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HIERARCHICAL BAYESIAN MODELING FOR COMBINING DATES IN
ARCHAEOLOGICAL CONTEXT

PHILIPPE LANOS1 AND ANNE PHILIPPE2

Abstract

A Bayesian approach is proposed for combining dates from different dating methods used in
archeology. This modeling provides an automatic way to penalize outlying data. Examples are
provided from different archeological contexts and involving radiocarbon, luminescence and ar-
chaeomagnetic results. This new combination procedure is also applied to the wiggle-matching
process in dendrochronological dating. Calculations are based on MCMC numerical techniques
and can be performed using the cross-platform ChronoModel application which is free, open source
software (FOSS).
keywords : Bayesian statistics; ChronoModel software ; individual errors ; MCMC methods ;
outlier penalization.

1. Introduction

Many dating methods are available to learn about the age of archeological artifacts. The choice
of the method generally depends on the nature of the object and its age (see Aitken (2013) for a
detailed review). Radiocarbon, luminescence, and archaeomagnetic dating are probably the most
commonly used methods.

Radiocarbon dating (or 14C dating) is used to evaluate the ages of biological specimens (e.g.
charcoals, wood artifacts, bone remains, etc.). It is possible to date objects as old as around 50 000
years. Many statistical papers are devoted to this method and software applications are available
to analyze and model the radiocarbon data (see Buck et al., 1999; Bronk Ramsey and Lee, 2013;
Bronk Ramsey, 2009a).

Luminescence dating (TL/OSL) is based on the radiation absorbed and stored in the crystal
lattice of minerals such as quartz. The calculated age is the elapsed time since the last exposure
to sunlight or intense heat.

Archaeomagnetic dating (AM) relies on the past variations of the Earth’s magnetic field. The
ferromagnetic minerals, heated to high temperatures, acquire a remnant magnetization with a
direction parallel to, and an intensity proportional to, the local Earth’s magnetic field at the time
of cooling. The method is implemented for some geographical area where variations of the Earth’s
magnetic field are known. It allows the last heating of baked clays to be dated.

One important question in archeology is the estimation of the date of an archeological event
that is associated with a set of contemporaneous artifacts. This problem comes up frequently when
constructing chronologies in archeology. Each artifact of the event is dated, and so we collect a
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2 LANOS AND PHILIPPE

sample of observations provided by one or several dating methods. This leads to the issue of
combining measurements in order to define the event date.

The simplest statistical model is defined as n independent measurements M1, . . . ,Mn assumed
to have the same unknown mean µ. The parameter µ is in turn related to calendar time via
so-called calibration curve. We denote as s2i the experimental variance on each measurement Mi,
that is supposed known and evaluated by the laboratory during the measurement process. To
summarize, we write

(1) Mi = µ+ siεi, ∀ i = 1, ..., n

where ε1, ..., εn are n independent identically distributed Gaussian random variables with zero
mean and variance 1. The maximum likelihood estimate of µ (Ward and Wilson, 1978) is given
by

(2) µ̂n =

n∑
i=1

Mi

s2i
n∑

i=1

1

s2i

.

The measurements Mi with high variance s2i are penalized, and thus they contribute less to the
estimation of the mean µ. In Galbraith et al. (1999), this model is named the "common age
model" and is applied for combining paleodoses in the luminescence dating method. This method
is also implemented for combining 14C ages (see Bronk Ramsey, 2009a).

To take into account individual effects, we can add a random effect on the parameter µ as
follows:

Mi = µi + siεi(3)

µi = µ+ σλi,

where λ1, ..., λn, ε1, ..., εn are 2n independent and identically distributed Gaussian random variables
with zero mean and variance 1. Error σλi represents the uncertainty between the measurements
and the event µ due to sampling (representativeness) problems of unknown origin which are not
related to the measurement process in the laboratory. This model is named the "central Age
model" in Galbraith et al. (1999). An explicit form of the likelihood estimate is not available.
Alternatively, a Bayesian approach can be adopted to estimate the parameters µ and σ2 of this
hierarchical model. It is thus necessary to choose a prior distribution on (µ, σ2). This choice is
discussed for instance in Congdon (2010) or Spiegelhalter et al. (2004) in the particular case of
meta-analysis.

In archeology, dating laboratories might provide measurements for

• a 14C age,
• a paleodose measurement (TL/OSL),
• an inclination, a declination or an intensity of the geomagnetic field (AM).

The laboratory measurements are then converted into calendar dates using a calibration curve (see
Section 2). This step must be added to the combination model. We thus propose to extend the
model with the random effect defined in (3) by adding a calibration step, and including individual
effects on the variance by replacing σ by σi.
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The inclusion of individual effects is motivated by the fact that each measurement can be
affected by irreducible errors (Christen, 1994) which can come from different sources such as:

(1) The way of ensuring that the samples studied can realistically provide results for the events
that we wish to characterize (measurement or date)

(2) The care taken in sampling in the field,
(3) The care taken in sample handling and preparation in the laboratory,
(4) Other non-controllable random factors that can appear during the process.

The rest of the paper is organized in three sections. Section 2 is devoted to the Bayesian cali-
bration of measurements and the combination of dates. In Section 3, we describe our hierarchical
Bayesian model for combining measurements in the context of dating problems and define an
"event model” to estimate a date for contemporary artifacts. Section 4 provides an application to
wiggle-match dating of tree-ring sequences.

Remark 1. We define each Bayesian model using a directed acyclic graph (DAG). This graph
describes the dependencies in the joint distribution of the probabilistic model. Each random variable
of the model (that is an observation or a parameter) appears as a node in the graph. Any node
is conditionally independent of its non-descendents given its parents. Nodes represented by circles
correspond to the random variables of the model. With the color of the circles, we distinguish
between observations (red) and parameters (blue). The green squares indicate exogenous variables.

2. Calibration and linked models

In this section we describe two standard Bayesian models:

• the individual calibration of a measurement provided by a dating laboratory,
• the combination of measurements performed on the same artifact using the same dating

method.

2.1. Calibration. The simplest problem is the calibration of an individual measurement M in
calendar time t. The measure M has a Gaussian distribution with mean µ and known variance
s2. Following a hierarchical model, the variable µ has a Gaussian distribution with mean g(t) and
variance σ2

g(t), where g is a function called "calibration curve" linking the measurement to calendar
time t. Every dating method has its own calibration curve. For instance, the curve IntCal13
(Reimer et al., 2013) converts a radiocarbon Age in calendar date for the Northern Hemisphere
atmospheric samples. The calibration of 14C ages is detailed by Bronk Ramsey (2009a); Buck
et al. (1996); Litton and Buck (1995). In archaeomagnetism the secular variation curves of the
Earth’s magnetic field are used to convert an inclination, declination or intensity measurement to
a calendar date (see Lanos, 2004). In the case of an ageM provided by luminescence (TL or OSL),
the calibration function is merely a linear function g(t) = (t0 − t) where t0 is the determination
year of the age measurement M in the laboratory.

The construction of the calibration curve depends on the dating method. In the context of OSL
dating the calibration curve comes from a physical equation, and so σg is assumed to be null. In
radiocarbon or archaeomagnetic dating methods, the curve comes from an estimation step (e.g. a
non linear regression on a set of dated reference measurements). In this case σg corresponds to
the errors due to the estimation method. Note that these curves are regularly updated according
to the improvement of the reference data.
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The Bayesian model for ’calibration’ or conversion of a measurement M to calendar date t is
the following. The model on the measurement M is given by

M = µ+ sε,

where µ is the true value of the measurement and s2 is the known variance. The distribution of ε
is the standard Gaussian distribution.

The calibration step converts µ to calendar date t, using the relation

µ = g(t) + σg(t)ρ,

where both functions g and σg are assumed known, and where ρ is a standard Gaussian random
variable.

Let T be the time range of interest. This interval is fixed from prior information on the historical
period to which the event belongs.

We choose the uniform distribution on T as prior distribution on the parameter t,

(4) p(t) ∝ 1T (t).

If we integrate the posterior distribution of (t, µ) with respect to latent variable µ, we get the
posterior distribution of t (up to a multiplicative constant):

(5) p(t|M) ∝ 1

S(t)
exp

(
−1

2S2(t)
(M − g(t))2

)
1T (t),

where

(6) S(t)2 = s2 + σ2
g(t).

Figure 1. Conversion of a 14C age (A = 1000 ± 30 BP) to a calendar date via
the calibration curve IntCal13.

Figures 1, 2 and 3 illustrate the calibration process for different calibration curves. In many
cases, the individual calibration provides an estimation of the date with a high uncertainty. The
posterior distribution is often multi-modal or unimodal with large variance. This motivates the
archeologist to repeat measurements on different contemporaneous artifacts using one or several
dating methods.
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Figure 2. Conversion of a TL age (A = 900± 50 ) to a calendar date through
the linear transformation g(t) = (2000− t).

Figure 3. Conversion of an inclination measurement (I = 59± 1) to a calendar
date via the calibration curve of archaeomagnetic field in France (Paris) over the
last two millennia.

2.2. Calibration from multiple measurements. We observe m independent measurements
Mk performed on the same object. We assume that all the measurements can be calibrated with
the same curve (g, σ2

g). This appears, for example, in the case of radiocarbon dating when the same
object is analyzed by different laboratories. In this case, the measurements have to be combined
before calibration (see Ward and Wilson (1978) and Bronk Ramsey (2009a)).

The Bayesian model (Fig. 4) is defined by the following distributions:

Mi|µ ∼ N (µ , s2i ) ∀ i = 1, ...,m

µ|t ∼ N (g(t) , σ2
g(t))

t ∼ Unif(T ),
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where T is the time range of interest. This model is called R-Combine in Bronk Ramsey (2009a).
One can easily get the marginal posterior density of t, which is given by

p(t|M1, ...,Mm) ∝ 1

S̃m(t)
exp

(
−1

2S̃m(t)2
(Mm − g(t))2

)
1T (t),

where

S̃m(t)2 = s2m + σ2
g (t) with

1

s2m
=

m∑
k=1

1

s2k
,

and where

Mm =

m∑
k=1

Mk

s2k
/

m∑
k=1

1

s2k
.

The R-combine model is equivalent to the individual calibration of the observation (Mm, s
2
m) using

the process described in Section 2.1.

t

µ

i = 1 to m

s2i

Mi

Figure 4. DAG of the R-Combine model.

3. Event model

In the general case we observe n measurements Mi such that each measurement provides a
dating through a calibration step defined by a calibration function gi and its error σgi . The
R-combine model is no longer valid in this case because it requires a common calibration curve
(i.e. gi = g for all i = 1, ..., n). Our idea is to adapt the Bayesian combination of measurements
to estimate the date of an archeological event from the individual dating of contemporaneous
artifacts.

3.1. The model. We describe the so-called Event model to estimate a date θ from n measure-
ments Mi provided by different dating methods. We assume that each measurement Mi is related
to an individual date ti through a calibration curve gi. Here this curve is assumed known with
some known uncertainty. The main assumption in our Event model is the contemporaneity of the
dates ti, i = 1..., n with the event date θ. We assume that θ ∈ T where T is the bounded interval
corresponding to the range of study.

In this context the model with random effect given by (3) can be rewritten as follows

Mi = µi + siεi,

µi = gi(ti) + σgi(ti)ρi,

ti = θ + σiλi,(7)



HIERARCHICAL BAYESIAN MODELING FOR COMBINING DATES IN ARCHAEOLOGICAL CONTEXT 7

where (ε1, ...εn, ρ1, ..., ρn, λ1, ..., λn) are independent and identically distributed Gaussian random
variables with zero mean and variance 1.
The random variables (λi)i and (εi)i are interpreted as follows :

• σiλi represents the irreducible error between ti and θ due to sampling problems external
to the laboratory ( Section 1),
• siεi + σgi(ti)ρi represents the experimental error provided by the laboratory and the cali-

bration step.

θ

i = 1 to n

σ2
i

ti

µi
s2i

Mi

Figure 5. DAG for the hierarchical Event model applied to dating combination
with calibration.

According to the DAG defining the event model (Fig. 5), the joint distribution of the proba-
bilistic model can be written in the form

(8) p(M1, ...,Mn, µ1, ..., µn, t1, ..., tn, σ
2
1 , ..., σ

2
n, θ) = p(θ)

n∏
i=1

p(Mi|µi)p(µi|ti)p(ti|σ2
i , θ)p(σ

2
i ),

where the conditional distributions that appear in the decomposition are given by

Mi|µi ∼ N (µi , s
2
i )

µi|ti ∼ N (gi(ti) , σ
2
gi(ti))

ti|σ2
i , θ ∼ N (θ , σ2

i )(9)

σ2
i ∼ Shrink(s20)(10)

θ ∼ Unif(T ).(11)

The density of the uniform shrinkage distribution with parameter s20 (denoted Shrink(s20)), that
appears in (10), is given by

(12) p(σ2
i ) =

s20
(s20 + σ2

i )
2
.

Note that this form of density implies that the random variable s20/(σ2+s20) is uniformly distributed
on [0, 1]. This distribution is rather diffuse in the sense that the variance and mean are infinite.
So it can be considered weakly informative. The properties of the uniform shrinkage prior and
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the choice of s20 are discussed in (Daniels, 1999). In the particular case of the central age model
defined in (3), Spiegelhalter et al. (2004) suggests the following choice of parameter:

1

s20
=

1

n

n∑
i=1

1

s2i
.

Parameter s20 quantifies the magnitude of error on the measurements. As s20 is the median of the
uniform shrinkage prior, this choice ensures that the parameter σ2

i has the same prior probability
to be smaller or larger than s20. Therefore we do not favor the measurement errors with respect
to the error between ti and θ due to sampling problems.

With calibrated measurements, the parameter s20 cannot be calculated directly from the vari-
ances s2i . Indeed the measurement errors si are not necessarily homogeneous units (see for instance
the case of archaeomagnetism combined with 14C). Moreover they do not contain the information
on the variance of the combined variables. To adapt this strategy we have to estimate the variance
of the dates ti. We propose to estimate these variances after the step of individual calibration.
We proceed in the following way, for each i = 1, ..., n:

(1) An individual calibration step is performed for each measurement Mi

(a) compute the posterior distribution of ti (using (5))
(b) approximate the posterior variance w2

i = var(ti|Mi)

(2) Take as shrinkage parameter s0:

1

s20
=

1

n

n∑
i=1

1

w2
i

.

Remark 2. For the hyperparameters σ2
i in the third stage of the hierarchical model, the choice

of a diffuse noninformative prior may be problematic as improper priors may induce improper
posteriors. This problem appears in our model, for instance by taking p(σi) ∝ 1/σ2

i , that is the
classical non informative prior (called the Jeffreys prior) for Gaussian observations. The choice of
diffuse priors in such models raises particular issues, discussed for instance in Congdon (2010). It
is always possible to choose a proper probability distribution which approximates the diffuse prior,
for instance

• a density proportional to the Jeffreys prior truncated on an closed interval [a, b] ⊂]0,∞[,
• an inverse Gamma distribution with small scale and shape parameters.

However, such priors may cause identifiability problems as the posteriors are close to being em-
pirically improper. Moreover the inference of the parameter of interest is sensitive to the choice
of parameters in the proper prior distribution. This is a major drawback for small samples.

3.2. MCMC algorithm. The posterior distribution of the parameter of interest θ can not be
obtained explicitly. It is necessary to implement a computational method to approximate the
posterior distribution, its quantiles, the Bayes estimates and the highest posterior density (HPD)
regions. We adopt a MCMC (Markov Chain Monte Carlo) algorithm known as the Metropolis-
within-Gibbs strategy because the full conditionals cannot be simulated by standard random
generators. For each parameter, the full conditional distribution is proportional to (8).

1. For the parameter of interest θ we identify a truncated Gaussian distribution on the period of
interest T . Such a distribution can be simulated using rejection sampling. Different choices of
proposal distribution are possible, such as the Gaussian distribution or the truncated Laplace
(double exponential) distribution on T . It is also possible to use an adaptive random walk
Metropolis-Hastings (MH) with a Gaussian proposal distribution.



HIERARCHICAL BAYESIAN MODELING FOR COMBINING DATES IN ARCHAEOLOGICAL CONTEXT 9

2. The density of the full conditional distribution of σ2
i is explicitly computable up to an unknown

multiplicative constant, but it is not a standard distribution. Therefore it is simulated using
an adaptive random walk MH with a Gaussian proposal distribution on the variable log(σ2

i ).
3. The full conditional distribution of ti, i = 1, ..., n, is proportional to

1

Si(ti)
exp

{
−1

2S2
i (ti)

(Mi − gi(ti)2
}
exp

{
−1
2σ2

i

(ti − θ)2)
}
,

where Si(ti) is defined in (6). We can choose an adaptive random walk MH with a Gaussian
proposal. However, the random walk solution is not necessarily the most efficient choice because
the target distribution can be multimodal. We are frequently confronted with this problem
as shown by, for instance, the results yielded by archaeomagnetic dating in Example 2. In
this context, an alternative is to choose an independent Hasting-Metropolis algorithm with
a proposal distribution that mimics the individual calibration density defined in (5). This
ensures that all the possible values of ti can be visited when the calibrated date distribution is
multimodal.

These algorithms are implemented in the cross-platform ChronoModel application (Lanos et al.,
2015; Vibet et al., 2015), which is free and open source software. In the examples discussed below,
the graphics summarizing the numerical results are performed using ChronoModel software. We
represent the marginal densities of

• the parameter of interest θ (on gray background)
• the individual measurements ti (on white background)
• the individual standard deviations σi

For each density, the bar above the density represents the shorter 95% posterior probability inter-
val. The vertical lines, delimiting the colored area under the density curve, indicate the endpoints
of the 95% HPD region. For a unimodal posterior density, the 95% posterior probability regions
coincide.

Different graphical tools are implemented to assess the convergence of the MCMC in ChronoModel
software (e.g. the autocorrelation functions, the acceptance rate of Metropolis-Hasting algo-
rithms). The user can adjust the length of burn-in, the maximum number of iterations for adap-
tation and for acquisition, and the thinning rate. Moreover multiple chains can be simulated and
exported for further analysis using, for instance, the R package coda.

In term of computational performance, among the examples given in this paper, the longest
computing time is achieved for Ex. 2, Indeed 106 iterations are required to well estimate the
multimodal posterior distribution of the Event. The simulation is performed on a 2 GHz Intel
Core i7 by using a single core. The computational time is less than 1 minute including the
post-processing i.e. estimation of HPD regions, credibility regions, posterior densities, etc from
simulated Markov chain, and displaying results.

3.3. Examples.

Example 1. Mont-Saint-Michel (Normandy, France)
An archeology building study has been conducted at the Mont-Saint-Michel site in Normandy,

France (Blain et al., 2007; Sapin et al., 2008). The aim of this study was to estimate the dates of
different building states of the Carolingian church Notre-Dame-sous-Terre (NDST) located inside
the Mont-Saint-Michel abbey. Therefore it is reasonable to fix the time range T equal to [0 , 2000],
which widely includes the Carolingian period.
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Figure 6. Mont-Saint-Michel, Ex. 1. Posterior density of the event date θ
(gray background). Posterior densities of ti (blue line & white background) and
individual posterior calibrated densities (gray line & white background) obtained
for TL dates and for 14C dates.

Figure 7. Mont-Saint-Michel, Ex. 1 (Cont.). Posterior densities obtained for
standard deviations σi.

In what follows, we model building state number 1 which is associated with 14C analysis on 3
charcoals, and luminescence analyses of 8 bricks.

Figures 6 and 7 summarize the estimation results obtained by the event model. The 95% HPD
interval for the date of building state 1 is [892 ; 993]. This result is more precise than the dating
obtained in Blain et al. (2007), which is based solely on luminescence analysis. This result confirms
the value of combining different dating methods.

Figure 6 provides a comparison between the individual calibrations of each measurement and
the posterior densities of the dates ti. Clearly the event model improves the precision of the dating
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of each artifact included in the event. The graphical comparison of the posterior densities of ti
confirms our assumption that the bricks and charcoals are contemporary.

Posterior densities for standard deviations σi fall within the small range [0, 200] at 95% (Fig.
7). These results confirm that the dates ti are contemporary

Example 2. Cuers (Provence, France), medieval or modern lime kiln

Figure 8. Cuers, Ex. 2. Posterior density of the event date θ (gray background).
Posterior densities of ti (red line & white background) and individual posterior
calibrated densities (gray line & white background) obtained for archaeomagnetic
and 14C dates.

Figure 9. Cuers, Ex 2 (Cont.) Posterior densities obtained for standard devia-
tions σi.

Archeological excavation was carried out to estimate the last firing date of a lime kiln in Cuers
(Provence, France) (Vaschalde et al., 2014). We choose the time range T equal to [0 , 2000].
Indeed no historical or archeological information is available about this site between the Roman
period and the 20th century.

The studied artifacts are pieces of baked clay from the kiln wall submitted for AM analysis and
two charcoals submitted for 14C analysis. The obtained measurements are three archaeomagnetic
parameters (inclination, declination and intensity) and two radiocarbon ages. Figure 8 gives the
results obtained by the event model.

As in the previous example, posterior densities ti (in red) are much more precise than the
individual calibrated densities, in the sense that the number of local modes is reduced. The Event
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model gives a 95% HPD region for the last firing date which is the union of two disjoint intervals
[1388, 1548] and [1556, 1616]. In this case the dating is indeterminate in the sense that two periods
remain possible for the last firing. Consequently, additional measurements or prior information
are required to decide between these two solutions.

Figure 9 gives the posterior densities of standard deviations σi. It clearly shows that this
parameter takes higher values in the case of archaeomagnetic dating. This indicates a lack of
consistency between the dates within the event. The archaeomagnetic dates are penalized in the
estimation of the event. This is explained by the fact that radiocarbon dating provides more
accurate dates after the calibration step.

Example 3. Tell Qasile, context X (Israel)

Figure 10. Tell Qasile, Ex. 3. [left] Posterior density for Event date θ (gray
background). Posterior densities ti for 14C dates (blue line and white background)
The individual posterior calibrated densities are superimposed in gray. [right]
Posterior densities obtained for standard deviations σi.

We consider the example studied in Bronk Ramsey (2009b), in order to compare the robustness
to outliers of the event model with the R-combine model with the outlier implemented in OxCal
software.

From eleven radiocarbon dates, the aim is to determine the date of the context X in Tell Qasile,
an archeological site in Tel Aviv. Since the site belongs to the protohistoric period, we fix the time
range T equal to [−2000 , 0].

In OxCal, it is necessary to fix the prior probability that each measurement is an outlier. The
recommended value is 5% when no pertinent information is available. The 95% HPD region for
the date of the context X yielded by OxCal is [−1054;−970] ∪ [−962;−934].

The event model gives a uni-modal posterior density and 95% HPD interval equal to [−1050;−951]
(Fig. 10). This is very similar to the two merged OxCal intervals.
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Posterior densities for standard deviations σi are very similar (Fig. 10) except for samples
QS2 and QS6 which show higher posterior values, and thus appear to be outliers. The same two
outliers are also detected by OxCal.

In conclusion, the event model is robust to outliers and has the advantage that it does not
require prior information about the outliers. The ability of the individual variance σ2

i to take
large values automatically penalizes an outlier.

4. Wiggle-matching

The "wiggle-matching" model combines radiocarbon dating and dendrochronology. Radiocar-
bon dating is carried out on tree-ring samples separated by a known number of tree-rings. This
gives prior information on the calibrated dates ti. The number of years between these dates is
then known, (Manning et al., 2010; Galimberti and Ramsey, 2004; Christen and Litton, 1995).

In this case, the calibrated dates ti should be shifted according to their relationship to the event
date θ. So we adapt our event model to wiggle-matching as follows.

We consider that the event date θ corresponds to the date of a chosen reference tree-ring (for
instance the oldest tree-ring, see Example 4).

We denote by δi the number of years between ti and θ, which is fixed by counting the number of
rings between them and assuming that one ring is equal to one year. By convention, δi is positive
(resp. negative) when ti is older (resp. younger) than θ.

Equation (7) can be rewritten as follows

(13) ti = θ − δi + σiλi.

Remark 3. It is also possible to assume δi unknown in order to model a counting error in the
number of tree-rings. This extension of the model is implemented in chronomodel software.

θ

i = 1 to n

δiσ2
i

ti

µi
s2i

Mi

Figure 11. DAG for the wiggle matching model.
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Example 4. Gordion Juniper dendrochronology (Central Anatolia)
An application of the Event wiggle-matching model is presented here in the case of the Gor-

dion Juniper dendrochronology (Manning and Kromer, 2011, table 1). Thirty-five samples of this
sequence, from relative tree-rings centered at 776.5-1025.5 have been dated by the Heidelberg ra-
diocarbon laboratory. The time range T is fixed equal to [−5000 , 0], the lack of prior information
leads to the choice of a very large interval.

The samples are calibrated with IntCal04.14c curve (Reimer et al., 2004) and are separated with
known gaps taking values between 1 and 19 years over a range of 249 years. δi is the gap between
the dated tree-ring and reference. Following Manning and Kromer (2011), we fix as reference, the
oldest tree-ring i.e. δ1 = 0.

The model considered in Manning and Kromer (2011) is implemented in OxCal, by using the
D-Sequence and Gap functions with the outlier model. It gives a 95% HPD interval equal to
[-1734, -1724].

The Event model gives a 95% HPD interval for θ equal to [-1744, -1719], which is less precise
than the estimate yielded by OxCal. The difference in the 95% HPD region is due to the event
structure, which increases the variance of the posterior distribution. However our approach brings
robustness. As an illustration, we artificially modify the dataset by adding outliers with the same
experimental variances on the 14C ages (see Table 1). Figure 12 gives the estimation obtained by
the event model for:

• the original Gordion dataset analyzed in Manning and Kromer (2011),
• the same dataset contaminated with 11 outliers.

Table 1. Gordion Juniper dendrochronology (Central Anatolia). Contaminated
samples in Gordion dataset

sample number modified 14C age (BP)
with Manning and Kromer (2011) notations

20144, 27605 3100
20137, 25792, 20155 3600

20157, 20141, 20147, 25793, 20153, 27612 3700

Figure 12 shows that the posterior distribution of the event date is very weakly sensitive to the
presence of these outliers. Indeed, on the contaminated sample, the event model gives an 95%
HPD interval for θ equal to [-1749 ; -1717]. The two results are quite similar; the event date is
not affected by the presence of the outliers. The event model considered in Manning and Kromer
(2011) cannot be estimated using OxCal software because of poor agreement indices. This alert
message indicates in particular that the convergence of the MCMC is not guaranteed.
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Figure 12. Gordion juniper dendrochronology (Central Anatolia). Posterior
densities of the dates ti (solid line and white background), the shifted dates ti+δi
(dotted line and white background) and the Event date θ (gray background)
obtained on original Gordion dataset (blue) and on a contaminated version with
11 outliers defined in Table 1 (in red).
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Perspective

A combination procedure to estimate the date of an archeological event from a set of contem-
poraneous artifacts using a hierarchical Bayesian approach is proposed. The event model defines
a fundamental chronological entity that can be related to other entities in various ways to produce
complex chronological models. We can then construct chronologies of events which take into ac-
count new archeological information such as ordering constraints based on stratigraphy, phasing
with succession or with a hiatus between phases, or with a duration constraint on the phase, etc.
These features are implemented in the ChronoModel software.
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