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Efficient customisable dynamic motion planning for
assistive robots in complex human environments

Alessio Colombo1, Daniele Fontanelli1, Axel Legay2, Luigi Palopoli1 and Sean Sedwards2

Abstract—People with impaired physical and mental ability
often find it challenging to negotiate crowded or unfamiliar
environments, leading to a vicious cycle of deteriorating mobility
and sociability. To address this issue we present a novel motion
planning algorithm that is able to intelligently deal with crowded
areas, permanent or temporary anomalies in the environment
(e.g., road blocks, wet floors) as well as hard and soft constraints
(e.g., “keep a toilet within reach of 10 meters during the journey”,
“always avoid stairs”). Constraints can be assigned a priority
tailored on the user’s needs. The planner has been validated by
means of simulations and experiments with elderly people within
the context of the DALi European project.

I. INTRODUCTION

With unimpaired ability, pedestrians are able to find their
way across complex and crowded areas with few problems.
With reduced abilities this apparently simple task easily be-
comes a challenging one. A person with reduced mobility
needs to minimise the travelled distance. A person with cogni-
tive problems should avoid situations that challenge her sense
of direction and confuse her perception of the environment.
The difficulty in identifying the best path and in making proper
reactions to unexpected contingencies gradually reduce the
confidence of the impaired person in using public spaces. The
afflicted are most often older adults and the problem worsens
quickly if no adequate countermeasure is taken [3, 37]. They
are deprived of essential social relations with a negative
impact on their physical condition (reduced exercise), on their
psychological wellbeing (reduced social contact) and even on
the quality of their nutrition when they reduce the frequency of
their visits to supermarkets [35, 1]. The application of assistive
robotic technologies can be of significant help to offset this
trend.

In this work we therefore consider a dynamic motion
planning problem in a complex but known environment con-
taining other moving agents (i.e., pedestrians). The planner’s
motion is constrained by the user’s preferences (preferred
speed, preferred proximity to others and preferred or disliked
areas in the environment) and must accommodate any recent
modifications to the environment that are not known a priori
(e.g., due to maintenance work). The goal of the planner is
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Fig. 1. Diagrammatic overview of the motion planning framework. The whole
process can be divided into three main elements: the long term planner that
considers the long term objectives, the short term planner that optimises the
long term plan taking into account the short term objectives and constraints,
and the guidance that drives the robot towards the goal.

to help the user visit a number of points of interest in the
most stress-free and efficient manner. Our basic approach is
to construct a graph data structure of sufficient granularity to
represent efficient direct paths between points of interest. The
planner attempts to follow paths defined on the graph, but may
deviate to avoid other pedestrians or at the specific request of
the user. The complexity of the problem is essentially that of
finding the shortest path on a graph.

Figure 1 illustrates the different types of support that a
robotic system with cognitive abilities can offer in the nav-
igation of a complex environment.

From a top-down perspective, the first type of assistance
is offered before taking on the navigation activity and is
the production of a plan that takes into account long term
objectives. This is accomplished by the long term planner,
which accounts for the topology of the space, the user’s
preferences and the possible presence of obstacles or problems
along the way, as foreseen by querying environmental sensors.
While the user is moving, she could encounter contingent
problems that cannot be anticipated (e.g., a small group of
people obstructing the path). In this case her robot assistant
could react by planning a minimal deviation from the path
that preserves her safety and wellbeing. In our terminology,
this component is called the short term planner (see Figure 1).
Finally, a robot assistant can guide the user along the planned
path. This can be done in different ways depending on the type
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of robot assistant. If the robot is simply a guiding vehicle, like
a tour-guiding vehicle [33], guidance amounts to following the
path and to ensuring that the user trails behind. If the robot
is a robotic walker, it can guide the user by mechanically
turning its wheels and acting on the wheel brakes [15] or
by administering visual, audio or haptic signals [31, 32]. If
the robot is a robotised wheelchair it can be assimilated to a
robotic vehicle driving in crowded spaces [4].

This paper proposes a novel long term planner that targets
the first task described above. Consider a person willing to
execute a set of activities in a public space. Henceforth, we
will use the term assisted person (AP) to define the user. The
problem the AP faces is to identify the best way to reach
the chosen point of interest. This decision could potentially
be taken using any state-of-the-art algorithms for motion
planning, able to identify the path with minimum length (or
requiring minimum time) given the a priori knowledge of the
map. A first problem is that while the position of most fixed
objects (e.g., buildings, rooms, and points of interest) is known
a priori, the algorithm must account for the possibility of
incidental changes, such as temporary obstructions. Standard
motion planning algorithms can easily be adapted to consider
an up-to-date picture of the state of the environment (e.g.,
presence of obstructions or over-crowded spaces) as it arrives
from environmental sensors. However, a simple modification
to a standard planner could be insufficient. First, the detected
anomaly could be a temporary one. So, the likelihood of
having to deal with the problem during the navigation depends
on the time needed to reach the place where the anomaly
is located, which in turn depends on the chosen path. What
is more, the AP (who is typically an older adult) will likely
have specific additional requirements. For instance, the AP
could need a frequent access to the toilet, and if the optimum
path offers no easy access to the toilet on the way, it could
easily generate discomfort. The AP could be hyper-vigilant
and overly concerned with her personal security. In this case,
she might appreciate always being within reach of a policeman
or of other staff member that she perceives as a reassuring
presence.

Simply put, what we need is an algorithm for motion
planning in public spaces that accounts for 1. the topological
and metric information about the space, 2. time-varying envi-
ronmental information about the space, such as the availability
of services (is the shop that the AP wants to visit actually
open?), the presence of occlusions and overcrowded areas,
etc., 3. preferences of the AP (e.g., the need to be in easy
reach of assistance, toilets, etc.).

The presence of these specific requirements makes the
planning algorithms offered by commonplace navigators (such
as Google Maps) infeasible. What is needed is a different
approach that carefully considers the strong psychological
aspects involved in the selection of a route. In this paper
we report on the solution that we have developed within the
context of two research initiatives sponsored by European
Union: Devices for Assisted Living (DALi) and A cyberphys-
ical Social Netwokr using robot friends (ACANTO). These
projects are based on a substantial involvement with users,
both for requirements collection and for the evaluation of the

results. The algorithm proposed here distils this experience and
translates it into a suitable formal model by using a modified
Dijkstra’s shortest path algorithm [11] where the underlying
graph is constructed using quad tree decomposition of the free
space [5].

The paper is organised as follows. A review of the current
state of the art is presented in Section II, while a complete
description of the requirements of the planner can be found in
Section III. Section IV goes into the details of the planning
algorithm and Section V illustrates the functionalities of the
software architecture. Sections VI and VII report the results of
qualitative and quantitative simulations respectively, and Sec-
tion VIII describes our case study and the related experiments.
Finally, in Section IX we offer our conclusions.

II. RELATED WORK

Motion planning in crowded environments is a relevant
research problem in robotics which has received constant
attention throughout the past two decades [25, 27, 24]. The
approach that we advocate is based on a hierarchical de-
composition of the problem between short term and long
term planning. Different authors in the literature propose a
strategy of this kind [28, 18], but the solutions at each of the
two levels of the hierarchy differ significantly, depending on
the requirements that each author considers. The goal of a
long term planner is to find an efficient path in free space
from a starting point to some desired destinations, given the
topological and metric constraints derived from the map. In the
following sections we will compare the different components
that compose the long term planner with respect to the state
of art.

A. Shortest-path planning

1) Sampling methods: When the map is not entirely known
in advance (e.g., due to uncontrollable changes in the environ-
ment), a convenient choice can be the adoption of sampling-
based algorithms. In this class the Probabilistic RoadMap
(PRM) algorithm by Kavraki et al. [21] and the Rapidly Ex-
ploring Random Trees (RRT) [26] have gained an undisputed
reputation and visibility in the past few years. The idea of this
class of algorithms is to generate feasible points by sampling
randomly the neighbourhood of known points and connecting
them into a data structure (e.g., a tree for RRT or a graph
for PRM). When the destination is finally reached an optimal
path can be found by exploring the data structure. The more
time that is given to the computation, the more points that can
be added and the higher the probability becomes of finding an
optimal solution. Such algorithms have recently been revisited
by Karaman and Frazzoli [20]. The revised versions, PRM∗

and RRT∗, are probabilistically complete, meaning that if
the algorithm is given enough time to explore the space, it
eventually identifies the optimal solution with probability 1.
An important point of these algorithms is that while the data
structure is being created it is possible to enforce a hierarchy of
hard and soft constraints penalising (or ruling out) points that
would violate them. This is an appealing feature for us because
our problem is characterised by a set of constraints. However,
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the construction of the map on the fly is an unnecessary
computational burden in our case. Our intended operational
scenario is a public space (e.g., a mall or a museum) for which
a large amount of a priori information is usually available.

2) Potential fields methods: Another family of algorithms
is based on the definition of potential fields [36, 8] around
obstacles and points of interest that can attract or repel the
robot. Such approaches are known to be effective for obstacle
avoidance, but they are often plagued by local minima (which
sometimes delay or deadlock progress). While encoding all
the user’s planning requirements, constraints and preferences
with a potential function is generally a difficult problem, our
approach makes use of the notion of gradients to encode user-
defined desirable and undesirable zones. The full details are
given in Section IV-C

3) Graph based methods: The long term planner proposed
in this work falls in the class of graph based techniques. In
essence, the idea is to decompose the environment into a grid
and then generate a graph by associating nodes to elements
of the grid and by then connecting with edges the nodes
associated to adjacent cells. Minimum time paths on the graph
can be found using the well-known Dijkstra algorithm [11]
or its extension A∗ [19]. The use of a constant size grid is
generally discouraged due to the explosion of the configuration
space size, hence several more efficient ways to construct
the graph have been proposed. Possible approaches include
Voronoi diagrams [2] and PRM [21]. We follow Chen et al. [5]
and construct a graph using quad tree decomposition of the
space, exploring it with an extended version of the Dijkstra
algorithm. The generation of our quad tree is specific for its
application to structured indoor spaces, with large rooms con-
nected through corridors, doors and passageways and where
each room may contain such things as counters, shelves and
exhibition paraphernalia that compromise its regularity.

B. Time-dependent paths

The most important feature of our algorithm is its ability
to deal with temporary anomalies (e.g., obstructions or large
groups of people hindering the AP’s motion across some
of the areas). In particular, anomalies (i.e., temporary graph
obstructions) require the generation of time-dependent paths.
The underlying graph exploits a dynamic and time dependent
cost function, thus the shortest paths between two edges can
vary over time. This problem is known to be challenging
and is the focus of independent research [12, 9, 10, 16]. An
interesting analysis on the complexity of this problem has
been carried out by Foschini et al. [16]. They upper bounded
the cost of traversing a graph with polynomial-size piecewise
linear cost functions and with other particular classes of linear
functions. However, the cost remains high and prohibitive even
with small to medium sized graphs. In [9] the authors present
an overview of existing techniques together with three efficient
speed-up methods. The experiments, nevertheless, show that
finding the solutions requires several minutes (sometimes
hours) using server-class hardware.

Given these performance limitations, in our particular case
we adopt a conservative assumption, described in Section IV-F,

that allows us to solve a simplified problem very efficiently.
Our requirement analysis reveals that senior users of a navi-
gation tool become very annoyed by a long wait in front of a
screen. Therefore, efficiency and quick deliveries of decisions
are more important than producing “optimal” decisions (as
long as the decisions do not violate any hard constraints and
they respect soft constraints to a reasonable extent).

C. Global constraints and preferences

The global constraints (not to be confused with kinodynamic
constraints, not considered here) are used for customising the
behaviour of the planner and for introducing the notion of
“comfort” for the AP. Constraints are prioritised and some of
them can be violated if their compliance prevents the system
from finding any path. They embed priority and the possibility
for one or more constraints to be ignored if a path cannot
be found otherwise (namely, conflicting constraints). This is
called “planning with partial satisfaction”, and is studied in
the literature under the notion of preference-based planning.
In [6] the authors focus on computation of relaxed plan-based
heuristics that guide the planner towards good solutions sat-
isfying the given preferences expressed in Planning Domain
Definition Language (PDDL). PDDL is one of the languages
aimed at standardising Artificial Intelligence planning and is
used in many international competitions. However, its com-
plexity and completeness are an overkill with respect to the
goals of this work.

A growing set of frameworks in the literature [34, 23]
proposes to express temporal properties with partial satisfac-
tion using linear temporal logic (LTL). In [23] the authors
introduce a method for quantifying the satisfaction of LTL
formulae, and propose a planning framework that synthesises
robot trajectories with the optimal satisfaction value. However,
they do not consider constraints where the cost or priority
changes over time. Tumova et al. [34] present an automatic
generator for control strategies for a robotic vehicle where
constraints are expressed with LTL formulae. The novelty
is the possibility of violating a constraint, according to its
priority, in order to complete the task (e.g., a road lane should
not be crossed, but this is allowed during car parking).

The concept of “comfort” has already appeared in the
literature with different meanings: 1) comfort of the AP when
navigating using a robotic platform [17, 29] and 2) comfort of
the humans in the area surrounding an autonomous robot [22].
Our notion of comfort belongs to the first class and it is
deeply rooted in the requirement analysis and in the validation
activities with senior users that we have been conducting in
the context of the DALi and of the ACANTO projects. Our
findings are that the AP needs to specify zones that she likes
or dislikes. As an example, more often than not she would
prefer to bypass crowded areas or to always have a toilet or a
resting place within easy reach, even if this entails choosing
a slightly longer path.

III. REQUIREMENTS, PRELIMINARIES AND OVERVIEW

The proposed long term planner has been developed bearing
in mind a number of requirements. The key point is letting
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the AP personalise her journey while keeping the planner
reactive to changes in the environment. For this reason we
have implemented three main features.

The first feature gives the AP the possibility of adding
hard (non-violable) and soft (violable) constraints, according
to some customisable priority. It is possible to encode rules
like “never get closer than 5 meters to any stair” or “try to
keep within 10 meters of a toilet”, or “always be within sight
of a clerk or of a policeman”. Should a soft constraint be in
conflict with another one, the issue is resolved by violating the
one with lower priority. A hard constraint, instead, cannot be
violated. If the long term planner encounters an inconsistent
state (e.g., not all hard constraints can be satisfied) then the
AP is notified and is asked to review the set of constraints.

The second feature reacts to anomalies detected in the
environment by the sensing subsystem. An anomaly is a
bounded zone in the environment that becomes inaccessible for
a limited period of time (e.g., a wet floor or blocked passage).
After this period expires, the anomaly is cleared and the zone
is accessible again.

The final feature takes into account the crowded spots in the
environment. They are represented as heat maps (an example
is shown in Figure 7) where the apparent “heat” represents
the level of crowdedness. The planner interprets this level as
a penalising factor that slows down the AP. Some users could
also have specific constraints related to avoiding crowded
areas.

The work flow of the algorithm begins with the AP speci-
fying a list of target locations she wants to visit in the envi-
ronment. The long term planner constructs a plausible path (a
long term plan) according to the constraints in her profile and
to the current conditions in the environment (known anomalies
and current crowding represented by heat maps). This data is
sampled periodically from remote sensors (e.g., surveillance
cameras). If other robots are deployed in the environment,
they can use their local sensing system to detect anomalies
and share this information through a cloud infrastructure. For
instance, if a walker detects a wet floor sign, this information
is propagated to the other robots and accounted for in the
generation of long term plans. Once the AP accepts the plan
and starts moving, the control subsystem takes over, allowing
the short term planner to make limited adjustments depending
on the contingencies encountered on the ground. In the event
that the AP is unable to follow the plan with only such limited
modifications (e.g., because of encountering an unforeseen
obstacle), the control subsystem has the capability to report
the event and can request the construction of a new long term
plan.

The long term planner produces the optimal path according
to the diagram depicted in Figure 2 and described as follows:

1) the plan of an environment is broken down into a grid
of rectangular cells containing free space

2) a graph is derived from the grid, such that each node is
on the border between two cells and each edge defines
a path in free space

3) nodes corresponding to points of interest that are not
already present are added manually

4) the graph is augmented with relevant semantic informa-

Fig. 2. Diagrammatic overview of the long term planner. Informed by the
heat maps and anomaly detectors, the long term planner constructs a long
term plan according to the AP’s constraints. The plan is then transferred to
the control subsystem.

tion (e.g., associating the names of points of interest to
nodes)

5) each edge is associated with a cost that accounts for the
distance to travel and for the occupancy of the area (the
more people, the longer the time to travel)

6) parts of the graph are removed or the weights of edges
increased to reflect the AP’s preferences

7) the optimal path is found using a modified Dijkstra
algorithm.

In the next sections the algorithm is presented in its full details.

A. Preliminaries

To describe our long term planner, we first define some
notation and operations on graphs.

A directed graph G = (N,E) is a set of nodes n ∈ N
linked by a set of edges e ∈ E. An edge e = (n, n′) ∈ E is
defined by its two adjacent nodes n, n′ ∈ N .

Given graphs G1 = (N1, E1) and G2 = (N2, E2), G1 ⊆
G2 =⇒ N1 ⊆ N2 ∧ E1 ⊆ E2 means that G1 is a subgraph
of G2.

Given G1 ⊆ G2, G2\G1 = (N2\N1, E2\{e ∈ E1 | e =
(n, n′) ∧ (n ∈ N1 ∨ n′ ∈ N1)} is the graph that remains
after removing G1 from G2. We do not consider G2\G1 if
G1 6⊆ G2

Pairwise graph union is defined by G1 ∪ G2 = (N1 ∪
N2, E1 ∪ E2). The union of a set of graphs G = {G1, G2,
G3, G4, . . . , Gm} is denoted

⋃
G and performed pairwise,

such that
⋃
G=((· · · (((G1 ∪G2) ∪G3) ∪G4) ∪ · · · ) ∪Gm).

IV. LONG TERM PLANNER

The long term planner proposes feasible paths that ef-
ficiently visit the AP’s specified points of interest, while
respecting her preferences and accommodating the prevailing
conditions in the environment. To achieve this, the long term
planner abstracts a complex environment, such as a shopping
mall, airport, museum, etc., as a weighted directed graph,
comprising a set of nodes linked by edges. The nodes represent
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places in the environment, while the edges represent direct
paths between the places and are weighted by their effective
length. The a priori length of an edge is the Euclidean distance
between its adjacent nodes. The effective length of an edge is
generally longer, modelling its undesirability with respect to
crowding and the AP’s preferences. The edges are directed
so that the effective length of a path leading to an undesirable
area can be greater than the same path traversed in the opposite
direction.

Nodes are labelled with their physical location (coordinates
on the plan of the environment) and their corresponding
semantic position (supermarket, toilet, post office, café, bar,
bakery, etc.). Each edge in the graph is labelled (weighted)
with the effective distance between its adjacent nodes. Then,
using an efficient graph traversal algorithm, i.e., the Dijkstra
algorithm [11], we find the shortest paths that link the AP’s
points of interest. Moreover, anomalies and crowding are
included in the same framework by simply modifying the
graph prior to finding the shortest path. In particular, anomalies
cause parts of the graph to be (temporarily) removed, while
crowding increases the weights of edges in crowded areas
(their effective length is increased because crowding slows the
AP’s progress). Certain user preferences, such as always being
near a toilet, may also be encoded as graph transformations.

A. Creating graphs from floor plans

To construct a graph that efficiently maps the free space in
the environment, we first decompose its floor plan into a ‘quad
tree’ [14], comprising quadrants containing free space (free
quadrants) and quadrants occupied by fixed objects (occupied
quadrants). A graph is constructed by embedding nodes in only
the free quadrants and linking them with appropriate edges.
The quad trees typically have substantially fewer cells than
a uniform grid with the same level of minimum granularity,
with the density of cells generally following the density of
features [13]. An example is shown in Figure 5. Note that the
side length ratio is common to all quadrants and is inherited
from the dimensions of the environment. It is possible to add
space to the environment to force quadrants to be square or
have any other desired ratio. Doing so may improve efficiency
or be advantageous with respect to the placement of nodes.

Given a quad tree decomposition of the free space, the
corresponding graph is constructed as follows. For all pairs of
adjacent free quadrants, a node is embedded at the mid point
of the border of the smaller of the quadrants. By definition,
a free quadrant is a convex shape containing only free space.
Hence, any node on the border of a free quadrant has a “line of
sight” to all other nodes on the borders of the same quadrant.
We therefore join such nodes with a complete graph. Since
nodes are shared between adjacent quadrants, this is sufficient
to link all the free space in the environment.

To guarantee that the robotic platform may occupy any
point in free space represented by a node, or travel the line
represented by any edge, prior to building the quad tree the
fixed objects are enlarged in all directions by a distance greater
than the radius of the robotic platform. In this way no point
in the effective free space is ever too close to a fixed object

and all paths in the graph correspond to plausible paths in the
environment.

B. Creating a long term plan
To represent the a priori knowledge about the environment

we define a “graphmap” data structure M = (G,W,C,L).
G = (N,E) is a graph of the environment derived from
a quad tree, as described in Section IV-A. Function W :
E → (0,+∞] assigns a length (the Euclidean distance
between the points denoted by adjacent nodes) to all the
edges of the graph. Function C : N → (Q,Q) labels each
node with its spatial coordinates in the environment. Function
L : N → P ∪ {uninteresting} labels each node with its
semantic location, where P = {supermarket, bakery, café,
etc.} is a set of points of interest.

To generate a long term plan we also define a “working
copy” of the graph map (the working graphmap), modified
according to the AP’s constraints, the current crowding and the
known anomalies. We denote the working graphmap M′ =
(G′ = (N ′, E′) ⊆ G,W ′, C, L). In general, the graph G′

excludes any inaccessible subgraphs arising from anomalies
or the AP’s constraints. The weighting function W ′ assigns
an effective length to all edges, which includes the effects of
crowding and the AP’s constraints. The construction of G′ and
W ′ are described in Sections IV-C, IV-D and IV-E.

Given a working graphmap M′ and a (possibly ordered)
set of user-specified points of interest, the long term plan-
ner proposes a path that visits the points of interest while
respecting the AP’s global constraints. Formally, given a user-
specified set of points of interest {pj ∈ P}mj=1, the planner
suggests a path {ni ∈ N ′}ki=1 s.t. ∀pj ∈ {p1, . . . , pm} ∃ni ∈
{n1, . . . , nk} ∧ L(ni) = pj . If the path must respect the
order of the specified points of interest, then additionally
∀ps, pt ∈ {p1, . . . , pm},@ni, nj ∈ {n1, . . . , nk} s.t. s >
t ∧ i < j ∧ L(ni) = ps ∧ L(nj) = pt holds true.

Finding the minimum length path that visits a set of un-
ordered points of interest is an instance of the well known NP-
hard ‘travelling salesman problem’ [30]. Moreover, given that
the overall excursion (including stops at the points of interest)
may take considerable time, an overall plan optimised for the
current level of crowding may eventually be significantly sub-
optimal if the crowds dissipate. Our approach is therefore to
optimise each leg of the journey separately, using the most
up-to-date information about anomalies and crowding.

In simple terms, long term planning works in the following
way. The planner first identifies the node n0 ∈ G′ that is
closest to the AP’s current coordinates (x0, y0). This is given
by n0 = argminn∈G′ ‖ C(n) − (x0, y0) ‖. If the AP’s
points of interest have been specified in order, the planner uses
Dijkstra’s algorithm to find the shortest path between n0 and
the next unvisited point of interest specified by the AP. If the
AP has not specified an order, the planner uses a modification
of Dijkstra’s algorithm to find the shortest path between n0
and the closest unvisited point of interest. Given the trajectory
and the AP’s coordinates, n0 may not be the optimum first
node in the path (it may be effectively behind the AP on the
path). The planner therefore sets the first node of the path to
be the node by which the AP will leave the current quadrant.
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The inclusion of time-dependent anomalies makes the actual
long term planning algorithm slightly more complex. Handling
such anomalies is described in Section IV-E.

C. Global constraints

The AP may specify constraints that affect the long term
plan (e.g., always remain within 50 metres of a toilet). We
call these “global” constraints to distinguish them from, for
example, local constraints that might be implemented by the
short term planner (e.g., don’t get too close to other pedestri-
ans). Global constraints may be hard or soft. Hard constraints
exclude parts of the environment that the AP does not wish
to visit under any circumstances. They are implemented by
removing subgraphs from G. The set of hard constraints is
denoted x ∈ X , where x ⊆ G and two hard constraints
x, x′ ∈ X are not necessarily disjoint. Hence G′ = G\

⋃
X .

Removing parts of the graph may significantly lengthen the
planned journey or make it impossible, hence the final plan
(or lack of it) is presented to the AP for approval.

Soft constraints make parts of the environment desirable
or undesirable to the long term planner, causing the planned
path to deviate towards or away from them, respectively. They
are implemented by defining a function K : E → [1,+∞]
that modifies the weights of edges to and from desirable and
undesirable nodes. The function K is applied according to
(1), introduced in Section IV-D. If no constraint applies to
the nodes adjacent to edge e then K(e) = 1. In general,
given two nodes n and n′ connected by edges e = (n, n′)
and e′ = (n′, n), for a single constraint K(e) > K(e′) ⇐⇒
n is more desirable than n′. In the case of multiple constraints
applying to the same edge e, the value of K(e) is the
maximum considering all constraints. We adopt this approach
to avoid the situation that two constraints effectively cancel
each other and also because our interpretation of desirability
is that it is not simply additive.

In our implementation, soft constraints are specified using
sets of triples (location, radius, intensity), which respectively
define the semantic position, the radius of influence and the
intensity of the constraint. In general, a constraint creates a
gradient of weights that increase towards undesirable zones
and vice versa for desirable zones.

A function K̃i : [0, radius]→ [1, intensity] is defined that
maps distance from the border of location i to the weight of the
gradient. This function should be monotonic non-increasing in
case of undesired locations, and monotonic non-decreasing in
case of desired locations. In both cases its integral should be
finite (i.e., the radius of influence should be finite). Function
K̃i is later used by K(e) for associating the weight to each
edge. It is worth noting that there is high flexibility in the
choice of K̃i, which improves the expressiveness of global
constraints, allowing per-user customisations (e.g., the profile
of attraction to toilets might be different across users) as well
as location based personalisation (e.g., the profile of repulsion
of an open window is different to that of a flight of stairs).

We assume the existence of a set of constraints s ∈ S .
The location of each constraint defines corresponding sets of
either desirable or undesirable nodes Ns ⊆ N that are not

necessarily disjoint. Let d(i, j) denote the minimum Euclidean
path distance from node i to node j, then for any edge e =
(n, n′) ∈ E, the value of K(e) is given by

K(e) = max
∀s∈S

(
K∗locations

[
min

n′′∈Ns

(
d(n′′, n′)

)])
where K∗locations

is defined as:

K∗locations
(r) =

{
K̃locations (r) if r ∈ [0, radius]
1 otherwise

D. Heat maps

Cameras in the environment monitor pedestrian traffic and
construct “heat maps” that estimate average occupancy of the
free space over useful time periods, such as the last five
minutes, the last hour or a long-term average for a particular
day and time. The goal is to use this information to predict
the crowdedness that the AP will encounter and to plan
accordingly. In this work we assume that the current prediction
is valid over the time the AP takes to reach the next point of
interest. If future experience in real environments suggests this
assumption is unreasonable, we will treat crowdedness in the
same way we treat anomalies, i.e., as time-dependent.

Each point in the free space is thus assigned a value in the
interval [0, 1], denoting its time-averaged occupancy density.
A point with average density 1 is effectively impassable. In
practice, not all areas are monitored and monitored areas will
be divided into an array of square cells of uniform local
density. Unmonitored areas are assumed to have zero density.
A camera’s view may also include areas occupied by fixed
objects, but such areas are not accessible by any edge of the
graph and their density is therefore not used.

An edge represents a straight line path between the points
in free space represented by its adjacent nodes. The average
occupancy in the area surrounding the line affects the time
taken to travel from one end to the other. The free space
that the short term planner will allow the AP to explore
can be approximated by an ellipse whose vertices (“ends”)
coincide with the ends of the line. The area of the ellipse
represents the capacity of the edge, while the heat within the
ellipse represents the amount of capacity that is being used
by others. To calculate the average occupancy of an edge, we
integrate the occupancy density over its corresponding ellipse.
The size and shape of the ellipse is a function of the edge. For
simplicity we define an occupancy function H : E → [0, 1]
that implicitly includes knowledge of the current heat map
and performs this integration. The effective length of an edge
is then given by the function W ′ : E → (0,+∞], defined as

W ′(e) =
K(e)W (e)

1−H(e)
∀e ∈ E. (1)

The intuition behind (1) is that the effective length of an edge e
is proportional to the desirability K(e) of the destination node
and inversely proportional to the occupancy H(e). When there
is zero occupancy, H(e) = 0 and the effective length is only
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related to the desirability K(e) and the Euclidean distance
W (e). With full occupancy, H(e) = 1, the effective length
is infinite and (1) correctly models the fact that the edge is
impassable.

E. Anomalies

During the course of a journey the AP may encounter
anomalies (semi-permanent obstructions, such as a wet floor,
locked exit, dense crowd, etc.) that prevent the short term
planner from making progress along the long term plan. An
anomaly is represented by a data structure (g ⊂ G, t ∈
(0,+∞]), where g ⊂ G represents the inaccessible region
of the environment and t is the estimated remaining time that
the anomaly will last. The set of active anomalies (those with
remaining time > 0) is denoted a ∈ A. Anomalies are removed
from A when their remaining time reaches 0.

Anomalies exclude parts of the environment, but their
effect is not permanent and is dependent on the chosen path.
When a new anomaly (g, t) is detected by the short term
planner, it is added to the set of active anomalies and its
subgraph is immediately removed from the working graphmap.
Symbolically, A ← A ∪ (g, t) and G′ ← G′\g. The shortest
path to the next point of interest is calculated according to
the procedure described in Section IV-B. The approximate
time of reaching every node in the proposed path is calculated
according to the average speed of the AP.

The new trajectory definitely excludes the recently detected
anomaly, but may include one or more anomalies in A. Hence,
the proposed plan is compared to the subgraphs in the set of
active anomalies, to find if there is any intersection. If there
is no intersection the proposed plan is valid. If the proposed
trajectory intersects the subgraph of an anomaly, the time of
reaching the anomaly is compared to its remaining time. If
the anomaly will not exist by the time the AP reaches it, it
is ignored. If no anomalies exist by the time the AP reaches
them, the proposed plan is valid. If, on the other hand, one or
more anomalies remain valid by the time the AP reaches them,
their subgraphs are removed from the working graphmap and
the above procedure is repeated until a valid path is found.

There can be cases where it might be convenient to wait
for the expiration of an anomaly rather than taking a detour.
For example, an anomaly may expire after one second, while
the alternative route forces the AP to extend her journey by
several seconds. To account for this we propose to implement
an heuristic with a customisable cost threshold based on the
AP’s profile. If the cost of the alternative path is higher than the
threshold, the AP is recommended to wait. If not, the detour
is suggested.

F. Time-dependent shortest paths

Our long term planner intelligently avoids looping paths
by regularly updating heat maps and assigning persistence
times to anomalies. In this way the planner never returns
to permanent obstacles, but may take advantage of crowding
and obstacles that clear. Our current approach with heat maps
assumes that crowding averaged over a period of time in the
immediate past is a good indicator of average crowding for

the same time period in the immediate future. This is reliable
for short term predictions, but is less so over the longer
term because long term averages may mask large peaks of
crowding. With regard to anomalies, our planning algorithm
takes a cautious approach, assuming that an active anomaly
encountered in one proposed path should not be considered in
future plans to the same point of interest.

Algorithm 1 describes the basis of our shortest path al-
gorithm that considers timed anomalies, heat maps and user
constraints. The algorithm finds the shortest path between the
AP’s current position and the closest point of interest. If points
of interest are required to be visited in a specific order, it
is assumed that the set Targets contains only those nodes
corresponding to the next point of interest to visit.

The algorithm makes use of several functions. K(e), W (e)
and H(e) are as in (1). Function Edges(n) returns the set of
outgoing edges of node n. Function Dest(e) returns the desti-
nation node of edge e. Function Anomalytime(e) returns the
absolute time at which edge e will be available. This function
returns 0 for all edges that are not part of an anomaly. Three
functions are updated during the planning process. Function
Dist(n) returns the currently known shortest distance to node
n. This is initially ∞ for all nodes except the initial node,
for which the function returns 0. Function Pred(n) returns the
predecessor of node n, i.e., the node whose outgoing edge
directly connects to n and gives rise to Dist(n). The function
initially returns null for all nodes. Function Time(n) returns
the estimated time to reach node n given the AP’s average
speed (denoted speed). The function initially returns ∞ for
all nodes except the initial node, for which it returns 0.

In trying to satisfy the conflicting constraints of dynamic
motion planning in complex human environments we have
considered many alternatives and refinements to our algo-
rithms. There is no off-the-shelf perfect solution, given the
inherent uncertainties and variability of the problem. In par-
ticular, finding time-dependent shortest paths is known to be
hard and is itself the subject of active research [12, 9, 10, 16].
Our present approach is a satisfactory compromise between
efficiency and efficacy. We can imagine circumstances under
which it might be challenged, but we propose to allow fur-
ther development to be led by problems encountered in real
applications.

V. IMPLEMENTATION ASPECTS

To develop our approach we have implemented two tools; a
map designer and a simulator. The map designer is written
in MATLAB and enables the AP to draw, load and save
floor plans, as well as performing quad tree decomposition
and graph construction. The user is provided with a GUI
to freely draw geometric shapes (Figure 4) and generate the
corresponding graph (Figure 5) to be used in the simulator.

The simulator is written in MATLAB and Java and allows
the user to visually configure global constraints, heat maps,
anomalies and all parameters required by the long term plan-
ner. To judge performance in a final product, the planning
algorithm has been developed in Java and communicates with
MATLAB through the integrated Java interface.
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Algorithm 1 Shortest path considering anomalies, heat and
constraints

The initial node is the closest node to the AP
speed: the AP’s average speed
Targets: a set of target nodes corresponding to the AP’s
points of interest
Visited: a set of visited nodes, initially containing the initial
node
Unvisited: a set of unvisited nodes, initially containing all
nodes except the initial node
current← initial node
while current 6∈ Targets do

for all e ∈ Edges(current) do
if Anomalytime(e) > Time(current)∨

Dest(e) ∈ Visited then
continue

end if
d← Dist(current) +K(e)W (e)/(1−H(e))
if d ≤ Dist(Dest(e)) then

Time(Dest(e))← Time(current)
+W (e)/(1−H(e))/speed

Dist(Dest(e))← d
Pred(Dest(e))← current

end if
end for
Visited← Visited ∪ {current}
Unvisited← Unvisited\{current}
if |Unvisited| > 0 then

current← n ∈ Unvisited :
Dist(n) ≤ Dist(n′),∀n′ ∈ Unvisited

else
report no possible path and quit

end if
end while
Output the shortest path: backtrack from current to the

initial node using Pred to identify predecessors

The algorithm presented in this work has been designed
keeping flexibility in mind. We devised an API that abstracts
the low level structures and exposes a simple but efficient
interface. It is divided into a number of layers depicted in
Figure 3. The bottom layer is represented by the long term
planner itself, which is linked with the top level (the API) via
three main blocks.

The first block is denoted “Environment and map” and,
as the name suggests, allows external services to access and
update information about the environment. Such data includes
the map of static obstacles and walls, the heat maps and the
anomalies. The latter can be grouped into categories, two being
available by default: “wet floor” and “destination out of order”.
New categories can be added at runtime upon request by the
third-party services.

The second block, “Plan”, exposes the planning capabilities.
Given the starting position, it is possible to query for the
construction of the optimal path directed to one or more goals.
The planner automatically considers the current status of the
environment and biases the resulting trajectory according to

Long term planner

API

Cloud servicesEnvironmental
monitoring

Smartphone APP

Heat maps Anomalies

Environment and map

Constraints

User profilePlan

Fig. 3. Structure of the API. The layers are of increasing abstraction,
where the public interface is flexible and extensible at runtime by the
third-party services. The overall low complexity enables a broad choice of
implementations, from a service in the cloud to a standalone smartphone app.

the AP’s preferences. Moreover, alternative sub-optimal paths
can be generated upon request, for example when the chosen
path is blocked by an unforeseen obstacle detected by the short
term planner.

The last block is the “User profile” and encapsulates the
interface for accessing the global constraints and other user
information, such as her location and the tuning parameters
for dealing with anomalies and crowded areas.

This API can be installed and accessed practically any-
where, thanks to the low computational burden highlighted in
Section VII-C. For example, it can be packaged in a standalone
mobile application for providing the APs an interactive map
of a shopping mall, or implemented as a cloud service, as
described in the next section.

A. Case Study: a cloud service

In our case study, presented in detail in Section VIII,
we implemented the planner as a service in the cloud. The
interface was written in C++, while efficient Java was used
for the planning part. The standard Java Native Interface (JNI)
provides the link between these elements. We anticipate that
a production version will be entirely implemented in Java, to
allow it to be deployed on a standard portable device under
the Android operating system.

The map of the environment is stored using SpatiaLite1, a
lightweight serverless spatial database that allows performing
queries in geometric space. A quad tree decomposition is then
performed on the map and the resulting graph is used by the
planner.

The communication with the remote clients takes place
through exchange of JSON messages over a TCP link, in a
request-reply mechanism, where the planner acts as a server.

1http://www.gaia-gis.it/gaia-sins/
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Fig. 4. Screenshot of the map designer tool showing an example floor plan.
Enables the user to create maps and generate the associated graph, compliant
with the long term planner.
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Fig. 5. Graph and a sample path generated from the map depicted in Figure 4.

VI. QUALITATIVE ANALYSIS

The chosen floor plan for the validation is a large room of
approximately 200 m2 with two non-aligned central columns.
The starting point is set at the left hand side of the map,
midway along the shortest wall. The goal is set at the opposite
side of the room, such that the shortest path connecting the
starting point to the goal is a horizontal straight line.

In the remainder of this section we will go through each fea-
ture separately and, finally, show a more complex simulation
combining different features.

A. Global constraints

We show how the planner is able to deal with the user
preferences when computing the plan. In the first simulation
we put an undesirable zone in the middle of the room,
overlapping the shortest path. In the second simulation, we
instead identified a desirable zone (e.g., a restroom) close to
the top wall of the map without interfering with the shortest
path. In both simulations the radius of the constraints is set
to 1.5 m and the intensity is set to 2.

We ran these two simulations separately and the results can
be seen in Figure 6. The planner correctly takes the constraints
into account by properly bending and extending the original
shortest path.
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Fig. 6. Simulation with constraints. The picture shows two independent
simulations of how the planner deals with desirable and undesirable zones. The
continuous line is the result of the constraint “stay close to the desirable zone”
and “stay away from the undesirable zone”, while the dashed line addresses
only the latter.
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Fig. 7. Simulation with a heat map. The path computed by the planner is
represented by the continuous line and bypasses the crowded region in the
middle of the map (i.e., yellow area). The preference is for cold zones (i.e.,
blue-coloured areas).

Should the undesirable zone be the only possible access
point for reaching the goal, the planner can violate the con-
straints as long as the intensity is not −∞ (i.e., never touch
the undesirable zone).

B. Heat maps

We placed one rectangular shaped heat map in the centre of
the room, covering the whole space between the two columns
and the walls at the top and bottom of the figure. The planner
is thus forced to go through the area covered by the heat map
to reach the goal. We ran 50 simulations with different heat
distribution generated by a sum of bivariate Normal probability
density functions (normalised to the range [0, 1]) with random
parameters. In all cases the planner correctly took into account
the presence of the heat map. The outcome of one particular
simulation can be seen in Figure 7, where the planner properly
avoids hot (yellow-coloured) zones.

C. Anomalies

To test the handling of time based anomalies we set the
average user speed to 0.5 m/s and we placed a rectangular
anomaly in the middle of the room. Figure 8 depicts two paths
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Fig. 8. Simulation with anomalies: two independent simulations are shown.
The dashed line represents the path generated when the anomaly is set to
expire half way to the goal. The continuous line, instead, shows the resulting
path when the anomaly does not expire.
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Fig. 9. Simulation with multiple features. The planner satisfies all the AP
requests, but is forced to ignore the constraint for the undesired zone, as it is
the only way for reaching the goal.

constructed by the long term planner during two independent
simulations with different durations of the anomaly. In this
way we are able to show how the planner manages the
disappearance of an anomaly. In the first run (dashed line)
we configured the expiration of the anomaly in such a way
that it expires when the user has covered approximately half
of the path. In the second run (continuous line) the anomaly
disappears after the user reaches the goal position. It is
clearly visible that, in the first case, as soon as the anomaly
expires the planner re-routes the user towards the shortest path,
overlapping what was the area occupied by the anomaly.

D. Combination of features

The last validation test considers a combination of multiple
features in one simulation. We placed one undesired zone,
one desired zone, one anomaly and one heat map as shown in
Figure 9. In particular, the undesired zone completely blocks
the passage for reaching the goal. However, as visible in the
previous figure, the long term planner is able to ignore the
unfeasible constraint. The path then bends towards the desired
zone, bypasses the unexpired anomaly and, finally, avoids the
crowded region represented by the heat map.
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Fig. 10. Relation between level of crowdedness and effective length of the
path. When the planner is aware of the heat maps in the environment, the
long term planner is able to avoid the heat and the effective distance increases
slowly with increasing crowdedness (thick line). Without this information, the
long term planner just chooses the shortest Euclidean path, whose effective
length increases exponentially.

VII. QUANTITATIVE ANALYSIS

We now go through the results of some simulations provid-
ing a quantitative analysis of the performance of the long term
planner. The aim is to show that the benefits of using the long
term planner are evident not only from a qualitative point of
view, as shown in Section VI, but also from a well-defined set
of performance metrics.

A. Heat maps

We demonstrate that the long term planner is able to
provide better (i.e., quicker) trajectories when it is aware of
the crowdedness in the environment.

We set up a simulation similar to the one in Section VI-B,
where the heat map covers the environment as in Figure 7.
We then iteratively increase the heat surface, simulating an
expanding crowd, starting from no crowd (0% crowdedness)
up to a completely crowded area (100% crowdedness). At
each iteration we call the long term planner and we compute
both the optimal path (e.g., considering the heat encoded in
the effective distance) and the Euclidean shortest path (e.g.,
a straight line directed to the goal that passes through the
crowded area).

The Euclidean shortest path Ne = {ni ∈ N ′}ki=i is
constructed by assuming H(e) = 0 in (1). The true cost We of
Ne is then computed by removing the H(e) = 0 assumption,
thus

We =
∑

W ′(e),∀e = (n, n′) ∈ Ne

The results are shown in Figure 10. The very slow growth
of the effective length of the path considering heat (thick line)
is clearly visible. The planner diverts the path to avoid the
hot areas until this becomes impossible (i.e., when crowd-
edness reaches 100%). In contrast, the effective length of
the Euclidean shortest path explodes exponentially (thin line),
making the planner unable to find a path when the average
crowdedness level is greater than 5%.
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Fig. 11. The effect of intensity on the minimum Euclidean distance from a
path to a desirable zone on a particular simulation run. As intensity increases
the path is attracted towards the desirable location: the Euclidean distance
decreases.

B. Global constraints

The simulations presented in this section show how the
planner interprets the intensity parameter of an undesired or a
desired global constraint. The environment and the position
of the desired/undesired locations are the same as those
considered in Section VI-A and illustrated in Figure 6. We
identified this particular scenario because it is a worst case
situation: the desirable location is at the farthest possible
distance from the shortest path and the undesirable location
conflicts with the shortest path.

For simplicity and without any loss of generality, in these
simulations we define K̃ as a linear function that is mono-
tonically increasing for desired constraints, and monotonically
decreasing for the undesired ones.

To measure the characteristics of a constraint for a desirable
zone, we set the location as far as possible from the Euclidean
shortest path and we fixed the radius to a small value. We then
iteratively executed the planner with increasing intensity and
we computed the minimum direct Euclidean distance of the
path from the location (i.e., not considering the graph). The
results are reported in Figure 11. As expected, the minimum
Euclidean distance between the path and the desirable zone
decreases as intensity increases. The steps in the plot are due
to the quantisation of the free space imposed by the underlying
graph.

A similar procedure was carried out using a constraint for an
undesirable zone. We set the location of the constraint midway
along the Euclidean shortest path and fixed the radius of the
constraint to be the largest possible value (in the simulations
the limit is the distance from farthest wall). The intensity of
the constraint was then iteratively increased and we computed
the minimum direct Euclidean distance of the resulting path
from the location. The results are shown in Figure 12. We
observe that as the intensity grows, the planner “pushes” away
the constructed path until the minimum Euclidean distance is
close to the radius. Again, the steps in the plot are due to
quantisation of the free space.

The relations highlighted in these paragraphs are strictly
dependent on the considered environment. Different locations,
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Fig. 12. The effect of intensity on the minimum Euclidean distance from a
path to an undesirable zone on a particular simulation run. As the intensity
increases the path is pushed away from the undesirable location (the Euclidean
distance increases) until it approximates the specified radius (20 m, dashed
line). The constraint is actually implemented with respect to the effective
length of the path, which is shown for comparison.

position of obstacles or constraints lead to different relations.
An open problem, to be addressed in future work, is how to
generalise the relationship between these parameters.

C. Computing time

We tested the performance of the long term planner on the
BeagleBoard xM2, an affordable embedded board equipped
with an ARM processor running at 1 GHz with 512 MB
LPDDR RAM. The operating system is Ubuntu 12.04 and
the Oracle Java Virtual Machine 1.8.0 u6 is installed.

Our goal was to verify the feasibility of an online imple-
mentation in a realistic scenario and the scalability of the
performance with increasing dimensions of the graph. We thus
designed a map of a large shopping mall (500 m x 250 m)
and performed quad trees decomposition (Section IV-A) with
different minimum quadrant resolutions, varying from 4 m to
0.8 m. This way the resulting graphs had different sizes, from
1686 nodes and 13832 edges, to 23016 nodes and 264026
edges.

For each graph we prepared a benchmark script that sets
up the Java planning algorithm and queries 20 times for a
path between the same two points at the opposite sides of
the shopping mall. We then timed both the setup phase (e.g.,
loading the graph structure in the planning algorithm) and each
of the planning queries. Finally, we computed the mean (µ)
and standard deviation (σ) of the timings.

The results are reported in Table I. The worst case, as
expected, occurs with the largest graph. In this case we
measured µ = 1983 ms and σ = 239 ms for the setup
phase, and µ = 812 ms and σ = 139 ms for the query
phase. These results are encouraging and show that the current
implementation, which we believe can easily be improved,
is already reasonably fast for an online execution. Finally, it
should be noted that in real scenarios the setup phase needs
to be executed only when the graph structure (i.e., the floor
plan) changes permanently.

2http://beagleboard.org
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TABLE I
PERFORMANCE OF THE long term planner ON A BEAGLEBOARD XM WITH DIFFERENT GRAPH DIMENSIONS FOR BOTH SETUP AND QUERY PHASE. MEAN

(µ) AND STANDARD DEVIATION (σ) ARE REPORTED FOR EACH PHASE.

Minimum Graph size Setup [ms] Query [ms]
quad tree cell [m] Nodes Edges µ σ µ σ

4.0 1686 13832 78 35 56 61
2.0 4404 43720 282 141 163 117
1.0 10133 108818 829 354 361 176
0.8 23016 264026 1983 239 812 139

VIII. CASE STUDY: THE DALI PROJECT

Motivated by the same considerations presented in this
paper, the DALi project3 aims to devise the c-Walker, an intel-
ligent “walker” (an assistive wheeled device) that detects the
presence of other pedestrians in the environment, anticipates
their intent and plans an appropriate path that is suggested
to the user via a combination of audio, visual and haptic
interfaces.

The motion planning algorithm is part of the so-called
“Cognitive Engine” and follows the diagram depicted in
Figure 1. In this particular case, the long term planner is the
algorithm proposed in this work while the short term planner
outputs a suggested trajectory and is reactive to the potentially
uncooperative response of the AP [7].

A. Experiments

In October 2014 we ran an experimental campaign that
involved several elderly people at our facilities. The goal was
to test the functionalities of the walker as well as of the
motion planning algorithm. To this end, we created a simulated
shopping mall environment and recruited a cohort of 12 senior
users. We asked each participant to choose a destination in the
environment (Figure 13(a)) and then to follow the guidance
suggestions of the walker.

At the end of each test we collected results on the par-
ticipant’s performance and asked her/him to answer some
questions about the quality of the guidance suggestion and
personal satisfaction.

In addition, we selected a group of caregivers working
in protected residences and proposed to each of them a
tour through the functionalities of the system, where each
of them could define hard and soft constraints and test the
system. During each test we randomly triggered anomalies
(Figures 13(b) and 13(c)) and heat maps (Figure 13(d)) to
show the reactions of the system to such conditions. At the
end of the “road show”, we collected informal opinions and
suggestions.

The impression we derived from reading the questionnaires
collected from the APs and from talking to the care givers was
of a general interest and appreciation toward the system and its
functionalities (including the long term planner). Most users
are keen on being actively engaged with future development
activities. This motivates us in pursuing this line of research
in the upcoming years.

3http://www.ict-dali.eu

IX. CONCLUSIONS

In this work we have presented an algorithm for long term
motion planning in crowded public spaces. The algorithm
applies to robotic platforms assisting the navigation of senior
users in large and complex spaces. Key features of the algo-
rithm are: 1. the ability to encode preferences in the user’s
profile on areas that should be avoided during the navigation
and others that should be travelled across, 2. the consideration
of time-dependent anomalies in making the right choice for
a path, 3. the inclusion of crowdedness as a key parameter
to take into account when estimating the time to complete a
path. Our idea is to use quadtrees to generate a graph structure
describing the space and encode user preferences, anomalies
and heatmaps in the weight of the edges. We propose a
modified version of the Dijkstra algorithm to identify the
optimal path accounting for the time dependencies of the
graph.

Our algorithm has been implemented as a cloud service that
operates alongside a module for reactive (short term) planning
and motion control, which are typically hosted on the robotic
platform. Thanks to its flexible API and its low computational
burden, the algorithm can be easily implemented in different
ways, giving to the system integrators plenty of possibilities.

The different functionalities of the system have been val-
idated in two ways. We have tested it through simulation
scenarios and prepared a mockup simulating a realistic case
study where the system was tested by a group of users and
showcased to a group of caregivers.

This case study helped us to identify some borderline
scenarios that require further analysis, especially when dealing
with combinations of constraints. For example, when the
user requires a “timed” constraint (e.g., “keep a toilet within
5 minutes walking distance”), when several constraints for
desirable and undesirable zones appear to be placed one after
the other, or when two or more constraints for desirable zones
are placed at opposite ends of an environment. Simulations
have shown that combinations of contrasting requests can be
managed efficiently, even though an extensive analysis of this
behaviour has not been carried out in the field. Nonetheless,
the simplicity and the robustness of the proposed solution
is very promising for an efficient handling of such complex
situations.

Our future plans include lifting the planning algorithm to a
social dimension, with motion plans organised for groups of
people supported by a robotic platform, supporting constraints
and anomalies specified in a probabilistic framework.
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(a) Tablet interface for the long term planner

(b) Wet floor sign

(c) The long term planner reacts to the wet floor sign

(d) Heat map

Fig. 13. Pictures from the DALi project experimental campaign.
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