMRes CPU(s)
30× 30× 30 409 0 3.31 15 2200
40× 40× 40 409 0 3.34 18 6800
50× 50× 50 409 0 3.37 20 14050
60× 60× 60 409 0 3.40 23 20100
70× 70× 70 409 0 3.45 25 34700

Table 2: For each mesh : number N∆t of successful time steps, number NChop of time step chops,
number NNewton of Newton iterations per successful time step, number NGMRes of GMRes iterations
by Newton iteration, CPU time in seconds.
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Figure 13: Average in space of the relative humidity in the gallery (left) and gas volume in the porous
medium (right) as a function of time.

4.3 Model with gas molar fraction and diffusion at the interface

The previous model can be improved by the introduction of two gas molar fractions in the gallery
instead of a single one. The first one corresponds to the gas molar fraction in the viscous boundary
layer at the interface Γ on the gallery side. By the assumption of continuity of the gas molar fraction,
it is equal to cg(γu). Outside of this boundary layer, the second gas molar fraction is assumed to
be constant in the section of the gallery thanks to a strong turbulent mixing. This second gas
molar fraction is denoted by c which is now an additional independent unknown. Another additional
unknown is the normal gas velocity at the interface on the gallery side denoted by vn with the normal
oriented outward of the porous medium (see Figure 14).

Figure 14: Main unknowns in the porous medium, at the interface and in the gallery for the previous
model (left) and the new model (right).

The new system is looking for u, vn, p and c satisfying the porous medium system (1)-(2), coupled
with the following modified system at the interface Γ

∑
α=g,l

ζα(u)cαi (u)Vα · n =

ζg(γu)
(
cgi (γu)(vn)+ + ci(vn)− + Dg

δ
(cgi (γu)− ci)

)
, i ∈ C, on Γ× (0, T ),∑

i∈C

cαi (γu) = 1, α = g, l, on Γ× (0, T ),

γpg = p− ρg(p, c)g(z − 1
|S|

∫
S
dz), on Γ× (0, T ),

(20)
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and the conservation equations along the gallery

∂t

(
|S|ζg(γpg, c)ci

)
+ ∂x

(
|S|ζg(γpg, c)ciw

)
=

∫
∂S

∑
α=g,l

ζα(u)cαi (u)Vα · n ds, i ∈ C, on (0, L)× (0, T ),∑
i∈C

ci = 1, on (0, L)× (0, T ),

(21)

with (αgw+ βg|w|w) = −∂xγpg. Note that it results from the first and second equations in (20) and
from the second equation in (21) that

vn =
1

ζg(γu)

∑
α=g,l

ζα(u)Vα · n.

In (20), we have used the notation a+ = max(a, 0) and a− = min(a, 0). The interface conditions
(20) account for the gas pressure continuity, the thermodynamical equilibrium, and the molar flux
continuity. The gas pressure γpg at the interface assumes an hydrostatic pressure in the section S.
In most cases, this hydrostatic correction can actually be neglected.

Following [5], the molar flux continuity takes into account the two point diffusion flux Dg

δ
(cgi (γu)−

ci) between the gas molar fraction at the interface cg(γu) and the mean gas molar fraction c in the
gallery, where Dg is the Fickian diffusion coefficient set to Dg = 2 10−5 m2.s−1 in the following tests.
This diffusion term is dominant compared with the convective term for the water component, and
it is clearly essential to allow the component molar fluxes

∫
∂S

∑
α=g,l ζ

α(u)cαi (u)Vα · n ds at the
interface to take different signs (typically positive for the water component and negative for the air
component).

The parameter δ is a convection diffusion boundary layer thickness at the interface Γ for the water
component molar fraction in the gallery. It depends on the velocity and on the turbulent diffusion
in the gallery. In practice, the parameter δ can be obtained as a function of x on Γ using a diag-
onal approximation of the Steklov Poincaré operator related to the stationary convection diffusion
equation in the gallery. Let us refer to [19] for details and for a numerical comparison of our reduced
model with a full dimensional model which exhibits a very good match for the relative humidity in
the gallery and for the liquid and gas flow rates at the interface. Note also that the previous model
is recovered at the limit when δ goes to zero implying that γcg(γu) = c.

In the following tests, the influence of the parameter δ on the solution of the previous test case is
investigated for δ = 10−1, 10−2, 10−3, 10−4, 10−5 m. It is compared with the previous model solution
corresponding to δ → 0+. All the physical and numerical parameters are the same than in the
previous test case including the input velocity win (see Figure 9). The initial time step is changed to
∆t = 0.1 s and the mesh size is fixed to 40× 40× 40. It is clear from the numerical results exhibited
in Figures 15, 16 and 17 that the larger δ, the higher the average relative humidity at the interface,
the lower the output liquid flux at the interface, and the lower the average relative humidity in the
gallery. The convergence of the solution to the solution of the previous model when δ → 0+ is also
checked.

The difference between both models is also seen to be much larger at small times when the liquid
flux at the interface is high due to the instantaneous opening of the gallery. At larger times, once
the liquid flux at the interface has sufficiently decreased (the threshold value depending on δ) both
models roughly match. Away from a very short transient solution, we can classically observe in
Figures 16 and 17 the two stages of the drying process. The first stage corresponds to a roughly
constant drying rate and liquid influx at the interface. This first stage lasts until the porous medium
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at the interface is not sufficiently desaturated to slow down the liquid flow rate at the interface. The
second stage corresponds to a decreasing liquid flow rate at the interface together with an increasing
gas saturation in the porous medium until they reach a stationary state roughly described by the
analytical solution of subsection 4.1. Table 3 exhibits the good numerical behavior of the Newton
solver for a large range of δ.

Figure 15: Gas volume in the porous medium as a function of time.

Figure 16: Average in space of the relative humidity at the interface (left) and in the gallery (right)
as a function of time.

Figure 17: Output liquid flow rates (left) and input gas flow rates (right) in the porous medium as
a function of time.
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δ N∆t NChop NNewton NGMRes CPU(s)
10−1 464 0 3.26 11.9 7064
10−2 464 0 3.36 14.6 5971
10−3 464 0 3.43 15.6 7631
10−4 464 0 3.55 16.5 6353
10−5 464 0 3.67 18.1 6630

0 464 0 3.71 19.7 6863

Table 3: For the mesh 40×40×40 and each value of δ : number N∆t of successful time steps, number
NChop of time step chops, number NNewton of Newton iterations per successful time step, number
NGMRes of GMRes iterations by Newton iteration, CPU time in seconds.

5 Convergence analysis of a simplified model

We consider the following simplified model using the Richards approximation in the porous medium
and a single component equation in the gallery with linear pressure drop

φ∂t(ζ
lS l(., u)) + div(ζ lVl) = Q,

∂t(|S|ζg(p)) + ∂x(−
1

αg
|S|ζ̃g(p)∂xp) =

∫
∂S

ζ lVl · n ds+ |S|q,

Vl = −k
α
r (.,S l(., u))

µl
K
(
∇u−M lζ lg

)
, p = g(γ(u)).

(22)

The only primary unknown in the porous medium is the liquid pressure denoted by u. The liquid
mass density is assumed to be fixed to M lζ l where M l is the molar mass of the liquid phase and
ζ l is considered constant. The thermodynamical equilibrium at the interface Γ is accounted for by
the relation p = g(γ(u)) with g ∈ C1(R,R+), 0 < g′(q) ≤ c2 for all q ∈ R and for a given constant

c2 > 0. The function g is a regularization for large positive u of p = Psat(T )
ce

e
u

ζlRTe for given constants
1 ≥ ce > 0 and Te > 0. The molar gas density is set to ζg(p) = p

RTe
and is truncated in the flux term

such that ζ̃g(p) is assumed to be a non decreasing function in C1(R+,R+) bounded from below and
above by two strictly positive constants and with a bounded derivative.

To simplify the convergence analysis, we consider in this section Dirichlet boundary conditions
at the boundary ∂Ω \ Γ of Ω still denoted by ΓD, and at both ends x = 0 and x = L of (0, L). Let
us define the function space

U = {u ∈ H1(Ω) | ∂sγu = 0},

and its subspace U0 = U ∩H1
ΓD

(Ω) with zero trace on ΓD.

Let C(Ω× [0, T )) be the subspace of functions ϕ of C∞
(

Ω× [0, T ]
)

vanishing in a neighbourhood

of t = T , ΓD and ∂ω × {0, L}, and such that ∂sϕ = 0 in a neighbourhood of Γ. Given ū ∈ V ,
uinit,p ∈ L2(Ω), and uinit,g ∈ L2(0, L) the variational formulation of the simplified coupled model

amounts to find u ∈ L2
(

0, T ;U
)

with u − ū ∈ L2
(

0, T ;U0
)

and g(γu) − g(γū) ∈ L2
(

0, T ;H1
0 (Γ)

)
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such that for all ϕ ∈ C(Ω× [0, T )) one has

−
∫ T

0

∫
Ω

φ(x)ζ lsl(x, u(x, t))∂tϕ(x, t)dxdt−
∫

Ω

φζ lsl(x, uinit,p(x))ϕ(x, 0)dx

−
∫ T

0

∫ L

0

|S|ζg(g(γu)(x, t))∂tγϕ(x, t)dxdt−
∫ L

0

|S|ζg(g(uinit,g)(x))γϕ(x, 0)dx

+

∫ T

0

∫
Ω

ζ l
klr(x, s

l(u(x, t)))

µl
K(∇u(x, t)−M lζ lg) · ∇ϕ(x, t)dxdt

+

∫ T

0

∫ L

0

1

αg(x)
|S|ζ̃g(g(γu)(x, t))∂xg(γu)(x, t)∂xγϕ(x, t)dxdt

=

∫ T

0

(∫
Ω

Q(x, t)ϕ(x, t)dx +

∫ L

0

|S|q(x, t)γϕ(x, t)dx
)
dt.

(23)

We make the following additional assumptions on the data:

• It is assumed that klr(x, s) is a measurable function w.r.t. x and continuous w.r.t. s, and such
that 0 < kmin ≤ klr(x, s) ≤ kmax for all (x, s) ∈ Ω× [0, 1].

• sl(x, u) ∈ [0, 1] for all (x, u) ∈ Ω×R with sl(x, u) = slj(u) for a.e. x ∈ Ωj and all u ∈ R, where
slj is a non decreasing Lipschitz continuous function with constant Ls and (Ωj)j∈J is a finite

family of disjoint connected polyhedral open sets such that
⋃
j∈J Ωj = Ω.

• It is assumed that there exists a constant Lsp such that |sl(x, v)− sl(x, u)| ≤ Lsp|g(v)− g(u)|
for all x ∈ Ω and (u, v) ∈ R2.

• The permeability tensor K is a measurable function on the space of symmetric 3 dimensional
matrices such that there exist 0 < λ ≤ λ with λ|ξ|2 ≤ (K(x)ξ, ξ) ≤ λ|ξ|2 for all x ∈ Ω.

• αg ∈ L∞(0, L) is such that 0 < αg ≤ αg(x) ≤ αg for all x ∈ (0, L).

• The porosity φ belongs to L∞(Ω) with 0 < φ ≤ φ(x) ≤ φ for all x ∈ Ω.

• It is assumed that Q ∈ L2(Ω× (0, T )) and q ∈ L2((0, L)× (0, T )).

Remark 5.1 The VAG discretization and convergence analysis detailed below for the model (22) can
be readily adapted to another simplified model coupling the Richards equation in the porous medium
to a 1D convection diffusion equation for the water molar fraction ce at given constant velocity w,
constant diffusion coefficient Dg > 0, and at given constant pressure p.

φ∂t(ζ
lS l(., u)) + div(ζ lVl) = Q,

∂t(|S|ζg(p)ce) + ∂x

(
|S|ζg(p)(wce −Dg∂xce)

)
=

∫
∂S

ζ lVl · n ds+ |S|q,

Vl = −k
α
r (.,S l(., u))

µl
K
(
∇u−M lζ lg

)
, ce = ḡ(γ(u)),

(24)

As for (22), the thermodynamical equilibrium at the interface Γ is accounted for by the relation
ce = ḡ(γ(u)) with ḡ ∈ C1(R,R+), 0 < ḡ′(q) ≤ c2 for all q ∈ R and for a given constant c2 > 0. Here

the function ḡ is a regularization for large positive u of ce = psat(Te)
p

e
u

ζlRTe for given constants p > 0
and Te > 0.

The model (24) is a rather good approximation of the full model thanks to the weak liquid inflow
from the porous medium to the gallery and to the small pressure drop in the gallery.
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5.1 Vertex Approximate Gradient Discretization

Taking into account the new boundary conditions, the subspace X0
D of XD becomes

X0
D = {vD ∈ XD | vs = 0 for all s ∈ VD ∪ V0 ∪ Vmx+1},

with VD = V ∩ ΓD. The reconstruction operator ΠDp is still defined by (10) with this new definition
of VD. The definition of the reconstruction operator ΠDg taking into account the new boundary
condition at x = 0 is given by

ΠDgvD(x) = vm for all x ∈ (xm− 1
2
, xm+ 1

2
), m = 1, · · · ,mx.

with x 1
2

changed to 0 compared with section 3. Other definitions are unchanged compared with
section 3.

For v ∈ XD, and a function k ∈ C0(R,R), we define k(v) ∈ XD as follows: k(v)s = k(vs) for all
s ∈ V and k(v)K = k(vK) for all K ∈ M. Then, given u0

D ∈ XD and ūD ∈ XD, the discretization of
the coupled model (23) looks for unD ∈ XD with unD − ūD ∈ X0

D for all n = 1, · · · , N such that for all
vD ∈ X0

D 

∫
Ω

φ(x)ζ l
sl(x,ΠDpu

n
D(x))− sl(x,ΠDpun−1

D (x))

∆tn
ΠDpvD(x)dx

+

∫ L

0

|S|
ζg(ΠDgg(unD)(x))− ζg(ΠDgg(un−1

D )(x))

∆tn
ΠDgvD(x)dx

+

∫
Ω

ζ l
klr(x, s

l(x,ΠDpu
n
D(x)))

µl
K(∇DpunD(x)−M lζ lg) · ∇DpvD(x)dx

+

∫ L

0

1

αg(x)
|S|ζ̃g(ΠDgg(unD)(x))∇Dgg(unD)(x)∇DgvD(x)dx

=
1

∆tn

∫ tn

tn−1

(∫
Ω

Q(x, t)ΠDpvD(x)dx +

∫ L

0

|S|q(x, t)ΠDgvD(x)dx
)
dt.

(25)

5.2 Convergence analysis

Let ρT denote the insphere diameter of a given tetrahedron T ∈ T , hT its diameter, and hT =
maxT∈T hT . We will assume in the convergence analysis that the family of tetrahedral submeshes T
is shape regular in the sense that θT = maxT∈T

hT
ρT

will be bounded for the family of meshes. The

following Lemmas are simple adaptations of the Lemmas already obtained in [7].

Lemma 5.1 There exist C1, C2 > 0 depending only on θT such that for all u ∈ XD

‖ΠDpu‖L2(Ω) ≤ C1‖ΠT u‖L2(Ω) and ‖ΠDgu‖L2(0,L) ≤ C2‖γΠT u‖L2(0,L). (26)

We deduce from Lemma 5.1, the following discrete Poincaré inequalities.

Lemma 5.2 There exist C5, C6 > 0 depending only on θT such that for all u ∈ X0
D

‖ΠDpu‖L2(Ω) ≤ C5‖∇Dpu‖L2(Ω)3 and ‖ΠDgu‖L2(0,L) ≤ C6‖∇Dgu‖L2(0,L). (27)

Lemma 5.3 There exists C3 > 0 depending only on θT such that, for all u ∈ XD,

‖ΠDpu− ΠT u‖L2(Ω) + ‖ΠDgu− γΠT u‖L2(0,L) ≤ C3 hT ‖ΠT u‖V . (28)

24



Lemma 5.3 imply in particular that there exists C > 0 depending only on θT such that

‖ΠDpūD − ū‖L2(Ω) + ‖ΠDg ūD − ū‖L2(0,L) ≤ C
(

(1 + hT )‖ΠT ūD − ū‖V + hT ‖ū‖V
)
.

Next, for any smooth function ϕ ∈ C∞(Ω) such that ∂sϕ = 0 on Γ, let us define the projection
PDϕ on XD by (PDϕ)K = ϕ(xK), K ∈ M, (PDϕ)s = ϕ(xs), s ∈ V . We have the following classical
finite element approximation result.

Lemma 5.4 For all ϕ ∈ C∞(Ω) such that ∂sϕ = 0 on Γ, there exists C(ϕ) > 0 depending only on
ϕ and θT such that

‖ϕ− ΠT PDϕ‖V ≤ C(ϕ)hT .

Let us set XD,∆t = (XD)N , and for all vD = (vnD)n=1,··· ,N ∈ XD,∆t let us define for all n = 1, · · · , N

ΠDp,∆tvD(x, t) = ΠDpv
n
D(x) for all (x, t) ∈ Ω× (tn−1, tn],

ΠDg ,∆tvD(x, t) = ΠDgv
n
D(x) for all (x, t) ∈ (0, L)× (tn−1, tn],

ΠT ,∆tvD(x, t) = ΠT v
n
D(x) for all (x, t) ∈ Ω× (tn−1, tn],

∇Dp,∆tvD(x, t) = ∇DpvnD(x) for all (x, t) ∈ Ω× (tn−1, tn],

∇Dg ,∆tvD(x, t) = ∇DgvnD(x) for all (x, t) ∈ (0, L)× (tn−1, tn].

Let uD = (unD)n=1,··· ,N , the given solution to (25), we also define the functions slDp,∆t(x, t) =

sl(x,ΠDp,∆tuD(x, t)), pDg ,∆t(x, t) = g(ΠDg ,∆tuD(x, t)), and

δDs
l
Dp,∆t(x, t) =

sl(x,ΠDpu
n
D(x))− sl(x,ΠDpun−1

D (x))

∆tn
for all (x, t) ∈ Ω× (tn−1, tn],

δDpDg ,∆t(x, t) =
ΠDgg(unD)(x)− ΠDgg(un−1

D )(x)

∆tn
for all (x, t) ∈ (0, L)× (tn−1, tn].

Let us set for all vD ∈ X0
D

AnDp(vD) =

∫
Ω

φ(x)ζ l
sl(x,ΠDpu

n
D(x))− sl(x,ΠDpun−1

D (x))

∆tn
ΠDpvD(x)dx

=
1

∆tn

∫ tn

tn−1

∫
Ω

φ(x)ζ lδDs
l
Dp,∆t(x, t)ΠDpvD(x)dxdt,

(29)

AnDg(vD) =

∫ L

0

|S|
RTe

ΠDgg(unD)(x)− ΠDgg(un−1
D )(x)

∆tn
ΠDgvD(x)dx

=
1

∆tn

∫ tn

tn−1

∫ L

0

|S|
RTe

δDpDg ,∆t(x, t)ΠDgvD(x)dxdt,

(30)

Bn
Dp(vD) =

∫
Ω

ζ l
klr(x, s

l(x,ΠDpu
n
D(x)))

µl
K
(
∇DpunD(x)−M lζ lg

)
· ∇DpvD(x)dx

=
1

∆tn

∫ tn

tn−1

∫
Ω

ζ l
klr(x, s

l
Dp,∆t)(x, t)

µl
K
(
∇ΠT ,∆tuD(x, t)−M lζ lg

)
· ∇DpvD(x)dxdt,

(31)

Bn
Dg(vD) =

∫ L

0

1

αg(x)
|S|ζ̃g(ΠDgg(unD)(x))∇Dgg(unD)(x)∇DgvD(x)dx

=
1

∆tn

∫ tn

tn−1

∫ L

0

1

αg(x)
|S|ζ̃g(pDg ,∆t(x, t))∂xγΠT ,∆tg(uD)(x, t)∇DgvD(x)dxdt

(32)

25



and

Cn
Dp(vD) =

1

∆tn

∫ tn

tn−1

∫
Ω

Q(x, t)ΠDpvD(x)dxdt, (33)

Cn
Dg(vD) =

1

∆tn

∫ tn

tn−1

∫ L

0

|S|q(x, t)ΠDgvD(x)dxdt, (34)

in such a way that the system (25) is equivalent to: find uD ∈ XD,∆t with unD−ūD ∈ X0
D, n = 1, · · · , N ,

such that

AnDp(vD) + AnDg(vD) +Bn
Dp(vD) +Bn

Dg(vD) = Cn
Dp(vD) + Cn

Dg(vD), (35)

for all vD ∈ X0
D.

5.2.1 A priori estimates and existence of a discrete solution

Proposition 5.1 There exists at least one solution uD ∈ XD,∆t to (25), and there exists a constant
C > 0 depending only on the data, on θT , and on ‖ΠDpu0

D‖L2(Ω), ‖ΠDgu0
D‖L2(0,L), ‖ΠT ūD‖V such that

any solution uD ∈ XD,∆t to (25) satisfies

‖ΠDg ,∆tg(uD)‖L∞(0,T ;L2(0,L)) + ‖∇Dp,∆tuD‖L2(0,T ;L2(Ω)) + ‖∇Dg ,∆tg(uD)‖L2(0,T ;L2(0,L)) ≤ C. (36)

Proof: We first prove the a priori estimate (36). Let us set T1 =
∑N

n=1 ∆tnAnDp(u
n
D), T2 =∑N

n=1 ∆tnAnDg(u
n
D), T5 =

∑N
n=1 ∆tnAnDp(ūD), T6 =

∑N
n=1 ∆tnAnDg(ūD), T8 =

∑N
n=1 ∆tn(Cn

Dp(u
n
D −

ūD) + Cn
Dg(u

n
D − ūD)). We also define

T3 =
N∑
n=1

∆tn
∫

Ω

ζ l
klr(x, s

l(x,ΠDpu
n
D(x)))

µl
K∇Dp(unD − ūD)(x) · ∇Dp(unD − ūD)(x) dx, (37)

T7 =
N∑
n=1

∆tn
∫

Ω

ζ l
klr(x, s

l(x,ΠDpu
n
D(x)))

µl
K
(
M lζ lg −∇DpūD(x)

)
· ∇Dp(unD − ūD)(x)dx, (38)

T4 =
N∑
n=1

∆tn
∫ L

0

1

αg(x)
|S|ζ̃g(ΠDgg(unD)(x))∇Dgg(unD)(x)∇Dg(unD − ūD)(x)dx, (39)

in such a way that
T1 + T2 + T3 + T4 = T5 + T6 + T7 + T8.

Accumulation terms: Firstly, using the assumption on sl, the following estimate is a straightfor-
ward adaptation from Lemma 3.1 of [2].

T1 ≥ −φ
ζ lLs

2
‖ΠDpu0

D‖2
L2(Ω). (40)

Next, using 0 ≤ sl(x, u) ≤ 1, we obtain the following estimate for T5

T5 ≤ ζ lφ
√
|Ω|‖ΠDpūD‖L2(Ω). (41)

From (11), we have that

T2 =
|S|
RTe

N∑
n=1

mx∑
m=1

|xm− 1
2
xm+ 1

2
|(g(unm)− g(un−1

m ))unm.
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Using G(u) =

∫ u

0

vg′(v)dv which verifies G(b)−G(a) = b(g(b)−g(a))−
∫ b

a

(g(v)−g(a))dv and hence

b(g(b)− g(a)) ≥ G(b)−G(a) for all (a, b) ∈ R× R, we obtain that

T2 ≥
|S|
RTe

N∑
n=1

mx∑
m=1

|xm− 1
2
xm+ 1

2
|(G(unm)−G(un−1

m )),

=
|S|
RTe

mx∑
m=1

|xm− 1
2
xm+ 1

2
|(G(uNm)−G(u0

m)).

Remark that G(u) =

∫ g(u)

g(0)

g−1(v)dv, so that in view of assumption on g one has

(
g(u)− g(0)

)2

2 maxv∈R g′(v)
≤ G(u) ≤

(
max
v∈R

g′(v)
)u2

2
.

Therefore

T2 ≥
|S|

2RTe maxv∈R g′(v)

(
‖ΠDgg(uND )− g(0)‖2

L2(0,L)

)
− |S|maxv∈R g

′(v)

2RTe
‖ΠDgu0

D‖2
L2(0,L). (42)

Turning to T6, we obtain the estimate

T6 ≤
|S|
RTe
‖ΠDg ūD‖L2(0,L)‖ΠDg(g(uND )− g(u0

D))‖L2(0,L).

We deduce that

T6 ≤
|S|
RTe

max
(

max
v∈R

g′(v), 1
)
‖ΠDg ūD‖L2(0,L)

(
‖ΠDgg(uND )‖L2(0,L) + ‖ΠDgu0

D‖L2(0,L)

)
. (43)

Transport terms: Thanks to the assumptions on K and klr we obtain the following estimates

T3 ≥
ζ l

µl
kminλ

N∑
n=1

∆tn‖∇Dp(unD − ūD)‖2
L2(Ω)3 (44)

and

T7 ≤
ζ l

µl
kmaxλ

N∑
n=1

∆tn‖∇Dp(unD − ūD)‖L2(Ω)3

(
‖∇DpūD‖L2(Ω)3 +M lζ l|g|

√
|Ω|
)
. (45)

From (9) and (11), setting bm,m+ 1
2

=
∫ x

m+ 1
2

xm
dx

αg(x)
, bm+1,m+ 1

2
=
∫ xm+1

x
m+ 1

2

dx
αg(x)

and

am+ 1
2

=
ζ̃g(g(unm))bm,m+ 1

2
+ ζ̃g(g(unm+1))bm+1,m+ 1

2

|xmxm+1|
,

for m = 0, · · · ,mx we have that

T4 = |S|
N∑
n=1

∆tn
mx∑
m=0

am+ 1
2

(g(unm)− g(unm+1))(unm − unm+1)

|xmxm+1|

− |S|
N∑
n=1

∆tn
mx∑
m=0

am+ 1
2

(g(unm)− g(unm+1))(ūm − ūm+1)

|xmxm+1|
.
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We deduce that

T4 ≥
|S|
αg

minv∈R ζ̃
g(v)

maxv∈R g′(v)

N∑
n=1

∆tn‖∇Dgg(unD)‖2
L2(0,L)

−|S|
αg

(
max
v∈R

ζ̃g(v)
)( N∑

n=1

∆tn‖∇Dgg(unD)‖2
L2(0,L)

)1/2( N∑
n=1

∆tn‖∇Dg ūD‖2
L2(0,L)

)1/2

.

Using Young’s inequality we obtain that

T4 ≥
|S|
2αg

minv∈R ζ̃
g(v)

maxv∈R g′(v)

N∑
n=1

∆tn‖∇Dgg(unD)‖2
L2(0,L)

−|S|αg
2αg

(maxv∈R g
′(v))(maxv∈R ζ̃

g(v))

minv∈R ζ̃g(v)

N∑
n=1

∆tn‖∇Dg ūD‖2
L2(0,L).

(46)

Using the discrete Poincaré inequalities of Lemma 5.2, we obtain the following estimate of the
source terms

T8 ≤ C5

N∑
n=1

∆tn‖∇Dp(unD − ūD)‖L2(Ω)3

( 1

∆tn

∫ tn

tn−1

‖Q(., t)‖L2(Ω)dt
)

+C6|S|
N∑
n=1

∆tn‖∇Dg(unD − ūD)‖L2(0,L)

( 1

∆tn

∫ tn

tn−1

‖q(., t)‖L2(0,L)dt
)
.

(47)

Gathering the estimates (40),(42),(44), (46),(41),(43), (45), and (47), and using Young’s and
Cauchy-Schwarz inequalities, we conclude the proof of the a priori estimate (36).

To prove the existence of a solution unD, n = 1, · · · , N to (25), let us consider the one parameter

family of solutions obtained by setting sl,θ(x, u) = θsl(x, u) + 1 − θ, ζ̃g,θ(p) = θζ̃g(p) + (1 − θ)ζg0
with a given ζg0 > 0, and gθ(u) = θg(u) + (1 − θ)u. Let us remark that for all values of θ ∈ [0, 1],
the previous estimates still hold. Since for θ = 0, the system (25) becomes linear, it results that it
admits a unique solution. By topological degree argument, we deduce the existence of at least one
solution to (25) for θ = 1. �

5.2.2 Space and time translates estimates

The function space L2(Ω)×L2(0, L) is equipped with the scalar product 〈(u, p), (v, q)〉L2(Ω)×L2(0,L) =∫
Ω
ζ lφuvdx+

∫ L
0
|S|
RTe

pqdx. For all (u, p) ∈ L2(Ω)×L2(0, L) we also define the dual semi-norm ‖u‖−1,D
by

‖(u, p)‖−1,D = sup
vD∈X0

D,vD 6=0

〈(u, p), (ΠDpvD,ΠDgvD)〉L2(Ω)×L2(0,L)

‖ΠT vD‖V
. (48)

Lemma 5.5 There exists a constant C > 0 depending only on the data, on θT , and on ‖ΠDpu0
D‖L2(Ω),

‖ΠDgu0
D‖L2(0,L), ‖ΠT ūD‖V such that any solution uD ∈ XD,∆t to (25) satisfies the estimate∫ T

0

‖
(
δDs

l
Dp,∆t(., t), δDpDg ,∆t(., t)

)
‖2
−1,Ddt ≤ C. (49)
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Proof: Using (25), we obtain that for all vD ∈ X0
D

〈
(
δDs

l
Dp,∆t(., t

n), δDpDg ,∆t(., t
n)
)
, (ΠDpvD,ΠDgvD)〉L2(Ω)×L2(0,L) =

−
∫

Ω

ζ l
klr(x, s

l(x,ΠDpu
n
D(x)))

µl
K(∇DpunD(x)−M lζ lg) · ∇DpvD(x)dx

−
∫ L

0

1

αg(x)
|S|ζ̃g(ΠDgg(unD)(x))∇Dgg(unD)(x)∇DgvD(x)dx

+
1

∆tn

∫ tn

tn−1

(∫
Ω

Q(x, t)ΠDpvD(x)dx +

∫ L

0

|S|q(x, t)ΠDgvD(x)dx
)
dt.

Using the discrete Poincaré inequalities of Lemma 5.2, and the assumption on the function g, we
obtain the estimate

〈
(
δDs

l
Dp,∆t(., t

n), δDpDg ,∆t(., t
n)
)
, (ΠDpvD,ΠDgvD)〉L2(Ω)×L2(0,L) ≤

ζ lkmaxλ
(
‖∇DpunD‖L2(Ω)3 +M lζ l|g|

√
|Ω|
)
‖∇DpvD‖L2(Ω)3

+
1

αg
|S|
(

max
q∈R

ζ̃g(q)
)
‖∇Dgg(unD)‖L2(0,L)‖∇DgvD‖L2(0,L)

+C5

( 1

∆tn

∫ tn

tn−1

‖Q(., t)‖L2(Ω)dt
)
‖∇DpvD‖L2(Ω)3

+C6|S|
( 1

∆tn

∫ tn

tn−1

‖q(., t)‖L2(0,L)dt
)
‖∇DgvD‖L2(0,L).

and the proof is achieved using Proposition 5.1 and the Cauchy-Schwarz inequality. �.

Lemma 5.6 There exists a constant C > 0 depending only on the data, on θT , and on ‖ΠDpu0
D‖L2(Ω),

‖ΠDgu0
D‖L2(0,L), ‖ΠT ūD‖V such that any solution uD ∈ XD,∆t to (25) satisfies the estimate for all

τ ∈ R ∫
R

(
‖slDp,∆t(., t+ τ)− slDp,∆t(., t)‖

2
L2(Ω) + ‖pDg ,∆t(., t+ τ)− pDg ,∆t(., t)‖2

L2(0,L)

)
dt

≤ C
√
|τ |,

(50)

where pDg ,∆t and slDp,∆t are extended by zero outside of respectively (0, L)× (0, T ) and Ω× (0, T ).

Proof: From the Lipschitz assumptions on the functions sl and g, and by definition of the semi-norm
(48) we obtain the estimates∫

Ω

ζ lφ(x)|slDp,∆t(x, t+ τ)− slDp,∆t(x, t)|
2dx +

∫ L

0

|S|
RTe
|pDg ,∆t(x, t+ τ)− pDg ,∆t(x, t)|2dx

≤ Lsp

∫
Ω

ζ lφ(x)(slDp,∆t(x, t+ τ)− slDp,∆t(x, t))(ΠDp,∆tg(uD)(x, t+ τ)− ΠDp,∆tg(uD)(x, t))dx

+

∫ L

0

|S|
RTe

(pDg ,∆t(x, t+ τ)− pDg ,∆t(x, t))(ΠDg ,∆tg(uD)(x, t+ τ)− ΠDg ,∆tg(uD)(x, t))dx

≤ max
(

1, LSp

)
‖slDp,∆t(., t+ τ)− slDp,∆t(., t), pDg ,∆t(., t+ τ)− pDg ,∆t(., t)‖−1,D

‖ΠT ,∆tg(uD)(., t+ τ)− ΠT ,∆tg(uD)(., t)‖V
Using Young’s inequality, we obtain that there exists C such that for all τ ∈ (0, T )∫ T−τ

0

(
‖slDp,∆t(., t+ τ)− slDp,∆t(., t)‖L2(Ω) + ‖pDg ,∆t(., t+ τ)− pDg ,∆t(., t)‖L2(0,L)

)
dt

≤ C√
|τ |

∫ T−τ

0

‖slDp,∆t(., t+ τ)− slDp,∆t(., t), pDg ,∆t(., t+ τ)− pDg ,∆t(., t)‖−1,Ddt

+C
√
|τ |
∫ T−τ

0

‖ΠT ,∆tg(uD)(., t+ τ)− ΠT ,∆tg(uD)(., t)‖V dt.
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From BV properties of piecewise constant functions and from Lemma 5.5, we obtain that∫ T−τ

0

‖slDp,∆t(., t+ τ)− slDp,∆t(., t), pDg ,∆t(., t+ τ)− pDg ,∆t(., t)‖−1,Ddt

≤ τ

∫ T

0

‖
(
δDs

l
Dp,∆t(., t), δDpDg ,∆t(., t)

)
‖−1,Ddt

≤ τ
√
T
(∫ T

0

‖
(
δDs

l
Dp,∆t(., t), δDpDg ,∆t(., t)

)
‖2
−1,Ddt

)1/2

≤ C
√
Tτ.

Using 0 ≤ sl(x, v) ≤ 1 as well as the boundedness of ‖pDg ,∆t(., t)‖L2(0,L) on [0, T ] from Proposition
5.1, we conclude the proof of Lemma 5.6. �.

Lemma 5.7 Let p̂D ∈ XD,∆t be defined by p̂nD = g(unD)− g(ūD), we denote p̂Dg ,∆t = ΠDg ,∆tp̂D. There
exists a constant C > 0 depending only on the data, on θT , and on ‖ΠDpu0

D‖L2(Ω), ‖ΠDgu0
D‖L2(0,L),

‖ΠT ūD‖V such that any solution uD ∈ XD,∆t to (25) satisfies the following estimate for all ξ ∈ R3

and ζ ∈ R.∫ T

0

(
‖slDp,∆t(.+ ξ, t)− slDp,∆t(., t)‖

2
L2(R3) + ‖p̂Dg ,∆t(.+ ζ, t)− p̂Dg ,∆t(., t)‖2

L2(R)

)
dt

≤ C(|ξ|+ |ζ|+ hT )
(51)

where slDp,∆t and p̂Dg ,∆t are extended on R3 (respectively on R) by zero.

Proof: For any ξ ∈ R3 we define the set Ωξ =
⋃
j∈J{x ∈ Ωj | x + ξ ∈ Ωj}. From ΠT ,∆tuD ∈

L2(0, T ;H1(Ω)) and γΠT ,∆tp̂D ∈ L2(0, T ;H1
0 (0, L)) and Proposition 5.1, it follows that there exists

a constant C such that the following estimate holds for all ξ ∈ R3 and ζ ∈ R:∫ T

0

(
‖ΠT ,∆tuD(.+ ξ, t)− ΠT ,∆tuD(., t)‖2

L2(Ωξ)
+ ‖γΠT ,∆tp̂D(.+ ζ, t)− γΠT ,∆tp̂D(., t)‖2

L2(R)

)
dt

≤ C(|ξ|+ |ζ|).
(52)

Combining the estimate (52) with Lemma 5.3 and Proposition 5.1, it results that there exists a
constant C such that∫ T

0

(
‖ΠDp,∆tuD(.+ ξ, t)− ΠDp,∆tuD(., t)‖2

L2(Ωξ)
+ ‖ΠDg ,∆tp̂D(.+ ζ, t)− ΠDg ,∆tp̂D(., t)‖2

L2(R)

)
dt

≤ C(|ξ|+ |ζ|+ hT ).

We conclude from the Lipschitz properties and the boundedness of sl. �.

5.2.3 Convergence

Lemma 5.8 Let (v(m))m∈N be a sequence of functions in L2(0, T ;U0) such that there exists C > 0
with ‖v(m)‖L2(0,T ;H1(Ω)) ≤ C. Then, there exists v ∈ L2(0, T ;U0) such that

1. up to a subsequence

v(m) ⇀ v in L2(Ω× (0, T )) and ∇v(m) ⇀ ∇v in L2(Ω× (0, T ))3.

2. up to the same subsequence

γv(m) ⇀ γv in L2((0, L)× (0, T ));

.
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Proof: The proof of the first statement is classical, see e.g. the proof of Lemma 5.1 in [6]; more-
over v ∈ L2(0, T ;H1

ΓD
(Ω)). Next, there exists r ∈ L2(0, T ;L2(0, L)) such that γv(m) ⇀ r in

L2(0, T ;L2(0, L)). To conclude, let us prove that ∂sγv = 0 and r = γv. For all ϕ ∈ L2((0, L)×(0, T ))
and ψ ∈ L2(∂S × (0, T )), there exist Ψ ∈ L2(0, T ;Hdiv(Ω)) such that Ψ · n = ϕ(x, t)ψ(s, t) on Γ.
Hence, one has∫ T

0

∫
Ω

(∇v(m)(x, t)·Ψ(x, t)+v(m)(x, t)divΨ(x, t))dxdt−
∫ T

0

∫ L

0

∫
∂S

(γv(m))(x, t)ϕ(x, t)ψ(s, t)dxdsdt = 0.

Passing to the limit in this equality one obtains that∫ T

0

∫
Ω

(∇v(x, t) ·Ψ(x, t) + v(x, t)divΨ(x, t))dxdt−
∫ T

0

∫ L

0

∫
∂S

r(x, t)ϕ(x, t)ψ(s, t)dxdsdt = 0,

which implies that ∫ T

0

∫ L

0

∫
∂S

(γv(x, s, t)− r(x, t))ϕ(x, t)ψ(s, t)dxdsdt = 0,

and hence that ∂sγv = 0 and γv = r. �.

Theorem 5.1 Let D(m),∆tn,(m), n = 1, · · · , N (m), m ∈ N be a sequence of space time discretizations
such that there exists θ > 0 with θT (m) ≤ θ. It is assumed that limm→+∞ hT (m) = 0, and that
∆t(m) = maxn=1,··· ,N(m) ∆tn,(m) tends to zero when m → +∞, and that ‖ΠD(m)

p
u0
D(m) − uinit,p‖L2(Ω),

‖ΠD(m)
g
u0
D(m) − uinit,g‖L2(0,L), ‖ΠT (m)ūD(m) − ū‖V tends to zero when m → +∞. Then, there exist a

subsequence of m ∈ N and a function u ∈ L2(0, T ;V ) solution of (23) such that up to this subsequence

sl
D(m)
p ,∆t(m)

→ sl(., u) strongly in L2(Ω× (0, T )),

ΠD(m)
p ,∆t(m)uD(m) ⇀ u weakly in L2(Ω× (0, T )),

and
pD(m)

g ,∆t(m) → g(γu) strongly in L2((0, L)× (0, T )).

Proof: From Proposition 5.1, Lemma 5.8, and the convergence to zero of ‖ΠT (m)ūD(m) − ū‖V we
deduce that there exists u ∈ L2(0, T ;U) with u − ū ∈ L2(0, T ;U0) such that up to a subsequence
ΠT (m),∆t(m)uD(m) ⇀ u weakly in L2(Ω× (0, T )), γΠT (m),∆t(m)uD(m) ⇀ γu weakly in L2((0, L)× (0, T )),
and ∇ΠT (m),∆t(m)uD(m) ⇀ ∇u weakly in L2(Ω× (0, T ))3.

In view of Lemma 5.6, Lemma 5.7, and Lemma B.2 of [8], the Kolmogorov-Fréchet theorem
implies that there exist two functions s ∈ L2(Ω × (0, T )) and p̂ ∈ L2((0, L) × (0, T )) such that
up to a subsequence sl

D(m)
p ,∆t(m)

→ S strongly in L2(Ω × (0, T )) and p̂D(m)
g ,∆t(m) → p̂ strongly in

L2((0, L)× (0, T )). The sequence γΠT (m),∆t(m) p̂D(m) is uniformly bounded in L2(0, T ;H1
0 (0, L)), thus

one can extract a subsequence of ∂xγΠT (m),∆t(m) p̂D(m) weakly converging to some function p̂x in
L2((0, L) × (0, T )). Let ϕ ∈ L2(0, T ;C∞c (R)) and let γΠT (m),∆t(m) p̂D(m) be extended by zero outside
of (0, L), passing to the limit in∫ T

0

∫
R

(
(∂xγΠT (m),∆t(m) p̂D(m))ϕ(x, t) + γΠT (m),∆t(m) p̂D(m)∂xϕ(x, t)

)
dxdt = 0,

we obtain that ∫ T

0

∫
R

(
p̂xϕ(x, t) + p̂∂xϕ(x, t)

)
dxdt = 0,
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and hence that p̂x = ∂xp̂ and p̂ ∈ L2(0, T ;H1
0 (0, L)). From the convergence to zero of ‖ΠT (m)ūD(m) −

ū‖V and the assumptions on g we deduce that there exists p ∈ L2((0, L)×(0, T )) such that p−g(γū) ∈
L2(0, T ;H1

0 (0, L)) and such that pD(m)
g ,∆t(m) → p strongly and ∂xγΠT (m),∆t(m)pD(m) converges weakly

to ∂xp up to subsequence. Using the Minty’s trick stated in Lemma 3.6 of [2] one can show that
s = sl(., u) and p = g(γu).

It remains to show that u is a solution to (23). We will drop the superscript (m) in the following

for the sake of convenience. Let C(Ω × [0, T )) be the subspace of functions ϕ of C∞
(

Ω × [0, T ]
)

vanishing at t = T and on ΓD and such that ∂sϕ = 0 on Γ. Then, let ψ ∈ C(Ω× [0, T )) and consider
the function ψ(t) = PDψ(., t) ∈ X0

D.
Next, setting vD = ψ(tn−1) in (35), multiplying the left and right hand sides by ∆tn and summing

over n, we obtain that

N∑
n=1

∆tn
(
AnDp(ψ(tn−1))+AnDg(ψ(tn−1))+Bn

Dp(ψ(tn−1))+Bn
Dg(ψ(tn−1))

)
= Cn

Dp(ψ(tn−1))+Cn
Dg(ψ(tn−1)).

First, using the chain rule and ψ(T ) = 0, we have that

N∑
n=1

∆tnAnDp(ψ(tn−1)) = −
N∑
n=1

∫ tn

tn−1

∫
Ω

ζ lφ(x)slDp,∆t(x, t)∂tΠDpψ(t)(x)dxdt

+

∫
Ω

ζ lφ(x)sl(x,ΠDpu
0
D(x))ΠDpψ(0)(x)dx.

We deduce from the strong convergence of slDp,∆t to sl(., u), the strong convergence of ΠDpu
0
D to

uinit,p, and the regularity of ψ, that

N∑
n=1

∆tnAnDp(ψ(tn−1))→ −
∫ T

0

∫
Ω

ζ lφ(x)sl(x, u(x, t))∂tψ(x, t)dxdt

+

∫
Ω

ζ lφ(x)sl(x, uinit,p(x))ψ(x, 0)dx.

Similarly, we have that

N∑
n=1

∆tnAnDg(ψ(tn−1)) = −
N∑
n=1

∫ tn

tn−1

∫ L

0

|S|
RTe

pDg ,∆t(x, t)∂tΠDgψ(t)(x)dxdt

+

∫ L

0

|S|
RTe

g(ΠDgu
0
D(x))ΠDgψ(0)(x)dx.

We deduce from the strong convergence of pDg ,∆t to g(γu), the strong convergence of ΠDpu
0
D to uinit,g,

and the regularity of ψ, that

N∑
n=1

∆tnAnDg(ψ(tn−1)) = −
∫ T

O

∫ L

0

|S|
RTe

g(γu)(x, t)∂tγψ(x, t)dxdt

+

∫ L

0

|S|
RTe

g(uinit,g)(x)γψ(x, 0)dx.

Turning to the diffusion terms, we have from the weak convergence of ∇ΠT ,∆tuD to ∇u, the strong
convergence of slDp,∆t to sl(., u), the assumption on klr, and the regularity of ψ, that

N∑
n=1

∆tnBn
Dp(ψ(tn−1))→

∫ T

0

∫
Ω

ζ l
klr(x, s

l(x, u(x, t)))

µl
K(∇u(x, t)−M lζ lg) · ∇ψ(x, t)dxdt
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Similarly, we deduce from the weak convergence of ∂xγΠT ,∆tuD to ∂xg(γu), the strong convergence

of pDg ,∆t to g(γu), the assumption on ζ̃g, and the regularity of ψ, that

N∑
n=1

∆tnBn
Dg(ψ(tn−1))→

∫ T

0

∫ L

0

1

αg(x)
|S|ζ̃g(g(γu)(x, t))∂xg(γu)(x, t)∂xγψ(x, t)dxdt.

Turning to the source terms, from the regularity of ψ, we obtain that

N∑
n=1

∆tn
(
Cn
Dp(ψ(tn−1))+Cn

Dg(ψ(tn−1))
)
→
∫ T

0

∫
Ω

Q(x, t)ψ(x, t)dxdt+

∫ T

0

∫ L

0

|S|q(x, t)γψ(x, t)dxdt.

6 Conclusion

A reduced model coupling the 3D gas liquid compositional Darcy flow in a porous media and a 1D
compositional gas free flow has been proposed and applied to predict the mass exchanges occurring
at the interface between the repository and the ventilation excavated galleries. The model takes
into account the low permeability of the disposal to simplify the coupling conditions and uses a
No Pressure Wave approximation in the free flow domain. The VAG scheme has been extended to
the discretization of such model. It has the advantage compared with classical CVFE approaches
to avoid in a natural way the mixing of the porous and free media properties inside the control
volumes at the nodes located at the interface. The discretization has been validated using a quasi
analytical solution for the stationary state which is shown to provide a very good approximation
of the converged numerical solution of the coupled model. Finally, the convergence of the VAG
discretization to a weak solution has been proved for a simplified model coupling the 3D Richards
approximation for the liquid pressure in the porous medium and the Darcy approximation of the 1D
gas pressure equation in the gallery. In [19], the reduced model of subsection 4.3 is compared with
a full dimensional model using the Reynolds-averaged Navier-Stokes equations combined with an
algebraic turbulent model in the gallery. The numerical results, using a boundary layer thickness δ
computed from a diagonal approximation of the Steklov Poincaré operator related to the convection
diffusion equation in the gallery for the water component, exhibit a very good match between both
models.
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