
HAL Id: hal-01198922
https://hal.inria.fr/hal-01198922

Submitted on 9 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preventing Memory and Information LeakageIncinerator
– Eliminating Stale References in Dynamic OSGi

Applications
Koutheir Attouchi, Gaël Thomas, Gilles Muller, Julia L. Lawall, André

Bottaro

To cite this version:
Koutheir Attouchi, Gaël Thomas, Gilles Muller, Julia L. Lawall, André Bottaro. Preventing Memory
and Information LeakageIncinerator – Eliminating Stale References in Dynamic OSGi Applications.
Dependable Systems and Networks, Sep 2015, Rio de Janeiro, Brazil. �hal-01198922�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49448351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01198922
https://hal.archives-ouvertes.fr

Incinerator – Eliminating Stale References in
Dynamic OSGi Applications

Koutheir Attouchi∗, Gaël Thomas†, Gilles Muller‡, Julia Lawall‡ and André Bottaro∗
∗Orange Labs, Email: firstname.lastname@orange.com

†Telecom SudParis, Email: gael.thomas@telecom-sudparis.eu
‡Inria/LIP6/UPMC/Sorbonne University, Email: firstname.lastname@lip6.fr

Abstract—Java class loaders are commonly used in application
servers to load, unload and update a set of classes as a unit.
However, unloading or updating a class loader can introduce
stale references to the objects of the outdated class loader. A
stale reference leads to a memory leak and, for an update,
to an inconsistency between the outdated classes and their
replacements. To detect and eliminate stale references, we propose
Incinerator, a Java virtual machine extension that introduces
the notion of an outdated class loader. Incinerator detects stale
references and sets them to null during a garbage collection cycle.
We evaluate Incinerator in the context of the OSGi framework
and show that Incinerator correctly detects and eliminates stale
references, including a bug in Knopflerfish. We also evaluate
the performance of Incinerator with the DaCapo benchmark on
VMKit and show that Incinerator has an overhead of at most
3.3%.

I. INTRODUCTION

A Java class loader is a container for a set of Java classes
that makes it possible to load and unload the set of classes as
a unit. Such a facility is convenient in the implementation of a
middleware, that can use class loaders to organize the dynamic
loading, unloading and updating of applications. Unloading
or updating classes, however, introduces the possibility of
stale references, i.e., references to objects that instantiate the
outdated classes. A stale reference amounts to a memory
leak because it blocks garbage collection, not only of the
referenced object but also of the outdated class loader, which
stays reachable through the object’s class. In this case, all
classes loaded by the class loader remain reachable as well.
A stale reference may also enable the execution of outdated
code, which may render the system inconsistent.

Avoiding stale references is challenging. Since there is no
support in the JVM to identify outdated class loaders, a stale
reference is a Java reference like any other. Its only specificity
is that it refers to an object that instantiates a class loaded
by a class loader that is considered to be outdated. In order
to avoid stale references, the developer thus has to manually
track all inter-application references in the source code, and
carefully insert code to release them when a class loader
becomes outdated. This manual checking is difficult and error-
prone. Moreover, because an application can be uninstalled
or updated by a user, and this is not necessarily apparent in
the application source code, the validity of inter-application
references cannot be determined by static analysis. Thus, run-
time analysis is required.

The OSGi framework [1] illustrates this problem of stale
references. OSGi is a middleware that targets smart homes [2],

a domain in which application updates are frequently neces-
sary. OSGi loads each application, referred to as a bundle,
in a separate class loader, and provides the ability to update
a bundle by loading a new version of its code in a new
class loader. In order to avoid costly remote procedure calls,
bundles directly exchange Java references. These inter-bundle
references can become stale when bundles are unloaded or
updated.

In this paper, we propose to address the issue of stale
references at the garbage collector level. Specifically, we pro-
pose a garbage collector extension, called Incinerator, which
relies on the addition of an outdated flag to class loaders to
identify, and then eliminate stale references. The flag is set
by a middleware when the code of the application loaded
by the class loader becomes outdated. Then, during the next
garbage collection cycle, Incinerator checks each reference to
know whether it references an object that instantiates a class
loaded by an outdated class loader. If this is the case, the
reference is identified as stale and Incinerator sets it to null.
As a consequence, no stale object remains reachable and the
associated memory is reclaimed by the garbage collector at the
end of the collection cycle.

Incinerator induces low overhead since the garbage col-
lection phase already traverses all live objects, and checking
the staleness of a reference requires few operations. Incin-
erator is also independent of the specific garbage collection
algorithm as it only requires the modification of the function
that scans the objects. Regardless of the garbage collection
strategy used, Incinerator guarantees that after a collection,
outdated code cannot be used anymore. In the case of a stop-
the-world collector, by explicitly triggering a collection just
after the uninstallation of an application, the middleware can
thus ensure that inconsistencies and memory leaks will never
appear. In the case of a concurrent collector, which lets the
application run during a collection, Incinerator provides a best
effort behavior: it ensures that the outdated code cannot be
used after the collection cycle, but the applications can still
use this outdated code during the collection.

Incinerator does, however, change the behavior of the Java
virtual machine, because it nullifies references that are found
to be stale. Several compatibility issues could arise from this
change. First, Incinerator does not change the behavior of a
correctly written application that releases its stale references.
Likewise, it does not change the behavior of a buggy appli-
cation that retains stale references without using them. For
an application that uses stale references, we distinguish two
cases: (i) the stale reference is only accessed as part of a

2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-8629-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DSN.2015.39

545

2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-8629-3/15 $31.00 © 2015 IEEE

DOI 10.1109/DSN.2015.39

545

cleanup operation, i.e., a finalize method; Incinerator tries to
execute this cleanup operation before nullifying in order to
avoid other kinds of leaks, (ii) the stale reference is used
elsewhere; in this case, the application that uses the stale
reference contains a bug since using the stale object could lead
to conflicting operations. Since the reference has been nullified,
such a buggy application receives a NullPointerException
which helps the developer track down the bug, by making it
visible.1 Thus, we reiterate that Incinerator only has an impact
on the semantics of a Java application when the application
contains stale reference bugs.

We have prototyped Incinerator in J3, a Java virtual ma-
chine based on VMKit [3]. Our implementation of Incinera-
tor modifies the MMTk “Mark-Sweep” garbage collector [4]
included in VMKit and adds 150 lines of code to J3. We
have also used Incinerator together with Knopflerfish 3.5.0 [5],
one of the main OSGi implementations, in order to solve the
problem of stale references in the OSGi context. Preparing
Knopflerfish for Incinerator required modifying only 6 lines
of code, mainly to mark a class loader as outdated when the
bundle becomes outdated.

We have evaluated the impact of Incinerator both in terms
of the increase in robustness and the performance penalty with
the following experiments:

• We have designed a test suite of seven micro-benchmarks
that cover the possible sources of memory leaks caused by
stale references. Incinerator identifies the stale references
in all cases and prevents memory leaks, while memory
leaks occur with a standard JVM.

• We have evaluated the overhead incurred by Incinerator
using the DaCapo 2006 benchmark suite [6], which covers
a wide range of application behaviors. The average over-
head remains below 1.2% on a high-end desktop machine
and below 3.3% on a smart-home PC, which shows that
the overhead of Incinerator is reasonable in J3.

• We have used Incinerator to find a bug in a legacy
OSGi bundle, the widely used HTTP-Server bundle of
Knopflerfish. We have sent a bug report and a patch,
which have been accepted by the Knopflerfish maintain-
ers.

The rest of the paper is organized as follows. Section II
describes Java class loaders and the problem of memory
leaks. Section III presents the design and implementation of
Incinerator. Section IV presents a use case of Incinerator in
the context of OSGi. Section V evaluates the benefits of
Incinerator. Section VI presents an overview of related work,
and Section VII concludes.

II. JAVA CLASS LOADERS

In order to understand the problem of stale references, we
first briefly describe Java class loaders, and then describe how
class loaders are used to load, unload and update applications.

A. Class loader

A Java virtual machine [7] (JVM) executes bytecode in-
structions that belong to Java classes. A class is loaded on-

1It would be helpful to throw an exception that is specific to stale reference
access, but this is not yet supported by our implementation.

O1 is an object of class C1.
O2 and O3 are objects of
class C2.
C1 and C2 were loaded by
L.

Class loader L

Class C1

Class C2

Object O1

Object O3

Object O2

Fig. 1: References between class loaders, classes, and objects.

demand using a Java class loader, which is a Java object
whose purpose is to return a Java class given a fully qualified
class name. As shown in Figure 1, each Java object holds a
reference to its class, and each class holds a reference to its
class loader. Additionally, a class loader holds references to
all the classes it has loaded.

Like any other object, a class occupies memory. In the case
of a class, memory is required to store the bytecode of the
methods, their generated machine code, and the metadata of
the class, e.g., the class’s fully qualified name, hierarchy, and
fields. The garbage collector [8] will free this memory when
the class becomes unreachable. As a class references its class
loader, a class loader L that has loaded classes C1, ..., CN can
only be collected when the graph of objects {L,C1, ..., CN}
becomes unreachable, which implies that, for each Ci, all
objects that instantiate Ci are unreachable.

B. Using class loaders in a middleware

A number of Java middlewares, such as those defined
by the OSGi [1] or the JEE [9] specifications, support the
execution of multiple Java applications within a single Java
Virtual Machine. These middlewares use class loaders to load,
unload or update applications. In order to install an application,
a middleware creates a class loader, and stores it in the
middleware’s metadata about the application. Subsequently,
the middleware uses the class loader to load the code of the
application into the Java virtual machine. To uninstall the
application, the middleware simply releases the reference to
the metadata about the application. To update the application,
the middleware replaces the class loader associated with the
application by a new class loader, which is used to load the
new version of the application code.

We say that a class loader that was used to load either
the code of a now uninstalled application or the code of an
old version of an application is outdated. We also say that
a reference is stale if it references an outdated class loader,
a class loaded by an outdated class loader, or an object that
instantiates one of these classes. Accordingly, we say that an
object is stale if it is referenced by a stale reference.

Any stale reference prevents the garbage collector from
reclaiming the memory of the outdated class loader, and thus
all of the classes loaded by the outdated class loader. Thus,
even a stale reference to a small object can have a dramatic
impact on memory usage if many classes were loaded by the
outdated class loader.

III. INCINERATOR DESIGN AND IMPLEMENTATION

The goal of Incinerator is to eliminate stale references
by setting them to null. For this, Incinerator scans all live
references in the Java memory space to determine whether

546546

any are stale. We have chosen to design Incinerator as an
extension of the garbage collector, which already performs
such a scan. This approach makes it possible to access private
instance variables and method-local variables that would not be
accessible to a Java application. Furthermore, this approach has
a low performance penalty since in most cases the overhead is
limited to the cost of checking the staleness of each reference
during the heap traversal already performed by the garbage
collector.

In this section, we first present how stale references are
identified. Then, we discuss more specifically the other JVM
features impacted by the nullification of stale references: syn-
chronization and finalization. Finally, we introduce the most
important implementation details.

A. Outdated class loaders and stale references

In the design of our approach, it is the middleware that
causes references to become stale, by uninstalling or updating
the classes of an application, but it is the JVM, specifically
the garbage collector, that nullifies these stale references. To
allow the middleware to communicate the current state of a
class loader to the JVM, we introduce an “outdated” flag in
the JVM’s internal representation of a class loader and a native
method for updating the flag’s value. This flag is initially
cleared when the class loader is created. The middleware must
use the native method to set the flag when the associated
application is uninstalled or updated.

During the graph traversal performed by the garbage collec-
tor, Incinerator inspects the outdated flag of the class loader of
the class of each referenced object. If the flag is set, Incinerator
considers that the reference is stale.

B. Stale references and synchronization

In Java, each object has an attached monitor, whose pur-
pose is to provide thread synchronization. The list of the
threads blocked while waiting for the monitor is stored in the
monitor structure, which can only be retrieved through the
object. Therefore, if a thread is holding the monitor at the
time when the associated object becomes stale and Incinerator
nullifies all references to the object, the holding thread will
become unable to reach the monitor structure to unblock any
blocked threads. These threads would remain blocked, leaking
both their thread structures and any referenced objects.

Incinerator addresses this issue by waking up the blocked
threads in a cascaded way. To allow each wakened thread
to detect that the monitor is stale, we add a stale flag to
the monitor structure. During a collection, when Incinerator
finds a stale object with an associated monitor, it nullifies the
stale reference, marks the monitor as stale, and then wakes
up the first blocked thread. The thread wakes up at the point
where it blocked, in the monitor acquiring function. We modify
this function so that when a thread wakes up, it checks the
stale flag. If the flag indicates that the monitor is stale, the
monitor acquiring function wakes up the next blocked thread
and throws a NullPointerException to report to the current
thread that the object is stale. Note that there is no special
treatment of the thread that is actually holding the monitor.
It continues executing the critical section normally, and will
receive a NullPointerException either when it tries to exit

the critical section, or beforehand, if it tries to access the stale
object.

Most modern JVMs allocate a monitor structure that is
separate from the object and is managed explicitly [10].
This monitor structure is normally freed during a collection
when the memory of its associated object is reclaimed. With
Incinerator, when the memory of a stale object is reclaimed,
its monitor structure has to survive the collection, if threads
are blocked on it, so that each thread can wake up the next
one. We thus further modify the monitor acquiring function so
that it frees the monitor structure when it detects that there are
no remaining blocked threads.

C. Stale references and finalization

In Java, a finalize() method defines clean-up code
that is executed exactly once by the garbage collector before
the memory associated with the object is reclaimed. If a
finalize() method accesses a stale reference that was nulli-
fied by Incinerator, then it encounters a NullPointerExcep-
tion and is not able to complete the clean up. This may lead
to other kinds of resource leaks, such as never closing a file
descriptor or a network connection. As Incinerator is designed
with the goal of preventing resource leaks, we have decided
to treat finalizable objects specially, to give a finalize
method that uses stale references a chance to execute correctly.
There are two cases: a finalizable object, i.e., an object with
a finalize() method, is either not alive at the end of a
collection cycle, i.e., it is either unreachable or stale, or it is.

If the finalizable object is not alive at the end of a collec-
tion, we defer the nullification of the stale objects reachable
from the finalizable object by one collection cycle. As the
finalizable object is not alive, the garbage collector imme-
diately invokes its finalize() method after the collection
cycle. By deferring the nullification by one cycle, Incinerator
enables the finalize() method to execute correctly. This
case is common and we have encountered it during our tests of
Incinerator in the context of OSGi. Indeed, when an application
is uninstalled or updated, all its finalizable objects become
stale, thus not alive, and their finalize() methods are
immediately invoked after the first collection cycle.

If the object is alive at the end of a collection, we do
not defer the nullification of its stale references. Indeed, in
this case, it is not known when and if the object will become
unreachable, and thus when and if its finalize() method
will be executed. Deferring the nullification of stale references
until after the finalize() method is executed may indef-
initely prevent Incinerator from performing nullification, and
thus from eliminating the memory leaks caused by the stale
references. In practice, we have not encountered reachable
finalizable objects that use inter-application references in their
finalize() methods in our tests. We thus think that nulli-
fying the stale references in this case will only rarely prevent
the execution of a finalize() method.

In order to distinguish the two cases, Incinerator has to
identify the stale or unreachable finalizable objects. However,
they are not known at the beginning of a collection cycle:
stale or unreachable objects are only identified by Incinerator
at the end of the collection cycle, when non-stale live objects

547547

Stale

Finalizable

Other

R
ea
ch
ab
le

U
nr
ea
ch
ab
le

Finalizables

R
oo

t S
et

St
al

e
R

ef
er

en
ce

 L
is

t

Before first step
Finalizables

R
oo

t S
et

St
al

e
R

ef
er

en
ce

 L
is

t

End of first step
Finalizables

R
oo

t S
et

St
al

e
R

ef
er

en
ce

 L
is

t

End of second step
Finalizables

R
oo

t S
et

St
al

e
R

ef
er

en
ce

 L
is

t

End of third step

Fig. 2: Incinerator algorithm.

are identified. For this reason, Incinerator identifies the stale
references that it will nullify in three steps (see Figure 2):

• During the first step, Incinerator identifies all the reach-
able stale references and adds their locations to a stale
reference list.

• During the second step, Incinerator removes from the
stale reference list the locations of the stale references
reachable by the stale or unreachable finalizable objects.

• During the third step, Incinerator nullifies all the remain-
ing stale references of the stale reference list.

Algorithm 1: Incinerator nullification algorithm
Data:

staleList: List of Reference *
scanObject: Function

/* First step: find the stale references */
1 Function scanObjectDuringMarking(obj: Object)
2 foreach Reference ∗ pr ∈ obj do
3 if (∗pr �= null) && (∗pr).class.classloader.isOutdated

then
4 staleList.add(pr);

5 originalScanObject(obj);

/* Second step: remove the stale references reachable
by an unreachable finalizable object */

6 Function scanObjectDuringFinalize(obj: Object)
7 foreach Reference ∗ pr ∈ obj do
8 if (∗pr �= null) && (∗pr).class.classloader.isOutdated

then
9 staleList.remove(pr);

10 originalScanObject(obj);

/* Last step: nullifies the remaining references */
11 Function nullify()
12 foreach Reference ∗ pr ∈ staleList do

/* If object locked, then starts the cascade */
13 if (∗pr).monitor.isLocked then

/* Mark the monitor as outdated */
14 (∗pr).monitor.isOutdated := true;

/* Start the unlock cascade */
15 unlock((∗pr).monitor);

/* Nullify the stale reference */
16 ∗pr := null;

These three steps are presented in more detail in Algo-
rithm 1. The first step (lines 1 to 5 of Algorithm 1) adds the
locations of all of the reachable stale references to the stale
reference list during the mark phase of the collector. The mark
phase of the collector traverses the object graph from the root
set and marks objects as reachable. The first step of Incinerator
is thus implemented by modifying the scan function to use

the function scanObjectDuringMarking to record any
references to stale objects in the stale reference list, resulting
in the dashed red lines in the diagram “End of first step” in
Figure 2, before performing the normal scan of the object.

During the second step (lines 6 to 10 of Algorithm 1),
Incinerator removes from the stale reference list those refer-
ences that are reachable by the stale or unreachable finalizable
objects. This step is performed during the final phase of the
garbage collector, which handles finalizable objects. A Java
garbage collector cannot reclaim the memory of an unreach-
able finalizable object and of its reachable sub-graph directly
after a collection because the object can become reachable
again during the execution of its finalize() method, e.g.,
by storing a reference to itself in a reachable object or in a
static variable. For this reason, during the final phase of the
collection, a Java garbage collector marks each unreachable
finalizable object and its reachable sub-graph as reachable
(hence the blue color for the balls on the lower left in Figure 2
in the diagram “End of second step”). To perform this, the
collector simply starts a second traversal of the object graph,
in which it considers the objects that are both finalizable and
unreachable as the roots of the graph. We have modified the
scan function scanObjectDuringFinalize that is used
during this traversal to update the stale reference list and
remove the stale reachable references.

The third step (lines 11 to 16 of Algorithm 1) nullifies the
locations of the stale references contained in the stale reference
list (red dashed lines in the diagram “End of second step” in
Figure 2). This step is performed at the end of the collection
cycle, just before reclaiming the memory of the dead objects.
Incinerator takes care of starting the release cascade in case of
an acquired monitor between the lines 13 and 15, and nullifies
the locations of the references at line 16.

The algorithm presented so far is designed to protect
against programmer bugs, but not a deliberate attack. As
such, it is possible to construct a malicious application that
prevents a stale object from ever being reclaimed by the
garbage collector. As Incinerator defers the nullification of
a stale reference reachable from an unreachable finalizable
object, such a stale reference survives a collection cycle. A
finalize() method of the malicious application could then
force the stale reference to survive one more collection cycle
by creating a new unreachable finalizable object that references
the stale object. By repeating the same pattern, the malicious
application could indefinitely defer the nullification of a stale

548548

reference to the stale object. To protect against such attacks,
Incinerator adds a second flag to the class loader to indicate
whether its stale objects have already survived a collection
cycle. Incinerator only defers the nullification of the stale
references to the stale objects during the first collection and
not during the second one.

D. Implementation details

The Incinerator prototype is based on the J3/VMKit [3]
experimental JVM. Implementing Incinerator requires roughly
150 lines of C++ code. This suggests that Incinerator should
be relatively easy to port to a different JVM. In the remainder
of the section, we summarize the changes made in the JVM
and discuss an incompatibility with the JVM specification [7]
caused by the nullification of references.

a) JVM changes: We have seen that within the JVM,
Incinerator requires changes in the garbage collector, in the
support for class loading, and in the monitor implementation.
The garbage collector is modified as presented in the previ-
ous section. The monitor implementation is also modified to
support the algorithm described in Section III-B.

As an optimization, Incinerator is only enabled when stale
references potentially exist. For this purpose, we have added
a global flag that is set when a class loader is marked as
outdated, since a new stale reference can only appear under this
condition. Incinerator clears the flag at the end of a collection
if all the stale references are eliminated, e.g., if Incinerator did
not defer the nullification of a stale reference.

b) Incompatibility with the JVM specification: The Java
language specification [11] states that if an exception is raised
while holding a monitor, the Java compiler has to generate an
exception handler that releases the monitor. This introduces
the possibility of an infinite loop when using Incinerator,
because Incinerator can nullify the reference to the object
containing the monitor, causing the monitor release operation
itself to raise a NullPointerException, which again
triggers the execution of the same exception handler. To avoid
the possibility of an infinite loop, we have modified the Just-
In-Time compiler so that the code generated for a lock release
simply leaves the block silently when the monitor is null, rather
than raising a NullPointException exception.

Except when Incinerator nullifies the references to the mon-
itor, our workaround does not change the behavior of programs
compiled from Java source code. Indeed, the Java compiler
ensures that the reference given to a synchronized block is
never touched between an acquire and a release instruction.2

As a consequence, the argument of the release instruction can
never be null as, if it were, the preceding acquire instruction
would have thrown the NullPointerException. However,
our workaround is incompatible with the Java specification and
could change the behavior of programs written directly in Java
byte code or generated in an ad-hoc fashion.

IV. USING INCINERATOR IN OSGI

This section presents a use case of Incinerator in the context
of OSGi [1]. An application in OSGi is called a bundle. It

2The reference used by the synchronized block is cached in a local variable
that is not visible to the programmer.

Non-volatile memory

Memory heap

Java Virtual Machine

A1 1.0

A2 2.0

L1

L2

⎫⎪⎬
⎪⎭

A
rch

iv
es

Class
loadingB

(B, Li)

Fig. 3: OSGi bundle update. Each archive Ai is loaded using a
separate class loader Li. Updating bundle B from version 1.0
to version 2.0 implies creating class loader L2, then loading
A2 using L2, and then associating B with L2 instead of L1.

is represented by a Java object, which contains an identifier,
called the bundle ID, OSGi-specific metadata, including a
symbolic name, a vendor and a version, and a Java class loader,
which is used to load the classes of the bundle.

When a bundle is uninstalled, OSGi broadcasts an event
to other bundles asking them to release their references to the
objects that instantiate the classes of the outdated class loader.
Then, OSGi removes all references to the bundle from the
framework. The class loader is subsequently considered to be
outdated. A bundle that continues, after having handled the
event, to reference or use objects that instantiate classes of
the outdated class loader is considered as invalid by the OSGi
specification [1].

When a bundle is updated, OSGi broadcasts an event and
removes the reference to the class loader from the bundle,
making the class loader outdated. Then, OSGi creates a new
class loader to load the new classes of the bundle, and stores
this class loader in the bundle. The update process is illustrated
in Figure 3.

We have modified the Knopflerfish OSGi framework ver-
sion 3.5.0 in order to use Incinerator. This required modifying
the functions that uninstall and update a bundle to (i) mark
a class loader as outdated at the end of its update or an
uninstall, and (ii) trigger a collection that ensures that all the
stale references are eliminated. In total, 6 lines of code are
modified in the framework.

V. EVALUATION

In this section, we evaluate Incinerator in terms of both the
increase in robustness and the performance penalty. We first
evaluate Incinerator itself and then evaluate Incinerator in the
context of OSGi.

All of our evaluations are performed on two computers,
both of which run Debian 6.0 with a Linux 2.6.32-i386 kernel:
(i) a low-end computer with a 927 Mhz Intel Pentium III
processor, 248 megabytes of RAM and 4 gigabytes of swap
space, which has performance comparable to that of a typical
system in a smart-home environment, (ii) a high-end computer
having two 2.66 Ghz Intel Xeon X5650 6 core processors,
12 gigabytes of RAM and no swap space. In the former case,
the swap space is necessary, because J3 requires at least 1
gigabyte of address space to run the DaCapo benchmark suite.

J3 has been measured to be between 1.2 and 3 times slower
than JikesRVM [3]. We use J3 in our evaluation because it is
easy to extend with new functionalities.

549549

Application A Application B

Object YObject X

Fig. 4: Application configuration used in micro-benchmarks
scenarios.

A. Robustness and Performance of Incinerator

We evaluate the robustness and performance of Incinerator
from a number of perspectives. First, we present a test suite
of seven micro-benchmarks that we have designed to cover
the possible sources of stale references. This test suite covers
different scenarios of memory leaks and is used to verify that
Incinerator is able to identify and eliminate them. Then, we
show the impact of repeated memory leaks caused by stale
references. Finally, we study the performance overhead of
Incinerator by running the DaCapo 2006 benchmark, which
is representative of standard Java applications.

1) Stale reference micro-benchmarks: We have developed
seven microbenchmarks covering the seven scenarios in which
stale references can arise. To describe these scenarios, we use
the application configuration shown in Figure 4. This configu-
ration involves two applications, A and B, and two objects, X
and Y , created by B. Stale references will appear in the faulty
application A, which retains a stale reference to X or Y when
B is uninstalled. The scenarios of these micro-benchmarks
are classified by three criteria: scope, synchronization, and
finalization, as follows:

a) Scope: Scope refers to the location of the reference,
i.e., in a local variable, in a global variable, in an object field,
or in a thread-local variable. Different types of locations are
scanned in different ways and orders by the garbage collector.
We have designed four scenarios to check that Incinerator finds
stale references in all possible kinds of locations. A reference
to X is retained by the application A, respectively, in a local
variable (Scenario 1), in a global variable (Scenario 2), in
an object field (Scenario 3), and in a thread-local variable
(Scenario 4). In all scenarios, the reference is made stale by
uninstalling B.

b) Synchronization: Synchronization refers to whether
the referenced object’s monitor is used to synchronize threads.
As stated in Section III-B, if threads are blocked while waiting
to obtain the monitor of a stale object, then Incinerator wakes
up the blocked threads and only releases the memory of the
object monitor when the last thread has woken up. Scenario 5
illustrates this situation by having two threads created by A
each synchronize on a local variable that references X . The
two references to X are turned stale by uninstalling B.

c) Finalization: Incinerator tries to allow finalize()
methods to run without introducing null pointer exceptions
by not immediately nullifying stale references reachable by
a finalizable object. To check the possible cases, we have
defined two scenarios. In Scenario 6, the application A retains
a reference to Y and Y is finalizable with a finalize()
method that does not access memory. The object Y is made
stale by uninstalling B. In Scenario 7, the application A retains

a reference to X and X is finalizable with a finalize()
method that uses the object Y . The objects X and Y are made
stale by uninstalling B.

We have executed our scenarios using J3 and Incinerator.
J3 suffers from memory leaks caused by stale references
that go undetected in all scenarios. Incinerator detects and
eliminates all the stale references. In particular, Incinerator
handles correctly the case of the stale references used for
synchronization (Scenario 5): the blocked thread is woken
up by Incinerator when the reference to the stale object
used for synchronization is nullified. Both threads receive a
NullPointerException: the holder of the lock when
it tries to re-acquire the lock and the blocked thread in the
lock-acquiring method. Incinerator also handles correctly the
two cases of stale references used by a finalizable object
(Scenario 6 and Scenario 7), successfully executing the
finalize() method as expected. After the execution of the
finalize() methods, the memory of the stale objects is
reclaimed on the next garbage collection cycle.

2) Memory leaks: To investigate the memory leaks caused
by stale references in quantitative terms, we repeat Scenario 1
(Section V-A1) multiple times, to create a large number of stale
references. In this experiment, the application A defines a set,
in which it stores a reference to X . Each time we update B,
A adds a reference to the new X provided by the new B in
the same set. The application B is a small application with
150 lines of Java code distributed over 3 classes.

For the baseline, J3, each update of the application B
makes one more reference stale and costs the JVM 892 kilo-
bytes of leaked memory. This is due to the need to keep all
the application class information, static objects and generated
machine code. After only 230 updates of the application B,
the amount of leaked memory reaches 200 megabytes and
J3 starts raising OutOfMemoryException exceptions on our
low-end test machine. Incinerator, however, continues to use
the same amount of memory. These results show that even
stale references into a small application may leak a significant
amount of memory.

3) Performance benchmarks: In order to measure the per-
formance impact of Incinerator on real Java applications, we
ran the DaCapo 2006 benchmark suite [6] on J3 and on
Incinerator. The DaCapo 2006 benchmark suite includes nine
real Java applications3 stressing many JVM subsystems.

This evaluation assesses the minimal impact of Incinerator,
when there are no application updates, because the DaCapo
2006 applications do not cause class loaders to become out-
dated. In this case, the global flag (see Section III-D) is always
cleared. As compared to the baseline, J3, adding Incinerator
introduces overhead for each monitor acquisition in order to
check whether the monitor is stale. Incinerator also replaces a
direct call to the scan function by an indirect call, in order
to switch from the original scan function to the Incinerator
scan function when outdated class loaders exist. The cost of
the indirection is paid for each scanned object.

We performed 20 runs of all DaCapo benchmark applica-
tions on J3 and on Incinerator, on the low-end and the high-end
computers described at the beginning of this section. We do not

3http://www.dacapobench.org/benchmarks.html

550550

Fig. 5: Overhead of Incinerator as compared to J3 on the
DaCapo 2006 benchmark applications on a low-end computer.
hsqldb has a standard deviation of 22 percentage points,
truncated here for clarity.

Fig. 6: Overhead of Incinerator as compared to J3 on the
DaCapo 2006 benchmark applications on a high-end computer.

have results for two of the applications, pmd and chart, due to
limitations of our low-end computer. On the low-end computer,
Figure 5 shows that J3 performs better than Incinerator in 7
out of 9 applications, with a worst-case average slowdown of
3.3%. We have observed that Hsqldb can lead to swapping
in this setting, which causes the high standard deviation in
this case. On the high-end computer, Figure 6 shows that J3
performs better than Incinerator in 4 out of 9 applications, with
a worst-case average slowdown of 1.2%. We have noted that
J3 is 1.2 to 3 times slower than JikesRVM. We thus estimate
that the worst-case average slowdown on JikesRVM would be
around 10%.

As indicated by the standard deviations on Figure 5 and
Figure 6, these comparisons are inverted in some runs, i.e.,
Incinerator sometimes performs better than J3. This is mostly
due to disk and processor cache effects, and measurement
bias [12].

Overall, our evaluation shows that Incinerator has only a
marginal impact on the performance of J3. This result suggests

that Incinerator could be used in a production environment.

B. Evaluation in the context of OSGi

We have also evaluated Incinerator in the context of OSGi.
We first compare the behavior of Incinerator with Service
Coroner [13], an existing tool that detects some stale refer-
ences. Then, we show the potential impact of bundle conflicts
in the context of a simple gas alarm application. Finally, we
present a concrete case of a stale reference bug found in the
Knopflerfish OSGi framework [5].

1) Comparison with Service Coroner: Service Coro-
ner [13] is a state of the art framework to detect stale references
in OSGi. It instruments the OSGi repository, which is used
by a client bundle to acquire a first reference to an object
provided by a server bundle. By instrumenting the repository,
Service Coroner keeps track of the references given to the
client bundles. Service Coroner detects stale references by
analyzing the object references used by each bundle from a
memory dump. If it finds a reference to an object that was
registered in the repository for which the bundle is uninstalled
or updated, it indicates that the reference is stale.

After having acquired a reference to a first object, a client
bundle can acquire new references from the server bundle by
invoking methods from this object. Service Coroner does not
detect the exchange of these references because the commu-
nication between the client bundle and the server bundle does
not involve the OSGi framework.

We have developed two scenarios illustrating the two cases,
again based on the application configuration presented in
Figure 4 (see Section V-A1). In Scenario 8, the bundle A
retains a reference to X which is registered in the OSGi
repository. The reference is turned stale by uninstalling B.
In Scenario 9, X is also registered in the repository, but the
bundle A retains a reference to Y obtained via X which is not
registered. The reference is turned stale by uninstalling B.

We have tested Service Coroner using Knopflerfish 3.5.0 on
top of Hotspot 6 with these scenarios. We have not evaluated
Service Coroner with J3 because Service Coroner requires a
full Java 6 environment. J3 relies on GNU Classpath [14],
which only partially implements the Java 6 environment.

Service Coroner, detects the stale reference X in Sce-
nario 8, thanks to the instrumentation of the OSGi repository.
However, it does not eliminate the stale reference, which
leads to a memory leak. Moreover, Service Coroner does not
detect the stale reference Y in Scenario 9. Incinerator, on the
other hand, detects and eliminates the stale references in both
scenarios.

2) Bundle conflicts: To demonstrate the risk of inconsisten-
cies caused by stale references, we have prototyped an alarm
application in OSGi that is representative of a typical smart
home system. Figure 7 shows an overview of the structure of
this application. The application monitors a gas sensor device
and fires a siren if it detects an abnormal level of gas. The
application accesses physical devices via two driver bundles,
SirenDriver, GasSensorDriver.

We perform the following experiment:

551551

Alarm siren
SirenDriver

1.0

SirenDriver
2.0

Siren
Config

GasSensorDriver

AlarmApp

Gas sensor
Stale reference

Fig. 7: Hardware and software configuration of the Alarm
controller application.

1) Initially, the bundles SirenDriver 1.0 and GasSensor-
Driver are installed and started. Each bundle connects
to its physical device (the alarm siren and the gas sen-
sor, respectively) and exposes its features to smart-home
applications. SirenDriver 1.0 saves the alarm siren
configuration in a simple text file describing parameters
and their values.

2) When the bundle AlarmApp is installed and started,
it obtains references to the services provided by
SirenDriver 1.0 and by GasSensorDriver.

3) We upgrade the bundle SirenDriver from version 1.0
to 2.0. As part of the upgrade, the siren configuration
file is converted to an XML-based format, to simplify the
addition of new configuration options. SirenDriver 1.0
is stopped and uninstalled, and is thus disconnected from
the alarm siren. When SirenDriver 2.0 is started, it con-
nects to the alarm siren and exposes its new features. After
this upgrade, the OSGi framework broadcasts an event to
all bundles indicating that the bundle SirenDriver was
updated.

4) We deliberately introduced a bug in AlarmApp so that it
does not modify the reference it holds to the service pro-
vided by SirenDriver 1.0 when it receives the broadcast
update event. This reference becomes stale.

After the upgrade, we observed three problems while
executing the alarm application.

First, the memory used by the JVM increased. We executed
a garbage collection and observed, via the debug logs, that
SirenDriver 1.0 was not collected, thus leaking memory.

Second, we observed that changing the settings of the siren
overwrites the XML configuration file by a file in the old text
format. To change the settings of the siren, the AlarmApp
invokes the service provided by SirenDriver 1.0 via its
stale reference to the bundle. By doing so, SirenDriver
1.0 overrides the XML configuration file that was previously
migrated and saved by SirenDriver 2.0. This problem is an
example of data corruption caused by stale references.

Third, after simulating a gas leak to the gas sensor, we
observe alarm signals repeatedly shown by the AlarmApp, but
the siren remains silent. Despite the fact that the AlarmApp
knows about the gas alarm reported by the gas sensor via Gas-
SensorDriver, calling SirenDriver 1.0 does not activate
the physical siren because that version is disconnected from
the device, and only SirenDriver 2.0 provides the service.
This problem makes the siren device unusable, and represents
a physical hazard to the home inhabitants.

This example is only meant for demonstration purposes,
and such a bug would be easy to identify during the test phase

because of the simplicity of the scenario. However, similar
problems can occur in a real application that involves bundles
provided by different tiers because such an application is more
complex and thus harder to test exhaustively.

C. Stale references in Knopflerfish

Knopflerfish is an open source OSGi framework imple-
mentation that is commonly used in smart home gateways,
because of its stability and because it only requires a Java
1.4 runtime, still commonly used in the embedded market.
HTTP-Server is a key bundle delivered with Knopflerfish,
that is used by other bundles that expose Web-based interfaces.
Web-based interfaces are often used in the context of smart
home applications to interact with the end user.

Using Incinerator, we have identified a bug in
HTTP-Server version 3.1.2. HTTP-Server defines a
group of threads to handle transactions. When HTTP-Server
is uninstalled or updated, it does not destroy these threads as
it should. As these threads reference objects allocated by the
HTTP-Server bundle, the stale class loader stays reachable.
HTTP-Server thus suffers from two kinds of leaks: leaked
threads, which silently continue to run, and stale references
from these threads.

Stale references in the leaked threads of HTTP-Server
cause a loss of 6 megabytes of memory on each bundle update.
Indeed, the HTTP-Server bundle contains 46 classes, which
in all contain 8551 lines of Java code.

Incinerator successfully eliminates the stale references,
thus avoiding the memory leaks they cause and increas-
ing the availability of the JVM, even in the presence of
stale reference bugs in running applications. As the leaked
threads regularly access the stale references, they quickly
receive a NullPointerException, which is not caught by
HTTP-server, and thus the threads stop. Incinerator thus
simultaneously solves the two leaks: the leaked thread is
stopped and the memory of the stale bundle is reclaimed.

We sent a bug report and a patch to the Knopflerfish
developer community.4 The patch destroys the leaked threads
when the bundle is uninstalled and updated, thus avoiding the
leaked threads and consequently the stale references. The patch
was approved and has been integrated in the framework since
the release 4.0.0. This shows that even a well-recognized OSGi
framework can suffer from the problem of stale references.

VI. RELATED WORK

We first discuss work that targets the detection and elim-
ination of memory leaks in managed runtime environments,
and then compare the management of stale references with the
management of weak references already found in Java. We
also present various techniques for code updating and show
how they deal with stale references. Finally, we discuss work
that targets stale references in the context of OSGi.

A. Memory leaks in managed runtime environments

The problem of memory leaks in managed runtime en-
vironments that use garbage collection is more general than

4http://sourceforge.net/p/gatespace/bugs/175/

552552

the problem of stale references considered by Incinerator.
Cork [15] and LeakBot [16] identify growing data structures
to find potential memory leaks. They do not eliminate the
leaks because they do not know whether the objects will be
accessed in the future. With Incinerator, we suppose that the
middleware knows the point in time after which a class loader
should not be used. Thus, Incinerator reclaims the memory of
the class loader and the other objects that are only reachable
from it. Nguyen et al. [17] bound the number of objects
simultaneously allocated at sites identified during a training
phase. This approach is subject to false positives that may
lead to crashes when it overestimates the bound. Incinerator
does not have this problem. Bond [18] stores objects that are
expected to be unused on disk, in order to preserve memory,
while Incinerator reclaims their memory directly.

B. Weak references

The Java specification defines a weak reference5 as a
special reference that enables accessing an object without
ensuring that the object will stay alive. If the garbage collector
finds that an object is only accessible by weak references, then
it nullifies all the remaining weak references and collects the
referenced object.

Conceptually, our approach amounts to replacing an or-
dinary (i.e., strong) reference by a weak reference when the
reference becomes stale. Nevertheless, the syntax for accessing
ordinary references is different from that for accessing weak
references. Converting ordinary references to weak references
would require modifying and re-JITing the code, which would
make the conversion impractical at run time.

C. Application update and memory leak

In environments that allow multiple applications to run
simultaneously, the management of data isolation between
applications ranges from full isolation to full sharing [19].
The Multitasking Virtual machine [20], [21], KaffeOS [22]
and Singularity [23], for example, provide full isolation. They
avoid stale references by preventing the use of direct inter-
application references. Instead, applications exchange proxies
to communicate. When an application is unloaded, only the
proxy may leak, not the class loader and all loaded classes.
However, proxies degrade performance, as compared to direct
references, and complicate the communication between appli-
cations.

Systems that allow direct references, such as OSGi [1],
trade security for performance. They provide weaker iso-
lation between applications and the possibility that refer-
ences become stale when bundles are updated or uninstalled.
I-JVM [24] addresses the problem of isolation by using re-
source accounting techniques inspired by JRes [25]. I-JVM,
however, does not address the problem of stale references.

Work on Dynamic Software Updating (DSU), such as
JVolve [26], proposes to update an application by patching
the code and the data structures directly in memory. DSU
approaches do not suffer from memory leaks because unused
fields are directly removed from objects during an update.

5 http://docs.oracle.com/javase/6/docs/api/java/lang/ref/package-summary.
html#reachability

Application Number of stale references detected

JOnAS 5.0.1 / Felix 1.0 7
Jitsi alpha3 / Felix 1.0 19
Sling 2.0 / Felix 1.0 3

Newton 1.2.3 / Equinox 3.3.0 58

Fig. 8: Stale references found by Service Coroner.

DSU, however, does not address the management of multiple
applications and their communication, as is done by middle-
wares such as OSGi.

D. OSGi-specific tools

Service Coroner [13] is a profiling tool that detects stale
references in OSGi by periodically dumping all of the memory
and analyzing the reference usage graph. Performing such a
memory dump incurs high CPU, memory and disk overheads,
which limits the use of this tool to testing environments.
Experiments made by the authors of Service Coroner have
shown that stale references exist in several applications, as
shown in Figure 8. Nevertheless, Service Coroner is not able
to eliminate stale references because it analyses the memory
dump offline.

As presented in Section V, Service Coroner only detects
stale references that reference services, i.e., objects that a
bundle has registered in a repository. If a method of a service
returns a reference to an object allocated by the bundle of the
service, this reference is not visible to OSGi and thus is not
visible to Service Coroner.

Another solution to avoid the memory leaks caused by
stale references in OSGi is the OSGi ME specification [27],
developed by IS2T and Orange. Like Service Coroner, OSGi
ME also only focuses on stale references to services.

Another solution to eliminate stale references is to simply
reboot the framework after each bundle update or uninstall.
This solution is taken by Eclipse. Nevertheless, this solution is
not suitable for a Smart Home environment, which is highly
diverse and distributed, and where updates are frequent and
asynchronous.

VII. CONCLUSION

This paper presents Incinerator, a garbage collector exten-
sion that detects and eliminates memory leaks caused by stale
references, which may appear when applications are unloaded
or updated in Java. Incinerator introduces an “outdated” flag
to the class loader, which indicates whether the class loader is
outdated, and uses this flag during a garbage collection cycle
to identify stale references.

We have shown that implementing Incinerator requires
modifying only around 150 lines of code in a Java virtual
machine. The average CPU overhead induced by Incinerator
in J3 is always less than 1.2% on the applications of the
DaCapo benchmark suite on a high-end computer, and less
than 3.3% on a low-end computer. These results tend to show
that Incinerator should have a limited overhead.

We have also presented the use of Incinerator in the
context of OSGi. Incinerator detects more kinds of stale

553553

references than the existing OSGi stale reference detector,
Service Coroner. Furthermore, while Service Coroner only
detects stale references, Incinerator also eliminates them by
setting them to null. This allows the garbage collector to
reclaim the referenced stale objects. Indeed, we have found
that stale references can cause significant memory leaks, such
as the 6 megabyte memory leak on each update of the
HTTP-Server bundle caused by the stale reference bug we
discovered in Knopflerfish. Preventing memory leaks increases
the availability of the JVM. Finally, Incinerator is mostly
independent of a specific OSGi implementation and, indeed,
only 6 lines need to be modified in the Knopflerfish OSGi
framework in order to integrate Incinerator.

ACKNOWLEDGMENT

This research was supported by the ANR (France) project
Infra-JVM (ANR- 11-INFR-008-01).

REFERENCES

[1] The OSGi Alliance, “OSGi service platform core specification, release
4, version 4.2,” http://www.osgi.org/download/r4v42/r4.core.pdf, 2009.

[2] SWEX Group, “Home gateway initiative - requirements for software
modularity on the home gateway version 1.0,” SWEX Group, Tech.
Rep., 2011.

[3] N. Geoffray, G. Thomas, J. Lawall, G. Muller, and B. Folliot, “VMKit:
a substrate for managed runtime environments,” in VEE’10. ACM,
2010, pp. 51–62.

[4] S. M. Blackburn, P. Cheng, and K. S. McKinley, “Oil and water?
High performance garbage collection in Java with MMTk,” in ICSE’04.
IEEE, 2004, pp. 137–146.

[5] Knopflerfish web page, http://www.knopflerfish.org/, 2012.

[6] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and
B. Wiedermann, “The DaCapo benchmarks: Java benchmarking devel-
opment and analysis,” in OOPSLA’06. ACM, 2006, pp. 169–190.

[7] T. Lindholm and F. Yellin, The JavaTM virtual machine specification,
2nd ed. Addison-Wesley, 1999.

[8] R. Jones, A. Hosking, and E. Moss, The garbage collection handbook:
the art of automatic memory management, 1st ed. Chapman &
Hall/CRC, 2011.

[9] L. DeMichiel and B. Shannon, “JavaTM platform, enterprise edition
(Java EE) specification, v7,” https://java.net/downloads/javaee-spec/
JavaEE Platform Spec EDR.pdf, 2012.

[10] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano, “Thin locks:
featherweight synchronization for Java,” in PLDI’98. ACM, 1998,
pp. 258–268.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha, The JavaTM language
specification, 3rd ed. Addison-Wesley, 2005.

[12] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing
wrong data without doing anything obviously wrong!” in ASPLOS’09.
ACM, 2009, pp. 265–276.

[13] K. Gama and D. Donsez, “Service Coroner: A diagnostic tool for
locating OSGi stale references,” in SEAA 08. IEEE, 2008, pp. 108–115.

[14] “The GNU classpath project,” http://www.gnu.org/software/classpath,
2014.

[15] M. Jump and K. S. McKinley, “Cork: Dynamic memory leak detection
for garbage-collected languages,” in POPL’07. ACM, 2007, pp. 31–38.

[16] N. Mitchell and G. Sevitsky, “Leakbot: An automated and lightweight
tool for diagnosing memory leaks in large Java applications,” in
ECOOP’03. Springer-Verlag, 2003, pp. 351–377.

[17] H. H. Nguyen and M. Rinard, “Detecting and eliminating memory leaks
using cyclic memory allocation,” in ISMM’07. ACM, 2007, pp. 15–30.

[18] M. D. Bond and K. S. McKinley, “Tolerating memory leaks,” in
OOPSLA’08. ACM, 2008, pp. 109–126.

[19] J. S. Rellermeyer, S.-W. Lee, and M. Kistler, “Cloud platforms and
embedded computing: the operating systems of the future,” in DAC’13.
ACM, 2013, pp. 1–6.

[20] G. Czajkowski and L. Daynès, “Multitasking without comprimise: a
virtual machine evolution,” in OOPSLA’01. ACM, 2001, pp. 125–
138.

[21] K. Palacz, J. Vitek, G. Czajkowski, and L. Daynès, “Incommunicado:
efficient communication for isolates,” in OOPSLA’02. ACM, 2002,
pp. 262–274.

[22] G. Back, W. C. Hsieh, and J. Lepreau, “Processes in KaffeOS: isolation,
resource management, and sharing in Java,” in OSDI’00. USENIX,
2000, pp. 23–23.

[23] G. Hunt, M. Aiken, M. Fähndrich, C. Hawblitzel, O. Hodson, J. Larus,
S. Levi, B. Steensgaard, D. Tarditi, and T. Wobber, “Sealing OS
processes to improve dependability and safety,” in EuroSys’07. ACM,
2007, pp. 341–354.

[24] N. Geoffray, G. Thomas, G. Muller, P. Parrend, S. Frénot, and B. Folliot,
“I-JVM: a Java virtual machine for component isolation in OSGi,” in
DSN’09. IEEE, 2009, pp. 544–553.

[25] G. Czajkowski and T. von Eicken, “JRes: a resource accounting
interface for Java,” in OOPSLA’98. ACM, 1998, pp. 21–35.

[26] S. Subramanian, M. Hicks, and K. S. McKinley, “Dynamic software
updates: a VM-centric approach,” in PLDI’09. ACM, 2009, pp. 1–12.

[27] A. Bottaro and F. Rivard, “OSGi ME - an OSGi profile for embedded
devices.” London, UK: OSGi Community Event, Sep. 2010.

554554

