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Abstract. In this paper we give an overview of proof-search method for CTL model
checking based on Deduction Modulo. Deduction Modulo is a reformulation of Predicate
Logic where some axioms—possibly all—are replaced by rewrite rules. The focus of this
paper is to give an encoding of temporal properties expressed in CTL, by translating the
logical equivalence between temporal operators into rewrite rules. This way, the proof-
search algorithms designed for Deduction Modulo, such as Resolution Modulo or Tableaux
Modulo, can be used in verifying temporal properties of finite transition systems. An
experimental evaluation using Resolution Modulo is presented.
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1 Introduction

In this paper, we express Branching-time temporal logic (CTL) [4] for a given finite transition
system in Deduction Modulo [6, 7]. This way, the proof-search algorithms designed for Deduction
Modulo, such as Resolution Modulo [2] or Tableaux Modulo [5], can be used to build proofs
in CTL. Deduction Modulo is a reformulation of Predicate Logic where some axioms—possibly
all—are replaced by rewrite rules. For example, the axiom P ⇔ (Q ∨R) can be replaced by the
rewrite rule P ↪→ (Q ∨ R), meaning that during the proof, P can be replaced by Q ∨ R at any
time.

The idea of translating CTL to another framework, for instance (quantified) boolean formulae
[1], [14], [16], higher-order logic [12], etc., is not new. But using rewrite rules permits to avoid
the explosion of the size of formulae during translation, because rewrite rules can be used on
demand to unfold defined symbols. So, one of the advantages of this method is that it can express
complicated verification problems succinctly. Gilles Dowek and Ying Jiang had given a way to
build an axiomatic theory for a given finite model [9]. In this theory, the formulae are provable if
and only if they are valid in the model. In [8], they gave a slight extension of CTL, named SCTL,
where the predicates may have arbitrary arities. And they defined a special sequent calculus to
write proofs in SCTL. This sequent calculus is special because it is tailored to each specific finite
model M . In this way, a formula is provable in this sequent calculus if and only if it is valid in
the model M . In our method, we characterize a finite model in the same way as [9], but instead
of building a deduction system, the CTL formulae are taken as terms, and the logical equivalence
between different CTL formulae are expressed by rewrite rules. This way, the existing automated
theorem modulo provers, for instance iProver Modulo [3], can be used to do model checking
directly. The experimental evaluation shows that the resolution based proof-search algorithms is
feasible, and sometimes performs better than the existing solving techniques.

? This work is supported by the ANR-NSFC project LOCALI (NSFC 61161130530 and ANR 11 IS02
002 01)



2 K. Ji

The rest of this paper is organized as follows. In Section 2 a new variant of Deduction Modulo
for one-sided sequents is presented. In Section 3, the usual semantics of Computation Tree Logic
(CTL) is presented. Sections 4 and 5 present the new results of this paper: in Section 4, an
alternative new semantics for CTL on finite structures is given; in Section 5, the rewrite rules for
each CTL operator are given and the soundness and completeness of this presentation of CTL is
proved, using the semantics presented in the previous section. Finally in Section 7, experimental
evaluation for the feasibility of rewrite rules using resolution modulo is presented.

2 Deduction Modulo

One-sided Sequents In this work, instead of using usual sequents of the form A1, ..., An `
B1, ..., Bp, we use one-sided sequents [13], where all the propositions are put on the right hand
side of the sequent sign ` and the sequent above is transformed into ` ¬A1, ...,¬An, B1, ..., Bp.
Moreover, implication is defined from disjunction and negation (A ⇒ B is just an abbreviation
for ¬A ∨ B), and negation is pushed inside the propositions using De Morgan’s laws. For each
atomic proposition P we also have a dual atomic proposition P⊥ corresponding to its negation,
and the operator ⊥ extends to all the propositions. So that the axiom rule can be formulated as

axiom
` P, P⊥

Deduction Modulo A rewrite system is a set R of term rewrite rules and proposition rewrite
rules. In this paper, only proposition rewrite rules are considered. A proposition rewrite rule is a
pair of propositions l ↪→ r, in which l is an atomic proposition and r an arbitrary proposition. For
instance, P ↪→ Q ∨ R. Such a system defines a congruence ↪→ and the relation

∗
↪→ is defined, as

usual, as the reflexive-transitive closure of ↪→. Deduction modulo [7] is an extension of first-order
logic where axioms are replaced by rewrite rules and in a proof, a proposition can be reduced at
any time. This possibility is taken into account in the formulation of Sequent Calculus Modulo
in Fig.1.

axiom if A
∗
↪→ P,B

∗
↪→ P⊥`R A,B

`R A,∆ `R B,∆
cut if A

∗
↪→ C,B

∗
↪→ C⊥`R ∆

`R ∆
weak`R A,∆

`R B,C,∆
contr if A

∗
↪→ B,A

∗
↪→ C`R A,∆

> A
∗
↪→ >`R A,∆

`R B,∆ `R C,∆
∧ if A

∗
↪→ B ∧ C`R A,∆

`R B,∆
∨1 if A

∗
↪→ B ∨ C`R A,∆

`R C,∆
∨2 if A

∗
↪→ B ∨ C`R A,∆

`R C,∆
∃ if A

∗
↪→ ∃xB,(t/x)B

∗
↪→ C`R A,∆

`R B,∆
∀ if A

∗
↪→ ∀xB, x /∈ FV (∆)`R A,∆

Fig. 1. One-sided Sequent Calculus Modulo

For example, with the axiom (Q ⇒ R) ⇒ P we can prove the sequent R ` P . This axiom is
replaced by the rules P ↪→ Q⊥ and P ↪→ R and the sequent R ` P is expressed as the one-sided
sequent ` R⊥, P . This sequent has the proof

axiom
` R⊥, P
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as P
∗
↪→ R.

Note that as our system is negation free, all occurrences of atomic propositions are positive.
Thus, the rule P ↪→ A does not correspond to an equivalence P ⇔ A but to an implication
A ⇒ P . In other words, our one-sided presentation of Deduction Modulo is closer to Polarized
Deduction Modulo [6] with positive rules only, than to the usual Deduction Modulo. The sequent
`R ∆ has a cut-free proof is represented as `cfR ∆ has a proof.

3 Computation Tree Logic

Properties of a transition system can be specified by temporal logic propositions. Computation
tree logic is a propositional branching-time temporal logic introduced by Emerson and Clarke [4]
for finite state systems. Let AP be a set of atomic propositions and p ranges over AP . The set
of CTL propositions Φ over AP is defined as follows:

Φ ::= p | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | AXΦ | EXΦ | AFΦ | EFΦ | AGΦ | EGΦ
| AU(Φ,Φ) | EU(Φ,Φ) | AR(Φ,Φ) | ER(Φ,Φ)

The semantics of CTL can be given using Kripke structure, which is used in model checking
to represent the behavior of a system.

Definition 1 (Kripke Structure). Let AP be a set of atomic propositions. A Kripke structure
M over AP is a three tuple M = (S, next, L) where

– S is a finite (non-empty) set of states.
– next : S → P+(S) is a function that gives each state a (non-empty) set of successors.
– L : S → P(AP ) is a function that labels each state with a subset of AP .

An infinite path is an infinite sequence of states π = π0π1 · · · s.t. ∀i ≥ 0, πi+1 ∈ next(πi). Note
that the sequence πiπi+1 · · ·πj is denoted as πj

i and the path π with π0 = s is denoted as π(s).

Definition 2 (Semantics of CTL). Let p be an atomic proposition. Let ϕ, ϕ1, ϕ2 be CTL
propositions. M, s |= ϕ is defined inductively on the structure of ϕ as follows.

M, s |= p ⇔ p ∈ L(s)
M, s |= ¬ϕ1 ⇔M, s |6= ϕ1

M, s |= ϕ1 ∧ ϕ2 ⇔M, s |= ϕ1 and M, s |= ϕ2

M, s |= ϕ1 ∨ ϕ2 ⇔M, s |= ϕ1 or M, s |= ϕ2

M, s |= AXϕ1 ⇔ ∀s′ ∈ next(s), M, s′ |= ϕ1

M, s |= EXϕ1 ⇔ ∃s′ ∈ next(s), M, s′ |= ϕ1

M, s |= AGϕ1 ⇔ ∀π(s), ∀i ≥ 0, M,πi |= ϕ1

M, s |= EGϕ1 ⇔ ∃π(s) s.t. ∀i ≥ 0, M,πi |= ϕ1

M, s |= AFϕ1 ⇔ ∀π(s), ∃i ≥ 0 s.t. M,πi |= ϕ1

M, s |= EFϕ1 ⇔ ∃π(s), ∃i ≥ 0 s.t. M,πi |= ϕ1

M, s |= AU(ϕ1, ϕ2) ⇔ ∀π(s), ∃j ≥ 0 s.t. M,πj |= ϕ2 and ∀0 ≤ i < j, M,πi |= ϕ1

M, s |= EU(ϕ1, ϕ2)⇔ ∃π(s), ∃j ≥ 0 s.t. M,πj |= ϕ2 and ∀0 ≤ i < j, M,πi |= ϕ1

M, s |= AR(ϕ1, ϕ2) ⇔ ∀π(s), ∀j ≥ 0, either M,πj |= ϕ2 or ∃0 ≤ i < j s.t. M,πi |= ϕ1

M, s |= ER(ϕ1, ϕ2) ⇔ ∃π(s), ∀j ≥ 0, either M,πj |= ϕ2 or ∃0 ≤ i < j s.t. M,πi |= ϕ1

Example 1. Let M be the Kripke structure in Fig. 2. M, s1 � EGp holds because there exists an
infinite path, for instance s1, s2, s1, s2 . . ., such that p holds on each state.
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s1start

{p}

s2

{p}

Fig. 2. Example of CTL

4 Alternative Semantics of CTL

In this section we present an alternative semantics of CTL using finite paths only.

Paths with the Last State Repeated (lsr-paths) A finite path is a lsr-path if and only if
the last state on the path occurs twice. For instance s0, s1, s0 is a lsr-path. Note that we use
ρ = ρ0ρ1 . . . ρj to denote a lsr-path. A lsr-path ρ with ρ0 = s is denoted as ρ(s), with ρi = ρj
is denoted as ρ(i, j). The length of a path l is expressed by len(l) and the concatenation of two
paths l1, l2 is l1ˆl2.

Lemma 1 (From infinite paths to lsr-paths and vice-versa). LetM be a Kripke structure.

1. If π is an infinite path of M , then ∃i ≥ 0 such that πi
0 is a lsr-path.

2. If ρ(i, j) is a lsr-path of M , then ρi0 (̂ρji+1)
ω is an infinite path.

Proof. For the first case, as M is finite, there exists at least one state in π which occurs twice.
If πi is the first state which occurs twice, then πi

0 is a lsr-path. The second case is trivial. ut

Lemma 2. Let M be a Kripke structure.

1. For the path l = s0, s1, . . . , sk, there exists a finite path l′ = s′0, s
′
1, . . . , s

′
i without repeating

states s.t. s′0 = s0, s′i = sk, and ∀0 < j < i, s′j is on l.
2. If there is a path from s to s′, then there exists a lsr-path ρ(s) s.t. s′ is on ρ.

Proof. For the first case, l′ can be built by deleting the cycles from l. The second case is straight-
forward by the first case and Lemma 1. ut

Definition 3 (Alternative Semantics of CTL). Let p be an atomic proposition. Let ϕ,ϕ1, ϕ2

be CTL propositions. M, s |=a ϕ is defined inductively on the structure of ϕ as follows.

M, s |=a p ⇔ p ∈ L(s)
M, s |=a ¬ϕ1 ⇔ M, s |6=a ϕ1

M, s |=a ϕ1 ∧ ϕ2 ⇔ M, s |=a ϕ1 and M, s |=a ϕ2

M, s |=a ϕ1 ∨ ϕ2 ⇔ M, s |=a ϕ1 or M, s |=a ϕ2

M, s |=a AXϕ1 ⇔ ∀s′ ∈ next(s), M, s′ |=a ϕ1

M, s |=a EXϕ1 ⇔ ∃s′ ∈ next(s), M, s′ |=a ϕ1

M, s |=a AFϕ1 ⇔ ∀ρ(s), ∃0 ≤ i < len(ρ)− 1 s.t. M,ρi |=a ϕ1

M, s |=a EFϕ1 ⇔ ∃ρ(s), ∃0 ≤ i < len(ρ)− 1 s.t. M,ρi |=a ϕ1

M, s |=a AGϕ1 ⇔ ∀ρ(s), ∀0 ≤ i < len(ρ)− 1, M,ρi |=a ϕ1

M, s |=a EGϕ1 ⇔ ∃ρ(s), ∀0 ≤ i < len(ρ)− 1, M,ρi |=a ϕ1

M, s |=a AU(ϕ1, ϕ2) ⇔ ∀ρ(s), ∃0 ≤ i < len(ρ)− 1 s.t. M,ρi |=a ϕ2 and ∀0 ≤ j < i, M,ρj |=a ϕ1

M, s |=a EU(ϕ1, ϕ2) ⇔ ∃ρ(s), ∃0 ≤ i < len(ρ)− 1 s.t. M,ρi |=a ϕ2 and ∀0 ≤ j < i, M,ρj |=a ϕ1

M, s |=a AR(ϕ1, ϕ2) ⇔ ∀ρ(s), ∀0 ≤ i < len(ρ)− 1, either M,ρi |=a ϕ2 or ∃0 ≤ j < i s.t. M,ρj |=a ϕ1

M, s |=a ER(ϕ1, ϕ2) ⇔ ∃ρ(s), ∀0 ≤ i < len(ρ)− 1, either M,ρi |=a ϕ2 or ∃0 ≤ j ≤ i s.t. M,ρj |=a ϕ1

We now prove the equivalence of the two semantics, that is,M, s |= ϕ if and only ifM, s |=a ϕ.
To simplify the proofs, we use a normal form of the CTL propositions, in which all the negations
appear only in front of the atomic propositions.
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Negation Normal Form. A CTL proposition is in negation normal form (NNF), if the negation
¬ is applied only to atomic propositions. Every CTL proposition can be transformed into an
equivalent proposition of NNF using the following equivalences.

¬¬ϕ ≡ ϕ
¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ ¬AFϕ ≡ EG¬ϕ ¬AU(ϕ,ψ) ≡ ER(¬ϕ,¬ψ)
¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬EFϕ ≡ AG¬ϕ ¬EU(ϕ,ψ) ≡ AR(¬ϕ,¬ψ)
¬AXϕ ≡ EX¬ϕ ¬AGϕ ≡ EF¬ϕ ¬AR(ϕ,ψ) ≡ EU(¬ϕ,¬ψ)
¬EXϕ ≡ AX¬ϕ ¬EGϕ ≡ AF¬ϕ ¬ER(ϕ,ψ) ≡ AU(¬ϕ,¬ψ)

Lemma 3. Let ϕ be a CTL proposition of NNF. If M, s |= ϕ, then M, s |=a ϕ.

Proof. By induction on the structure of ϕ. The cases ϕ = p, ¬p, ϕ1 ∨ϕ2, ϕ1 ∧ϕ2, AXϕ1, EXϕ1

are trivial. For the other cases, the proof is as follows.

– Let ϕ = AFϕ1. We prove the contraposition. If there is a lsr-path ρ(s)(j, k) s.t. ∀0 ≤
i < k, M,ρi |6= ϕ1, then by Lemma 1, there exists an infinite path ρj0 (̂ρkj+1)

ω, which is a
counterexample ofM, s |= AFϕ1. Thus for each lsr-path ρ(s), ∃0 ≤ i < len(ρ)−1 s.t.M,ρi |=
ϕ1 holds. Then by induction hypothesis (IH), for each lsr-path ρ(s), ∃0 ≤ i < len(ρ)− 1 s.t.
M,ρi |=a ϕ1 holds, and thus M, s |=a AFϕ1 holds.

– Let ϕ = EFϕ1. By the semantics of CTL, there exists an infinite path π(s) and ∃i ≥ 0 s.t.
M,πi |= ϕ1 holds, and M,πi |=a ϕ1 holds by IH. Then by Lemma 2, there exists a lsr-path
ρ(s) s.t. πi is on ρ, and thus M, s |=a EFϕ1 holds.

– Let ϕ = AGϕ1. We prove the contraposition. If there is a lsr-path ρ(s)(j, k) and ∃0 ≤ i < k
s.t. M,ρi |6= ϕ1, then by Lemma 1, there exists an infinite path ρj0 (̂ρkj+1)

ω, which is a
counterexample of M, s |= AGϕ1. Thus for each lsr-path ρ(s)(j, k) and ∀0 ≤ i < k, M,ρi |=
ϕ1 holds. Then by IH, for each lsr-path ρ(s)(j, k) and ∀0 ≤ i < k, M,ρi |=a ϕ1 holds, and
thus M, s |=a AGϕ1 holds.

– Let ϕ = EGϕ1. By the semantics of CTL, there exists an infinite path π(s) s.t. ∀i ≥ 0,
M,πi |= ϕ1 holds. Then by Lemma 1, ∃k ≥ 0 s.t. πk

0 is a lsr-path and by IH, ∀0 ≤ i < k,
M,πi |=a ϕ1 holds. Thus M, s |=a EGϕ1 holds.

– Let ϕ = AU(ϕ1, ϕ2). We prove the contraposition. Assume that there exists a lsr-path
ρ(s)(l, k) s.t. ∀0 ≤ i < k, M,ρi |6= ϕ2 or ∀0 ≤ i < k, if M,ρi |= ϕ2 holds, then ∃0 ≤
j < i, M,ρj |6= ϕ1. Then by Lemma 1, there exists an infinite path ρl0 (̂ρkl+1)

ω, which is
a counterexample of M, s |= AU(ϕ1, ϕ2). Thus for each lsr-path ρ(s), ∃0 ≤ i < len(ρ) − 1
s.t. M,ρi |= ϕ2 holds and ∀0 ≤ j < i, M,ρj |= ϕ1 holds. Then by IH, for each lsr-path
ρ(s), ∃0 ≤ i < len(ρ) − 1 s.t. M,ρi |=a ϕ2 holds and ∀0 ≤ j < i, M,ρj |=a ϕ1 holds. Thus
M, s |=a AU(ϕ1, ϕ2) holds.

– Let ϕ = EU(ϕ1, ϕ2). By the semantics of CTL, there exists an infinite path π(s) and ∃i ≥ 0
s.t. M,πi |= ϕ2 and ∀0 ≤ j < i, M,πj |= ϕ1. From the path πi

0, by Lemma 2, there exists a
path π′m0 without repeating states s.t. π′0 = π0, π′m = πi, and ∀0 < n < m, π′n is on πi

0. Then
by IH, M,π′m |=a ϕ2 and ∀0 ≤ n < m, M,π′n |=a ϕ1. Thus M, s |=a EU(ϕ1, ϕ2) holds.

– Let ϕ = AR(ϕ1, ϕ2). We prove the contraposition. If there exists a lsr-path ρ(s) and ∃0 ≤
i < len(ρ) − 1 s.t. M,ρi |6= ϕ2 and ∀0 ≤ j < i, M,ρj |6= ϕ1. Then ρi0 is a counterexample of
M, s |= AR(ϕ1, ϕ2). Thus for each lsr-path ρ(s) and ∀0 ≤ i < len − 1, either M,ρi |= ϕ2 or
∃0 ≤ j < i s.t. M,ρj |= ϕ1. By IH, for each ρ(s) and ∀0 ≤ i < len− 1, either M,ρi |=a ϕ2 or
∃0 ≤ j < i s.t. M,ρj |=a ϕ1. Thus M, s |=a AR(ϕ1, ϕ2) holds.

– Let ϕ = ER(ϕ1, ϕ2). By the semantics of CTL, there exists an infinite path π(s) s.t. ∀j ≥ 0,
eitherM,πj |= ϕ2 holds or ∃0 ≤ i < j s.t.M,πi |= ϕ1 holds. By Lemma 1, ∃k ≤ 0 s.t. πk

0 is a
lsr-path and by IH, ∀0 ≤ m < k, either M,πm |=a ϕ2 holds or ∃0 ≤ n < m s.t. M,πn |=a ϕ1

holds. Thus M, s |=a ER(ϕ1, ϕ2) holds.
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ut

Lemma 4. Let ϕ be a CTL proposition of NNF. If M, s |=a ϕ, then M, s |= ϕ.

Proof. By induction on the structure of the proposition ϕ. The cases ϕ = p, ¬p, ϕ1∨ϕ2, ϕ1∧ϕ2,
AXϕ1, EXϕ1 are trivial. For the other cases, the proof is as follows.

– Let ϕ = AFϕ1. If there is an infinite path π(s) s.t. ∀j ≥ 0, M,πj |6=a ϕ1, then by Lemma 1,
there exists k ≥ 0 s.t. πk

0 is a lsr-path, which is a counterexample of M, s |=a AFϕ1. Thus
for each infinite path π(s), ∃j ≥ 0 s.t. M,πj |=a ϕ1 holds. Then by IH, for each infinite path
π(s), ∃j ≥ 0 s.t. M,πj |= ϕ1 holds and thus M, s |= AFϕ1 holds.

– Let ϕ = EFϕ1. By the alternative semantics of CTL, there exists a lsr-path ρ(s) and ∃0 ≤
i < len(ρ) − 1 s.t. M, si |=a ϕ1 holds and by IH, M, si |= ϕ1 holds. As there exists a path
from s to si, we get M, s |= EFϕ1 holds.

– Let ϕ = AGϕ1. Assume that there exists an infinite path π(s) and ∃i ≥ 0, M,πi |6=a ϕ1.
By Lemma 2, there exists a lsr-path ρ(s) s.t. πi is on ρ, which is a counterexample of
M, s |=a AGϕ1. Thus for each infinite path π(s) and ∀i ≥ 0, M,πi |=a ϕ1 holds. Then by
IH, for each infinite path π(s) and ∀i ≥ 0, M,πi |= ϕ1 holds and thus M, s |= AGϕ1 holds.

– Let ϕ = EGϕ1. By the alternative semantics of CTL, there exists a lsr-path ρ(s)(i, k) s.t.
∀0 ≤ j < k, M,ρj |=a ϕ1 and by IH, M,ρj |= ϕ1. As ρi0ˆ(ρki+1)

ω is an infinite path, thus
M, s |= EGϕ1 holds.

– Let ϕ = AU(ϕ1, ϕ2). Assume that there exists an infinite path π(s) and ∀j ≥ 0, either
M,πj |6=a ϕ2 or ∃0 ≤ i < j s.t. M,πi |6=a ϕ1. Then by Lemma 1, ∃k ≥ 0 s.t. πk

0 is a lsr-path,
which is a counterexample of M, s |=a AU(ϕ1, ϕ2). Thus for each infinite path π(s), ∃i ≥ 0
s.t. M,πi |=a ϕ2 and ∀0 ≤ m < i, M,πm |=a ϕ1. Then by IH, for each infinite path π(s),
∃i ≥ 0 s.t. M,πi |= ϕ2 and ∀0 ≤ m < i, M,πm |= ϕ1. Thus M, s |= AU(ϕ1, ϕ2) holds.

– Let ϕ = EU(ϕ1, ϕ2). By the alternative semantics of CTL, there exists a lsr-path ρ(s) and
∃0 ≤ i < len(ρ)− 1 s.t. M,ρi |=a ϕ2 and ∀0 ≤ j < i, M,ρj |=a ϕ1. Then by IH, M,ρi |= ϕ2

holds and ∀0 ≤ j < i, M,ρj |= ϕ1 holds. Thus M, s |= EU(ϕ1, ϕ2) holds.
– Let ϕ = AR(ϕ1, ϕ2). Assume that there exists a path π(s) and ∃j ≥ 0 s.t. M,πj |6=a ϕ2

and ∀0 ≤ i < j, M,πi |6=a ϕ1. By Lemma 2, there exists a finite path π′m0 without repeating
states s.t. π′0 = π0, π′m = πj , and ∀0 < n < m, π′n is on πj

0. By the alternative semantics
of CTL, π′m0 is a counterexample of M, s |=a AR(ϕ1, ϕ2). Thus for each infinite path π(s),
by IH, ∀j ≥ 0, either M,πj |= ϕ2 or ∃0 ≤ i < j s.t. M,πi |= ϕ1. By the semantics of CTL,
M, s |= AR(ϕ1, ϕ2) holds.

– Let ϕ = ER(ϕ1, ϕ2). By the alternative semantics of CTL, there exists a lsr-path ρ(s)(j, k)
s.t. ∀0 ≤ i < k, either M,ρi |=a ϕ2 or ∃0 ≤ m < i s.t. M,ρm |=a ϕ1. Then by IH, either
M,ρi |= ϕ2 or ∃0 ≤ m < i s.t. M,ρm |= ϕ1. By Lemma 1, ρj0ˆ(ρ

k
j+1)

ω is an infinite path,
thus by the semantics of CTL, M, s |= ER(ϕ1, ϕ2) holds.

ut

Theorem 1. Let ϕ be a CTL proposition. M, s |= ϕ iff M, s |=a ϕ.

5 Rewrite Rules for CTL

The work in this section is to express CTL propositions in Deduction Modulo and prove that for
a CTL proposition ϕ, the translation of M, s |=a ϕ is provable if and only if M, s |=a ϕ holds.
So we fix such a model M = (S, next, L). As in [9], we consider a two sorted language L, which
contains

– constants s1, . . . , sn for each state of M .
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– predicate symbols ε0, εu0 , εt0 , ε1, εu1 , εt1 , in which the binary predicates ε0, εu0 and εt0

apply to all the CTL propositions, while the ternary predicates ε1, εu1
and εt1

only apply
to the CTL propositions starting with the temporal connectives AG, EG, AR and ER.

– binary predicate symbols mem for the membership, r for the next-notation.
– a constant nil and a binary function symbol con.

We use x, y, z to denote the variables of the state terms, X,Y, Z to denote the class variables.
A class is in fact a set of states, here we use the class theory, rather than the (monadic) second
order logic, is to emphasis that this formalism is a theory and not a logic.

To express CTL in Deduction Modulo, firstly, we translate the CTL proposition ϕ into a term
|ϕ| (called CTL term).

Definition 4 (CTL Term). The term form of a CTL proposition is defined as follows:

|p| = p, p ∈ AP |EXϕ| = ex(|ϕ|) |AU(ϕ,ψ)| = au(|ϕ|, |ψ|)
|¬ϕ| = not(|ϕ|) |AFϕ| = af(|ϕ|) |EU(ϕ,ψ)| = eu(|ϕ|, |ψ|)
|ϕ ∧ ψ| = and(|ϕ|, |ψ|) |EFϕ| = ef(|ϕ|) |AR(ϕ,ψ)| = ar(|ϕ|, |ψ|)
|ϕ ∨ ψ| = or(|ϕ|, |ψ|) |AGϕ| = ag(|ϕ|) |ER(ϕ,ψ)| = er(|ϕ|, |ψ|)
|AXϕ| = ax(|ϕ|) |EGϕ| = eg(|ϕ|)

Note that we use Φ, Ψ to denote the variables of the CTL terms. Both finite sets and finite
paths are represented with the symbols con and nil. For the set S′ = {si, . . . , sj}, we use [S′] to
denote its term form con(si, con(. . . , con(sj , nil) . . .)). For the finite path sji = si, . . . , sj , we use
[sji ] to denote the term con(sj , con(. . . , con(si, nil) . . .)). And then the proposition ϕ holds on s is
expressed as ε0(|ϕ|, s).

Definition 5 (Semantics of L). Semantics of the propositions in the language L is as follows.

M |= ε0(|ϕ|, s) ⇔M, s |=a ϕ
M |= εu0(|ϕ|, [S′]) ⇔ ∀s ∈ S′, M, s |=a ϕ
M |= εt0

(|ϕ|, [S′]) ⇔ ∃s ∈ S′ s.t. M, s |=a ϕ
M |= ε1(ag(|ϕ1|), s, [si0]) ⇔ ∀ lsr-path si0ˆski+1(si+1 = s), and ∀i < j < k, M, sj |=a ϕ1

M |= ε1(eg(|ϕ1|), s, [si0]) ⇔ ∃ lsr-path si0ˆski+1(si+1 = s), and ∀i < j < k, M, sj |=a ϕ1

M |= ε1(ar(|ϕ1|, |ϕ2|), s, [si0]) ⇔ ∀ lsr-path si0ˆski+1(si+1 = s), and ∀i < j < k, either
M, sj |=a ϕ2 or ∃i < m < j s.t. M, sm |=a ϕ1

M |= ε1(er(|ϕ1|, |ϕ2|), s, [si0]) ⇔ ∃ lsr-path si0ˆski+1(si+1 = s), and ∀i < j < k, either
M, sj |=a ϕ2 or ∃i < m < j s.t. M, sm |=a ϕ1

M |= εu1
(ag(|ϕ1|), [S′], [si0]) ⇔ ∀s ∈ S′, M |= ε1(ag(|ϕ1|), s, [si0])

M |= εu1
(ar(|ϕ1|, |ϕ2|), [S′], [si0])⇔ ∀s ∈ S′, M |= ε1(ar(|ϕ1|, |ϕ2|), s, [si0])

M |= εt1
(eg(|ϕ1|), [S′], [si0]) ⇔ ∃s ∈ S′ s.t. M |= ε1(eg(|ϕ1|), s, [si0])

M |= εt1(er(|ϕ1|, |ϕ2|), [S′], [si0])⇔ ∃s ∈ S′ s.t. M |= ε1(er(|ϕ1|, |ϕ2|), s, [si0])
M |= r(s, [S′]) ⇔ S′ = next(s)
M |= mem(s, [si0]) ⇔ s is on the path si0

Example 2. For the Kripke structureM in Fig. 3, we haveM |= ε1(eg(p), s3, con(s2, con(s1, nil)))
because there exists a lsr-path, for instance s1, s2, s3, s4, s2 such that p holds on s3 and s4.

Note that when a proposition ε1(|ϕ|, s, [sji ]) is valid in M , for instance M |= ε1(eg(|ϕ|), s, [sji ]),
EGϕ may not hold on the state s.
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s1start

{}

s2

{}

s3

{p}

s4

{p}

Fig. 3. Example of L

The Rewrite System R The rewrite system has three components,

1. rules for the Kripke structure M (denoted as RM ),
2. rules for the class variables (denoted as Rc),
3. rules for the semantics encoding of the CTL operators (denoted as RCTL).

The Rules of RM The rules of RM are as follows:

– for each atomic proposition p ∈ AP and each state s ∈ S, if p ∈ L(s), then ε0(p, s) ↪→ > is
in RM , otherwise take ε0(not(p), s) ↪→ > as a rewrite rule of RM .

– for each state s ∈ S, take r(s, [next(s)]) ↪→ > as a rewrite rule of RM .

The Rules of Rc For the class variables, as the domain of the model is finite, there exists two
axioms [9],

∀x(x = x),

∀x∀y∀Z((x = y ∨mem(x, Z))⇒ mem(x, con(y, Z))).

The rewrite rules for these axioms are x = x ↪→ > and mem(x, con(y, Z)) ↪→ x = y∨mem(x, Z).
To delete the predicate “=” introduced by the rules, we use the set of rules (Rc)

mem(x, con(x, Z)) ↪→ >,

mem(x, con(y, Z)) ↪→ mem(x, Z)
instead.
The Rules of RCTL The rewrite rules for the predicates carrying the semantic definition of the
CTL propositions, are in Fig. 4. For example, the rule

ε1(eg(|ϕ|), s, [sji ]) ↪→ mem(s, [sji ]) ∨ (ε0(|ϕ|, s) ∧ ∃X(r(s,X) ∧ εt1
(eg(|ϕ|), X, con(s, [sji ]))))

means that M |= ε1(eg(|ϕ|), s, [sji ]) holds, if and only if sji ˆs is a lsr-path, that is s occurs in sji ,
or M |= ε0(|ϕ|, s) and M |= εt1

(eg(|ϕ|), [next(s)], con(s, [sji ])) holds.

Now we are ready to prove the main theorem. Our goal is to prove that M |= ε0(|ϕ|, s) holds
if and only if ε0(|ϕ|, s) is provable in Deduction Modulo.

Lemma 5 (Soundness). For a CTL formula ϕ of NNF, if the sequent `cfR ε0(|ϕ|, s) has a
proof, then M |= ε0(|ϕ|, s).

Proof. More generally, we prove that for any CTL proposition ϕ of NNF,

– if `cfR ε0(|ϕ|, s) has a proof, then M |= ε0(|ϕ|, s).
– if `cfR εu0

(|ϕ|, [S′]) has a proof, then M |= εu0
(|ϕ|, [S′]).

– if `cfR εt0
(|ϕ|, [S′]) has a proof, then M |= εt0

(|ϕ|, [S′]).
– if `cfR ε1(|ϕ|, s, [sji ]) has a proof, in which ϕ is either of the form AGϕ1, EGϕ1, AR(ϕ1, ϕ2),
ER(ϕ1, ϕ2), then M |= ε1(|ϕ|, s, [sji ]).
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ε0(or(Φ, Ψ), x) ↪→ ε0(Φ, x) ∨ ε0(Ψ, x) ε0(and(Φ, Ψ), x) ↪→ ε0(Φ, x) ∧ ε0(Ψ, x)
ε0(ax(Φ), x) ↪→ ∃X(r(x,X) ∧ εu0(Φ,X)) ε0(ex(Φ), x) ↪→ ∃X(r(x,X) ∧ εt0(Φ,X))

ε0(af(Φ), x)) ↪→ ε0(Φ, x) ∨ ∃X(r(x,X) ∧ εu0(af(Φ), X))

ε0(ef(Φ), x)) ↪→ ε0(Φ, x) ∨ ∃X(r(x,X) ∧ εt0(ef(Φ), X))

ε0(ag(Φ), x) ↪→ ε1(ag(Φ), x, nil) ε0(eg(Φ), x) ↪→ ε1(eg(Φ), x, nil)

ε0(au(Φ, Ψ), x) ↪→ ε0(Ψ, x) ∨ (ε0(Φ, x) ∧ ∃X(r(x,X) ∧ εu0(au(Φ, Ψ), X)))

ε0(eu(Φ, Ψ), x) ↪→ ε0(Ψ, x) ∨ (ε0(Φ, x) ∧ ∃X(r(x,X) ∧ εt0(eu(Φ, Ψ), X)))

ε0(ar(Φ, Ψ), x) ↪→ ε1(ar(Φ, Ψ), x, nil) ε0(er(Φ, Ψ), x) ↪→ ε1(er(Φ, Ψ), x, nil)

εu0(Φ, con(x,X)) ↪→ ε0(Φ, x) ∧ εu0(Φ,X) εu0(Φ, nil) ↪→ >
εt0(Φ, con(x,X)) ↪→ ε0(Φ, x) ∨ εt0(Φ,X)

ε1(ag(Φ), x, Y ) ↪→ mem(x, Y ) ∨ (ε0(Φ, x) ∧ ∃X(r(x,X) ∧ εu1(ag(Φ), X, con(x, Y ))))

ε1(eg(Φ), x, Y ) ↪→ mem(x, Y ) ∨ (ε0(Φ, x) ∧ ∃X(r(x,X) ∧ εt1(eg(Φ), X, con(x, Y ))))

ε1(ar(Φ, Ψ), x, Y ) ↪→ mem(x, Y ) ∨ (ε0(Ψ, x) ∧ (ε0(Φ, x) ∨ ∃X(r(x,X) ∧ εu1(ar(Φ, Ψ), X, con(x, Y )))))

ε1(er(Φ, Ψ), x, Y ) ↪→ mem(x, Y ) ∨ (ε0(Ψ, x) ∧ (ε0(Φ, x) ∨ ∃X(r(x,X) ∧ εt1(er(Φ, Ψ), X, con(x, Y )))))

εu1(Φ, con(x,X), Y ) ↪→ ε1(Φ, x, Y ) ∧ εu1(Φ,X, Y ) εu1(Φ, nil, Y ) ↪→ >
εt1(Φ, con(x,X), Y ) ↪→ ε1(Φ, x, Y ) ∨ εt1(Φ,X, Y )

Fig. 4. Rewrite Rules for CTL Connectives (RCTL)

– if `cfR εu1
(|ϕ|, [S′], [sji ]) has a proof, in which ϕ is either of the form AGϕ1, AR(ϕ1, ϕ2), then

M |= εu1
(|ϕ|, [S′], [sji ]).

– if `cfR εt1
(|ϕ|, [S′], [sji ]) has a proof, in which ϕ is either of the form EGϕ1, ER(ϕ1, ϕ2), then

M |= εt1
(|ϕ|, [S′], [sji ]).

By induction on the size of the proof. Consider the different case for ϕ, we have 18 cases (2 cases
for the atomic proposition and its negation, 2 cases for and and or, 10 cases for the temporal
connectives ax, ex, af, ef, ag, eg, au, eu, ar, er, 4 cases for the predicate symbols εu0

, εt0
, εu1

,
εt0

), but each case is easy. For brevity, we just prove some of the cases. The full proof is in [10].

– Suppose `cfR ε0(ex(|ϕ|), s) has a proof. As ε0(ex(|ϕ|), s) ↪→ ∃X(r(s,X) ∧ εt0(|ϕ|, X)), the
last rule of the proof is ∃. By induction hypothesis(IH), there exists S′ s.t. M |= r(s, [S′]) ∧
εt0

(|ϕ|, [S′]), thus S′ = next(s) and there exists a state s′ in S′ s.t. M |= ε0(|ϕ|, s′) holds.
Then M, s |= ε0(ex(|ϕ|), s) holds by its semantic definition.

– Suppose `cfR ε1(eg(|ϕ|), s, [sji ]) has a proof. As ε1(eg(|ϕ|), s, [sji ]) ↪→ mem(s, [sji ])∨(ε0(|ϕ|, s)∧
∃X(r(s,X)∧εt1

(eg(|ϕ|), X, con(s, [sji ])))), the last rule in the proof is ∨1 or ∨2. For ∨1,M |=
mem(s, [sji ]) holds by IH, thus sji ˆs is a lsr-path and M |= ε1(eg(|ϕ|), s, [sji ]) holds by its se-
mantic definition. For ∨2,M |= ε0(|ϕ|, s) andM |= ∃X(r(s,X)∧εt1

(eg(|ϕ|), X, con(s, [s]ji )))
holds by IH. Thus there exists S′ s.t. M |= r(s, [S′]) and M |= εt1

(eg(|ϕ|), [S′], con(s, [sji ]))
holds. Then S′ = next(s) and there exists a state s′ ∈ S′ s.t. M |= ε1(eg(|ϕ|), s′, con(s, [sji ]))
holds. Thus M |= ε1(eg(|ϕ|), s, [sji ]) holds by its semantic definition.

– Suppose `cfR ε0(eu(|ϕ1|, |ϕ2|), s) has a proof. As ε0(eu(|ϕ1|, |ϕ2|), s) ↪→ ε0(|ϕ2|, s)∨(ε0(|ϕ1|, s)∧
∃X(r(s,X) ∧ εt0

(eu(|ϕ1|, |ϕ2|), X))), the last rule in the proof is ∨1 or ∨2. For ∨1, M |=
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ε0(|ϕ2|, s) holds by IH, thusM |= ε0(eu(|ϕ1|, |ϕ2|), s) holds by its semantic definition. For ∨2,
M |= ε0(|ϕ1|, s) and M |= ∃X(r(s,X)∧εt0

(eu(|ϕ1|, |ϕ2|), X)) holds by IH. Thus there exists
S′ s.t. M |= r(s, [S′]) and M |= εt0

(eu(|ϕ1|, |ϕ2|), [S′])) holds. Then we get S′ = next(s) and
there exists a state s′ in S′ s.t. M |= ε0(eu(|ϕ1|, |ϕ2|), s′) holds. Thus there exists a lsr-path
ρ′(s′)(j, k) and ∃1 ≤ m < k s.t. M |= ε0(|ϕ2|, ρ′m) holds and ∀0 ≤ n < m, M |= ε0(|ϕ1|, ρ′n)
holds. For the path ρ′(j, k),
• if ∀0 ≤ i < k, ρ′i 6= s, then sˆρ′(j, k) is a lsr-path, in which M |= ε0(|ϕ2|, ρ′m) holds and
∀0 ≤ n < m, M |= ε0(|ϕ1|, ρ′n) holds,

• if ∃m < i < k s.t. ρ′i = s, then sˆρ′i0 is a lsr-path, in which M |= ε0(|ϕ2|, ρ′m) holds and
∀0 ≤ n < m, M |= ε0(|ϕ1|, ρ′n) holds,

• if ∃0 ≤ i < m s.t. ρ′i = s and i ≤ j, then ρ′ki is a lsr-path, in which M |= ε0(|ϕ2|, ρ′m)
holds and ∀i ≤ n < m M |= ε0(|ϕ1|, ρ′n) holds,

• if ∃0 ≤ i < m s.t. ρ′i = s and i > j, then ρ′ki ˆρ′ij+1 is a lsr-path, in whichM |= ε0(|ϕ2|, ρ′m)
holds and ∀i ≤ n < m, M |= ε0(|ϕ1|, ρ′n) holds.

Thus M |= ε0(eu(|ϕ1|, |ϕ2|), s) holds by its semantic definition.
– Suppose `cfR εt0(|ϕ|, con(s, [S′])) has a proof. As εt0(|ϕ|, con(s, [S′])) ↪→ ε0(|ϕ|, s)∨εt0(|ϕ|, [S′]),

the last rule in the proof is ∨1 or ∨2. For ∨1, M |= ε0(|ϕ|, s) holds by IH, then M |=
εt0

(|ϕ|, con(s, [S′])) holds by its semantic definition. For ∨2, M |= εt0
(|ϕ|, [S′]) holds by IH,

then we exists a state s′ ∈ S′ s.t. M |= ε0(|ϕ|, s′) holds, thus M |= εt0
(|ϕ|, con(s, [S′])) holds

by its semantic definition.

Lemma 6 (Completeness). For a CTL formula ϕ of NNF, if M |= ε0(|ϕ|, s), then the sequent
`cfR ε0(|ϕ|, s) has a proof.

Proof. By induction on the structure of ϕ. For brevity, here we just prove some of the cases. The
full proof is in [10].

– Suppose M |= ε0(ag(|ϕ1|), s) holds. By the semantics of L, for each state s′ on each lsr-path
starting from s, M |= ε0(|ϕ1|, s′) holds. Thus there exists a finite tree T such that
• T has root s,
• for each internal node s′ in T , the children of s′ are labelled by the elements of next(s′),
• the branch starting from s to each leaf is a lsr-path,
• for each internal node s′ in T , M |= ε0(|ϕ1|, s′) holds and by IH, there exists a proof
Π(ϕ1,s′) for the sequent `cfR ε0(|ϕ1|, s′).

Then, to each subtree T ′ of T , we associate a proof |T ′| of the sequent `cfR ε1(ag(|ϕ1|), s′, [s′k−10 ])
where s′ is the root of T ′ and s′k0 (s′k = s′) is the branch from s to s′, by induction, as follows,
• if T ′ contains a single node s′, then s′k0 is a lsr-path and the proof is as follows:

>
`cfR mem(s′, [s′k−1

0 ])
∨1

`cfR ε1(ag(|ϕ1|), s′, [s′k−1
0 ])

• if T ′ = s′(T0, . . . , Tn)
1, the proof is as follows:

Πs′

`cfR ε0(|ϕ1|, s′)

>
`cfR r(s′, [next(s′)])

|T0| . . . |Tn|
∧n

`cfR εu1(ag(|ϕ1|), [next(s′)], [s′k0 ])
∧

`cfR r(s′, [next(s′)]) ∧ εu1(ag(|ϕ1|), [next(s′)], [s′k0 ])
∃

`cfR ∃X(r(s′, X) ∧ εu1(ag(|ϕ1|), X, [s′k0 ]))
∧

`cfR ε0(|ϕ1|, s′) ∧ ∃X(r(s′, X) ∧ εu1(ag(|ϕ1|), X, [s′k0 ]))
∨2

`cfR ε1(ag(|ϕ1|), s′, [s′k−1
0 ])

1 s′(T0, . . . , Tn) is a tree, in which s′ is the root, T0, . . . , Tn are the sub-trees.
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This way, as ε0(ag(|ϕ1|), s) can be rewritten into ε1(ag(|ϕ1|), s, nil), |T | is a proof for the
sequent `cfR ε0(ag(|ϕ1|), s).

– Suppose M |= ε0(ef(|ϕ1|), s) holds. By the semantics of L, there exists a lsr-path sk0 starting
from s and ∃0 ≤ j < k s.t. M |= ε0(ef(|ϕ1|), sj) and by IH, there exists a proof Π(ϕ1,sj)

for the sequent `cfR ε0(|ϕ1|, sj). To each subpath sji of sj0, we associate a proof |sji | for the
sequent `cfR ε0(ef(|ϕ1|), si), by induction, as follows,
• if sji contains a single node sj , then the proof |sji | is as follows:

Π(ϕ1,sj) ∨1

`cfR ε0(ef(|ϕ1|), sj)
• Otherwise, assume next(si) = {s′0, . . . , s′n} and si+1 = s′m, the proof |sji | is as follows:

>
`cfR r(si, [next(si)])

|sji+1| ∨1

`cfR εt0(ef(|ϕ1|), con(s′m, [S′])) ∨m
2

`cfR εt0(ef(|ϕ1|), [next(si)])
∧

`cfR r(si, [next(si)]) ∧ εt0(ef(|ϕ1|), [next(si)])
∃

`cfR ∃X(r(si, X) ∧ εt0(ef(|ϕ1|), X))
∨2

`cfR ε0(ef(|ϕ1|), si)
This way, |sj0| is a proof of the sequent `cfR ε0(ef(|ϕ1|), s).

– Suppose M |= ε0(eu(|ϕ1|, |ϕ2|), s) holds. By the semantics of L, there exists a lsr-path sk0
starting from s and ∃0 ≤ j < k, s.t. M |= ε0(|ϕ2|, sj) and ∀0 ≤ i < j, M |= ε0(|ϕ1|, si).
By IH, for each state s′, if M |= ε0(|ϕ1|, s′), then there exists a proof Π(ϕ1,s′) for the
sequent `cfR ε0(|ϕ1|, s′) and if M |= ε0(|ϕ2|, s′), then there exists a proof Π(ϕ2,s′) for the
sequent `cfR ε0(|ϕ2|, s′). To each subpath sji of sj0, we associate a proof |sji | for the sequent
`cfR ε0(eu(|ϕ1|, |ϕ2|), s), by induction, as follows,
• if sji contains a single node sj , then the proof is as follows:

Π(ϕ2,sj) ∨1

`cfR ε0(eu(|ϕ1|, |ϕ2|), sj)
• Otherwise, assume next(si) = {s′0, . . . , s′n} and si+1 = s′m, the proof |sji | is as follows:

Π(ϕ1,si)

>
`cfR r(si, [next(si)])

|sji+1| ∨1

`cfR εt0(eu(|ϕ1|, |ϕ2|), con(s′m, [S′])) ∨m
2

`cfR εt0(eu(|ϕ1|, |ϕ2|), [next(si)])
∧

`cfR r(si, [next(si)]) ∧ εt0(eu(|ϕ1|, |ϕ2|), [next(si)])
∃

`cfR ∃X(r(si, X) ∧ εt0(eu(|ϕ1|, |ϕ2|), X))
∧

`cfR ε0(|ϕ1|, si) ∧ ∃X(r(si, X) ∧ εt0(eu(|ϕ1|, |ϕ2|), X))
∨2

`cfR ε0(eu(|ϕ1|, |ϕ2|), si)
This way, |sj0| is a proof of the sequent `cfR ε0(eu(|ϕ1|, |ϕ2|), s).

ut

Theorem 2 (Soundness and Completeness). For a CTL proposition ϕ of NNF, the sequent
`cfR ε0(|ϕ|, s) has a proof iff M |= ε0(|ϕ|, s) holds.

6 Automated Theorem Proving Modulo

6.1 Polarized Resolution Modulo

In Polarized Resolution Modulo, the polarized rewrite rules are taken as one-way clauses [6]. For
example, the rewrite rule
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ε1(eg(Φ), x, Y ) ↪→+ mem(x, Y ) ∨ (ε0(Φ, x) ∧ ∃X(r(x,X) ∧ εt1(eg(Φ), X, con(x, Y ))))

is translated into two one-way clauses

ε1(eg(Φ), x, Y ) ∨mem(x, Y )⊥

ε1(eg(Φ), x, Y ) ∨ ε0(Φ, x)⊥ ∨ r(x,X)⊥ ∨ εt1(eg(Φ), X, con(x, Y ))⊥

in which the underlined literals have the priority to do resolution.

s1start

{}

s2

{p}

s3

{p}

Fig. 5. Resolution Example

Example 3. For the transition system M in Fig.5, we prove that M, s1 |=a EXEGp.
The one-way clauses for the system are: ε0(not(p), s1), ε0(p, s2), ε0(p, s3), r(s1, con(s2, nil)),

r(s2, con(s3, nil)), r(s3, con(s2, nil)).
The translation of M, s1 |=a EXEGp is ε0(ex(eg(p)), s1) and the resolution steps start from

ε0(ex(eg(p)), s1)
⊥.

First apply resolution with one-way clause ε0(ex(Φ), x)∨r(x,X)⊥∨εt0
(Φ,X)⊥, with x = s1 and

Φ = eg(p), this yields
r(s1, X)⊥ ∨ εt0

(eg(p), X)⊥.

Then apply resolution with one-way clause r(s1, con(s2, nil)), with X = con(s2, nil), this yields

εt0(eg(p), con(s2, nil))
⊥.

Then apply resolution with one-way clause εt0(Φ, con(x,X)) ∨ ε0(Φ, x)⊥, with x = s2, X = nil
and Φ = eg(p), this yields

ε0(eg(p), s2)
⊥

Then apply resolution with one-way clause ε0(eg(Φ), x) ∨ ε1(eg(Φ), x, nil)⊥, with Φ = p and
x = s2, this yields

ε1(eg(p), s2, nil)
⊥

Then apply resolution with one-way clause (‡ 2), with Φ = p, x = s2 and Y = nil, this yields

ε0(p, s2)
⊥ ∨ r(s2, X)⊥ ∨ εt1

(eg(p), X, con(s2, nil))
⊥.

Then apply resolution with one-way clause ε0(p, s2), this yields

r(s2, X)⊥ ∨ εt1
(eg(p), X, con(s2, nil))

⊥.

Then apply resolution with one-way clause r(s2, con(s3, nil)), with X = con(s3, nil), this yields

εt1
(eg(p), con(s3, nil), con(s2, nil))

⊥

Then apply resolution with one-way clause εt1
(Φ, con(x,X), Y ) ∨ ε1(Φ, x, Y )⊥, with Φ = eg(p),

x = s3, X = nil and Y = con(s2, nil), this yields
2 ‡ is ε1(eg(Φ), x, Y ) ∨ ε0(Φ, x)⊥ ∨ r(x,X)⊥ ∨ εt1(eg(Φ), X, con(x, Y ))⊥
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ε1(eg(p), s3, con(s2, nil))
⊥

Then apply resolution with one-way clause (‡), with Φ = p, x = s3 and Y = con(s2, nil), this
yields

ε0(p, s3)
⊥ ∨ r(s3, X)⊥ ∨ εt1(eg(p), X, con(s3, con(s2, nil)))

⊥.

Then apply resolution with one-way clause ε0(p, s3), this yields

r(s3, X)⊥ ∨ εt1
(eg(p), X, con(s3, con(s2, nil)))

⊥.

Then apply resolution with one-way clause r(s3, con(s2, nil)), with X = con(s2, nil), this yields

εt1
(eg(p), con(s2, nil), con(s3, con(s2, nil)))

⊥

Then apply resolution with one-way clause εt1
(Φ, con(x,X), Y ) ∨ ε1(Φ, x, Y )⊥, with Φ = eg(p),

x = s3, X = nil and Y = con(s2, nil), this yields

ε1(eg(p), s2, con(s3, con(s2, nil)))
⊥

Then apply resolution with one-way clause ε1(eg(Φ), x, Y ) ∨ mem(x, Y )⊥, with x = s2 and
Y = con(s3, con(s2, nil)), this yields

mem(s2, con(s3, con(s2, nil)))
⊥

Then apply resolution with one-way clause mem(x, con(y, Z))∨mem(x, Z)⊥, with x = s2, y = s3
and Z = con(s2, nil), this yields mem(s2, con(s2, nil))

⊥

Then apply resolution with one-way clause mem(x, con(x, Z)), with x = s2 and Z = nil, this
yields the empty clause. Thus M, s1 |=a EXEGp holds.

6.2 Experimental Evaluation

In this Section, we give a comparison between Resolution-based and QBF-based verification,
that are implemented in iProver Modulo and VERDS [15] respectively. iProver Modulo is a prover
by intergate Polarized Resolution Modulo into iProver [11]. The comparison is based on 24 CTL
properties and two kinds of programs: Programs with Concurrent Processes and Programs with
Concurrent Sequential Processes. The programs and CTL properties refer to [16].

For the programs with concurrent processes, each testing case contains 12/24 variables and 3
processes. For the programs with concurrent sequential processes, each testing case contains 12/16
variables and 2 processes. All the cases are tested on Intelr Core TM i5-2400 CPU @ 3.10GHz ×
4 with Linux and the testing time of each case is limited to 20 minutes. The experimental data
is presented in Table 1 and 2. The comparison is based on two aspects: the number of testing
cases that can be proved, and the time used if a problem can be proved in both.

– As can be seen in Table 1, among the 960 testing cases of the concurrent processes, 94 of
them are timeout in iProver, while the number in VERDS is 99. For the concurrent sequential
processes, among the 960 testing cases, 173 of them are timeout in iProver, while in VERDS,
the number is 260.

– Table 2 shows that, among the 818 testing cases of the programs of concurrent processes,
that are both proved in iProver and VERDS, iProver performs better in 272 of them and
among the 678 testing cases of the programs of concurrent sequential processes, 412 of them
run faster in iProver.

In summary, for the 1920 testing cases, 1653 (86%) of them are solved by iProver, while 1561
(81%) are solved by VERDS. For all the 1496 testing cases that are both proved, 684 (45.8%)
testing cases run faster in iProver.
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Table 1. Experimental Results

iProver/Verds Con. Processes Con. Seq. Processes

Prop Num True False >20m True False >20m

p01 40 - 40/40 - 23/- 5/4 12/36
p02 40 40/40 - - 40/40 - -
p03 40 2/- 37/37 1/3 - 25/15 15/25
p04 40 17/- - 23/40 - - 40/40
p05 40 25/34 6/5 9/1 24/24 8/2 8/14
p06 40 31/40 - 9/- 36/31 - 4/9
p07 40 40/40 - - 40/40 - -
p08 40 40/40 - - 40/40 - -
p09 40 32/32 8/8 - 35/29 5/1 -/10
p10 40 40/40 - - 40/40 - -
p11 40 10/10 30/30 - 27/23 8/4 5/13
p12 40 40/40 - - 40/35 - -/5
p13 40 - 40/40 - - 40/40 -
p14 40 3/3 37/37 - 3/3 37/33 -/4
p15 40 5/- 33/33 2/7 - 23/15 17/25
p16 40 19/- - 21/40 - - 40/40
p17 40 28/37 3/2 9/1 25/26 5/1 10/13
p18 40 32/40 - 8/- 37/31 - 3/9
p19 40 5/5 35/35 - 6/6 34/34 -
p20 40 15/17 21/21 4/2 12/11 18/22 10/7
p21 40 3/3 37/37 - 3/3 37/37 -
p22 40 3/3 37/37 - 3/3 37/37 -
p23 40 - 40/40 - - 40/40 -
p24 40 20/25 12/10 8/5 8/8 23/22 9/10

Sum 960 450/449 416/412 94/99 442/393 345/307 173/260

Table 2. Speed Comparisons a

Con. Processes Con. Seq. Processes

Prop Num adv/T adv/F O(iP/Ver) adv/T adv/F O(iP/Ver)

p01 40 - 0/40 - - 0/3 25/1
p02 40 40/40 - - 40/40 - -
p03 40 - 1/37 2/- - 11/15 10/-
p04 40 - - 17/- - - -
p05 40 0/25 3/5 1/9 6/20 2/2 10/4
p06 40 0/31 - -/9 10/28 - 8/3
p07 40 33/40 - - 37/40 - -
p08 40 35/40 - - 38/40 - -
p09 40 19/32 0/8 - 22/29 0/1 10/-
p10 40 19/40 - - 18/40 - -
p11 40 0/10 0/30 - 9/23 3/4 8/-
p12 40 3/40 - - 7/35 - 5/-
p13 40 - 38/40 - - 40/40 -
p14 40 2/3 0/37 - 3/3 23/33 4/-
p15 40 - 0/33 5/- - 10/14 9/1
p16 40 - - 19/- - - -
p17 40 0/28 1/2 1/9 8/22 1/1 7/4
p18 40 0/32 - -/8 11/29 - 8/2
p19 40 2/5 9/35 - 6/6 12/34 -
p20 40 1/15 7/20 1/3 6/11 9/17 2/5
p21 40 2/3 18/37 - 3/3 23/37 -
p22 40 2/3 19/37 - 2/3 22/37 -
p23 40 - 17/40 - - 25/40 -
p24 40 0/20 1/10 2/5 1/7 4/21 3/2

Sum 960 158/407 114/411 48/43 227/379 185/299 109/22

a adv/T(F): have advantage in the speed when both return T(F).
O(iP/Ver): only solved by iProver/Verds.
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7 Conclusion and Future Work

In this paper, we defined an alternative semantics for CTL, which is bounded to lsr-paths. Based
on the alternative semantics, a way to embed model checking problems into Deduction Modulo
has been presented. Thus this work has given a method to solve model checking problems in
automated theorem provers, without losing the advantages of model checking approaches.

An experimental evaluation of this approach using resolution modulo has been presented. The
comparison with the QBF-based verification showed that automated theorem proving modulo,
which performed as well as QBF-based method, can be considered as a new way to quickly
determine whether a property is violated in transition system models.

The proof-search method does not work well on proving some temporal propositions, such as
the propositions start with AG. One of the reasons is during the search steps, it may visit the
same state repeatedly. To design new rewrite rules for the encoding of temporal connectives or
new elimination rules to avoid this problem remains as future work.

Acknowledgements. I am grateful to Gilles Dowek, for his careful reading and comments.
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