
HAL Id: hal-01240392
https://hal.inria.fr/hal-01240392

Submitted on 9 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

By-example synthesis of structurally sound patterns
An Lu, Sylvain Lefebvre, Jérémie Dumas, Jun Wu, Christian Dick

To cite this version:
An Lu, Sylvain Lefebvre, Jérémie Dumas, Jun Wu, Christian Dick. By-example synthesis of struc-
turally sound patterns. ACM Transactions on Graphics, Association for Computing Machinery, 2015,
�10.1145/2766984�. �hal-01240392�

https://hal.inria.fr/hal-01240392
https://hal.archives-ouvertes.fr

By-Example Synthesis of Structurally Sound Patterns

Jérémie Dumas∗

Université de Lorraine, INRIA
An Lu∗

INRIA, T.U. München
Sylvain Lefebvre

INRIA
Jun Wu

T.U. München
Christian Dick
T.U. München

Figure 1: Our by-example pattern synthesis algorithm produces structurally sound patterns along the surface of an objects, resembling the
input exemplar. The reinforcements are integrated within the pattern, by a joint optimization of appearance and structural properties. Top:
The Standford bunny with a variety of synthesized patterns. Bottom: Example patterns. These objects are printed in ABS plastic on low-cost
filament printers, using a dense support. The patterns are fully connected and survived the cleaning process thanks to their reinforced structure.
Yet, the reinforcements are inconspicuous as they seamlessly blend within the appearance.

Abstract

Several techniques exist to automatically synthesize a 2D image
resembling an input exemplar texture. Most of the approaches op-
timize a new image so that the color neighborhoods in the output
closely match those in the input, across all scales. In this paper we
revisit by-example texture synthesis in the context of additive man-
ufacturing. Our goal is to generate not only colors, but also struc-
ture along output surfaces: given an exemplar indicating ’solid’ and
’empty’ pixels, we generate a similar pattern along the output sur-
face. The core challenge is to guarantee that the pattern is not only
fully connected, but also structurally sound.

To achieve this goal we propose a novel formulation for on-surface
by-example texture synthesis that directly works in a voxel shell
around the surface. It enables efficient local updates to the pattern,
letting our structural optimizer perform changes that improve the
overall rigidity of the pattern. We use this technique in an iterative
scheme that jointly optimizes for appearance and structural sound-
ness. We consider fabricability constraints and a user-provided de-
scription of a force profile that the object has to resist.

Our results fully exploit the capabilities of additive manufacturing
by letting users design intricate structures along surfaces. The struc-
tures are complex, yet they resemble input exemplars, resulting in a
modeling tool accessible to casual users.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling;

Keywords: Texture Synthesis, Fabrication, By-example Modeling

1 Introduction

Additive manufacturing empowers designers and artists with an un-
precedented ability to imagine and manufacture fine, intricate pat-
terns. The patterns may be arranged in a delicate overall structure
that flows in space and suggests the surface of a larger object. The
sculptures Crania Anatomica Filigre by artist Joshua Harker [2011],
the surface autoglyphs by Henry Segerman [2009] or the designs
by company Nervous System [Rosenkrantz and Louis-Rosenberg
2007] are impressive and fascinating examples of this trend, also
witnessed by the popularity of Voronoi carvings on the sharing plat-
form Thingiverse (e.g. Chess Set - Voronoi Style thing:172960,
Coral Candle Fixture thing:32513).

In this paper we consider the problem of automatically generating
such patterns, from an input example. Our intent is to empower
casual users and designers with a tool that quickly generates a com-
pelling pattern that prints correctly and does not break in every-day
use. Performing this task by hand is very difficult: the user has to be
skilled in the use of CAD systems — which are often not targeted
at such models — but also needs a good understanding of the limi-
tations of additive manufacturing as well as notions of mechanical
engineering to foresee when and how the object might break.

Using our approach, the user quickly obtains a solution that enforces
these constraints, and resembles the input pattern. She is then able
to focus on the most important task: exploiting our technique for
designing interesting and intriguing objects.

We understand this problem as an instance of by-example texture
synthesis, a long standing problem in Computer Graphics [Wei et al.
2009]. Despite the wide spectrum of available methods, only a few
are capable of synthesizing a pattern along a surface, and these ap-
proaches either manipulate finely tessellated models and per-vertex
colors, or synthesize a volume of colors, or operate through a pla-
nar parameterization of the surface. This does not fit our purpose:
we seek to produce a pattern that flows along the surface, without
suffering from the distortions or discontinuities of planar mappings.
Existing volume approaches are not well suited as we seek a method
capable of efficiently updating the synthesis result locally, so as to
reinforce and strengthen the global structure.

1Joint first authors.

https://web.archive.org/web/20140902100330/http://www.thingiverse.com/thing:172960/
https://web.archive.org/web/20140723092216/http://www.thingiverse.com/thing:32513/

Most importantly, none of the existing techniques generate patterns
with controlled structural properties. A simple failure case is to con-
sider the connectivity of the synthesized pattern. Given an exemplar
pattern describing a connected, single component pattern, the avail-
able surface synthesizers cannot offer any guarantee regarding the
connectivity of the output. Our situation is more general as we not
only seek for a connected pattern, but also for patterns that are rigid
enough to withstand the manufacturing process and the necessary
finishing steps, as well as every-day manipulation.

Contributions.

• A novel by-example on-surface texture synthesizer, working
in a voxel shell around the surface. It synthesizes along the
surface, without the need for a global parameterization, and
yet does not resort on a computationally expensive volume
definition of the texture synthesis problem.

• A graph abstraction of the synthesized patterns, allowing an
approximate but fast computation of weak areas within the
patterns, both by a stress analysis and by a geometric criterion.

• A pattern reinforcement strategy, that combines the synthesizer
and a structural analysis to drive the pattern towards an object
that can be fabricated.

This adds up to an algorithm for by-example synthesis of complex
carved patterns along surfaces, that can be fabricated even on low-
cost fused-filament printers.

Assumptions. We assume that the input surface shell can be
printed correctly at the user-chosen shell thickness, without the pat-
tern. Otherwise carving the pattern would only worsen its already
failing structural properties. We also assume that the exemplar ap-
pearance allows for enough degrees of freedom to create connec-
tions. Our technique will produce a correct output in any case, but
the appearance may be impossible to reconcile with the connectivity
requirements, resulting in visible reinforcements (see Section 6.4).

2 Previous Work

The starting point of our work is by-example texture synthesis;
please refer to Wei et al. [2009] for a survey. We focus the discussion
on techniques for surfaces, and then discuss techniques producing
geometric details. Our approach also strongly relates to fabrication,
and we review some of the recent work in that field. Finally, we dis-
cuss how our problem relates to the field of topology optimization.

By-example texture synthesis on surfaces Turk [2001] and
Wei and Levoy [2001] adapt the image-based approaches compar-
ing small neighborhoods of colors to work along a mesh surface,
considering densely tessellated meshes with per-vertex colors. Tong
et al. [2002] proceed similarly but synthesize in every vertex a texton
label capturing a BTF appearance. A drawback of these techniques
are the dependency on tessellation and the resampling required when
working with distorted neighborhoods along the surface. Ying et
al. [2001] synthesize the texture in a parametric space: the surface is
divided into planar charts into which synthesis is performed, and the
result is mapped back to the surface. A similar methodology is used
by Lefebvre and Hoppe [2006] in a scheme that performs parallel
texture synthesis into the pixels of a texture atlas. These approaches
are relatively complex as they have to cope with parametric distor-
tions, discontinuities at chart boundaries, and sampling issues. Praun
and Hoppe [2000] perform synthesis along a surface by applying
many texture patches with irregular boundaries so has to give the
illusion of a continuous texture. Soler et al. [2002] optimize a set

of texture coordinates for the triangles with the objective of produc-
ing a visually seamless texture along the surface. To create texture
maps of scanned 3D models, Lempitsky and Ivanov [2007] and Gal
et al. [2010] align photographs with the geometry an then formu-
late a labeling problem to select one image for each triangle. Our
synthesizer takes a similar labeling view, using randomly positioned
texture planes and voxels.

All these approaches only generate colors along the surface and do
not modify the underlying geometry of the model.

By-example geometry synthesis A number of approaches have
been proposed to go further and generate geometric details along
the surface and within the object.

Bhat and Turk [2004] synthesize geometric details using the by-
analogy approach initially developed for images [Hertzmann et al.
2001]. The geometry is captured by voxels and a distance field,
and therefore the synthesizer is free to carve and sculpt the object.
The scheme is based on voxel neighborhoods and therefore requires
the input exemplar to be a small 3D pattern with geometric details.
Lagae et al. [2005] perform geometry synthesis of 3D patterns by
comparing blocks of voxels in a distance field. Comparing voxel
neighborhoods throughout the object is computationally expensive.
Dong et al. [2008] synthesize a volume texture restricted to a surface:
only the voxels surrounding the surface are actually computed. This
still requires to process a significant amount of volume data through
the multi-scale neighborhood dependencies, while our scheme main-
tains a one-voxel thickness across all scales.

All the aforementioned approaches employ a 3D version of the 2D
neighborhood matching of texture synthesis. In contrast, while we
do perform synthesis in a set of voxels representing the surface, our
formulation is different and does not involve comparing neighbor-
hoods of voxels.

Zhou et al. [2006] synthesize a detailed mesh around a guiding mesh
surface by stitching together geometric elements cut out from an
input example geometry. The elements are deformed, aligned and
stitched to produce a continuous result which is grown in a paramet-
ric domain around the model. Impressive patterns are obtained, the
main drawback being the need to define elements in an input mesh
and the geometric distortion in high curvature regions which would
make fabrication delicate. The approach is not designed to guaran-
tee connectivity or structural soundness. Ma et al. [2014] transfer
the style of a mesh to another, using the by-analogy framework to
guide an automated copy-paste of geometric patches. This work ad-
dresses large scales models while we focus on synthesizing small
scale patterns.

Finally, closer to our goals, Zhou et al. [2014] synthesize fabricable
patterns along a curve, from an example. This approach is specifi-
cally designed to synthesize patterns with controlled topology. It is
however a one-dimensional synthesizer and the approach does not
consider the structural properties of the generated objects.

Fabrication constraints A number of recent papers address sev-
eral aspects of fabrication, helping the user to produce designs that
enforce specific constraints.

Umetani et al. [2013] quickly analyze the robustness of a rigid object
through an analysis of the cross sectional stresses and reveal fragili-
ties to the user. Stava et al. [2012] reinforce meshes that would
otherwise be too fragile after printing. Based on a stress analysis of
a tetrahedral mesh, some parts are thickened and struts are added
to reinforce the object. A major difference with our work is that we
do not seek to correct the synthesized patterns after the fact, but to
jointly optimize for appearance and structural soundness: in most

cases the reinforcements seamlessly integrate within the appearance
of the synthesized pattern.

Capturing all the possible forces that can be applied to a model
is difficult. Zhou et al. [2013] thus propose a worst case analy-
sis, which does not need to rely on specific forces applied to the
problem. Our approach lets the user specify forces for an intended
use case, but also by avoiding fragilities that could occur outside
of this expected scenario. Other approaches allow the user to bal-
ance shapes [Prévost et al. 2013; Christiansen et al. 2015b], produce
strong yet lightweight inner structures [Wang et al. 2013; Lu et al.
2014], or divide the object into smaller parts for easier printing [Luo
et al. 2012; Hu et al. 2014].

Topology optimization One possible way to improve the struc-
tural soundness of a shape is via topology optimization. The Solid
Isotropic Material with Penalization (SIMP) method [Sigmund and
Maute 2013; Christiansen et al. 2015a] seems particularly well
suited to our goal, since it considers a distribution of material in
a grid and maximizes a rigidity objective under a prescribed mate-
rial consumption ratio [Sigmund 2001].

However, there are challenges in using this
approach for our purpose. In particular, the
newly generated structures would signif-
icantly disturb the visual appearance of
the original pattern: topology optimization
tends to accumulate matter non-uniformly
as shown in the Figure inset. In this fig-
ure, a pattern was first synthesized. The ini-
tial pattern (green) is then used as passive
elements with fixed density, where a verti-
cal force (gravity) is applied. The bottom
nodes are fixed. The SIMP method is then
used to distribute additional material (black) and reinforce the struc-
ture by minimizing its compliance. Matter tends to concentrate at
the bottom. This is due to the accumulation of the forces: the re-
gions below the loads have a much higher sensitivity to the overall
compliance. This leads to the destruction of any details in these re-
gions. Our approach avoids this issue by reinforcing the pattern with
a small number of thin bridges between nearby structures, and uses
by-example synthesis to preserve the appearance everywhere.

Finally, the performance of topology optimization currently makes
it impractical for the detailed geometric structures we target (on a
bunny model with 734,415 voxels, 2,814,642 degrees of freedom, a
single design update requires > 1 hour using a multigrid solver).

3 Overview

Input Our approach starts with a user specified target surface —
given as a triangulated meshM, a desired shell thickness and an
input exemplar pattern. The exemplar pattern is an image specifying
colors as well as a binary pattern map in which pixels are tagged as
either solid (1) or empty (0). This is illustrated in Figure 2.

The user also specifies a radius rpattern which captures the scale
of the features in the example pattern. We assume that this scale is
larger than the minimal printable feature.

Pre-processing As a pre-processing step we voxelize the surface
shell. We consider a regular grid of voxels and select only the voxels
that intersect the surface. In addition, we augment the exemplar
images with a distance field computed within the binary pattern
map. The feature distance is used as an additional channel when
comparing the values of pixels [Lefebvre and Hoppe 2006].

Figure 2: Input: The original mesh, the voxelized surface, the col-
ored pattern and its binary mask.

Note that the voxelized surface shell has a thickness of only one
voxel during the entire process. We only thicken it to the user speci-
fied thickness prior to 3D printing. Structural analysis properly takes
into account the final thickness, but creating these voxels from the
start would be wasteful since pattern synthesis and analysis is re-
stricted to the surface voxels.

Algorithm Our algorithm generates a pattern along the voxelized
surface shell, that is both visually similar to the example and is struc-
turally sound. The key novelty of our approach lies in the interplay
of these two objectives. Instead of reinforcing the patterns after the
fact, our scheme optimizes jointly for both objectives, incorporat-
ing reinforcements within the synthesized pattern. The difference is
illustrated in Figure 3.

Figure 3: Left: A result from our approach, and the correspond-
ing exemplar (zebra). Middle: Closeup. Without resynthesis rein-
forcements are visible. Right: At the same location our approach
seamlessly blends reinforcements within the pattern.

Targeting a structurally sound object means that we seek for the
following properties: 1) the object can be manufactured and can sur-
vive the cleaning step after the printing process and 2) the object can
withstand a user-specified force profile, i.e. points of attachments
and external forces, most typically gravity, describing in which con-
text the object will be used.

These two objectives are slightly different in nature. Optimizing
only for a specific force profile means that the object will be sound
under that particular circumstance, but it might exhibit fragilities
under different conditions. We therefore incorporate a secondary ob-
jective which eliminates such fragilities, without any specific knowl-
edge of the force profile. This is described in details in Section 5.

The overall algorithm for structurally sound, by-example pattern syn-
thesis is given in Algorithm 1. SYNTHESIZE performs a complete
synthesis pass, generating an initial pattern. It is only concerned
with the appearance. STRUCTURALOPTIM modifies the voxels ac-
cording the structural considerations and returns the modified set of
voxels and a boolean indicating whether the stopping criteria has
been met (done). RESYNTHESIZE updates the pattern to recover
its appearance, while avoiding damaging the changes made by the
structural optimizer.

Algorithm 1: PATTERNSYNTHESIZER

Input: Surface meshM, input exemplar I
Output: Surface voxels tagged as solid or empty, so that the

produced pattern resembles Iand is structurally sound.
1 V ← VOXELIZE (M);
2 V ← SYNTHESIZE(I,V);
3 while true do
4 (V, done)← STRUCTURALOPTIM(V);
5 if done then
6 return V
7 V ← RESYNTHESIZE(I,V);

The synthesizer is described in Section 4 and the structural optimiza-
tion in Section 5. We present our results in Section 6.

Notations We denote the input exemplar image I : (x, y) →
(r, g, b, f), with f the feature distance. We denote the state of a
pixel i by s(i) ∈ {0, 1}, where a value of 1 means solid and a value
of 0 empty. Our goal is to synthesize a mapping from any given
voxel center to a location (x, y) ∈ R2 of the exemplar image I .

We denote the list of surface voxels V = J1, nK. Each voxel v ∈ V
encloses a (small) surface patch. We assume the small patch to be
planar and going through the voxel center. The voxel center position
is denoted as p(v) ∈ N3, its normal — averaged over the enclosed
surface — is denoted as n(v) ∈ R3.

4 Surface Texture Synthesizer

Our synthesizer builds upon a new formulation of texture synthe-
sis on 3D surfaces. We consider a set of planes in R3, each defin-
ing an orthogonal projection of the (tiled) exemplar everywhere
in space. Any voxel center can thus lookup a color from any of
these planes, by projection. Our synthesizer chooses in every voxel
a unique source plane so that the combinations of projected colors
along the surface gives the illusion of a continuous texture resem-
bling the exemplar image. This idea is illustrated in Figure 4.

By controlling the set of planes, we easily guide the synthesizer
towards different pattern scales or orientations. The approach is effi-
cient as we only need to encode a choice of plane in the voxels, while
the other information (coordinates, projection, colors) is implicit.

The synthesizer performs a multi-resolution synthesis into a pyra-
mid of voxelized representations of the initial voxels V . We denote
Vr the resolution levels, with V = V0 the finest level and VL the
coarsest level. For the sake of clarity, let us for now only consider
the finest resolution level V .

4.1 Layers Around the Surface

We consider a set of planes Ψ chosen to have normals uniformly
distributed in the unit sphere. The exact location of the planes does
not matter, so let us assume they surround the object as illustrated
in Figure 4, left.

The planes define orthogonal projections of the texture onto the
surface, and the voxels will receive their color from one of these
planes. By optimizing these choices, the synthesized texture will
appear along the surface. This is illustrated in Figure 4, right.

We denote by ψ a plane in Ψ of normal n(ψ). In addition we define
a set of plane transformations Γ, each τ ∈ Γ defined by an origin

Figure 4: Left: Planes surrounding the object, each defining an
orthogonal projection of the texture onto the surface. Right: Each
surface point selects a plane as the source for its color. The opti-
mizer naturally grows patches. The image shows the source plane
for one of the patches. The colors within the surface patch are re-
vealing the (u, v) lookup coordinates into the exemplar image.

point o(τ) in the plane and two orthogonal vectors u(τ),v(τ). Ev-
ery τ maps the exemplar I to the plane in a different manner. The
u(τ),v(τ) vectors are not necessarily normalized so as to allow for
scaling.

Each voxel v ∈ V is associated with a mapping to exemplar texture
space by choosing a plane-parameterization pair (ψ(v), τ(v)) ∈
Ψ× Γ. The mapping function M(x, ψ(v), τ(v)) projects x on the
surface of the chosen plane ψ(v) via an orthogonal projection. The
projected point is then mapped to image space by the planar trans-
formation τ(v).

Our texture synthesis consists of finding a good set of choices of
(ψ(v), τ(v)) for voxels v ∈ V such that the resulting texture resem-
bles the exemplar appearance.

4.2 Synthesis as an Energy Optimization

We now formalize the optimization problem to achieve texture syn-
thesis along the surface. We start by making several observations
regarding the desired properties of the result, and then give a precise
formulation of the energy to optimize.

4.2.1 Desired Properties

Let us consider a voxel v ∈ V . It corresponds to a small surface
patch, approximated locally as a plane. All the surface points are
mapped to the image space by the same function M(x, ψ(v), τ(v))
where (ψ(v), τ(v)) is the parameterization choice for v, the voxel
enclosing x.

If the normal to the plane n(ψ(v)) and the voxel normal n(v) align
perfectly, then the resulting texture in v is a copy of one portion
of the input exemplar, uniformly scaled and rotated by τ(v). This
locally reproduces the exemplar appearance. However, if the normal
of the plane disagrees with the voxel normal, the texture will appear
distorted along the surface enclosed within the voxel. Our energy
term penalizes such cases, encouraging voxels to choose projection
planes agreeing with the local surface normal.

Let us now consider that there is a negligible amount of distortion,
as would be the case for a planar surface. In this case, preserving
the exemplar appearance boils down to achieving inconspicuous
texture transitions between the voxels, e.g. similarly to image quilt-
ing [Efros and Freeman 2001]. Let us consider 5× 5× 5 neighbor-

hoods of voxels. We denote byN (v) this neighborhood for a voxel
v. If the neighboring voxels perform the same choice of mapping,
that is for all w ∈ N (v), (ψ(w), τ(w)) = (ψ(v), τ(v)), then the
voxels copy coherent (adjacent) texture patches, and the appearance
is preserved.

If the voxel chooses different projections, color discontinuities might
become visible at voxel boundaries. We measure the quality of the
transition by considering the color differences between the colors
that the neighborhood expects and the color the voxel has, and vice
versa. This idea is illustrated in Figure 5.

v1v0

τ(v1)
τ(v0)

(a) Projection onto the planes

u(ψ)v(ψ)

v0

v1

ψ(v1)

(b) 2D view of green plane

Figure 5: Mapping voxel centers to exemplar texture space. (a) Two
voxels selecting different planes. (b) Projection of both voxel centers
into the plane selected by v1. The color of both projected points is
used to determine whether the transition is visible. A similar opera-
tion is performed into the plane selected by v0.

4.2.2 Synthesis Energy

Based on this analysis, we derive the energy function that measures
the quality of a choice of mappings C : V → Ψ × Γ. The global
energy is defined as the sum of two terms, one for color transitions
and one for normal alignments:

E(V, C) =
∑
v∈V

(Etransition(v,V, C) + Edistortion(v,V, C))

The transition error is measured as:

Etransition(v,V, C) =∑
w∈N (v)

‖I(M(v, ψ(v), τ(v)))− I(M(v, ψ(w), τ(w)))‖2

+ ‖I(M(w,ψ(v), τ(v)))− I(M(w,ψ(w), τ(w)))‖2

The distortion error is:

Edistortion(v,V, C) = 1− (n(v) · n(ψ(v)))

4.3 Optimization Scheme

We optimize for C̃ = arg min{E(V, C)}. To make the problem
tractable we select a finite set of planes Ψ and plane transformations
Γ. Therefore, each pair (ψ, τ) can be seen as a label. In the follow-
ing we consider the pairs to be integers indexing planes and plane
transformations.

We now describe an optimization scheme quickly selecting labels.
It is inspired by the upsample-jitter-correction scheme of Lefebvre

and Hoppe [2005]. Note however that our formulation could also be
solved by other optimizers, such as alpha-expansion on the labels
(ψ, τ) in a global optimization approach [Kwatra et al. 2003; Kwatra
et al. 2005; Lempitsky and Ivanov 2007]. However, for stochastic
textures the greedy local improvement strategy gives good results
while enabling a fast parallel update scheme [Wei et al. 2009].

We now consider the multi-resolution pyramid of voxels, together
with a Gaussian stack for the input exemplar I . The algorithm is
given in Algorithm 2. UPSAMPLE propagates the choices from one
level to the next, simply copying the choice of the parent in the
child voxels. JITTER introduces randomness: a fraction of the voxels
are forced to have random selections of labels. This percentage is
exposed to the user to control how regular or random the pattern
should be. OPTIMIZE performs the actual labeling, and is described
in Algorithm 3.

In every optimization step, we construct a set of candidate choices
for each voxel. We first include choices from the neighbors, a pro-
cess inspired by the coherent-candidate mechanism [Ashikhmin
2001; Tong et al. 2002]. These choices tend to grow coherent
patches on the surface. If, however, the neighboring voxels have
disagreeing normals the distortion energy will quickly increase.

To allow the optimizer to discover better transitions, both between
patches and in curved areas, we addR random candidates. The space
of possible pairs is however extremely large, and we therefore bias
the random sampling towards the most likely candidates. We pick a
random direction within a cone around the voxel normal, and select
the plane in Ψ having the normal that best aligns with this direction.
The parameterization τ is either chosen randomly (uniformly), or

Algorithm 2: SYNTHESIZETEXTURE

Input: Pyramid of surface voxels V0, ...VL

Output: Choices for each resolution level C0, ..., CL
1 CL ← {(ψ(v), τ(v)) = (0, 0)|v ∈ V0};
2 for l from L− 1 to 0 do
3 Cl = UPSAMPLE(Cl+1);
4 Cl = JITTER (Cl);
5 Cl = OPTIMIZE(Cl);
6 return C0

Algorithm 3: OPTIMIZE

Input: Surface voxels V , set of choices C, planes Ψ and plane
transformations τ .

Output: Optimized set of choices C
1 for v ∈ V do

// Coherent candidates
2 K ← {(ψ(w), τ(w))|w ∈ N (v)} ;

// Random candidates
3 for i← 1 to R do
4 (r1, r2) = sample a random pair in Ψ× Γ;
5 K ← K ∪ {(r1, r2)} ;

6 emin ← E(v,V, C) ; // Current energy
7 tbest ← (ψ(v), τ(v)) ; // Initialize best choice
8 foreach k ∈ K do
9 C′ = C with ψ(v)← ψ(k), τ(v)← τ(k);

10 emin ← min(emin, E(v,V, C′));
11 tbest ← update best choice;

12 C(v) = tbest;

13 return C

biased towards a predefined orientation to let the user control how
the pattern flows along the surface.

The candidate with lowest energy becomes the choice for the cur-
rent voxel. Voxels are updated in parallel, using a sub-pass update
mechanism [Lefebvre and Hoppe 2005].

4.4 Pattern Synthesis

The synthesizer is used to directly produce colors into the voxelized
surface shell. By considering the solid attribute in the exemplar
image, we obtain a carved pattern. Of course, this pattern generally
cannot be fabricated — we will discuss these aspects in Section 5.

As can be seen in Algorithm 1 there are two different calls to the syn-
thesizer: SYNTHESIZE and RESYNTHESIZE. The first performs the
initial synthesis, and the second adapts the patterns to the changes
made by the structural optimizer.

Initial synthesis Initial synthesis is performed using our synthe-
sis algorithm without any change, with optional user controls such
as a pattern orientation.

Re-synthesis After structural optimization, a new set of voxels
has been marked as solid to reinforce the pattern. These changes
might disagree with the pattern itself. Let us consider the case of an
anisotropic pattern. Since it tends to produce elongated contiguous
features, the structural optimizer will very likely introduce connec-
tions between the features, orthogonal to their main orientation.

It is therefore necessary to locally recover the appearance. However,
to have any hope for the process to converge we need to guarantee
that the changes will not be removed entirely. We therefore perform
a local update of the pattern, that is constrained in two ways. First,
the voxels which have been forced as solid for structural concerns
may only select candidate labels marking them as solid through the
projection onto the exemplar. Second, only the surrounding voxels
will be locally resynthesized. These are free to adapt to their sur-
roundings. We employ a local constraint scheme which propagates
through a few resolution levels. All parent voxels having one child
voxel tagged as solid are also tagged as solid. Synthesis then re-
sumes from the coarser resolution level to the finest, restricting the
set of updated voxels to a local region located below the coarsest par-
ent tagged as solid. The coarser resolution level is selected by going
back log2(rpattern) levels, where rpattern is expressed in voxels of
finest resolution. We illustrate the process in Figure 6, where a red
color shows the solid voxels introduced by structural optimization
and the green color shows voxels which are locally re-synthesized
to adapt to the constraint.

5 Structural Optimization

After the first synthesis step the voxel states (solid/empty) obtained
from the projected exemplar do not, in general, define a structurally
sound pattern, and in most cases not even a single connected com-
ponent. The goal of our structural optimization is to correct these
issues, working jointly with the optimizer towards the final pattern.

We give in Algorithm 4 the pseudo code for the structural opti-
mization step. GENERATESURFACEGRAPH and GENERATEAB-
STRACTGRAPH are described in Section 5.1, and REINFORCE-
MENTBRIDGES is described in Section 5.2.

We assume that the full surface shell, without the carved pattern,
is a strong enough object. Under this assumption, the worst case
scenario of the structural optimization would be to fill all empty
voxels, completely removing the synthesized pattern.

Figure 6: From left to right: 1) Exemplar pattern at the top (white is
solid), color version at the bottom. 2) Initial synthesis result. 3) The
constraint map of a single iteration shown on the colored version
of the exemplar. The red areas can only select candidates with a
solid tag, while green areas are free to adapt. The rest of the surface
is not allowed to change. 4) Final pattern after all iterations are
completed. Note that the ears are now connected to the body, and
that the neck has been strengthened.

Algorithm 4: STRUCTURALOPTIM

Input: Surface voxels V tagged as solid or empty
Output: Surface voxels V tagged as solid or empty with improved

structural properties
1 Gsurface ← GENERATESURFACEGRAPH(V);
2 Gabstract ← GENERATEABSTRACTGRAPH(V,Gsurface);
3 V ← REINFORCEMENTBRIDGES(Gabstract,V);
4 return V;

5.1 Surface Graph and Abstract Graph

We now need a data-structure on which to perform analysis. The
number of surface voxels is generally high — in the order of 106 —
and it is computationally prohibitive to directly manipulate this data,
especially for the computation of structural properties. We therefore
propose to define an abstraction of the synthesized pattern.

We define the surface voxels graph as the weighted undirected graph
Gsurface = (V, E), where (u, v) ∈ E is an edge if and only
if voxels u and v are contiguous, that is they touch by a corner:
‖p(u) − p(v)‖22 6 3. The edges are weighted by the euclidean
distance between the voxels they connect. A closeup on a surface
graph is shown in Figure 7 (left). Note that this graph is not im-
pacted by the choice of solid/empty voxels and does not depend
on the synthesized pattern. It is thus generated only once. For the
sake of clarity we assume next that Gsurface is fully connected: the
input surface meshM is a single object. We otherwise treat each
component separately.

The first part of our analysis process is to abstract the surface graph
into a graph of lower complexity — between 500 and 1000 vertices —
while still retaining the same global connectivity as the synthesized
pattern. Figure 7 (right) shows an example of the abstract graph.

We denote by dG(u, v) the graph geodesic distance between u and
v in a graph G. The abstract surface graph is denoted Gabstract =
(S,F), where S ⊂ V . Each edge f ∈ F is tagged with a state
ρ(f) ∈ {0, 1} indicated whether it is considered empty or solid.

The subset of voxels S in Gabstract is selected by down-sampling
from the set of solid voxels V in Gsurface. This is done following a
Poisson disk sampling strategy, with a binary search on the radius to
reach a target number of voxels (1000 in our examples) [Bowers et al.
2010]. We then connect these voxels by edges so as to reproduce the
connectivity of the synthesized pattern. This is done by algorithm
CONNECTSAMPLES (Algorithm 5).

Figure 7: The initial surface graph Gsurface (left) is used to pro-
duce the abstract pattern graph Gabstract (right), having a greatly
reduced number of vertices but still capturing the connectivity of the
pattern. Red edges are solid and blue edges are empty.

Algorithm 5: CONNECTSAMPLES

Input: The surface and solid voxels graphs and subsets S ⊆ V
Output: A graph Gabstract = (S,F), which is a subset of

Gsurface. A function ρ : F → {0, 1} for the edge type.
1 Compute shortest path forest F from S in Gsolid (via DIJKSTRA);
2 For each pair of tree T (u), T (v) ∈ F that have a vertex incident to

the same edge e ∈ E(Gsolid), connect their roots
(F ← (u, v) ∪ F), and set ρ(u, v) = 1;

3 Compute shortest path forest F′ extending F in Gsurface;
4 For each pair of tree T (u), T (v) ∈ F′ s.t. (u, v) 6∈ F and both

trees have a vertex incident to the same edge e ∈ E(Gsurface),
connect their roots (F ← (u, v) ∪ F), and set ρ(u, v) = 0;

5 return (Gabstract = (S,F), ρ)

CONNECTSAMPLES proceeds as follows: starting from sources in
S, it initially grows regions in Gsolid — the graph Gsurface re-
stricted to solid voxels. Whenever two regions are connected by
the growth, the two source voxels are connected by a new edge
in Gabstract. The newly added edge f ∈ F is marked as solid
(ρ(f) = 1). In a second pass, the same regions are grown in the
whole graph Gsurface. For each adjacent regions that were not pre-
viously connected a new edge is added in F . It is marked as empty
since the connecting path in Gsurface goes through empty voxels.
The paths connecting source voxels through Gsurface are recorded.
They are used later to produce reinforcements.

5.2 Reinforcement Bridges

We now proceed to reinforcing the pattern. This step performs a
number of local changes, adding new voxels. The algorithm itera-
tively selects edges ofGabstract marked as empty and changes them
to become solid. The corresponding voxels in V are in turn switched
to become solid. This information is fed back to the synthesizer.

We rely on two complementary approaches to compute the scores
in the edge selection process. The first and main score is based on
an analysis of stresses under a certain force profile in a simplified
beam geometry capturing the pattern (Section 5.2.1). The second is
a purely geometric criterion based on pattern geodesic distance in
Gabstract (Section 5.2.2).

The rationale for using two criteria is that the force profile only
predicts a single scenario. Therefore, under a different set of circum-
stances some fragile configurations might exist. The second score
acts as a worst-case criterion. Note that the user is in charge of de-
ciding how safe he wants the print to be. Strengthening the second
criterion will ultimately make the force profile have less impact. We
generally allow only a few changes from the worst-case criterion,

so as to obtain interesting effects from the force profile without
extreme fragilities under other conditions.

A primary goal of the edge selection process is to form a single con-
nected component in Gabstract, considering solid edges only. To
this end, edges are added iteratively, choosing the next empty edge
of highest score which connects two different components, using
the force profile criterion. A number of additional edges are then
added using the force profile criterion again, until the maximum
stress of all edges is below a material-dependent threshold. We cur-
rently manually fix this threshold based on ABS/PLA plastic elastic
properties. After adding edges with the force profile, we consider
the second, worst-case criterion. We again mark edges as solid until
no edge considered as weak remains.

The algorithm finally modifies the set of voxels. Each edge in
Gabstract corresponds to a voxel path — the one that connected
the regions as described in Section 5.1. Adding only these voxels
would not be sufficient, as it would produce a very thin bridge be-
tween two parts of the pattern. Instead, we dilate these paths and
add all voxels which are within distance rpattern of the voxels along
the path. Let us re-emphasize that adding edges in Gabstract does
not necessarily produce a straight line in V as it follows the shortest
path between the solid regions, across empty voxels.

5.2.1 Score Based on Force Profile

We now exploit the abstract graph to build a simplified mechanical
model of the pattern. Intuitively, each edge will become a beam
whose stiffness is determined by whether it is solid or empty.

We cannot directly use truss or beam elements from the finite ele-
ment method (FEM) literature, as these are 1D elements that feature
a free rotation at their endpoints. This pivot joint behavior does not
properly capture the printed pattern. Instead, given the abstract sur-
face graph, we generate a 3D geometry based on hexahedral and
wedge elements, which we then simulate with the FEM to obtain a
structural analysis of the pattern.

To achieve a proper geometric construction we make the assump-
tion that the surface around each voxel is locally planar — which is
correct given a smooth mesh as input. This makes it possible to rep-
resent every graph voxel by wedge elements, considering the 1-ring
of neighbors projected into the local plane, as illustrated in Figure 8.
The elements are extruded along the voxel normal, by an amount
that corresponds to the desired shell thickness. Each neighbor con-
nects to the current graph voxel by an hexahedral element incident
to the face of a wedge.

Figure 8: Each vertex of the abstract graph becomes a set of wedge
elements connecting to its neighbors through hexahedral beams.
Solid elements are shown in red, while soft elements are shown in
blue. Each beam corresponds to an edge in the graph, letting us
derive a stress tensor for each edge through finite element analysis.

Note that we do not take into account flips or self-intersections that
may occur if the curvature is too high. None of the models we tested
created such cases.

Finite element analysis The geometry constructed from the ab-
stract graph is composed of wedges and hexahedral elements, onto
which we apply the finite element method. We simulate the dis-
placement of each node (vertex) of the beam-wedge geometry. The
shape functions for interpolation within the elements are given in
supplemental material. We simulate an elastic material having the
properties of the printing material, typically ABS or PLA plastic.

Each element is associated with a stiffness ρ(e). For wedges it is
always 1, and for hexahedral elements — which correspond to graph
edges — it is set to either 1 or ρmin depending on whether the
corresponding edge in Gabstract is marked as, respectively, solid
or empty. The stiffness matrix of the element is then derived as
K̃e = ρ(e)Ke.

Once the global stiffness matrix is assembled we need to decide
on a set of external forces and locked nodes. Let us briefly assume
these are given. We can then solve the static equilibrium equation
Ku = f , which we compute using the Eigen library [Guennebaud
et al. 2010] and the sparse solver CHOLMOD [Chen et al. 2008].
This computes a small displacement of the element nodes, which in
turn allows us to estimate a stress tensor in the beam of each edge:
σ = {σx, σy, σz, τxy, τyz, τxz}, given by σe = B(ξ, η, ζ)Eue.
For more details on computing stresses with the FEM, the reader is
referred to [Cook et al. 2007]. We use the sum of the norm of the
principal stresses as the score for the edges.

Solving for equilibrium is relatively expensive. We therefore insert
multiple edges at once. To avoid accumulation in areas of high stress,
we forbid edges close to an already inserted edge, in the manner of
the dart-throwing process. The radius of cancellation is twice the
length of the already inserted edge.

External forces and locked nodes (boundary conditions) In
the standard setting we only consider gravitational forces applied
on the system. For each vertex i ∈ Gabstract, we apply a constant
pressure in the direction of the gravity at position p(i), with an
arbitrary but constant value. We fix all nodes that are within the 10%
first layers in Z. This corresponds both to the fabrication process
and the case where the model is standing upright and the points on
the ground are fixed. Note that our approach makes no assumption
about the forces and locked nodes and it is for instance possible to
consider other scenarios such as pinch grips [Stava et al. 2012].

5.2.2 Score Based on Geometric Criterion

The geometric score is used to detect poor configurations that lead
to fragilities under conditions diverging from the specified force
profile, without having to resort on a mechanical simulation.

We observe that the worst fragilities consists in elongated structures
that are disconnected from their surroundings. We again exploit
Gabstract to detect and suppress such configurations.

Let us consider a voxel inGabstract belonging to an elongated struc-
ture. This voxel is connected to a few voxels of the same structure
by solid edges, and to neighboring structures by empty edges. Since
at this stage the structure is fully connected, there exists a geodesic
path within the pattern between the two voxels at each extremity of
an empty edge. This is illustrated in Figure 9.

We consider the length of the geodesic path inGsolid as the score for
an edge. We iteratively add all edges with a score higher than a user-

Figure 9: Geodesic distance criterion. The view is a closeup of
a pattern with the solid edge of the abstract graph overlaid. The
outlined blue edge is an empty edge of the abstract graph being
considered for reinforcement. Its extremities are connected by a
shortest path through the solid edges, outlined by the yellow broken
line. The score of the edge is its geodesic distance in the abstract
graph Gabstract.

defined threshold (typically 1.5 times the extent of the volume in
our examples). The score of all edges is updated after each addition.

6 Results

6.1 Texture synthesis

We first present results from our on-surface texture synthesizer. Fig-
ure 10 shows results, and Table 1 describes performance numbers.
In all results, we use the following parameters: synthesis at 2563

resolution (8 levels) for all but the skull result in Figure 14 and Fig-
ure 15 which uses 5123 (9 levels). We use planes evenly distributed
on the unit sphere in all 26 directions, with 16 × 16 translations
and 64 rotations per direction. We use 5 × 5 × 5 neighborhoods
and 128 candidates in total, starting with coherent candidates given
by defined neighbors, and filling the rest with random candidates.
All shown results orient the pattern with a naive vector field around
the ‘up’ direction. This could however be controlled by the user.
We support non-tilable exemplars by penalizing pixels near bound-
aries [Lefebvre and Hoppe 2005].

In terms of quality it is roughly equivalent to existing on-surface syn-
thesizers, but we have not added all the improvements from the state
of the art (e.g. appearance space transform [Lefebvre and Hoppe
2006], interpolation of overlapping neighborhoods) which could fur-
ther improve quality on color textures.

Our scheme is however conceptually simpler than the existing on-
surface synthesis techniques (see [Wei et al. 2009], Section 4, for
a survey) and fits our needs perfectly: the output is a thin shell of
voxels and it enables fast local updates thus tightly integrating with
our geometry modeling pipeline.

One drawback of our synthesizer is that it works under the assump-
tion that the surface is smooth. Therefore, we can expect quality
to degrade across sharp edges. As can be seen Figure 11 synthesis
quality remains reasonable even in challenging cases such as the
skull front where there is a concentration of sharp edges.

6.2 Pattern Synthesis and Fabrication

6.2.1 Preparing Synthesized Patterns for 3D Printing

Enlarging small features After the main loop of the program
exits, the pattern we obtain is globally connected and structurally
sound in regards of the abstract graph. However the abstract graph
only captures the global connectivity of the pattern, and ignores its

Figure 10: Texture synthesis results.

Figure 11: Texture synthesis results on objects with sharp
edges, high curvature areas, and complex topology. Models: Skull
(thing:168602), Knot (thing:5506).

local thickness. We therefore further improve the pattern by recov-
ering a consistent feature size in all places that are too thin.

We would like to enlarge the pattern directly on the surface, and not
out of it. We propose to compute a geodesic skeleton of the solid
surface pattern, and perform a dilation of the skeleton by the mini-
mal printable feature radius, restricted to the surface shell. The final
result is the union of the dilated skeleton and the original pattern.

Our approach bears similarities to the work of Liu et al. [2010],
whereby the geodesic curve skeleton of the surface is computed.
However, our algorithm is more relaxed because it does not preserve
the exact topology of the surface. This is desired since the input
pattern may contain small loops which appear through synthesis.
We exclude these from the skeleton.

Our technique starts by performing a watershed transform of the
graph to detect large regions and connect local maxima located
within these regions [Haumont et al. 2003]. We next prune the leaves
and small loops from the resulting graph. Figure 12 illustrates the
cleaning process.

Figure 12: From left to right: Initial pattern, noisy skeleton from
the watershed transform, skeleton after pruning, after dilation, and
after union with initial pattern. Small features have been enlarged.

Final mesh The contiguous solid voxels form a thin pattern along
the surface shell. We thicken this shell as a post-process, by a user-
specified amount. The resulting set of voxels is then meshed by
extracting its orthogonal polygon which is then remeshed to obtain
a smoother model.

Figure 13: Result before and after cleanup of the support structure.

Support structures We produce our models both on filament
printers (Replicator 1, Ultimaker 2) and powder based ink jet print-
ers (ZCorp 450).

Our patterns are of course challenging prints on filament printers
and they require support structures. We use simple supports from
the slicing software, but more elaborate approaches could be used
to facilitate cleanup [Dumas et al. 2014; Vanek et al. 2014; Schmidt
and Singh 2010]. Figure 13 shows an object on the print bed, just
after printing and the cleaned up version. Our structurally sound
patterns survive the cleaning process even in such extreme cases.

Powder based printers, such as the ZCorp printers present different
challenges. While support is not necessary the print is extremely
fragile when removed from the powder bed — it is later strengthened
by dipping it into cyanoacrylate. Figure 14 shows a print created on
this technology.

Printing on SLS machines (laser on polyamide) would allow us to
produce even thinner results without support, and would directly
produce stronger parts.

6.2.2 Prints

Figure 1, Figure 14 and Figure 15 present 3D printed results. Note
how the patterns remain easily identifiable along the surfaces. It is
worth noting that isotropic patterns are generally easier to handle
as their initial synthesis is often well connected, with the exception
of highly curved areas, e.g. the ears of the Standford bunny model.
Anisotropic patterns are more challenging as the appearance tends
to conflict with the strengthening of the model. Nevertheless our
technique produces natural results on different patterns.

Computation times and other statistics are summarized in Table 1.
Table 2 gives performance breakouts between texture synthesis and
structural analysis for the bunny model on various exemplars.

Model/Texture Grid # Voxels # Iter tinit ttotal
Bunny/Keyboard 256 67651 4 1.11 14.6
Bunny/Bluebrown 256 84292 10 1.11 34.8
Bunny/Greencells 256 80917 3 1.11 11.4
Bunny/Hooks 256 55356 11 1.11 40.0
Bunny/Waves 256 107038 10 1.11 52.4
Bunny/Animalskin 256 89110 24 1.30 76.2
Kitten/Hooks 256 38626 8 0.9 24.3
Skull/Hooks 512 241652 4 5.9 40.3

Table 1: Computation time for the different models shown in the
paper, showing the extent of the voxelization used, number of vox-
els in the final geometry, number of iterations, timings for the first
synthesis pass, and timings for the whole process (in s).

https://web.archive.org/web/20150508082109/http://www.thingiverse.com/thing:168602
https://web.archive.org/web/20140825153848/http://www.thingiverse.com/thing:5506/

Texture Synthesis Structural Analysis Total
Keyboard 8.6 4.6 13.2
Bluebrown 23.8 12.1 35.9
Greencells 8.3 4.9 13.2
Hooks 28.4 10.5 38.9
Waves 37.3 13.9 51.2
Animalskin 45.5 26.9 72.4

Table 2: Computation times in seconds on the bunny model for the
synthesis, structural analysis, and both.

Figure 14: Result printed on a ZCorp 450. On this type of machines
the printed objects are very fragile and have to be extracted from
the powder bed before dipping into cyanoacrylate. Our thin patterns
nevertheless print successfully.

Figure 15: Kitten and skull model carved with the hooks pattern.
Models: Kitten (thing:12694), Skull (thing:168602).

6.3 Validation

We validate our approach by simulating our output pattern with a
full-scale high resolution finite element analysis. Each voxel of the
thickened pattern becomes a cubic (hexaheadral) element. We use
the same boundary conditions as for our optimizer: the object is

Scheme Connected Forces only Forces + Geodesic
Stress Expected force profile: weight along ~g = (0, 0,−1)g
Average 16388.5 5680.4 5418.16
Median 3961.5 3686.61 3444.95
99th% 153947 31720.7 30486.6
Stress Unexpected force profile: weight along ~g = (1, 0, 0)g
Average 87039.1 23509.8 20111.5
Median 20770.5 10374.6 9762
99th% 693773.5 185775 145854

Table 3: Stresss for a model 100mm long, using a grid of extent 256.
The score shown is |σ1|+ |σ2|+ |σ3|, in Pascal. Note that with the
unexpected force profile, the 99th percentile is further decreased by
the last optimisation scheme.

fixed to the ground and subject to gravity. The material parameters
are those of ABS plastic.

It is worth noting that the FEA solver requires two to five minutes
to solve for the equilibrium equation. Our system does several it-
erations of structural optimization, each solving several times the
equilibrium equation (see Section 5.2.1 and Table 1). It would thus
be impractical to rely on the full simulation of the pattern directly.

The full FEA solution lets us validate our approach of using the
abstract graph and simplified beam geometry. We first simulate the
fully connected structure, before any additional edges are added.
This is the first structure that can be simulated as disconnected struc-
tures lead to an under-determined system in FEA simulation. Sec-
ond, we simulate the structure reinforced with only the force pro-
file criterion (Section 5.2.1). Finally, we simulate the structure rein-
forced with our complete approach, that is force profile and geodesic
criteria (Section 5.2.2). We repeat the FE analysis but this time
change the force profile — the weight is applied in a direction or-
thogonal to the gravity used for the synthesis. This puts the pattern
in an unexpected situation, for which it was not designed.

Table 3 and Figure 16 summarizes the results. As can be seen,
in the expected scenario (top rows) the force profile criterion
strongly reduces stresses in the structure. The geodesic criterion
only marginally improves this result. In the unexpected scenario
however, the geodesic criterion further improves the result as its
reinforcements compensate for the now incorrect force profile the
pattern was optimized for. Note that the number across both rows
cannot be compared directly as the boundary conditions differ. Only
numbers within a same row are comparable.

We show in Figure 17 the effect of using different force profiles on
the bridges added by the structural optimizer.

6.4 Limitations

Our technique works well as long as the scale of the pattern is rela-
tively small compared to the object. This is in general the intended
use, but combined to the print size limitation it would sometimes be
desirable to generate coarser pattern. High curvature areas also pose
multiple difficulties: texture synthesis becomes more challenging,
the local planarity assumption for building the finite elements might
be violated (Section 5.2.1), and thickening to obtain the final mesh
may lead to fold-overs. Thus, final quality can degrade on surfaces
with highly curved features (e.g. front of the skull in Figure 15).

Not all patterns can be used to define meaningful reinforcements,
e.g. if the features of the input pattern are too thin to be printed at the
selected scale. Additionally, when the input pattern is completely
disconnected the appearance severely conflicts with the structural

https://web.archive.org/web/20140901000000/http://www.thingiverse.com/thing:12694
https://web.archive.org/web/20150508082109/http://www.thingiverse.com/thing:168602

Figure 16: Top: Color coded stresses for the first row of Table 3.
The scale is the same for all three images. Bottom: Color coded
stresses for the second row of Table 3. The scale is the same for all
three images.

Figure 17: From left to right: Different force profiles, with gravity
to the left, to the bottom, and to the right of the bunny. Note how the
reinforcements suggested by the structural optimizer adapt.

Figure 18: This pattern is fully disconnected and therefore the ap-
pearance cannot be reconciled with the connectivity requirements of
a sound structure. The produced object nevertheless prints correctly,
and does capture some of the original features.

objectives. This still produces correct models, but the reinforcements
are less inconspicuous as they do not blend within the pattern. Such
a failure case is shown in Figure 18.

7 Conclusion

We have introduced the first method to synthesize patterns along
a curved surface from an example, while ensuring that the pattern
is printable and withstands a user specified force profile. We be-
lieve our work opens interesting questions regarding the joint opti-
mization of shape structural soundness and shape appearance. By-

example approaches offer unique advantages in this context: our
method is easily accessible to casual users, and simple to use through
the specification of a 3D model and an image of a pattern.

There are several directions of future work. A first direction is to
transpose what we applied on surfaces into a volume synthesis con-
text. The challenges are different: in 3D patterns have more oppor-
tunities to connect without violating the appearance specified in a
2D exemplar. However, the computational cost grows dramatically
when dealing with volumes. A second direction is to further explore
the possible controls. We currently under-exploit the ability of our
on-surface synthesizer to orient and scale the synthesized textures.
It is also possible to locally change the texture, introducing pro-
gressive variations along a surface (e.g. [Zhang et al. 2003]). Both
controls can be combined with structural optimization, e.g. orienting
the pattern locally to maximally absorb stress.

Acknowledgements

This work was funded by ERC grant ShapeForge (StG-2012-
307877). We thank the anonymous reviewers for their helpful com-
ments, and the Lorraine region for providing us with equipment.

References

ASHIKHMIN, M. 2001. Synthesizing natural textures. In Proceed-
ings of the 2001 Symposium on Interactive 3D Graphics, ACM,
New York, NY, USA, I3D ’01, 217–226.

BHAT, P., INGRAM, S., AND TURK, G. 2004. Geometric texture
synthesis by example. In Proceedings of the 2004 Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing, ACM,
New York, NY, USA, SGP ’04, 41–44.

BOWERS, J., WANG, R., WEI, L.-Y., AND MALETZ, D. 2010. Par-
allel poisson disk sampling with spectrum analysis on surfaces.
ACM Trans. Graph. 29, 6 (Dec.), 166:1–166:10.

CHEN, Y., DAVIS, T. A., HAGER, W. W., AND RAJAMANICKAM,
S. 2008. Algorithm 887: Cholmod, supernodal sparse cholesky
factorization and update/downdate. ACM Trans. Math. Softw. 35,
3 (Oct.), 22:1–22:14.

CHRISTIANSEN, A. N., BÆRENTZEN, J. A., NOBEL-JØRGENSEN,
M., AAGE, N., AND SIGMUND, O. 2015. Combined shape and
topology optimization of 3d structures. Computers & Graphics
46, 0, 25 – 35. Shape Modeling International 2014.

CHRISTIANSEN, A. N., SCHMIDT, R., AND BÆRENTZEN, J. A.
2015. Automatic balancing of 3d models. Computer-Aided De-
sign 58, 0, 236 – 241. Solid and Physical Modeling 2014.

COOK, R. D., MALKUS, D. S., PLESHA, M. E., AND WITT, R. J.
2007. Concepts and Applications of Finite Element Analysis.
John Wiley & Sons.

DONG, Y., LEFEBVRE, S., TONG, X., AND DRETTAKIS, G. 2008.
Lazy solid texture synthesis. Computer Graphics Forum 27, 4,
1165–1174.

DUMAS, J., HERGEL, J., AND LEFEBVRE, S. 2014. Bridging the
gap: Automated steady scaffoldings for 3d printing. ACM Trans.
Graph. 33, 4 (July), 98:1–98:10.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. In Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques,
ACM, New York, NY, USA, SIGGRAPH ’01, 341–346.

GAL, R., WEXLER, Y., OFEK, E., HOPPE, H., AND COHEN-OR,
D. 2010. Seamless montage for texturing models. Computer
Graphics Forum 29, 2, 479–486.

GUENNEBAUD, G., JACOB, B., ET AL., 2010. Eigen v3.
http://eigen.tuxfamily.org.

HARKER, J., 2011. Crania Anatomica Filigre: Me to You. https:
//www.kickstarter.com/projects/joshharker/
crania-anatomica-filigre-me-to-you.

HAUMONT, D., DEBEIR, O., AND SILLION, F. 2003. Volumetric
cell-and-portal generation. CFG 22, 3, 303–312.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B.,
AND SALESIN, D. H. 2001. Image analogies. In Proceed-
ings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH
’01, 327–340.

HU, R., LI, H., ZHANG, H., AND COHEN-OR, D. 2014. Approxi-
mate pyramidal shape decomposition. ACM Trans. Graph. 33, 6
(Nov.), 213:1–213:12.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK, A.
2003. Graphcut textures: Image and video synthesis using graph
cuts. ACM Trans. Graph. 22, 3 (July), 277–286.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. ACM Trans.
Graph. 24, 3 (July), 795–802.

LAGAE, A., DUMONT, O., AND DUTRE, P. 2005. Geometry syn-
thesis by example. In Proceedings of the International Confer-
ence on Shape Modeling and Applications 2005, IEEE Computer
Society, Washington, DC, USA, SMI ’05, 176–185.

LEFEBVRE, S., AND HOPPE, H. 2005. Parallel controllable texture
synthesis. ACM Trans. Graph. 24, 3 (July), 777–786.

LEFEBVRE, S., AND HOPPE, H. 2006. Appearance-space texture
synthesis. ACM Trans. Graph. 25, 3 (July), 541–548.

LEMPITSKY, V., AND IVANOV, D. 2007. Seamless mosaicing
of image-based texture maps. In Computer Vision and Pattern
Recognition, 2007. CVPR ’07. IEEE Conference on, 1–6.

LIU, L., CHAMBERS, E. W., LETSCHER, D., AND JU, T. 2010. A
simple and robust thinning algorithm on cell complexes. Com-
puter Graphics Forum 29, 7, 2253–2260.

LU, L., SHARF, A., ZHAO, H., WEI, Y., FAN, Q., CHEN, X.,
SAVOYE, Y., TU, C., COHEN-OR, D., AND CHEN, B. 2014.
Build-to-last: Strength to weight 3d printed objects. ACM Trans.
Graph. 33, 4 (July), 97:1–97:10.

LUO, L., BARAN, I., RUSINKIEWICZ, S., AND MATUSIK, W. 2012.
Chopper: Partitioning models into 3d-printable parts. ACM Trans.
Graph. 31, 6 (Nov.), 129:1–129:9.

MA, C., HUANG, H., SHEFFER, A., KALOGERAKIS, E., AND
WANG, R. 2014. Analogy-driven 3d style transfer. Computer
Graphics Forum 33, 2, 175–184.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped
textures. In Proceedings of the 27th Annual Conference on Com-
puter Graphics and Interactive Techniques, ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, SIGGRAPH ’00,
465–470.

PRÉVOST, R., WHITING, E., LEFEBVRE, S., AND SORKINE-
HORNUNG, O. 2013. Make it stand: Balancing shapes for 3d
fabrication. ACM Trans. Graph. 32, 4 (July), 81:1–81:10.

ROSENKRANTZ, J., AND LOUIS-ROSENBERG, J., 2007. http:
//n-e-r-v-o-u-s.com/about_us.php.

SCHMIDT, R., AND SINGH, K. 2010. Meshmixer: An interface for
rapid mesh composition. In ACM SIGGRAPH 2010 Talks, ACM,
New York, NY, USA, SIGGRAPH ’10, 6:1–6:1.

SEGERMAN, H., 2009. Surface autoglyphs. http://www.
segerman.org/autologlyphs.html.

SIGMUND, O., AND MAUTE, K. 2013. Topology optimization
approaches. Struct. and Mult. Optimization 48, 6, 1031–1055.

SIGMUND, O. 2001. A 99 line topology optimization code written
in matlab. Struct. and Mult. Optimization 21, 2, 120–127.

SOLER, C., CANI, M.-P., AND ANGELIDIS, A. 2002. Hierarchical
pattern mapping. ACM Trans. Graph. 21, 3 (July), 673–680.

STAVA, O., VANEK, J., BENES, B., CARR, N., AND MĚCH, R.
2012. Stress relief: Improving structural strength of 3d printable
objects. ACM Trans. Graph. 31, 4 (July), 48:1–48:11.

TONG, X., ZHANG, J., LIU, L., WANG, X., GUO, B., AND SHUM,
H.-Y. 2002. Synthesis of bidirectional texture functions on
arbitrary surfaces. ACM Trans. Graph. 21, 3 (July), 665–672.

TURK, G. 2001. Texture synthesis on surfaces. In Proceedings
of the 28th Annual Conference on Computer Graphics and Inter-
active Techniques, ACM, New York, NY, USA, SIGGRAPH ’01,
347–354.

UMETANI, N., AND SCHMIDT, R. 2013. Cross-sectional structural
analysis for 3d printing optimization. In SIGGRAPH Asia 2013
Technical Briefs, ACM, New York, NY, USA, SA ’13, 5:1–5:4.

VANEK, J., GALICIA, J. A. G., AND BENES, B. 2014. Clever sup-
port: Efficient support structure generation for digital fabrication.
Computer Graphics Forum 33, 5, 117–125.

WANG, W., WANG, T. Y., YANG, Z., LIU, L., TONG, X., TONG,
W., DENG, J., CHEN, F., AND LIU, X. 2013. Cost-effective
printing of 3d objects with skin-frame structures. ACM Trans.
Graph. 32, 6 (Nov.), 177:1–177:10.

WEI, L.-Y., AND LEVOY, M. 2001. Texture synthesis over arbitrary
manifold surfaces. In Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques, ACM, New
York, NY, USA, SIGGRAPH ’01, 355–360.

WEI, L.-Y., LEFEBVRE, S., KWATRA, V., AND TURK, G. 2009.
State of the art in example-based texture synthesis. In Eurograph-
ics 2009, State of the Art Report.

YING, L., HERTZMANN, A., BIERMANN, H., AND ZORIN, D.
2001. Texture and shape synthesis on surfaces. In Rendering
Techniques 2001, S. Gortler and K. Myszkowski, Eds., Eurograph-
ics. Springer Vienna, 301–312.

ZHANG, J., ZHOU, K., VELHO, L., GUO, B., AND SHUM, H.-Y.
2003. Synthesis of progressively-variant textures on arbitrary
surfaces. ACM Trans. Graph. 22, 3 (July), 295–302.

ZHOU, K., HUANG, X., WANG, X., TONG, Y., DESBRUN, M.,
GUO, B., AND SHUM, H.-Y. 2006. Mesh quilting for geometric
texture synthesis. ACM Trans. Graph. 25, 3 (July), 690–697.

ZHOU, Q., PANETTA, J., AND ZORIN, D. 2013. Worst-case struc-
tural analysis. ACM Trans. Graph. 32, 4 (July), 137:1–137:12.

ZHOU, S., JIANG, C., AND LEFEBVRE, S. 2014. Topology-
constrained synthesis of vector patterns. ACM Trans. Graph. 33,
6 (Nov.), 215:1–215:11.

https://www.kickstarter.com/projects/joshharker/crania-anatomica-filigre-me-to-you
https://www.kickstarter.com/projects/joshharker/crania-anatomica-filigre-me-to-you
https://www.kickstarter.com/projects/joshharker/crania-anatomica-filigre-me-to-you
http://n-e-r-v-o-u-s.com/about_us.php
http://n-e-r-v-o-u-s.com/about_us.php
http://www.segerman.org/autologlyphs.html
http://www.segerman.org/autologlyphs.html

