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Abstract—Du-Vote is a recently presented remote electronic
voting scheme. Its goal is to be malware tolerant, i.e., provide
security even in the case where the platform used for voting
has been compromised by dedicated malware. For this it uses
an additional hardware token, similar to tokens distributed in
the context of online banking. The token is software closed
and does not have any communication means other than a
numerical keyboard and a small display. Du-Vote aims at
providing vote privacy as long as either the vote platform
or the vote server is honest. For verifiability, the security
guarantees are even higher, as even if the token’s software has
been changed, and the platform and the server are colluding,
attempts to change the election outcome should be detected
with high probability. In this paper we provide an extensive
security analysis of Du-Vote and show several attacks on both
privacy as well as verifiability. We also propose changes to the
system that would avoid many of these attacks.

1. Introduction

In recent years remote Internet voting has been used or
trialled for legally binding elections in several countries. The
first country to nationally offer the use of remote Internet
voting was Estonia in 2005. In the recent March 2015
Estonian parliament elections over 30% of the votes were
cast by Internet [1]. Also in March 2015, an even larger
election (in terms of electronically cast votes) was the state
election in New South Wales, Australia. In June 2012 French
expatriates were allowed to vote via the Internet for parlia-
ment elections. The security of these systems has however
been challenged. For instance, Halderman et al. highlighted
security problems in the Estonian [2] and Australian [3]
elections. In the latter a TLS bug was exploited, rather
than a weakness in the actual protocol. In the 2012 French
parliament elections a French expatriate, Laurent Grégoire,
demonstrated that it was possible to write a malware able to
change the value of a casted vote without any way for the
voter to notice [4]. In the 2011 Estonian parliament election,
a similar attack was reported by computer scientist P. Pihel-
gas who conducted a real life experiment with consenting
test subjects [5].

The current situation motivated many academic works
on secure e-voting. The key properties that were identified
are vote privacy and end-to-end verifiability. Vote privacy

ensures that the voting system should not release any infor-
mation about your vote other than the information revealed
by the final outcome (in an unanimous vote, of course, the
outcome would leak your exact vote, independent of the
system in use). This notion of privacy has been precisely
defined in both symbolic [6], [7] and computational [8],
[9] models for reasoning about cryptographic protocols. The
second property is end-to-end verifiability which guarantees
the integrity of the election and ensures its transparency
by providing verifiable evidence of the accuracy of the
result. End-to-end verifiability generally includes individual
verifiability (each individual voter can check that his vote
has been casted directly), as well as universal verifiability
(any observer may verify that the election outcome corre-
sponds to the tally of the casted votes). This also leads to
the notion of software independence [10]: there is no need
to trust the software used to conduct the election, as the
election produces proofs that can be independently verified.
However, when proving properties of protocols, the (some-
times implicit) assumption is that the client platform indeed
executes correctly the expected protocol. This assumption
is however not realistic since standard PCs are generally
prone to malware attacks, which are becoming both more
frequent and more sophisticated. In the context of remote e-
voting one of the main problems is that the client software
used for voting cannot be trusted: malware may divulge the
vote or other supposedly secret values such as passwords,
encryption randomisations, etc. or even simply alter it. The
threat of dedicated malware for, e.g., changing votes is a
realistic threat as it was demonstrated in the above discussed
French parliament elections.

Ensuring privacy and verifiability when the voter’s com-
puting device is malicious has become one of the most
challenging problems in remote e-voting. A first solution to
ensure privacy was proposed by Chaum [11] who introduced
the notion of code voting. Instead of entering the vote
itself, the voter inputs a code, representing the vote, but
which cannot be linked to the actual vote by the client
platform. The scheme, however, does not offer verifiability.
An improvement was proposed by Ryan and Teague in the
Pretty Good Democracy [12] scheme. This scheme does
offer verifiability, but the integrity of the election could
be compromised in the case where code sheets are leaked.
To ensure the integrity of the election, i.e., avoid that a
malware would change the vote, Benaloh [13] proposed to



use a cut-and-choose technique to audit ballots: after having
constructed the ballot, a voter can either cast it or decide
to audit it in order to check that the vote has not been
changed. This technique has for instance been implemented
in the Helios system [14]. However, usability studies, see
e.g. [15], suggest that most voters do not audit their ballots.
Moreover, as most systems display the result of the audit
on the same platform as used to compute the ballot, a
sophisticated malware could avoid being detected.

Another promising direction to circumvent malware at-
tacks is to rely on an external hardware device with a proper
display which may be used to perform some computation.
Such hardware tokens are already used by some banks to
enhance the security of online transactions. Recently there
have been some proposals using such tokens in the context
of e-voting, e.g. [16]. The hardware token should take a
particularly simple form such that it is hard to tamper with
(compared to e.g. a smartphone). These tokens can easily be
audited and, being offline, are less vulnerable to malware.
In order to be effective, the token must not be connected
to the computer and requires short strings to be copied
by the human from the token to the computer or vice-
versa. The recent Du-Vote [17] scheme, on which we will
concentrate in this paper, is another attempt to create an e-
voting protocol in which the devices used to vote are not
considered trustworthy – hence the name (Devices that are
Untrusted used to Vote).

Roughly, Du-Vote works as follows. The vote platform
generates encryptions and corresponding short voting codes
(e.g. 4 digits) for each candidate. The voter enters the code
for the chosen candidate (and some additional information)
into the token which computes a vote code to be submitted
to the vote server. The additional information will be used to
verify that the platform correctly generated the encryptions.
From the vote code, the vote server, which shares a key
with each of the tokens, is able to extract the encryption of
voter’s chosen candidate. The encrypted ballots can then be
tallied using either mixnets or a homomorphic tally.

Our contributions. In this paper we will provide an
intensive security analysis of Du-Vote. As Du-Vote aims
to provide very strong security guarantees under low trust
assumptions, the protocol takes a somewhat complicated
form which opens up for attacks.

We present several attacks on privacy. We first show
that a vote replay attack by a dishonest voter, similar to the
attack presented by Cortier and Smyth [18] on Helios, is
possible. At a first glance it is not obvious that the attack
is feasible, but we note that it is sufficient to re-randomise
the encryption to obtain a collision between the last digits
of the encryption and one of the vote codes, which can be
done efficiently. Privacy can also be broken as soon as the
token is used twice. This has already been discussed in the
original Du-Vote paper when they emphasise that, for this
reason, a device must not be used for several elections. We
here discuss how phishing might be used to trick a voter
into using the device twice, and how the factory producing
the devices (or the delivery service) may actually abuse its
access to the token to get enough information to link a

vote and a token a posteriori to voter IDs. This information
may then be combined with a malware infecting the vote
platforms to perform a large scale privacy breach. Finally,
we also discuss how error messages, or their absence, can
be used to, at least mildly, break privacy by excluding one
or more possible candidates.

We also present several attacks against verifiability, and
the integrity of the election. We first note that in its cur-
rent form, ballot stuffing is possible. This problem might
be considered orthogonal and a generic technique [19] to
avoid this attack could be deployed. We however propose a
slight modification to the token that would avoid deploying
this additional technique. Next we present a severe attack
in which the server may compute a fake key that allows
the server to change the vote in an undetectable way. We
propose a change to the zero-knowledge proof to avoid
this attack. We also propose a collision attack where the
platform and the server can collude to trigger frequent
collisions among the output computed by the token for
different candidate choices. This allows for a randomisation
attack where the voter’s choice can be modified to another
random candidate. Next we propose attacks based on the fact
that the platform may display fake vote codes to the voter. A
first computationally very heavy attack allows the platform
to compute and display a set of vote codes such that for any
possible choice of the voter, the vote goes to the attacker’s
candidate of choice. While this attack is not feasible for a
large number of candidates, we show that for 2 candidates
the attack could be performed without much effort. We also
show that when the server and the platform collude and
the token is software modified, the voter’s choice may be
modified, according to the attacker’s choice. Moreover, the
software modification of the token would not be noticed on
honest platforms, meaning that the attack is undetectable.

We summarise the attacks and necessary trust assump-
tions in Tables 4 and 5. Some of these attacks require to take
very relaxed trust assumptions, e.g., the last attack which
supposed that the platform, server and token were malicious.
This nevertheless contradicts the strong security claims of
Du-Vote [17] which we summarise in Tables 2 and 3.

Outline of the paper. We first give an overview of the
Du-Vote scheme (Section 2) and then recall the trust as-
sumptions and claimed security goals in Section 3. Then we
present our attacks on privacy (Section 4) and verifiability
(Section 5). We finally conclude in Section 6 and discuss
what vulnerabilities are avoided after applying our proposed
fixes and which ones are still present.

2. Short description of the protocol

We here present a brief description of the Du-vote
protocol. For details we refer the reader to [17]. The parties
involved in the protocol are the voting authority (A), the vote
server (S), the voter (V ), the computing platform for the
voter (P ), the hardware token for the voter (H), a bulletin
board (BB) and a set of decryption tellers T . The tallying
can be done using mixnets or via homomorphic encryption,
but this is not important for the protocol. We also explicitly



add a delivery service for the hardware tokens (D) and a
hardware token producer (HP ) to the description of the
protocol, as they are also taken into account in our analysis.

At a very high level, and from the voter’s perspective,
the protocol works as follows. The voter’s platform, e.g. a
laptop computer, displays a ballot that consists of 3 columns,
as depicted in Table 1. The first column displays the candi-
dates a1, . . . , an. The columns A and B associate to each
candidate ai two possible vote codes A∗i and B∗i . These vote
codes are typically rather short, e.g. 4 decimal digits. First,
V chooses randomly one column to be the vote column,
and the other to be the audit column. In order to vote for
candidate ai, the voter types into the hardware device all the
codes of the audit column, in the displayed order, followed
by the code in the vote column that is associated to ai.
For example, if we assume 4 candidates and that the voter
chose column B to be the audit column, she enters the
sequence B∗1 |B∗2 |B∗3 |B∗4 |A∗2 into H to vote for candidate a2.
The device outputs a short vote code that the voter enters
into the platform. The platform transmits the vote code and
encryptions of the candidates to the vote server, and the
voter checks that the vote code, together with her voting
ID and the ballot ID, are correctly displayed on the bulletin
board. The bulletin board additionally displays evidence to
be checked that will ensure the voter that the protocol has
been followed correctly and that her vote has been casted
correctly. The tallying can then be done using any standard
verifiable method using, e.g., homomorphic tallying or a
verifiable mixnet.

In the remainder of this section we will give a more
detailed description of the protocol. An overview of the
whole protocol in form of a message sequence chart is also
depicted in Figure 1.

Preliminaries. The voting protocol uses a number of
cryptographic tools which need to be settled. We assume
a cyclic group, e.g. a Schnorr group of order q with mul-
tiplication modulo p and two generating elements g, h, for
which nobody knows the log relation. The encryption used
by Du-Vote is exponential El-Gamal and we denote by

enc-exp(m; y; r) := (gr, hmyr)

the encryption of message m with public key y and ran-
domness r. We denote by hash(·) the application of a
cryptographic hash function and assume the existence of
a pseudo-random generator. There is further a parameter
κ and a corresponding mapping ·∗ which takes numbers,
bitstrings or pairs of bitstrings into κ-digit numbers (simply
taking the last κ digits of the corresponding integer maybe
after concatenating).

2.1. Registration and preparation

Well ahead of the election, the decryption tellers T
publicize a shared public key y. The voting authority deter-
mines all eligible voters. The eligible voters can then register
and will get a password for the vote server and a voter
ID. The voter IDs can be published to the bulletin board

BB. The voting authority chooses randomly secret keys
K = yk for each voter and an associated serial number and
sends an order to the hardware producer HP for hardware
tokens with these keys with the serial numbers printed in
clear on them.1 Then A informs the vote server S secretly
about the correspondence between vote ID and secret keys
k = logyK. A sends the correspondence between serial
numbers and postal addresses for the voters to the delivery
service D, and D then delivers the hardware tokens H to the
voters. Finally, just before the beginning of the election, A
announces the election nonce I which is computed pseudo-
randomly in some predetermined, but unpredictable, way.
Also the set of names of the n candidates

Cand = {a1, . . . , an}
is published on BB.

2.2. Ballot preparation by P

The voting can now proceed as follows. The voter logs
into the voter server S via her computational platform P
using the password and voter ID that were issued at the
registration. P then produces encryptions of the candidate
names Cand and displays a ballot that is computed as
follows.

• First P computes a set of 2n distinct pseudo-random
voting codes

{c1, . . . , c2n}
in a way that is reproducible knowing the voter
ID and the election nonce I . This is done us-
ing the pseudo-random generator seeded with
hash(I, voter ID) using possibly retakes to ensure
that all ci are distinct numbers. P now chooses
the ordered set {codeA(1), . . . , codeA(n)} as a
random cyclic shift of {c1, . . . , cn} and likewise
{codeB(1), . . . , codeB(n)} as a random cyclic
shift of {cn+1, . . . , c2n}. These shifts are performed
to ensure privacy.

• P computes encryptions

Ai = enc-exp(ai; y; rAi )

for rAi = rstart, rstart + 1, . . . until A∗i = codeA(i).
In the same way encryptions

Bi = enc-exp(ai; y; rBi )

are determined such that B∗i = codeB(i). Recall
that the ∗-operation is the truncation to the last
κ digits after concatenating the two strings in the
encryption and converting this into an integer.

1. Note that it is probably more realistic that the hardware producer
HP simply produces these and sends the list of serial numbers and
corresponding k = logyK to A. However, if it is done the other way round
there is a small advantage that HP does not know logyK. Even though
knowing K is enough to launch serious attacks on the voting protocol,
knowing the exponent k is even stronger, e.g. the zero-knowledge proofs
of the vote server cannot be constructed without this knowledge.



• Next, P displays to the voter V the ballot shown in
Table 1. The ballot ID is computed to be hash(A,B)
where A and B are the lexicographically ordered
A1, . . . , An and B1, . . . , Bn respectively.

Candidate Column A Column B
a1 A∗1 B∗1
a2 A∗2 B∗2
a3 A∗3 B∗3
a4 A∗4 B∗4

Enter your vote code here
Ballot ID: hash(A,B)

TABLE 1. THE CRYPTOGRAPHIC CONSTRUCTION OF THE BALLOT
SHOWN BY P TO THE VOTER V .

2.3. Vote casting

Now the voter can cast her vote as follows.

• The voter V chooses randomly either column A or
B as an audit column. We call the other column the
vote column. As we will see, this choice will be used
as a cut- and choose audit of the correctness of the
encryptions that P has calculated.

• Next, V enters the entire audit column and the code
for the chosen candidate from the vote column into
the hardware token H . That is, if the audit column
is B then V enters

d := B∗1 | · · · |B∗n|x∗

into H where x∗ ∈ {A∗1, . . . , A∗n}.
• The token H computes C = Khd and displays the

vote code C∗ which V enters into the device P . V
also makes a note of the vote code and the ballot
ID in order to verify their presence on the bulletin
board later.

• P sends the vote code C∗ to S together with A,B,
the lexicographically ordered ciphertexts.

2.4. Ballot processing by S

The server now needs to process the vote and perform
checks and proofs. The aim is to be able to post on the
bulletin board an encryption of the candidate chosen by the
voter. First the server will determine which ciphertext in
A ∪ B is the encryption of the voter’s choice. For this S
proceeds as follows.

• S computes c1, . . . , c2n like P and checks that these
values are consistent with A,B, i.e., the last κ digits
of each element in A equal a code in c1. . . . , cn and
similarly for B. S also posts the voter ID, C∗, A,B
and the ballot ID (which it calculates from A,B) to
BB.

• S then computes the plaintext d entered into H by
brute force. This is possible since S knows the secret
hardware token key K. There are 2n2 possibilities

for d, namely n choices for the cyclic shift of the
audit column, n choices for the code chosen in the
vote column and a factor of 2 from the choice of the
audit column.

• Knowing d, S can determine the audit column α (α
is A or B). S can also determine x∗ from d which is
the last κ digits of the encryption of the chosen can-
didate. This determines the encryption of the chosen
candidate A∗ ∈ {A1, . . . An} (if the audit column
was B). Note that the server cannot determine the
shift in the vote column and hence cannot associate
the vote ciphertext to a given candidate.

Next, using the audit column, S will check that P correctly
encrypted the candidates. This is needed to avoid that, for
instance, all ciphertexts displayed by P are encryptions of
the same candidate. For this, S will request P to open the
audit column.

• S publishes the audit column α on BB and requests
the random coins used for the encryptions in the
audit column from P . The publishing of the audit
column on BB is to prevent a privacy attack that
we found on an early draft of the Du-Vote protocol,
where S would simply ask for the vote column
instead of the audit column.

• P checks if S has posted the audit column to
BB, and if true sends the random coins to S, i.e.
rα1 , . . . , r

α
n to S in that order.

• S posts the random coins in the correct order to BB,
and checks that the encryptions are of the correct
candidates. It knows the order of the vote codes in
the audit column from d.

• If at this point any of the checks have failed, i.e. that
S, H or V did not follow the protocol or made an
error, then S refuses to do any further processing.
This in particular also happens if d is not unique due
to a collision. In this case, it is suggested that the
voter should vote offline.

Finally S publishes (a re-encryption of) the encrypted vote
on BB together with zero knowledge proofs ensuring the
voter that S followed the protocol.

• S now re-encrypts A∗ (the ciphertext of the voter’s
chosen candidate) to the ciphertext E and posts
this to BB as the vote of V . This re-encryption is
necessary as otherwise P would be able to identify
the chosen candidate.

• S produces non-interactive zero knowledge proofs
that it behaved honestly and publishes these on BB.
The details of the proof can be found in [17]. An
important part for us is that these proofs include
publishing C = Khd which is the untruncated value
calculated internally in H .

• Finally, V checks that the ballot ID and vote code
appear correctly on the bulletin board BB. This can
be done by a third party without violating privacy,
and should preferably be done from another device
than P .
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Figure 1. Diagram illustrating the important parts of the vote protocol.



A less explicit part of the protocol is the following: if just
a simple disturbance is detected by the voter, e.g. that the
computer needs to restart the voting session after entering
the vote code, she has to abort the protocol and vote offline
or by other means.

3. Assumptions and claimed security of Du-
Vote

3.1. Assumptions

We will now recall the security assumptions made about
the Du-Vote system. Firstly, we assume that the voting
authority is trustworthy. If the voting authority is not trust-
worthy it can in many attacks below replace a colluding vote
server. Further, we assume that the bulletin board is ideal,
i.e. it is append-only and cannot be tampered with.

For the hardware token H, we assume that it has not been
hardware modified for extra communication channels. One
could e.g. imagine incorporating a microphone to allow P to
send extra messages to H via the speakers of P . This could
even happen in an inaudible frequency. We however allow
the hardware to be software modified, i.e. the software could
have been installed by the attacker during manufacturing. As
we disallow any communication channel, this means that the
adversary does not control the token in real time.

There should also be a time lapse between the ending of
e-voting and the voting by other means. Otherwise it would
be easy to kill last minute electronic votes by a denial-of-
service attack if the voter does not have enough time to cast
a paper vote instead.

We also keep the realistic assumption from [17] that
not all computing platforms P can be infected with mal-
ware. This e.g. means that attacks using software-modified
hardware tokens could potentially be detected on the honest
computing devices.

3.2. Security claims

We now give an overview of the security claims made
in [17]. The claimed level of verifiability of Du-Vote is
rather high. If H is trustworthy, verifiability is secured. In
this case, if the voter confirms the ballot ID and vote code
on BB, then with a probability of almost 1/2 the vote will
be counted as cast: basically the only chance to change the
vote is to guess which audit column will been chosen by the
voter. The idea is then that there is roughly a probability 1/2
for an adversary to provoke a halt in the protocol and hence
large scale attacks will be detected.

Even in the case where H is untrustworthy (the software
on all devices has been changed), verifiability is assured with
high probability. This is under the assumption made above
that not all computing platforms P can be corrupted, but
a fraction will remain trustworthy. The malware infected P
can be controlled live by the adversary and can be colluding
with S, but the attacks proposed in [17] will be detected
with high probability via the honest computing platforms

P when they interact with the corrupted tokens H . If H is
reprogrammed to output randomized codes, this will clearly
be detected with large probability on trustworthy computing
platforms. A more subtle attack was suggested where H
substitutes codes, but without knowing I which is first
known after the hardware production. However, also this
attack will often be detected by an honest platform P . To
be more precise, if h is the fraction of P that are honest
and the adversary changes N votes, then

hN(10κ − n)

n((1− h)n+ h)

votes are rejected by the trustworthy platforms P . The
results are summarized in table 2.

The Du-Vote protocol is designed with emphasis on
verifiability. The privacy security is correspondingly not
quite as strong. If P and S are colluding, privacy is clearly
violated, but if H is honest and if either P or S is also
trustworthy (or at least P and S are not colluding), then
privacy is guaranteed. If H is corrupted, e.g. programmed
to return the chosen candidate code as vote code, privacy is
also violated, but this would easily be detected. The claimed
privacy results are presented in table 3.

Verifiability
H honest H corrupt

P & S
colluding

If the voter confirms the
ballot ID and vote code on
BB, the probability that
the vote is decrypted as
cast is
0.5(1− 10−κ)2n

2−1

If a fraction h of P
are honest and the adver-
sary changes N votes, then
hN(10κ−n)
n((1−h)n+h) votes are re-
jected.

TABLE 2. VERIFIABILITY OF DU-VOTE AS PRESENTED IN [17]

Privacy
H honest H corrupt

P corrupt,
S honest

X No privacy, but attack is
detectable

P honest,
S corrupt

X No privacy, but attack is
detectable

P & S
colluding

No privacy No privacy

TABLE 3. PRIVACY OF DU-VOTE AS PRESENTED IN [17]

4. Privacy attacks

We now present several attacks on the privacy of the
votes in the Du-Vote protocol.

4.1. Replay attacks

Note that as the protocol stands, it does not ensure
privacy in the strict formal sense, at least not with respect
to an adversary who is a voter or controls voters and for
these can control the communication with S.

The reason is that the re-encrypted vote is posted on the
bulletin board. This means that a vote copy attack, similar



to the one by Cortier and Smyth [18] on Helios, is possible.
In the Du-Vote scheme, simply copying a re-encrypted vote
would however not work. An adversary has to re-encrypt it
until the last κ digits correspond to say A∗1. The remaining
encryptions are chosen honestly. The adversary now chooses
column B as audit column and votes for the first candidate
which in the end will be a vote cast for the candidate
encrypted in the copied vote. The same can be done for
controlled voters. This will change the distribution of the
votes and thus violates privacy. To better appreciate the
effect of this attack, consider a situation where 2 honest
voters and 1 dishonest voter are eligible. If the dishonest
voter copies Alice’s vote, the election result will entirely
leak Alice’s choice.

A simple solution is to delay the publishing of the last
part of the zero-knowledge proofs and the re-encrypted vote
until after the e-voting has stopped. The vote code and ballot
ID should however be published immediately such that the
voter can check this part right away, keeping the protocol
vote & go, as the remaining verifications can be performed
by any person who wishes to verify the results.

4.2. Phishing (P corrupt, H passively corrupt)

Via, e.g., phishing mails an adversary can try to make the
voter enter all zeroes (or some other chosen value) into the
device H and reveal this value online. If the computer is then
simultaneously infected with malware, this will reveal the
vote to the adversary, as we will explain below. An infected
platform could also simply request the voter to enter a first
code for initialisation purposes. We denote this by H being
passively corrupt since no hard- or software modifications
are necessary.

The reason that an access to a second output from the
device breaks privacy is that on the bulletin board BB both
the internal output from H i.e. C and the column which
was used for auditing is published. Given C and the audit
column there are only n possibilities for the secret key K.
The second output from H can then be used to select the
correct key among the n possibilities. To be explicit, assume
that the audit column is B, then K is one of the n values

Ki = Chq−B
∗
1 |···|B∗n|A∗i

for i = 1, . . . , n. The adversary can check which of these
keys gives the same result as in the phishing attack, and
thus with high probability uniquely determine A∗i . If the
adversary has also infected P with malware this directly
determines the vote.

This attack could also be carried out by any person
which has access to the hardware token before or after the
voting procedure, e.g. a person in the same house or on large
scale the delivery service, and who at the same time knows
the ballot shown by P . It is thus important that nobody sees
the screen on P during the voting and it is not enough to
hide the input into H . Note however that it is also necessary
to know the voter ID. Therefore it is important not to write
the voter ID on H , but rather some serial number. Also note

that seeing the ballot, displayed on P , makes it possible to
determine the voter ID afterwards, searching the voter with
the correct audit column vote codes. In the next attack, we
will see, that H could also reveal the voter ID directly.

The counter measure is of course to make sure that the
voter is well-informed of the importance of using H only
once and to keep H , and the voting session private. This
attack is based on the note in the original paper [17] where
they explain that H must not be used with the same key for
two different elections since P then knows the key K with
probability 1/n. Another reason to explicitly mention this
attack is that it should be kept in mind as a difficulty for
a countermeasure for the verifiability attacks from sections
5.2 and 5.3 below.

4.3. Key uniqueness (P corrupt, H passively cor-
rupt)

The previous attack assumed that we got extra infor-
mation from H while knowing the identity of the voter.
However, since the secret keys in the hardware tokens are
with high probability unique, partial knowledge of the key
might reveal the voter ID. This can in turn be used for
privacy attacks on voters with corrupt P along the lines
of the last section.

Consider a worker on the hardware production factory.
This worker could simply enter some values say 0 and 1
into the hardware token and write down the outputs. No
notion of serial number or relation to the voter is needed.
The adversary can now for each voter on BB calculate n
possible secret keys (see section 4.2) and check which one
complies with the extra inputs to H .

This attack can also be carried out by anyone else who
has access to the hardware token e.g. the delivery service if
the hardware tokens are not properly secured, or on a large
scale the hardware producer which directly have the secret
token keys. It could also be someone finding the token in
the voters home or it could even happen after voting, e.g.
after the token has been disposed in the garbage.

Let us now calculate the probability that the extra infor-
mation can uniquely determine the voter ID of the voter
that uses the passively corrupted H . We assume that v
other voters have voted and that the hardware token has
revealed the output of m extra predetermined input values.
We also assume for simplicity that the hardware token keys
are unique since they should have high entropy. For a given
vote on BB and a choice of one of the n possible keys, the
chance that it reproduces the revealed information is 10−mκ

where we have assumed independence of the outputs. The
probability that the revealed information does not comply
with any of the n possible keys of each of the v voters is
thus (1 − 10−mκ)nv. As an example with κ = 4, n = 4
candidates, v = 100.000 voters and making only m = 2
inputs to h, the probability that the voter ID can be uniquely
determined is 0.996.

The person in possession of the extra readings can thus
with high probability determine the voter ID and sell the
extra output information and the voter ID bundled. An



adversary controlling the computing device of the voter with
the corresponding voter ID can directly use the extra infor-
mation to break privacy. Luckily, this attack only violates
privacy since it can only be performed after vote casting.

The attack illustrates the importance that the hardware
tokens are delivered in tamper resistent envelopes to the
delivery service D. Also the device should be made unusable
before disposing of it. Another choice would be to make
the hardware token limited to only work one time, but that
would certainly decrease usability. Further this would also
prevent checks of the honesty of the vote server S, see
sections 5.2 and 5.3 below.

4.4. Information leak from no error (P corrupt)

Since the vote processing by S with large probability
halts in the case of an error, e.g. if the voter did a typo when
entering the codes on H , this actually gives knowledge to an
adversary. Imagine an adversary controlling P and making
one or more small changes in the vote codes in say column
A of the displayed ballot. The encryptions of the candidates
are however calculated honestly. With probability 1/2 the
voter chooses B as the audit column, and if the vote is
processed by S, it means with large probability that V did
not vote on the candidates with corrupted vote codes. If S
does not process the vote no knowledge is gained – either
the voter used column A as audit column or used B as audit
column, but voted on one of the candidates with corrupted
codes.

It could happen with low probability that a corrupted
vote code is processed if it happens to give a C∗ matching
one of the 2n2 real vote choices. This probability is thus
1 − (1 − 10κ)2n

2

i.e. lower than 2n210−κ. However, in
this case the audit column that S determines is most likely
not consistent with the honestly computed, and it will be
revealed to the adversary. Thus again the adversary gets no
information, but not the false information that the voter did
not choose the altered codes.

Note that a similar attack could be used to actually alter
the vote (e.g. exchange vote codes of the candidates), but
the point is that this attack is not scalable since it will
be detected with probability around 1/2 due to the audit
column procedure. However, a privacy attack does not need
to be scalable since the knowledge of certain votes are more
interesting than others. Also note, that even though S cannot
process the vote, the failure could just as well come from a
typo from the voter, and is thus almost undetectable if it is
not carried out on a big scale. According to [20], entering 10
digits into a calculator has an error rate of 0.05. We would
expect the typo rate to be on the same scale since the voter
here has to enter more digits (e.g. 20 for k = n = 4), but
is probably quite careful in the voting process.

A possible countermeasure is that the voter actually
copies the audit column and checks this against the pub-
lished values on BB on a different computing platform. The
voter can also safely let a third party perform this check.
However, if the voters are instructed to make such checks the
usability of the voting protocol suffers considerably. Another

option is to incorporate this check of the audit column into
the token H , see section 5.1 below.

4.5. Information leak from no collisions (P cor-
rupt)

An even more serious attack comes from the fact that if
S processes the vote then we know there are no collisions in
C∗ between the actually chosen vote and any of the 2n2−1
other possible entries to H (see section 2.4).

From the output to BB we saw in section 4.2 that
anyone can calculate n possibilities for the secret key
Ki = Chq−B

∗
1 |···|B∗n|A∗i for i = 1, . . . , n where we have

assumed that the audit column was B. If Ki is really the
true key, we know that

C∗ 6=(Kih
B∗j |···|B∗j+n−1|A∗k)∗ for j, k = 1, . . . , n

except (j, k) = (1, i)

C∗ 6=(Kih
A∗j |···|A∗j+n−1|B∗k )∗ for j, k = 1, . . . , n

where the addition in the indices of A,B are modulo n.
Note that these constraints are all different, also across the
different values of i. For a given i the probability that there
is a collision, i.e. the probability that we can rule out that
V voted for the candidate encrypted in Ai, is 1 − (1 −
10−κ)2n

2−1. The probability that one of the keys Ki have
a collision is thus

1− (1− 10−κ)(2n
2−1)(n−1) (4.1)

An adversary controlling P , or anyone seeing the displayed
ballot, can now with this likelihood break privacy in the mild
form of excluding at least one candidate. For n = κ = 4
we have a low probability of 0.00926 i.e. only about one in
hundred, but with more candidates say n = 6 and setting
κ = 3 to reduce the number of number the voter has to
type, we have a rather high probability of 0.299 i.e. a bit
less than one in three.

A way to limit the possibility of these attacks would be
to increase the length of the output from H to say 2κ. The
downside would be that more typing is needed from the
voter, and it could be faster to determine the secret token
key using inputs to H .

All the privacy attacks are summarised in table 4 ac-
cording to trust assumptions.

Privacy attacks
H honest H passively corrupt

P & S
honest

Replay attack, sec. 4.1

P corrupt,
S honest

Information leak from no
error, sec. 4.4
Information leak from no
collisions, sec. 4.5

Phishing, sec. 4.2
Key uniqueness, sec. 4.3

TABLE 4. PRIVACY ATTACKS ON THE DU-VOTE PROTOCOL
ACCORDING TO TRUST ASSUMPTIONS. H IS PASSIVELY CORRUPT WHEN

IT IS BEING MISUSED, BUT ITS SOFTWARE IS NOT BEING CHANGED.



5. Verifiability attacks
We now consider six attacks where votes can actually

be changed.

5.1. Ballot stuffing (S corrupt)

We first note that the hardware token does not prevent S
from voting on behalf of the voter. The secret token key is
known to S and it can thus fully simulate the voting process
with a chosen vote. Of course, this will be disputed by a
voter actually trying to vote or – somewhat more unlikely
– checking the BB.

A general solution to such ballot stuffing problems was
proposed in [19]. In this case it would be employed by
providing the voters with credentials and letting them sign
the vote code when P sends it to S.

One could have hoped that such extra infrastructure
could have been circumvented using the hardware token.
Indeed, we suggest the following modification. Each hard-
ware token H now also stores a second secret key, denoted
K2, besides the secret key K. As before, during the voting
process, the voter enters d = B∗1 | · · · |B∗n|x∗ into H if V
chose column B as audit column and wants to vote for
the candidate with code x∗ in column A. In the modi-
fied scheme, the hardware token H now displays κ + 2
digits, i.e. two extra digits. The first κ digits are again
[Khd]∗, whereas the extra output is the last two digits of
K2h

d−d∗ = K2h
10κB∗1 |···|B∗n . Note that the extra output only

depends on on the audit column and the extra secret key.
The voting process is as before, but now S publishes the
κ+ 2-digit vote code on BB and V checks this.

The voting authority A commits to K2 on BB before
I is announced, but the point is that it first reveals it after
the voting has ended. Thus S, even if it is colluding with
P , cannot guess the extra output with a better probability
than 1/100. Everybody can now check that with probability
99/100 the vote came from the selected voter. This would
make ballot stuffing from S easily detectable, unless S
colludes with A, which we assumed trustworthy. Note that
this is contrary to the solution with credentials which is
not safe when S and P are colluding. Further, the extra
output only depends on the audit column, which is public
knowledge, and the second secret key, so it will not reveal
anything about the vote. Also, the extra secret key is not
easily revealed by brute force typing attacks on H since only
two digits are displayed. The downside of this construction
is that the extra digits make it easier to link a passively
corrupted token as in section 4.3 to a cast vote displayed on
the bulletin board, thus making this privacy attack easier. It
would thus be of advantage if A proves in zero knowledge
that the key it committed to indeed generated the extra
output. However, we have not found an efficient proof for
this.

5.2. Fake key attack (S corrupt)

The zero knowledge proofs that the vote server S
presents on BB, does not reveal which secret key K = yk

is used in its computation, but it is important for the con-
struction of the proofs that k = logyK is known to S.

This gives rise to the following attack which allows
S to change the vote in an undetectable way. As in the
normal protocol execution, S computes the code d :=
B∗1 | · · · |B∗n|x∗ that the voter gave as input to H using the
vote code C∗ (here assuming B is the audit column). This
means that the voter chose the candidate with code x∗ in
column A. S can now alter this to a vote for the candidate
with code A∗i as follows: S computes

(
yk+jhB

∗
1 |···|B∗n|A∗i

)∗
for j = 1, 2, . . . until this value is equal to C∗. This
is equivalent to the computation that P performs for the
encryption of a candidate, and according to [17] this should
only take 0.24 seconds on average using a Macbook air.
Now S simply uses the fake key Kfake = yk+j to compute
all the NIZK proofs and records the vote Ai for V .

Note that S cannot choose Ai to correspond to a par-
ticular candidate c, rather this is a cyclic attack. Namely,
the server’s choice is a function of the voter’s choice as it
can choose that the vote goes to the candidate that is, e.g.,
3 positions further in the candidate list. One can therefore
exploit an a priori known vote preference of a given class
of voters. If S, P are colluding, privacy is broken and S can
directly choose the candidate.

A possible way to mitigate this attack is that voters use
their hardware token H to test whether S uses the correct
key. This is done like in section 4.2 by first calculating
the n different possible keys that can be derived from the
published C. Then the voter types an extra value into H ,
e.g. zero, and checks if this output would also have been
produced by one of these n keys.

This can also be done using a third party. V can reveal
the extra information from H and also the candidate vote
code used, and let this third party check if the results comply
with the published C. It will only reveal the true vote to
the chosen third party if this party controls S or has been
shoulder surfing during the voting, cf the privacy attack in
section 4.2. However, the counter measure of that attack was
that the voter is instructed to use H only during the vote
process. This extra check hence might be confusing to the
voters and could be exploited.

A more useful and elegant way to prevent the attack
is to add the following NIZKP to the protocol. Before the
vote nonce I is determined, S commits to K = yk using
El Gamal encryption by publishing (gr, hryk) := (H1, H2)
along with the voter ID on BB. When S publishes C on
BB, it also adds the following OR-proof of knowledge

SPK{r|∃d : d ∈ Ω ∧ gr = H1 ∧ hr = H2h
d/C} (5.1)

We here use the notation of Camenisch and Stadler [21]
since this is the one employed in the original paper [17]. Ω
is the set of the 2n2 possible inputs to H . The notation sug-
gests that this is a double ring signature proof of knowledge
where the public keys are the pairs {(H1, H2h

d/C)|d ∈ Ω}.
The construction of the remaining NIZK proofs in [17] also
use this type of OR-proofs. The proof shows that C = Khd

for one of the possible inputs d, but of course not that the
correct input is chosen. However, since we assume that the



voter checks that C∗ is indeed the vote code displayed on
H , S can only cheat if there are collisions. This will be the
subject of the next attack.

The NIZKP above does not show that the correct key is
used, just that the key which was committed to before the
voting was used, and this e.g. allows for denial-of-service
attacks. One could mend this if S sends the random coins
used in the encryption to the voting authority A, and then
A signs the encryption and publishes this after checking
that the correct key is used. Again this assumes that A is
trustworthy.

5.3. Collision attack (S corrupt or S, P colluding)

The vote server is supposed to stop processing the vote
if S cannot uniquely determine the input d to H due to
collisions, i.e. there are more than one of the 2n2 possi-
ble outputs that match the actual vote code. However, the
present NIZK proofs does not to give a direct proof that S
indeed does this. This opens for possible attacks.

The probability of collisions can luckily be rather low
and decreases with κ, however, increasing κ has to be
weighted against usability. To be precise, the probability
that there is a collision in C∗ between the voter’s choice
and the 2n2 − 1 other possibilities is, as in section 4.5,

pκ,n = 1− (1− 10−κ)2n
2−1

These probabilities are low, but non-negligible, e.g. for κ =
n = 4 we have p4,4 = 0.0031, but this still means that one
in 300 voters will have problems with their vote, and will
not have the vote processed by an honest S. For κ = 3
and n = 5 we have p3,5 = 0.048 i.e. one in twenty have
problems.

If an adversary controlling S wants to use these col-
lisions to change votes without the possibility of getting
caught, the probabilities fortunately decreases further. The
point is that S does not know which ballot P constructed.
However, it can happen that there is a collision in C∗

between the voter’s choice and another choice using the
same audit column, and at the same time there is no collision
with the remaining 2n2 − n possibilities. In this case, S
could simply process the vote using one of the colliding
choices and this would not be detected when P reveals
the encryptions of the audit column. Thus with probability
a bit more than 1/2, S will have changed the vote. The
probability of such an inner-column collision (and no other
collisions) is(

1− (1− 10−κ)n−1
) (

1− 10−κ
)2n2−n

For κ = n = 4 we have a probability of 0.00030 i.e. only
three in ten-thousand votes could be attacked, and for e.g.
κ = 3 and n = 5 we have the probability 0.0038 i.e. a
bit less than four in thousand votes could be attacked. The
probabilities are thus low, but in large scale elections there
is a good probability to actually change votes, and we know
that in large elections it can happen that a disproportionally
small number of votes can change the outcome.

However, if S and P are colluding the probability of col-
lisions become much higher. Since the adversary then knows
the secret token key, the positions of possible collisions are
known. P can then make sure to use a ballot choice which
contains a collision. The probability of a collision is then
(the standard birthday attack probability)

p′κ,n = 1− 10κ · (10κ − 1) · · · (10κ − 2n2 + 1)

102κn2 (5.2)

For κ = n = 4 we have p′4,4 = 0.048 i.e. one in twenty
votes could be attacked. For κ = 4 and 5 candidates we
have p′4,5 = 0.115, and if we lowered κ to 3 in order to be
user friendly (i.e. the voter only has to enter 18 digits to
H), we would have p′3,5 = 0.712.

The kind of attack that can be carried out depends on
the nature of the collision. First, consider the case where
there is a collision within the same audit column, say the
input B∗1 | · · · |B∗n|A∗i gives the same output from H as
B∗1 | · · · |B∗n|A∗j where i 6= j. Then the adversary chooses
B∗1 , · · · , B∗n as column B. Further, if the adversary knows
whom the voter is most probably going to elect, P can even
put the collision on this candidate. This could e.g. happen if
the malware is directed at a specific candidate’s vote base,
or for a general voter if some candidate is known to be the
most popular. Say that the voter is likely to choose candidate
one, then column A is chosen as A∗i , A

∗
i+1, . . . , A

∗
i−1 with

addition modulo n in the index, and the encryptions are done
correctly corresponding to this choice. With probability 1/2
the voter will choose audit column B, and if V votes for
the expected candidate the attack can be launched, and the
vote can be changed into candidate j − i + 1 in this case.
The chance that there is a choice of audit column with such
an inner-column collision is

1−
(

10κ · (10κ − 1) · · · (10κ − n+ 1)

10κn

)2n

For κ = n = 4 the probability is 0.0048, i.e. one in two
hundred are vulnerable to this attack, but for κ = 3 and 5
candidates we have a probability of 0.095 i.e. one in ten are
vulnerable.

The second possibility is that the collision is within the
same choice of audit column (i.e. A or B), but that the
two columns are permuted compared to each other, e.g. the
inputs B∗1 | · · · |B∗n|A∗i and B∗2 | · · ·B∗n|B∗1 |A∗j result in the
same output of H . In this case an attack can be carried
out if i 6= j. However, it requires that one column, in this
case B, is diplayed dishonestly to the voter. Say that the
honest ballot uses B∗1 , · · · , B∗n as column B, but P presents
B∗2 , · · ·B∗n, B∗1 as column B to the voter with A∗j placed at
the candidate, the voter is most likely to use, like above. If
the voter uses column A as audit column, the vote will go
through and the postings on BB are verifiable, however, if
V voted for candidate m it will really be a vote for candidate
m+1 calculated modulo n. If V chooses column B as audit
column and votes for the expected candidate, the collision
attack can be carried out and the vote is changed to a vote for
candidate i−j+k, where k is the voter’s favored candidate.
However, if V chooses A as audit column and does not vote



as expected, S can most probably not fill in the BB in a way
that would be verified due to the fake audit column. Instead
a denial-of-service would have to be made. For this attack
it is thus essential that the adversary is very confident about
what V is going to vote. As mentioned above, according
to [20] entering 10 digits into a calculator has an error rate
of 0.05. Let us assume that entering the 20 digits into H
(for κ = n = 4) has roughly the same rate. For the denial-
of-service rate due to the fake column to be in the same
order, the adversary thus has to be 90% sure about what the
voter is going to choose. Thus the attack is limited to very
dedicated voters. The probability that a collision like this
happens is

1− (1− 10−κ)n
2(n−1)2/2

For κ = n = 4 the probability is 0.0072, i.e. less than one
in hundred are vulnerable to this attack, but for κ = 3 and 5
candidates we have a probability of 0.18. We note that this
attack could be revealed with probability 1/2 if the voter
also check the audit column codes on BB (at least the first
one). Note that if we modify H to contain an extra key and
output two extra digits as suggest in section 5.1, the audit
column is also automatically checked.

The last possibility is that the collision is for different
choices of audit columns. This is the most likely case and
happens with a probability of

1− (1− 10−κ)n
3(n−1)

when we exclude the cases where the collisions point to the
same candidate. For κ = n = 4 the probability is 0.019, i.e.
a bit less than two in hundred are vulnerable to this attack,
but for κ = 3 and 5 candidates we have a probability of
0.39. For this attack the ballot chosen by P is of course
the one with a collision and the encryptions are honestly
constructed. In this case the collision cannot be put at a
chosen candidate so on average there is a probability of
1/n that the attack can be triggered. If the adversary has no
idea what the voter actually has chosen to vote and if the
collision is triggered, there is only a probability 1/2 that the
vote will be changed against the voters choice. Note that the
vote will then be processed with the audit column opposite
to the voter’s choice. Thus an easy repair is to demand that
the voters check that the audit column selection (A or B) on
BB corresponds to their actual choice. The modified token
H with an extra key and two extra output digits from section
5.1 again automatically checks this.

A general solution to these collision attacks would be
to find a NIZKP that shows that no collision appears for
the vote chosen by V . However, it is not clear to us how to
do this efficiently. Another possibility is that the voter or a
third party, like in the last section, use H on extra input to
determine the correct secret key from C displayed on the
bulletin board. Then it can be checked if there is a collision
for the given C∗ or not. Again this is not ideal since using H
several times opens up for privacy attacks. However, since
S probably is risk avoiding, and if a small fraction of the
voters do this check, the possibility of getting caught might
prevent S from using this attack. Alternatively, the voting

authority A, which knows K, could also check if S honestly
stops, when there is a collision.

Let us also mention that there actually is a very small
probability that the information on the BB could prove the
existence of a collision. This happens if all of the possible
keys Ki, i = 1, . . . , n that are calculated from C leads to
collisions. However, S could calculate this before carrying
out the attack and in case refrain from the attack.

Finally note, that for this attack an increase in the num-
ber of digits in the vote code output by H and entered into
P by V would greatly help. Indeed, if we have κ = n = 4,
but H outputs the last eight digits of C, instead of only
four, we do not have any collisions with a probability of
0.9999950.

5.4. Computational attack (S, P corrupt)

In this attack P needs to know the secret key K e.g.
from S. The attack is computationally heavy in the number
of candidates, so it is most easy to carry out for n = 2
candidates. Assume the adversary wants the voter to vote
for candidate 1. P first constructs honestly candidate en-
cryptions and an honest ballot with columns A∗1, A

∗
2 and

B∗1 , B
∗
2 , but it does not show the honest ballot to V . It

also computes the vote codes C∗A = (KhA
∗
1 |A∗2 |B∗1 )∗ and

C∗B = (KhB
∗
1 |B∗2 |A∗1 )∗ corresponding to votes on candidate

1.
The idea is then to compute and display a fake vote sheet

{{A′1, B′1}, {A′2, B′2}} such that the output of H , no matter
what the voter chooses, will always be C∗A or C∗B . This is
done as follows. Let M = {0, . . . , 10κ − 1}.

• For A′1 ∈M and A′2 ∈M \ {A′1} do the following
• search for the B′ ∈ M \ {A′1, A′2} such that

(KhA
′
1|A′2|B′)∗ ∈ {C∗A, C∗B}. On average, there will

be two such B′. The calculation should only take
around 0.24 seconds using a Macbook air since it is
similar to the calculation of the encryption done in
[17].

• If two or more B′ are found, then check if there are
two of these B′1 6= B′2 such that (KhB

′
1|B′2|A′i)∗ ∈

{C∗A, C∗B} for i = 1, 2. If this is true, we are done,
otherwise proceed with the next A′i.

The extra checks in step 3 should maximally take the
same time as step 2. On average there should be just below
16 fake ballots of the wanted form.2 Thus, on average, a
fake ballot should be found after 1

32102κ · 2 · 0.24 seconds
on a Macbook air. Actually, we do not need to choose the
permutation in column A and B before calculating the fake
sheets. There are thus four sets of codes (C∗A, C

∗
B) that are

usable, and we should only need around 1
128102κ · 2 · 0.24

seconds for the calculation. For κ = 4 this is 4.3 Macbook

2. This is actually hard to estimate. If we find m B′ satisfying the
constraints, we can organise these into a column in m(m − 1) different
ways. A calculation shows that this gives just below 4 different columns on
average. For the choice of A′1, A

′
2 should come another factor of 2 ·2 = 4.



air processor days, but the calculation is completely paral-
lelisable and can be computed as soon as the election nonce
I is known.

Again, this attack can be repaired if the voter also checks
that the audit column on BB is correct. Alternatively, the
construction from section 5.1 with an extra secret key in H
and two extra output digits could also be used.

5.5. Fake extra candidate attack (P,H corrupt)

Let us now consider the case where the adversary has the
power to change the software on H . We can then imagine
the following attack: When P is infected with malware
it displays a valid ballot, but augmented with an extra
candidate in a specific position. This extra candidate could
be custom tailored to look less suspicious, e.g. a known
politician not on the candidate list. The idea is that the extra
code from this extra candidate row is used by H to give the
adversary’s desired output.

Let us now describe the attack in detail. We assume
that the adversary wants the vote to go to the first can-
didate. P then calculates encryptions in the standard way
with column A as A∗1, . . . , A

∗
n and column B given by

B∗1 | . . . |B∗n. However, P displays a ballot to the voter with
an extra fake row inserted at position k. Column A is then
A∗1, . . . , A

∗
k−1, B

∗
1 + r,A∗k+1, . . . , A

∗
n and the column B is

B∗1 , . . . , B
∗
k−1, A

∗
1 + r,B∗k+1, . . . , B

∗
n. Here r is a random

number programmed into H and addition is modulo 10κ.
When H gets a vote code with κ extra digits of the form
a1| · · · |an|an+1|an+2, it is programmed to change this input
to a1| · · · |ak−1|ak+1| · · · |an+1|(ak − r), and use this to
calculate the output in the standard way. Effectively, this
changes the vote from a vote on the candidate with code
an+2 to a vote for candidate 1. On honest P , the hardware
token behaves normally, and these will thus not reveal the
attack.

The display might not sustain the extra κ digits, but
could simply scroll to show these, but hide the first entered
digits.

The attack is of course easily detectable for the alert
voter unless there are many candidates. As in several previ-
ous attacks it will also be revealed if the voter checks that
the audit column displayed on P is equal to that on BB.
However, the repair where H has an extra secret key from
section 5.1 is easy to circumvent in this case.

5.6. Special codes (H,P, S corrupt)

If both P and S are corrupt and can change the software
on H , there is a very simple attack. P gets the secret key
from S (this is the only involvement of S). P calculates
encryptions and determines column A and B without show-
ing it to the voter. It calculates the desired outputs by H ,
say if the adversary’s choice is candidate 1 it calculates
C∗A = (KhA

∗
1 |···|A∗n|B∗1 )∗ and C∗B = (KhB

∗
1 |···|B∗n|A∗1 )∗. The

idea is now that P changes the codes in the first n−1 rows
of the ballot to alert H and gives the chosen vote code in
the last row.

This could happen in the following way: P shows a
ballot to the voter where it has made changes in up to four
digits of the vote codes of the first n− 1 rows such that the
sum modulo 10κ of these rows is x, and it writes C∗A + r
modulo 10κ in the last row of column A. Here x and r
are two κ-digit numbers. It does the same in column B
where the last row now shows C∗B + r modulo 10κ. H
is programmed such that if it gets an input of the form
a1| · · · |an|an+1 and the sum of

∑n−1
i=1 ai modulo 10κ is x,

it displays an−r modulo 10κ. After V has entered this code
into P , it proceeds with the protocol as if it had shown the
unaltered ballot to V . In the end, a vote for candidate 1 will
be registered with high probability.

If P is not infected with the specific malware, then H
will only with a probability 10−κ accidentally change the
vote. This is indistinguishable from voters making a typo
when entering the codes into H or P (remember that the
error rate for this is around 0.05).

This attack will be caught if the voter carefully checks
the audit column which should be displayed explicitly
on BB. Note that in this case it does not help to check
the audit column number. The attack is also prevented by
the modification from section 5.1 where H has an extra
secret key and displays two extra digits based on the audit
column. The point is that even if the hardware producer
is colluding, the link between the second secret token key
K2 and the voter is not known to the colluding parties, but
only to the voting authority, at the time of the election.

All the verifiability attacks are displayed according to
trust assumptions in table 5.

Verifiability attacks
H honest H corrupt

P corrupt,
S honest

Fake candidate, sec. 5.5

P honest,
S corrupt

Ballot stuffing, sec. 5.1
Fake key, sec. 5.2
Collision attack, sec. 5.3

P & S
colluding

Collision attack, sec. 5.3
Computational attack, sec.
5.4

Special codes, sec. 5.6

TABLE 5. VERIFIABILITY ATTACKS ON THE DU-VOTE PROTOCOL
ACCORDING TO TRUST ASSUMPTIONS.

6. Conclusion

In summary, we have found a number of attacks on
privacy and verifiability for the Du-Vote protocol, and we
have suggested some repairs.

An easy change was to delay the announcement of
the re-encrypted vote to prevent the replay attack from
section 4.1. To stop the phishing attacks of section 4.2
it was important that the voters are instructed to use the
hardware token H only once. This is problematic for the
countermeasures suggested in the fake key attack, section
5.2, and the collision attacks in section 5.3. Fortunately,
we found alternative countermeasures for both of these



attacks. In the former case a new zero-knowledge proof was
constructed such that S cannot cheat. In the latter case, the
voting authority A will have to make computations to check
whether S behaves honestly. This requires A to do this in
a trustworthy way.

Several attacks were based on the idea that P shows
a manipulated ballot to the voter. This happened in the
privacy attack using information leak from no errors in
section 4.4, and in the verifiability attacks using collisions
(section 5.3), using heavy computations (section 5.4), using
fake extra candidates (section 5.5) and using special codes
(section 5.6). A repair which prevents these attacks is to
instruct the voter to copy the audit column and check that
the BB displays the correct audit column number and some,
or better all, of the vote codes in the audit column. However,
this means a lot of work for the voter and certainly decreases
the usability of the protocol. Note that printing the whole
ballot and showing this to a third party opens up for privacy
attacks e.g. in the form presented in section 4.5.

To prevent ballot stuffing (section 5.1) we noted that
the standard solution of giving the voter credentials will
also work in this case. However, we also suggested another
solution, where an extra secret key is stored in the hardware
token H and is used to compute two extra digits (or more if
wished) in the output. This assured with probability 99/100
that the vote is indeed cast by the voter self. Again, this
assumes an independent trustworthy voting authority A. The
extra digits also automatically checks that the displayed
audit column is correct, and it can thus replace the above
cumbersome repair where the voter needs to check the
audit column on BB. Only the fake extra candidates attack
(section 5.5) cannot be prevented by this method, but should
be noticed by alert voters.

Two privacy attacks are hard to prevent. For the informa-
tion leak from no collisions (section 4.5) there is no certain
patch. However, the probability can be greatly lowered if H
shows a longer output, but again this means more typing for
the voter. For the key uniqueness attack in section 4.3 we
also found no direct repair except to note that the tokens
have to be kept very private.

In conclusion, we believe that the Du-Vote system is not
ready to be deployed, even with the fixes we suggest, for
several reasons. First, the usability of the protocol is, as also
noted in the original paper, rather bad and the protocol is not
robust against a voter that does not follow the instructions
correctly (and moreover can be instructed by a malware to
follow different instructions). Second, some of the attacks
we discovered are only partially mitigated by our fixes.
Finally, the protocol misses a rigorous security proof which
is complicated as it requires a model that must take into
account that vote codes are short and hence collisions may
be found, as well as tokens that may be software modified
but are not completely under the control of the attacker.
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[4] L. Grégoire, “Comment mon ordinateur a voté à ma place (et à mon
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[7] M. Backes, C. Hriţcu, and M. Maffei, “Automated verification of
remote electronic voting protocols in the applied pi-calculus,” in Proc.
IEEE Computer Security Foundations Symposium (CSF’08). IEEE
Computer Society Press, 2008, pp. 195–209.
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