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TIME-CHANGED EXTREMAL PROCESS AS A RANDOM SUP MEASURE

CÉLINE LACAUX AND GENNADY SAMORODNITSKY

Abstract. A functional limit theorem for the partial maxima of a long memory stable sequence

produces a limiting process that can be described as a β-power time change in the classical Fréchet

extremal process, for β in a subinterval of the unit interval. Any such power time change in

the extremal process for 0 < β < 1 produces a process with stationary max-increments. This

deceptively simple time change hides the much more delicate structure of the resulting process as a

self-affine random sup measure. We uncover this structure and show that in a certain range of the

parameters this random measure arises as a limit of the partial maxima of the same long memory

stable sequence, but in a different space. These results open a way to construct a whole new class

of self-similar Fréchet processes with stationary max-increments.

1. Introduction

Let (X1,X2, . . .) be a stationary sequence of random variables, and let Mn = max1≤k≤nXk,

n = 1, 2, . . . be the sequence of its partial maxima. The limiting distributional behaviour of the

latter sequence is one of the major topics of interest in extreme value theory. We are particularly

interested in the possible limits in a functional limit theorem of the form

(1.1)

(

M⌊nt⌋ − bn

an
, t ≥ 0

)

⇒ (Y (t), t ≥ 0) ,

for properly chosen sequences (an), (bn). The weak convergence in (1.1) is typically in the space

D[0,∞) with one of the usual Skorohod topologies on that space; see Skorohod (1956), Billingsley

(1999) and Whitt (2002). If the original sequence (X1,X2, . . .) is an i.i.d. sequence, then the only

possible limit in (1.1) is the extremal process, the extreme value analog of the Lévy process; see

Lamperti (1964).

The modern extreme value theory is interested in the case when the sequence (X1,X2, . . .) is

stationary, but not necessarily independent. The potential clustering of the extremes in this case

leads one to expect that new limits may arise in (1.1). Such new limits, however, have not been

widely observed, and the dependence in the model has been typically found to be reflected in the

limit via a linear time change (a slowdown), often connected to the extremal index, introduced,

originally, in Leadbetter (1983). See e.g. Leadbetter et al. (1983), as well as the studies in Rootzén

1991 Mathematics Subject Classification. Primary 60F17, 60G70. Secondary 60G57, 60G52.

Key words and phrases. Extremal process, random sup measure, heavy tails, stable process, extremal limit theo-

rem, stationary max-increments, self-similar process.

Samorodnitsky’s research was partially supported by the ARO grant W911NF-12-10385 and NSA grant H98230-

11-1-0154 at Cornell University and Fondation Mines Nancy.

1



2 CÉLINE LACAUX AND GENNADY SAMORODNITSKY

(1978), Davis and Resnick (1985), Mikosch and Stărică (2000) and Fasen (2005). One possible

explanation for this is the known phenomenon that the operation of taking partial maxima tends

to mitigate the effect of dependence in the original stationary sequence, and the dependent models

considered above were, in a certain sense, not sufficiently strongly dependent.

Starting with a long range dependent sequence may make a difference, as was demonstrated by

Owada and Samorodnitsky (2014). In that paper the original sequence was (the absolute value of)

a stationary symmetric α-stable process, 0 < α < 2, and the length of memory was quantified by

a single parameter 0 < β < 1. In the case 1/2 < β < 1 it was shown that the limiting process in

(1.1) can be represented in the form

(1.2) Zα,β(t) = Zα(t
β), t ≥ 0 ,

where
(

Zα(t), t ≥ 0
)

is the extremal (α-)Fréchet process.

The nonlinear power time change in (1.2) is both surprising and misleadingly simple. It is

surprising because it is not immediately clear that such a change is compatible with a certain

translation invariance the limiting process must have due to the stationarity of the original sequence.

It is misleadingly simple because it hides a much more delicate structure. The main goal of this

paper is to reveal that structure. We start by explaining exactly what we are looking for.

The stochastic processes in the left hand side of (1.1) can be easily interpreted as random sup

measures evaluated on a particular family of sets (those of the form [0, t] for t ≥ 0). If one does not

restrict himself to that specific family of sets and, instead, looks at all Borel subsets of [0,∞), then

it is possible to ask whether there is weak convergence in the appropriately defined space of random

sup measures, and what might be the limiting random sup measures. See the discussion around

(2.4) and the convergence result in Theorem 5.1. This is the approach taken in O’Brien et al.

(1990). Completing the work published in Vervaat (1986) and Vervaat (1997), the authors provide

a detailed description of the possible limits. They show that the limiting random sup measure must

be self-affine (they refer to random sup measures as extremal processes, but we reserve this name

for a different object).

As we will see in the sequel, if (1.1) can be stated in terms of weak convergence of a sequence of

random sup measures, this would imply the finite-dimensional convergence part in the functional

formulation of (1.1). Therefore, any limiting process Y that can be obtained as a limit in this case

must be equal in distribution to the restriction of a random sup measure to the sets of the form

[0, t], t ≥ 0. The convergence to the process Zα,β established in Owada and Samorodnitsky (2014)

was not established in the sense of weak convergence of a sequence of random sup measures, and one

of our tasks in this paper is fill this gap and prove the above convergence. Recall, however, that the

convergence in Owada and Samorodnitsky (2014) was established only for 0 < α < 2 (by necessity,
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since α-stable processes do not exist outside of this range) and 1/2 < β < 1. The nonlinear time

change in (1.2) is, however, well defined for all α > 0 and 0 < β < 1, and leads to a process Zα,β

that is self-similar and has stationary max-increments. Our second task in this paper is to prove

that the process Zα,β can, for all values of its parameters, be extended to a random sup measure

and elucidate the structure of the resulting random sup measure. The key result is Corollary 4.4

below. The structure we obtain is of interest on its own right. It is constructed based on a certain

random closed set possessing appropriate scaling and translation invariance properties. Extending

this approach to other random sets and other ways of handling these random sets, may potentially

lead to a construction of new classes of self-similar processes with stationary max-increments and

of random sup measures. This is important both theoretically, and may be useful in applications.

This paper is organized as follows. In the next section we will define precisely the notions

discussed somewhat informally above and introduce the required technical background. Section 3

contains a discussion of the dynamics of the stationary sequence considered in this paper. It is

based on a null recurrent Markov chain. In Section 4 we will prove that the process Zα,β can be

extended to a random sup measure and construct explicitly such an extension. In Section 5 we

show that the convergence result of Owada and Samorodnitsky (2014) holds, in a special case of a

Markovian ergodic system, also in the space SM of sup measures. Finally, in Section 6 we present

one of the possible extensions of the present work.

2. Background

An extremal process
(

Y (t), t ≥ 0
)

can be viewed as an analog of a Lévy motion when the

operation of summation is replaced by the operation of taking the maximum. The one-dimensional

marginal distribution of a Lévy process at time 1 can be an arbitrary infinitely divisible distribution

on R; any one-dimensional distribution is infinitely divisible with respect to the operation of taking

the maximum. Hence the one-dimensional marginal distribution of an extremal process at time 1

can be any distribution on [0,∞); the restriction to the nonnegative half-line being necessitated by

the fact that, by convention, an extremal process, analogously to a Lévy process, starts at the origin

at time zero. If F is the c.d.f. of a probability distribution on [0,∞), then the finite-dimensional

distributions of an extremal process with distribution F at time 1 can be defined by

(

Y (t1), Y (t2), . . . , Y (tn)
) d

=

(

X
(1)
t1 , max

(

X
(1)
t1 , X

(2)
t2−t1

)

, . . .(2.1)

max
(

X
(1)
t1 , X

(2)
t2−t1 , . . . ,X

(n)
tn−tn−1

)

)

for all n ≥ 1 and 0 ≤ t1 < t2 < . . . < tn. The different random variables in the right hand side

of (2.1) are independent, with X
(k)
t having the c.d.f. F t for t > 0. In this paper we deal with the
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α-Fréchet extremal process, for which

(2.2) F (x) = Fα,σ(x) = exp
{

−σαx−α
}

, x > 0 ,

the Fréchet law with the tail index α > 0 and the scale σ > 0. A stochastic process (Y (t), t ∈ T )

(on an arbitrary parameter space T ) is called a Fréchet process if for all n ≥ 1, a1, . . . , an > 0 and

t1, . . . , tn ∈ T , the weighted maximum max1≤j≤n ajY (tj) has a Fréchet law as in (2.2). Obviously,

the Fréchet extremal process is an example of a Fréchet process, but there are many Fréchet

processes on [0,∞) different from the Fréchet extremal process; the process Zα,β in (1.2) is one

such process.

A stochastic process
(

Y (t), t ≥ 0
)

is called self-similar with exponent H of self-similarity if for

any c > 0
(

Y (ct), t ≥ 0
) d
=
(

cHY (t), t ≥ 0
)

in the sense of equality of finite-dimensional distributions. A stochastic process (Y (t), t ≥ 0) is

said to have stationary max-increments if for every r ≥ 0, there exists, perhaps on an enlarged

probability space, a stochastic process
(

Y (r)(t), t ≥ 0
)

such that

(2.3)

{

(

Y (r)(t), t ≥ 0
) d

= (Y (t), t ≥ 0) ,

(Y (t+ r), t ≥ 0)
d
=

(

Y (r) ∨ Y (r)(t), t ≥ 0
)

,

with a ∨ b = max(a, b) ; see Owada and Samorodnitsky (2014). This notion is an analog of the

usual notion of a process with stationary increments (see e.g. Embrechts and Maejima (2002) and

Samorodnitsky (2006)) suitable for the situation where the operation of summation is replaced by

the operation of taking the maximum. It follows from Theorem 3.2 in Owada and Samorodnitsky

(2014) that only self-similar processes with stationary max-increments can be obtained as limits in

the functional convergence scheme (1.1) with bn ≡ 0.

We switch next to a short overview of random sup measures. The reader is referred to O’Brien

et al. (1990) for full details. Let G be the collection of open subsets of [0,∞). We call a map

m : G → [0,∞] a sup measure (on [0,∞)) if m(∅) = 0 and

m

(

⋃

r∈R

Gr

)

= sup
r∈R

m(Gr)

for an arbitrary collection
(

Gr, r ∈ R
)

of open sets. In general, a sup measure can take values in

any closed subinterval of [−∞,∞], not necessarily in [0,∞], but we will consider, for simplicity, only

the nonnegative case in the sequel, and restrict ourselves to the maxima of nonnegative random

variables as well.

The sup derivative of a sup measure is a function [0,∞) → [0,∞] defined by

dˇm(t) = inf
G∋t

m(G), t ≥ 0 .
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It is automatically an upper semicontinous function. Conversely, for any function f : [0,∞) →

[0,∞] the sup integral of f is a sup measure defined by

iˇf(G) = sup
t∈G

f(t), G ∈ G ,

with iˇf(∅) = 0 by convention. It is always true that m = iˇdˇm for any sup measure m, but

the statement f = dˇ iˇf is true only for upper semicontinous functions f . A sup measure has a

canonical extension to all subsets of [0,∞) via

m(B) = sup
t∈B

dˇm(t) .

On the space SM of sup measures one can introduce a topology, called the sup vague topology, that

makes SM a compact metric space. In this topology a sequence (mn) of sup measures converges to

a sup measure m if both

lim sup
n→∞

mn(K) ≤ m(K) for every compact K

and

lim inf
n→∞

mn(G) ≥ m(G) for every open G.

A random sup measure is a measurable map from a probability space into the space SM equipped

with the Borel σ-field generated by the sup vague topology.

The convergence scheme (1.1) has a natural version in terms of random sup measures. Starting

with a stationary sequence X = (X1,X2, . . .) of nonnegative random variables, one can define for

any set B ⊆ [0,∞)

(2.4) Mn(X)(B) = max
k: k/n∈B

Xk .

Then for any an > 0 , Mn(X)/an is a random sup measure, and O’Brien et al. (1990) characterize

all possible limiting random sup measures in a statement of the form

(2.5)
Mn(X)

an
⇒M

for some sequence (an). The convergence is weak convergence in the space SM equipped with the

sup vague topology. Theorem 6.1 ibid. shows that any limiting random sup measure M must be

both stationary and self-similar, i.e.

(2.6) M(a+ ·)
d
=M and a−HM(a·)

d
=M for all a > 0

for some exponent H of self-similarity. In fact, the results of O’Brien et al. (1990) allow for a shift

(bn) as in (1.1), in which case the power scaling a−H in (2.6) is, generally, replaced by the scaling

of the form δ− log a, where δ is an affine transformation. In the context of the present paper this

additional generality does not play a role.
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Starting with a stationary and self-similar random sup measure M , one defines a stochastic

process by

(2.7) Y (t) =M
(

(0, t]
)

, t ≥ 0 .

Then the self-similarity property of the random sup measure M immediately implies the self-

similarity property of the stochastic process Y , with the same exponent of self-similarity. Further-

more, the stationarity of the random sup measure M implies that the stochastic process Y has

stationary max-increments; indeed, for r ≥ 0 one can simply take

Y (r)(t) =M
(

(r, r + t]
)

, t ≥ 0 .

Whether or not any self-similar process with stationary max-increments can be constructed in

this way or, in other words, whether or not such a process can be extended, perhaps on an extended

probability space, to a stationary and self-similar random sup measure remains, to the best of our

knowledge, an open question. We do show that the process Zα,β in (1.2) has such an extension.

3. The Markov chain dynamics

The stationary sequence we will consider in Section 5 is a symmetric α-stable (SαS) sequence,

whose dynamics is driven by a certain Markov chain. Specifically, consider an irreducible null

recurrent Markov chain (Yn, n ≥ 0) defined on an infinite countable state space S with transition

matrix (pij). Fix an arbitrary state i0 ∈ S, and let (πi, i ∈ S) be the unique invariant measure of

the Markov chain with πi0 = 1. Note that (πi) is necessarily an infinite measure.

Define a σ-finite and infinite measure on (E, E) = (SN,B(SN)) by

µ(B) =
∑

i∈S

πiPi(B), B ∈ E ,

where Pi(·) denotes the probability law of (Yn) starting in state i ∈ S. Clearly, the usual left shift

operator on S
N

T (x0, x1, . . . ) = (x1, x2, . . . )

preserves the measure µ. Since the Markov chain is irreducible and null recurrent, T is conservative

and ergodic (see Harris and Robbins (1953)).

Consider the set A = {x ∈ S
N : x0 = i0} with the fixed state i0 ∈ S chosen above. Let

ϕA(x) = min{n ≥ 1 : T nx ∈ A} , x ∈ S
N

be the first entrance time, and assume that

n
∑

k=1

Pi0(ϕA ≥ k) ∈ RVβ,
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the set of regularly varying sequences with exponent β of regular variation, for β ∈ (0, 1). By the

Tauberian theorem for power series (see e.g. Feller (1966)), this is equivalent to assuming that

(3.1) Pi0(ϕA ≥ k) ∈ RVβ−1 .

There are many natural examples of Markov chains with this property. Probably, the simplest

example is obtained by taking S = {0, 1, 2, . . .} and letting the transition probabilities satisfy

pi,i−1 = 1 for i ≥ 1, with
(

p0,j, j = 0, 1, 2, . . .
)

being an arbitrary probability distribution satisfying

∞
∑

j=k

p0,j ∈ RVβ−1, k → ∞ .

Let f ∈ L∞(µ) be a nonnegative function on SN supported by A. Define for 0 < α < 2

(3.2) bn =

(∫

E
max
1≤k≤n

(

f ◦ T k(x)
)α
µ(dx)

)1/α

, n = 1, 2, . . . .

The sequence (bn) plays an important part in Owada and Samorodnitsky (2014), and it will play

an important role in this paper as well. If we define the wandering rate sequence by

wn = µ
({

x ∈ S
N : xj = i0 for some j = 0, 1, . . . , n

})

n = 1, 2, . . . ,

then, clearly, wn ∼ µ(ϕA ≤ n) as n→ ∞. We know by Theorem 4.1 ibid. that

(3.3) lim
n→∞

bαn
wn

= ‖f‖∞ .

Furthermore, it follows from Lemma 3.3 in Resnick et al. (2000) that

wn ∼
n
∑

k=1

Pi0(ϕA ≥ k) ∈ RVβ .

The above setup allows us to define a stationary symmetric α-stable (SαS) sequence by

(3.4) Xn =

∫

E
f ◦ T n(x) dM(x), n = 1, 2, . . . ,

whereM is a SαS random measure on (E, E) with control measure µ. See Samorodnitsky and Taqqu

(1994) for details on α-stable random measures and integrals with respect to these measures. This

is a long range dependent sequence, and the parameter β of the Markov chain determined just how

long the memory is; see Owada and Samorodnitsky (2015, 2014). The last section of the present

paper discusses an extremal limit theorem for this sequence.

4. Random sup measure structure

In this section we prove a limit theorem, and the limit in this theorem is a stationary and self-

similar random sup measure whose restrictions to the intervals of the type (0, t], t ≥ 0, as in (2.7)

is distributionally equal to the process Zα,β in (1.2). This result is also a major step towards the

extension of the main result in Owada and Samorodnitsky (2014) to the setup in (2.5) of weak
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convergence in the space of sup measures of normalized partial maxima of the absolute values of a

SαS sequence. The extension itself is formally proved in the next section. We emphasize that the

discussion in this section applies to all 0 < β < 1.

We introduce first some additional setup. Let L1−β be the standard (1−β)-stable subordinator,

i.e. an increasing Lévy process such that

Ee−θL1−β(t) = e−tθ1−β

for θ ≥ 0 and t ≥ 0.

Let

(4.1) Rβ =
{

L1−β(t), t ≥ 0
}

⊂ [0,∞)

be (the closure of) the range of the subordinator. It has several very attractive properties as a

random closed set, described in the following proposition. We equip the space J of closed subsets

of [0,∞) with the usual Fell topology (see Molchanov (2005)), and the Borel σ-field generated by

that topology. We will use some basic facts about measurability of J-valued maps and equality

of measures on J; these are stated in the proof of the proposition below. It is always sufficient to

consider “hitting” open sets, and among the latter it is sufficient to consider finite unions of open

intervals.

Proposition 4.1. Let β ∈ (0, 1) and Rβ be the range (4.1) of the standard (1− β)-stable subordi-

nator L1−β defined on some probability space
(

Ω,F , P
)

. Then

(a) Rβ is a random closed subset of [0,∞).

(b) For any a > 0, aRβ
d
= Rβ as random closed sets.

(c) Let µβ be a measure on (0,∞) given by µβ(dx) = βxβ−1 dx, x > 0, and let κβ = (µβ ×

P ) ◦H−1, where H : (0,∞) × Ω → J is defined by H(x, ω) = Rβ(ω) + x. Then for any r > 0 the

measure κβ is invariant under the shift map Gr : J → J given by

Gr(F ) = F ∩ [r,∞) − r .

Proof. For part (a) we need to check that for any open G ⊆ [0,∞), the set

{

ω ∈ Ω : Rβ(ω) ∩G 6= ∅
}

is in F . By the right continuity of sample paths of the subordinator, the same set can be written

in the form
{

ω ∈ Ω : L1−β(r) ∈ G for some rational r
}

.

Now the measurability is obvious.
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Part (b) is a consequence of the self-similarity of the subordinator. Indeed, it is enough to check

that for any open G ⊆ [0,∞)

P
(

Rβ ∩G 6= ∅
)

= P
(

aRβ ∩G 6= ∅
)

.

However, by the self-similarity,

P
(

Rβ ∩G 6= ∅
)

= P
(

L1−β(r) ∈ G for some rational r
)

= P
(

aL1−β(a
−(1−β)r) ∈ G for some rational r

)

= P
(

aRβ ∩G 6= ∅
)

,

as required.

For part (c) it is enough to check that for any finite collection of disjoint intervals, 0 < b1 < c1 <

b2 < c2 < . . . < bn < cn <∞

(4.2) κβ
({

F ∈ J : F ∩ ∪n
j=1(bj , cj) 6= ∅

})

= κβ
({

F ∈ J : F ∩ ∪n
j=1(bj + r, cj + r) 6= ∅

})

;

see Example 1.29 in Molchanov (2005). A simple inductive argument together with the strong

Markov property of the subordinator shows that it is enough to prove (4.2) for the case of a single

interval. That is, one has to check that for any 0 < b < c <∞,

(4.3) κβ
({

F ∈ J : F ∩ (b, c) 6= ∅
})

= κβ
({

F ∈ J : F ∩ (b+ r, c+ r) 6= ∅
})

.

For h > 0 let

δh = inf
{

y : y ∈ Rβ ∩ [h,∞)
}

− h

be the overshoot of the level h by the subordinator L1−β . Then (4.3) can be restated in the form

∫ b

0
βxβ−1P (δb−x < c− b) dx+(cβ − bβ) =

∫ b+r

0
βxβ−1P (δb+r−x < c− b) dx+

(

(c+ r)β − (b+ r)β
)

.

The overshoot δh is known to have a density with respect to the Lebesgue measure, given by

(4.4) fh(y) =
sin
(

π(1− β)
)

π
h1−β(y + h)−1yβ−1, y > 0 ;

see e.g. Exercise 5.6 in Kyprianou (2006), and checking the required identity is a matter of somewhat

tedious but still elementary calculations. �

In the notation of Section 3, we define for n = 1, 2, . . . and x ∈ E = S
N a sup measure on [0,∞)

by

(4.5) mn(B;x) = max
k: k/n∈B

f ◦ T k(x), B ⊆ [0,∞) .

The main result of this section will be stated in terms of weak convergence of a sequence of

finite-dimensional random vectors. Its significance will go well beyond that weak convergence, as
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we will describe in the sequel. Let 0 ≤ t1 < t′1 ≤ . . . ≤ tm < t′m < ∞ be fixed points, m ≥ 1. For

n = 1, 2, . . . let Y (n) = (Y
(n)
1 , . . . , Y

(n)
m ) be an m-dimensional Fréchet random vector satisfying

(4.6) P
(

Y
(n)
1 ≤ λ1, . . . , Y

(n)
m ≤ λm

)

= exp

{

−

∫

E

m
∨

i=1

λ−α
i mn

(

(ti, t
′
i);x

)α
µ(dx)

}

,

for λj > 0, j = 1, . . . ,m; see e.g. Stoev and Taqqu (2005) for details on Fréchet random vectors

and processes.

Theorem 4.2. Let 0 < β < 1. The sequence of random vectors (b−1
n Y (n)) converges weakly in R

m

to a Fréchet random vector Y ∗ = (Y ∗
1 , . . . , Y

∗
m) such that

(4.7)

P
(

Y ∗
1 ≤ λ1, . . . , Y

∗
m ≤ λm

)

= exp

{

−E′

(

∫ ∞

0

m
∨

i=1

λ−α
i 1

((

Rβ + x
)

∩ (ti, t
′
i) 6= ∅

)

βxβ−1 dx

)}

for λj > 0, j = 1, . . . ,m, where Rβ is the range (4.1) of a (1 − β)-stable subordinator defined on

some probability space
(

Ω′,F ′, P ′
)

.

We postpone proving the theorem and discuss first its significance. Define

(4.8) Wα,β(A) =
e∫

(0,∞)×Ω′

1
((

Rβ(ω
′) + x

)

∩A 6= ∅
)

M(dx, dω′), A ⊆ [0,∞), Borel.

The integral in (4.8) is the extremal integral with respect to a Fréchet random sup measure M on

(0,∞)× Ω′, where
(

Ω′,F ′, P ′
)

is some probability space. We refer the reader to Stoev and Taqqu

(2005) for details. The control measure of M is m = µβ × P ′, where µβ is defined in part (c) of

Proposition 4.1. It is evident that Wα,β(A) <∞ a.s. for any bounded Borel set A. We claim that a

version of Wα,β is a random sup measure on [0,∞). The necessity of taking an appropriate version

stems from the usual phenomenon, that the extremal integral is defined separately for each set A,

with a corresponding A-dependent exceptional set.

Let Nα,β be a Poisson random measure on (0,∞)2 with the mean measure

αx−(α+1) dxβyβ−1 dy, x, y > 0 .

Let
(

(Ui, Vi)
)

be a measurable enumeration of the points of Nα,β. Let, further,
(

R
(i)
β

)

be i.i.d.

copies of the range of the (1−β)-stable subordinator, independent of the Poisson random measure

Nα,β. Then a version of Wα,β is given by

(4.9) Ŵα,β(A) =

∞
∨

i=1

Ui1
(

(

R
(i)
β + Vi

)

∩A 6= ∅
)

, A ⊆ [0,∞), Borel;

see Stoev and Taqqu (2005). It is interesting to note that, since the origin belongs, with probability

1, to the range of the subordinator, evaluating (4.9) on sets of the form A = [0, t], 0 ≤ t ≤ 1, reduces
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this representation to the more standard representation of the process Zα,β in (1.2). See (3.8) in

Owada and Samorodnitsky (2014).

It is clear that Ŵα,β is a random sup measure on [0,∞). In fact,

(4.10) dˇŴα,β(t) =

{

Ui if t ∈ R
(i)
β + Vi, some i = 1, 2, . . .

0 otherwise.

Even though it is Ŵα,β that takes values in the space of sup measures, we will slightly abuse the

terminology and refer to Wα,β itself a random sup measure.

Proposition 4.3. For any β ∈ (0, 1), the random sup measure Wα,β is stationary and self-similar

with exponent H = β/α in the sense of (2.6).

Proof. Both statements can be read off (4.10). Indeed, the pairs
(

Ui, (R
(i)
β + Vi)

)

form a Poisson

random measure on (0,∞)×J and, by part (c) of Proposition 4.1, the mean measure of this Poisson

random measure is unaffected by the transformations Gr applied to the random set dimension.

This implies the law of the random upper semicontinous function dˇŴα,β is shift invariant, hence

stationarity of Wα,β.

For the self-similarity, note that replacing t by t/a, a > 0 in (4.10) is equivalent to replacing R
(i)
β

by aR
(i)
β and Vi by aVi. By part (b) of Proposition 4.1, the former action does not change the law

of a random closed set, while it is elementary to check that the law of the Poisson random measure

on (0,∞)2 with points
(

(Ui, aVi)
)

is the same as the law of the Poisson random measure on the

same space with the points
(

(aβ/αUi, Vi)
)

. Hence the self-similarity of Wα,β with H = β/α. �

Returning now to the result in Theorem 4.2, note that it can be restated in the form

b−1
n (Y

(n)
1 , . . . , Y (n)

m ) ⇒
(

Wα,β((t1, t
′
1)), . . . ,Wα,β((tm, t

′
m))
)

as n→ ∞.

In particular, if we choose ti = t′i−1, i = 1, . . . ,m, with t1 = 0 and an arbitrary tm+1, and define

Z
(n)
i = max

j=1,...,i
Y

(n)
j , i = 1, . . . ,m ,

then

(b−1
n Z

(n)
i , i = 1, . . . ,m) ⇒

(

maxj=1,...,iWα,β((tj , tj+1)), i = 1, . . . ,m
)

(4.11)

=
(

Wα,β(0, ti+1)), i = 1, . . . ,m
)

.

However, as a part of the argument in Owada and Samorodnitsky (2014) it was established that

(b−1
n Z

(n)
i , i = 1, . . . ,m) ⇒

(

Zα,β(ti+1), i = 1, . . . ,m
)

,

with Zα,β as in (1.2); this is (4.7) ibid.. This leads to the immediate conclusion, stated in the

following corollary.
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Corollary 4.4. For any β ∈ (0, 1), the time-changed extremal Fréchet process satisfies

(

Zα,β(t), t ≥ 0
) d
=
(

Wα,β((0, t]), t ≥ 0
)

and, hence, is a restriction of the stationary and self-similar random sup measure Wα,β (to the

intervals (0, t], t ≥ 0).

We continue with a preliminary result, needed for the proof of Theorem 4.2, which may also be

of independent interest.

Proposition 4.5. Let 0 < γ < 1, and (Y1, Y2, . . .) be i.i.d. nonnegative random variables such that

P (Y1 > y) is regularly varying with exponent −γ. Let S0 = 0 and Sn = Y1+ . . .+Yn for n = 1, 2, . . .

be the corresponding partial sums. For θ > 0 define a random sup measure on [0,∞) by

M (Y ;θ)(G) = 1
(

Sn ∈ θG for some n = 0, 1, . . .,
)

G ⊆ [0,∞), open. Then

M (Y ;θ) ⇒θ→∞ M (γ)

in the space SM equipped with the sup vague topology, where

M (γ)(G) = 1
(

R1−γ ∩G 6= ∅
)

.

Proof. It is enough to prove that for any finite collection of intervals (ai, bi), i = 1, . . . ,m with

0 < ai < bi <∞, i = 1, . . . ,m we have

(4.12) P
(

for each i = 1, . . . ,m, Sj/θ ∈ (ai, bi) for some j = 1, 2, . . .
)

→ P
(

for each i = 1, . . . ,m, R1−γ ∩ (ai, bi) 6= ∅
)

as θ → ∞. If we let a(θ) =
(

P (Y1 > θ)
)−1

, a regularly varying function with exponent γ, then the

probability in the left hand side of (4.12) can be rewritten as

(4.13) P
(

for each i = 1, . . . ,m, S⌊ta(θ)⌋/θ ∈ (ai, bi) for some t ≥ 0
)

.

By the invariance principle,

(4.14)
(

S⌊ta(θ)⌋/θ, t ≥ 0
)

⇒θ→∞

(

Lγ(t), t ≥ 0
)

weakly in the J1-topology in the space D[0,∞), where Lγ is the standard γ-stable subordinator; see

e.g. Jacod and Shiryaev (1987). If we denote by D↑
+[0,∞) the set of all nonnegative nondecreasing

functions in D[0,∞) vanishing at t = 0, then D↑
+[0,∞) is, clearly, a closed set in the J1-topology,

so the weak convergence in (4.14) also takes places in the J1-topology relativized to D↑
+[0,∞).

For a function ϕ ∈ D↑
+[0,∞), let

Rϕ =
{

ϕ(t), t ≥ 0
}
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be the closure of its range. Notice that

Rϕ =

(

⋃

t>0

(

ϕ(t−), ϕ(t)
)

)c

,

which makes it evident that for any 0 < a < b <∞ the set

{

ϕ ∈ D↑
+[0,∞) : Rϕ ∩ [a, b] = ∅

}

is open in the J1-topology, hence measurable. Therefore, the set

{

ϕ ∈ D↑
+[0,∞) : Rϕ ∩ (a, b) 6= ∅

}

=

∞
⋃

k=1

{

ϕ ∈ D↑
+[0,∞) : Rϕ ∩ [a+ 1/k, b − 1/k] 6= ∅

}

is measurable as well and, hence, so is the set

{

ϕ ∈ D↑
+[0,∞) : for each i = 1, . . . ,m, Rϕ ∩ (ai, bi) 6= ∅

}

.

Therefore, the desired conclusion (4.12) will follow from (4.13) and the invariance principle (4.14)

once we check that the measurable function on D↑
+[0,∞) defined by

J(ϕ) = 1
(

Rϕ ∩ (ai, bi) 6= ∅ for each i = 1, . . . ,m
)

is a.s. continuous with respect to the law of Lγ on D↑
+[0,∞). To see this, let

B1 =
{

ϕ ∈ D↑
+[0,∞) : for each i = 1, . . . ,m there is ti such that ϕ(ti) ∈ (ai, bi)

}

and

B2 =
{

ϕ ∈ D↑
+[0,∞) : for some i = 1, . . . ,m there is ti

such that (ai, bi) ⊆
(

ϕ(ti−), ϕ(ti)
)

}

.

Both sets are open in the J1-topology on D↑
+[0,∞), and J(ϕ) = 1 on B1 and J(ϕ) = 0 on B2. Now

the a.s. continuity of the function J follows from the fact that

P (Lγ ∈ B1 ∪B2) = 1 ,

since a stable subordinator does not hit fixed points. �

Remark 4.6. It follows immediately from Proposition 4.5 that we also have weak convergence

in the space of closed subsets of [0,∞). Specifically, the random closed set θ−1
{

Sn, n = 0, 1, . . .}

converges weakly, as θ → ∞, to the random closed set R1−γ .

Proof of Theorem 4.2. We will prove that

(4.15)

∫

E mini=1,...,mmn

(

(ti, t
′
i);x

)α
µ(dx)

∫

E max1≤k≤n

(

f ◦ T n(x)
)α
µ(dx)

→

∫ ∞

0
βxβ−1P ′

(

(

Rβ + x
)

∩ (ti, t
′
i) 6= ∅ for each i = 1, . . . ,m

)

dx
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as n → ∞. The reason this will suffice for the proof of the theorem is that, by the inclusion-

exclusion formula, the expression in the exponent in the right hand side of (4.7) can be written

as a finite linear combination of terms of the form of the right hand side of (4.15) (with different

collections of intervals in each term). More specifically, we can write, for a fixed x > 0,

E′

(

m
∨

i=1

λ−α
i 1

((

Rβ + x
)

∩ (ti, t
′
i) 6= ∅

)

)

=

∫ ∞

0
P ′
(

(

Rβ + x
)

∩ (ti, t
′
i) 6= ∅ for some i such that λ−α

i > u
)

du

and apply the inclusion-exclusion formula to the probability of the union inside the integral. A

similar relation exists between the left hand side of (4.15) and the distribution of (b−1
n Y (n)).

An additional simplification that we may and will introduce is that of assuming that f is constant

on A. Indeed, it follows immediately from the ergodicity that both the numerator and the denomi-

nator in the left hand side of (4.15) does not change asymptotically if we replace f by ‖f‖∞1A; see

(4.2) in Owada and Samorodnitsky (2014). With this simplification, (4.15) reduces to the following

statement: as n→ ∞,

(4.16)
1

wn
µ

(

m
⋂

i=1

{

xk = i0 for some k with ti < k/n < t′i
}

)

→

∫ ∞

0
βxβ−1P ′

(

(

Rβ + x
)

∩ (ti, t
′
i) 6= ∅ for each i = 1, . . . ,m

)

dx .

Note that we have used (3.3) in translating (4.15) into the form (4.16).

We introduce the notation A0 = A, Ak = Ac ∩ {ϕA = k} for k ≥ 1. Let (Y1, Y2, . . .) be a

sequence of i.i.d. N-valued random variables defined on some probability space
(

Ω′,F ′, P ′
)

such

that P ′(Y1 = k) = Pi0(ϕA = k), k = 1, 2, . . .. By our assumption, the probability tail P (Y1 > y) is

regularly varying with exponent −(1− β). With S0 = 0 and Sj = Y1 + . . .+ Yj for j = 1, 2, . . . we

have

µ

(

m
⋂

i=1

{

xk = i0 for some k with ti < k/n < t′i
}

)

=
∑

l: l/n≤t1

µ(Al)P
′
(

for each i = 1, . . . ,m, Sj ∈ (nti − l, nt′i − l) for some j = 0, 1, . . .
)

+
∑

l: t1<l/n<t′
1

µ(Al)P
′
(

for each i = 2, . . . ,m, Sj ∈ (nti − l, nt′i − l) for some j = 0, 1, . . .
)

:= D(1)
n +D(2)

n .

It is enough to prove that

(4.17) lim
n→∞

1

wn
D(1)

n =

∫ t1

0
βxβ−1P ′

(

(

Rβ + x
)

∩ (ti, t
′
i) 6= ∅ for each i = 1, . . . ,m

)

dx
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and

(4.18) lim
n→∞

1

wn
D(2)

n =

∫ t′
1

t1

βxβ−1P ′
(

(

Rβ + x
)

∩ (ti, t
′
i) 6= ∅ for each i = 1, . . . ,m

)

dx .

We will prove (4.17), and (4.18) can be proved in the same way. Let K be a large positive integer,

and ε > 0 a small number. For each integer 1 ≤ d ≤ (1 − ǫ)K, and each l : t1(d − 1)/K ≤ l/n <

t1d/K, we have

P ′
(

for each i = 1, . . . ,m, Sj ∈ (nti − l, nt′i − l) for some j = 0, 1, . . .
)

≤ P ′
(

for each i = 1, . . . ,m, Sj ∈ (nti − nt1d/K, nt
′
i − nt1(d− 1)/K) for some j = 0, 1, . . .

)

→ P ′
(

for each i = 1, . . . ,m, Rβ ∩
(

ti − t1d/K, t
′
i − t1(d− 1)/K

)

6= ∅
)

as n→ ∞, by Proposition 4.5. Therefore,

lim sup
n→∞

1

wn
D(1)

n ≤

⌊(1−ǫ)K⌋
∑

d=1

[

lim sup
n→∞

∑

l: t1(d−1)/K≤l/n<t1d/K
µ(Al)

wn

P ′
(

for each i = 1, . . . ,m, Rβ ∩
(

ti − t1d/K, t
′
i − t1(d− 1)/K

)

6= ∅
)]

+ lim sup
n→∞

∑

l: t1⌊(1−ǫ)K⌋/K≤l/n≤t1
µ(Al)

wn
.

Since for any a > 0,
na
∑

l=1

µ(Al) ∼ w⌊na⌋ as n→ ∞,

and the wandering sequence (wn) is regularly varying with exponent β, we conclude that

lim sup
n→∞

∑

l: t1(d−1)/K≤l/n<t1d/K
µ(Al)

wn
= lim sup

n→∞

w⌊nt1d/K⌋ − w⌊nt1(d−1)/K⌋

wn

=
tβ1
Kβ

(

dβ − (d− 1)β
)

for 1 ≤ d ≤ (1− ǫ)K and, similarly,

lim sup
n→∞

∑

l: t1⌊(1−ǫ)K⌋/K≤l/n≤t1
µ(Al)

wn
= tβ1

[

1−

(

⌊(1 − ε)K⌋

K

)β
]

.

Therefore,

lim sup
n→∞

1

wn
D(1)

n ≤

∫ (1−ε)t1

0
βxβ−1P ′

(

Rβ ∩
(

ti − aK(x), t′i − bK(x)
)

6= ∅ for each i = 1, . . . ,m
)

dx

+tβ1

[

1−

(

⌊(1 − ε)K⌋

K

)β
]

,

where aK(x) = t1d/K and bK(x) = t1(d− 1)/K if t1(d− 1)/K ≤ x < t1d/K for 1 ≤ d ≤ (1− ǫ)K.

Since

1
(

Rβ ∩ (ak, bk) 6= ∅
)

→ 1
(

Rβ ∩ (a, b) 6= ∅
)
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a.s. if ak → a and bk → b, we can let K → ∞ and then ε→ 0 to conclude that

(4.19) lim sup
n→∞

1

wn
D(1)

n ≤

∫ t1

0
βxβ−1P ′

(

Rβ ∩
(

ti − x, t′i − x
)

6= ∅ for each i = 1, . . . ,m
)

dx .

We can obtain a lower bound matching (4.19) in a similar way. Indeed, for each integer 1 ≤ d ≤

(1− ǫ)K, and each l : t1(d− 1)/K ≤ l/n < t1d/K as above, we have

P ′
(

for each i = 1, . . . ,m, Sj ∈ (nti − l, nt′i − l) for some j = 0, 1, . . .
)

≥ P ′
(

for each i = 1, . . . ,m, Sj ∈ (nti − nt1(d− 1)/K, nt′i − nt1d/K) for some j = 0, 1, . . .
)

→ P ′
(

for each i = 1, . . . ,m, Rβ ∩
(

ti − t1(d− 1)/K, t′i − t1d/K
)

6= ∅
)

as n→ ∞, by Proposition 4.5, and we proceed as before. This gives a lower bound complementing

(4.19), so we have proved that

lim
n→∞

1

wn
D(1)

n =

∫ t1

0
βxβ−1P ′

(

Rβ ∩
(

ti − x, t′i − x
)

6= ∅ for each i = 1, . . . ,m
)

dx .

This is, of course, (4.17). �

5. Convergence in the space SM

Let X = (X1,X2, . . .) be the stationary SαS process defined by (3.4). The following theorem is

a partial extension of Theorem 4.1 in Owada and Samorodnitsky (2014) to weak convergence in

the space of sup measures. In its statement we use the usual tail constant of an α-stable random

variable given by

Cα =

(∫ ∞

0
x−α sinx dx

)−1

=

{

(1− α)/
(

Γ(2− α) cos(πα/2)
)

if α 6= 1,

2/π if α = 1;

see Samorodnitsky and Taqqu (1994).

Theorem 5.1. For n = 1, 2, . . . define a random sup measure Mn(|X|) on [0,∞) by (2.4), with

|X| = (|X1|, |X2|, . . .). Let (bn) be given by (3.2). If 1/2 < β < 1, then

(5.1)
1

bn
Mn(|X|) ⇒ C1/α

α Wα,β as n→ ∞

in the sup vague topology in the space SM.

Proof. The weak convergence in the space SM will be established if we show that for any 0 ≤ t1 <

t′1 ≤ . . . ≤ tm < t′m <∞,
(

b−1
n Mn(|X|)

(

(t1, t
′
1)
)

, . . . , b−1
n Mn(|X|)

(

(tm, t
′
m)
)

)

⇒
(

Wα,β

(

(t1, t
′
1)
)

, . . . ,Wα,β

(

(tm, t
′
m)
)

)

as n→ ∞ (see 12.7 in Vervaat (1997)). For simplicity of notation we will assume that t′m ≤ 1. Our

goal is, then, to show that

(5.2)

(

1

bn
max

nt1<k<nt′
1

|Xk|, . . . ,
1

bn
max

ntm<k<nt′m
|Xk|

)

⇒
(

Wα,β

(

(t1, t
′
1)
)

, . . . ,Wα,β

(

(tm, t
′
m)
)

)
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as n→ ∞.

We proceed in the manner similar to that adopted in Owada and Samorodnitsky (2014), and use

a series representation of the SαS sequence (X1,X2, . . .). Specifically, we have

(5.3) (Xk, k = 1, . . . , n)
d
=



bnC
1/α
α

∞
∑

j=1

ǫjΓ
−1/α
j

f ◦ T k(U
(n)
j )

max1≤i≤n f ◦ T i(U
(n)
j )

, k = 1, . . . , n



 .

In the right hand side, (ǫj) are i.i.d. Rademacher random variables (symmetric random variables

with values ±1), (Γj) are the arrival times of a unit rate Poisson process on (0,∞), and (U
(n)
j ) are

i.i.d. E-valued random variables with the common law ηn defined by

(5.4)
dηn
dµ

(x) =
1

bαn
max
1≤k≤n

f ◦ T k(x)α , x ∈ E .

The three sequences (ǫj), (Γj), and (U
(n)
j ) are independent. We refer the reader to Section 3.10

of Samorodnitsky and Taqqu (1994) for details on series representations of α-stable processes. We

will prove that for any λi > 0, i = 1, . . . ,m and 0 < δ < 1,

P
(

b−1
n max

nti<k<nt′i

|Xk| > λi, i = 1, . . . ,m
)

≤ P



C1/α
α

∞
∨

j=1

Γ
−1/α
j

maxnti<k<nt′i
f ◦ T k(U

(n)
j )

max1≤k≤n f ◦ T k(U
(n)
j )

> λi(1− δ), i = 1, . . . ,m



+ o(1)(5.5)

and that

P
(

b−1
n max

nti<k<nt′i

|Xk| > λi, i = 1, . . . ,m
)

≥ P



C1/α
α

∞
∨

j=1

Γ
−1/α
j

maxnti<k<nt′i
f ◦ T k(U

(n)
j )

max1≤k≤n f ◦ T k(U
(n)
j )

> λi(1 + δ), i = 1, . . . ,m



+ o(1)(5.6)

as n→ ∞. Before doing so, we will make a few simple observations. Let

V
(n)
i =

∞
∨

j=1

Γ
−1/α
j

maxnti<k<nt′i
f ◦ T k(U

(n)
j )

max1≤k≤n f ◦ T k(U
(n)
j )

, i = 1, . . . ,m .

Since the points in R
m given by



Γ
−1/α
j

maxnti<k<nt′i
f ◦ T k(U

(n)
j )

max1≤k≤n f ◦ T k(U
(n)
j )

, i = 1, . . . ,m



 , j = 1, 2, . . .

form a Poisson random measure on R
m, say, NP , for λi > 0, i = 1, . . . ,m we can write

P
(

V
(n)
1 ≤ λ1, . . . , V

(n)
m ≤ λm

)

= P
(

NP

(

D(λ1, . . . , λm) = 0
)

)

= exp
{

−E
(

NP

(

D(λ1, . . . , λm)
)

)}

,
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where

D(λ1, . . . , λm) =
{

(z1, . . . , zm) : zi > λi for some i = 1, . . . ,m
}

.

Evaluating the expectation, we conclude that, in the notation of (4.5),

P
(

V
(n)
1 ≤ λ1, . . . , V

(n)
m ≤ λm

)

= exp

{

−b−α
n

∫

E

m
∨

i=1

λ−α
i mn

(

(ti, t
′
i);x

)α
µ(dx)

}

.

By (4.6) this shows that, in the notation of Theorem 4.2,

(

V
(n)
1 , . . . , V (n)

m

) d
=
(

b−1
n Y

(n)
1 , . . . , b−1

n Y (n)
m

)

.

Now Theorem 4.2 along with the discussion following the statement of that theorem, and the

continuity of the Fréchet distribution show that (5.2) and, hence, the claim of the present theorem,

will follow once we prove (5.5) and (5.6). The two statements can be proved in a very similar way,

so we only prove (5.5).

Once again, we proceed as in Owada and Samorodnitsky (2014). Choose constants K ∈ N and

0 < ǫ < 1 such that both

K + 1 >
4

α
and δ − ǫK > 0 .

Then

P
(

b−1
n max

nti<k<nt′i

|Xk| > λi, i = 1, . . . ,m
)

≤ P



C1/α
α

∞
∨

j=1

Γ
−1/α
j

maxnti<k<nt′i
f ◦ T k(U

(n)
j )

max1≤k≤n f ◦ T k(U
(n)
j )

> λi(1− δ), i = 1, . . . ,m





+ ϕn

(

C−1/α
α ǫ min

1≤i≤m
λi
)

+
m
∑

i=1

ψn(λi, ti, t
′
i) ,

where

ϕn(η) = P

(

n
⋃

k=1

{

Γ
−1/α
j

f ◦ T k(U
(n)
j )

max1≤i≤n f ◦ T i(U
(n)
j )

> η for at least 2 different j = 1, 2, . . .

})

,

η > 0, and for t < t′,

ψn(λ, t, t
′) = P

(

C1/α
α max

nt<k<nt′

∣

∣

∣

∣

∣

∣

∞
∑

j=1

ǫjΓ
−1/α
j

f ◦ T k(U
(n)
j )

max1≤i≤n f ◦ T i(U
(n)
j )

∣

∣

∣

∣

∣

∣

> λ ,

C1/α
α

∞
∨

j=1

Γ
−1/α
j

maxnt<k<nt′ f ◦ T k(U
(n)
j )

max1≤k≤n f ◦ T k(U
(n)
j )

≤ λ(1− δ) , and for each l = 1, . . . , n,

C1/α
α Γ

−1/α
j

f ◦ T l(U
(n)
j )

max1≤i≤n f ◦ T i(U
(n)
j )

> ǫλ for at most one j = 1, 2, . . .

)

.
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Due to the assumption 1/2 < β < 1, it follows that

ϕn

(

C−1/α
α ǫ min

1≤i≤m
λi
)

→ 0

as n → ∞; see Samorodnitsky (2004). Therefore, the proof will be completed once we check that

for all λ > 0 and 0 ≤ t < t′ ≤ 1,

ψn(λ, t, t
′) → 0

This, however, can be checked in exactly the same way as (4.10) in Owada and Samorodnitsky

(2014). �

6. Other processes based on the range of the subordinator

The distributional representation of the time-changed extremal process (1.2) in Corollary 4.4 can

be stated in the form

(6.1) Zα,β(t) =
e∫

(0,∞)×Ω′

1
((

Rβ(ω
′) + x

)

∩ (0, t] 6= ∅
)

M(dx, dω′), t ≥ 0 .

The self-similarity property of the process and the stationarity of its max-increments can be traced

to the scaling and shift invariance properties of the range of the subordinator described in Propo-

sition 4.1. These properties can be used to construct other self-similar processes with stationary

max-increments, in the manner similar to the way scaling and shift invariance properties of the

real line have been used to construct integral representations of Gaussian and stable self-similar

processes with stationary increments such as Fractional Brownian and stable motions; see e.g.

Samorodnitsky and Taqqu (1994) and Embrechts and Maejima (2002).

In this section we describe one family of self-similar processes with stationary max-increments,

which can be viewed as an extension of the process in (6.1). Other processes can be constructed;

we postpone a more general discussion to a later work.

For 0 ≤ s < t we define a function js,t : J → [0,∞] by

js,t(F ) = sup
{

b− a : s < a < t, a, b ∈ F, (a, b) ∩ F = ∅
}

,

the “length of the longest empty space within F beginning between s and t”. The function js,t is

continuous, hence measurable, on J. Set also js,s(F ) ≡ 0. Let

(6.2) 0 < γ < (1− β)/α ,

and define

(6.3) Zα,β,γ(t) =
e∫

(0,∞)×Ω′

[

1
((

Rβ(ω
′) + x

)

∩ (0, t] 6= ∅
)

j0,t
(

Rβ(ω
′) + x

)]γ
M(dx, dω′), t ≥ 0 .
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It follows from (4.4) that

E′

(
∫ ∞

0

[

1
((

Rβ + x
)

∩ (0, t] 6= ∅
)

j0,t
(

Rβ + x
)]γα

βxβ−1 dx

)

<∞

for γ satisfying (6.2). Therefore, (6.3) presents a well defined Fréchet process. We claim that this

process is H-self-similar with

H = γ + β/α

and has stationary max-increments.

To check stationarity of max-increments, let r > 0 and define

Z
(r)
α,β,γ(t) =

e∫

(0,∞)×Ω′

[

1
((

Rβ(ω
′) + x

)

∩ (r, r + t] 6= ∅
)

jr,r+t

(

Rβ(ω
′) + x

)]γ
M(dx, dω′), t ≥ 0 .

Trivially, for every t ≥ 0 we have

Zα,β,γ(r) ∨ Z
(r)
α,β,γ(t) = Zα,β,γ(r + t)

with probability 1, and it follows from part (c) of Proposition 4.1 that

(

Z
(r)
α,β,γ(t), t ≥ 0

) d
=
(

Zα,β,γ(t), t ≥ 0
)

.

Hence stationarity of max-increments. Finally, we check the property of self-similarity. Let tj >

0, λj > 0, j = 1, . . . ,m. Then

P
(

Zα,β,γ(tj) ≤ λj , j = 1, . . . ,m
)

= exp
{

−I(t1, . . . , tm;λ1, . . . , λm)
}

,

where

I(t1, . . . , tm;λ1, . . . , λm)

= E′

(
∫ ∞

0
βxβ−1 max

k=1,...,m
λ−α
k

[

1
((

Rβ(ω
′) + x

)

∩ (0, tk] 6= ∅
)

j0,tk
(

Rβ(ω
′) + x

)]γα
dx

)

.

Therefore, the property of self-similarity will follow once we check that for any c > 0,

I(ct1, . . . , ctm;λ1, . . . , λm) = I(t1, . . . , tm; c−Hλ1, . . . , c
−Hλm) .

This is, however immediate, since by using first part (b) of Proposition 4.1 and, next, changing the

variable of integration to y = x/c we have

I(ct1, . . . , ctm;λ1, . . . , λm)

= E′

(∫ ∞

0
βxβ−1 max

k=1,...,m

{

λ−α
k

[

1
((

cRβ(ω
′) + x

)

∩ (0, ctk] 6= ∅
)

sup
{

b− a : 0 < a < ctj , a, b ∈ cRβ(ω
′) + x, (a, b) ∩ cRβ(ω

′) + x = ∅
}

]αγ}

dx
)

= cβ+αγE′

(
∫ ∞

0
βxβ−1 max

k=1,...,m

{

λ−α
k

[

1
((

Rβ(ω
′) + x

)

∩ (0, tk] 6= ∅
)

sup
{

b− a : 0 < a < tk, a, b ∈ Rβ(ω
′) + x, (a, b) ∩Rβ(ω

′) + x = ∅
}

]αγ}

dx
)

= I(t1, . . . , tm; c−Hλ1, . . . , c
−Hλm) .
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as required.
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