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Abstract

Attempts to model gases in computer graphics started in the late 1970s. Since

that time, there have been many approaches developed. In this paper we present

a non-physical method allowing to create vapourish objects like clouds or smoky

characters. The idea is to create few sketches describing the rough shape of the

final vapourish object. These sketches will be used as condensation sets of

Iterated Function Systems, providing intuitive control over the object. The

advantages of the new method are: simplicity, good control of resulting shapes

and ease of eventual object animation.

Keywords: Iterated Function System, Condensation Sets, Morphing, Cloud

Modelling

1. Introduction

Modeling natural phenomena such as clouds, steam, fire, smoke is a chal-

lenging task since the dawn of computer aided design systems (CAD). Standard

CAD modeling approaches were developed for smooth regular shapes and are

not well suited to effectively capture the intricate features of vapourish phenom-5

ena. Many scientists met the challenge and now a number of powerful methods
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exist. We can classify it into two categories: techniques for modeling the geom-

etry of gases and techniques for rendering scenes with gases and atmospheric

effects.

The first family uses physics-based approaches, simulating the natural pro-10

cess that gives birth to desired shape. These methods are generally represented

by dynamic systems, i.e. systems of equations that describe the evolution of

a shape. As an example of such methods one can point at works of Harris et

al. [1] and Miyazaki et al. [2]. An animation can also be created by adjusting

the parameters of the simulation system. Whereas simulations give excellent,15

very realistic results, they are computationally expensive and difficult to use for

many animators and modelers. Setting correct physics parameters is a time-

consuming task.

The second family of methods is based on (non-physical) 3D procedural tex-

tures. A good overview can be found in a book by David Ebert [3]. In these20

approaches the artist is not limited by the laws of physics, however, it can be

harder to create convincing images. Textures are generated by pseudo-random

noises, defining a “perturbed” 3D shape. Generally a two-level model is used:

macrostructure plus microstructure. The idea is to construct a “support shape”

(macrostructure) which in large represents the desired form. In the majority of25

cases “support shapes” are composed of spheres. Procedural modification then

alters the density distribution to create the detailed wisps. That is, procedural

noise functions (e.g. Perlin’s noise, fractal noise, turbulence) create the mi-

crostructure to make initial “support shape” irregular. Depending on the noise

function used, a number of parameters allow to adjust perturbation character-30

istics. Furthermore, if necessary, a specific treatment can be applied in order to

simulate the nature of desired material (cloud, smoke, fire etc).

There are two ways to create animations with this family of methods. Either

the artist deforms the support shape, or he modifies the microstructure. In this

case the artist has to modify parameters of a pseudo-random process. The con-35

trol is very delicate, notably, in order to keep the smoothness of the animation,

the transformations are to be continuous. A possible solution is to generate a
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noise with an additional dimension corresponding to the time. For example, we

can use 4D noise functions to animate a 3D cloud.

Numerous problems arise with this approach. The method perfectly fits40

when it is necessary to create a (static) cloud, however, it is very difficult to

create a vapourish character and, especially, to animate it. The primitives

become visible during the deforming the “support shape”. Then, it is almost

impossible to control subtle wisps on the object. For example, the method does

not allow to change directly local features of the microstructure, i.e. if an artist45

dislikes a wisp, he can not erase it without affecting other parts of the object.

Pseudo-random nature of the microstructure makes the control very delicate

and non intuitive. Artists must be familiar with such mathematical terms as

“frequency”, “wavelet”, “Gaussian kernel” etc. Even mathematicians can fail

to construct a 4D microstructure with desired characteristics.50

In order to enhance the control, some authors combine the approaches [4].

Here the user disposes an interface allowing to define a “support shape”, which

is deformed by a simulation process.

We have developed an alternative way to create vapourish objects, giving a

preference to shape control over realistic rendering. We aim to propose a very55

intuitive tool, a tool which can be used by any artist without special training.

The goal is to have a tool allowing to create recognizable 3D textures of gaseous

objects, resembling a given draft. Figure 1 shows a smoky ship created with the

method we propose. Note that the galleon is fully three-dimensional, so it can

be rendered from any point of view.60

To fit the constraints, we chose a model based on the fractal geometry,

namely, the Iterated Function System model (IFS). The model is introduced by

Hutchinson and popularized by Barnsley. In this article we generalize the notion

of classical IFS, enriching it with condensation functions. This generalization

inherits all the properties, established by the IFS model such as continuous65

dependence on parameters. As we show in the following sections, it guarantees

perfect control on shapes and animations, keeping simplicity and intuition over

the modeling process.
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Figure 1: A smoky galleon can be easily created with the new modeling tool.

The paper is organized as follows: section 2 provides the necessary back-

ground on iterated function systems. Then, sections 3 and 3.4 describe our70

generalization of the standard approach. Examples may be found in section 4.

Finally, section 5 concludes the paper and provides suggestions for further re-

search.

2. Background

2.1. General definitions75

An iterated function system or IFS consists of a finite set of transformations

fi : X → X for i = 1, 2, . . . , N , where N ≥ 1 is an integer and (X, d) is a

complete metric space. Let us denote it by F = {X; f1, f2, . . . fN}.

A transformation fi : X→ X is strictly contractive if and only if there exists

a number 0 ≤ si < 1 such that d(fi(x), fi(y)) ≤ sid(x, y) for all x, y ∈ X.80

The number si is called a contractivity factor for fi. If an IFS consists of

strictly contractive transformations, it is called a hyperbolic IFS and the number

s = max{s1, s2 . . . sN} is called a contractivity factor for the IFS.

Let (X, d) be a complete metric space. Then H(X) denotes the space whose

points are non-empty compact subsets of X. Given a hyperbolic IFS, let us
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define a contractive (with respect to the Hausdorff metric dH) transformation

F : H(X)→ H(X) as follows:

F(B) = f1(B) ∪ f2(B) ∪ · · · ∪ fN (B) for all B ∈ H(X).

Note that we use F to denote either an IFS or a corresponding transformation.

The meaning should be clear from context. In the literature the transformation85

F is also called the Hutchinson operator.

It is well-known [5] that there exists a unique fixed point AF ∈ H(X) such

that AF = F(AF ). Moreover, the contraction mapping theorem [6] states that

for any non-empty compact subset B0 ∈ H(X) the sequence, recurrently defined

as Bk+1 = F(Bk), converges to AF with respect to the Hausdorff metric as90

k → ∞. The resulting set does not depend on the choice of B0, and for this

reason AF is called the set attractor of the (hyperbolic) IFS.

2.2. Deterministic algorithm

It is possible to approximate attractors in a straightforward manner by

means of the contraction mapping theorem. This process is called the deter-

ministic algorithm. Let us consider an example, where the IFS consists of three

affine transformations on C (figure 2 shows an illustration):

f1 =
1

2
z, f2 =

1

2
z +

1

2
, f3 =

1

2
z +

1

2
i.

The first step is to choose an arbitrary non-empty compact subset of C. Then

the iteration process consists of applying each transformation f1, f2 and f3 to95

the current set, and then uniting the resulting sets. Then f1, f2 and f3 are to

be applied to the union and so on. The limit of this process gives the attractor

of the IFS, as shown above.

2.3. Random iteration algorithm

Another approach to approximate IFS attractors is the random iteration

algorithm [7]. An IFS with probabilities consists of an IFS together with a
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Figure 2: An illustration for the deterministic algorithm. Starting from any non-empty com-

pact subset (the flower, for example), the sequence converges to the Sierpinski’s Gasket.

distribution of probabilities p1, p2, . . . , pN , positive real numbers such that p1 +

p2 + · · ·+ pN = 1. An IFS with probabilities may be denoted as

F = {X; f1, f2, . . . , fN ; p1, p2, . . . , pN}.

The probability pi is associated with the transformation function fi for each100

i ∈ {1, 2, . . . , N}. If one uses the plane C for the iteration space X, then the

random iteration algorithm may be expressed in pseudo-code as follows:

1 Input: An IFS with probabilities F

2 Output: An approximation (a digital image) of the set attractor AF

3 select a random point z0 = (x0, y0) of the plane C105

4 iterate {

5 choose a transformation fi according to probabilities {p1, p2, . . . , pN}.

6 zk+1 = fi(zk)

7 if (k > 100) draw pixel with coordinates zk+1

8 }110
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This schema works because the IFS is contractive: if zk is close to the

attractor AF , then fi(zk) is yet closer. Though the algorithm starts out with

a random point, the distance between the solution set AF and the “dancing”

point decreases exponentially. In this example we have taken 100 iterations

before drawing any point. In general, the distance between AF and z101 is115

inferior to the size of the pixel. Moreover, the Elton’s Ergodic Theorem [6, p.

370] states that, with probability 1, the set zk is dense in AF . No fixed number

of iterations is given for the algorithm. Because of the stochastic nature of the

algorithm, more iterations lead to a better approximation of the exact solution.

If there are no predefined probabilities, one can choose the transformations with120

equal frequency in line 5 of the random iteration algorithm.

An example of an IFS with probabilities is {C; fi; pi; i = 1, 2, 3, 4}, where

pi = 0.25 and

f1(z) =
1

2
z, f2(z) =

1

2
z +

1

2

f3(z) =
1

2
z +

1

2
i, f4(z) =

1

2
z +

1

2
+

1

2
i.

Then the random iteration algorithm proceeds as follows: an initial point, z0 ∈

C, is chosen. One of the transformations is selected “at random” from the125

set {f1, f2, f3, f4}. The selected transformation is applied to z0 to produce a

new point z1 ∈ C. Again a transformation is selected, in the same manner,

independently of the previous choice, and applied to z1 to produce a new point

z2. The process is repeated a number of times, resulting in a finite sequence of

points {zk : k = 1, 2, . . . , number of iterations}. Starting from some step, the130

queue of the sequence lies in the unit square with corners at (0, 0), (1, 0), (1, 1)

and (0, 1). If the number of iterations is sufficiently large, a picture of the filled

unit square will be the result.

In this example the “dancing” point zi visits all points of the unit square

with equal probabilities. But what will happen if we change the probabil-135

ities? Let us consider the above IFS with the different set of probabilities

{0.30, 0.20, 0.25, 0.25}. Let us also change the game rules a bit: instead of just

plotting a pixel zk, we count how many times each pixel was visited by the
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“dancing” point zi. Once the algorithm terminates, we draw a gray-level image

with darker pixels in most visited areas.140

Amazingly, the resulting image changes completely! Refer to figure 3, where

the left image shows the result for the equal probabilities, while the right one

shows the result for the new set of probabilities.

Figure 3: Measure attractors: different sets of probabilities lead to different distribu-

tions of “mass” on the set attractor. Left image is computed using equal probabilities

{0.25, 0.25, 0.25, 0.25}, the right one is obtained with the set {0.30, 0.20, 0.25, 0.25}.

The images suggest a wonderful idea. They suggest that associated with an

IFS with probabilities there is a unique “density” on the attractor of the IFS.145

Barnsley [8, pp. 122–129] has developed the idea of the densities using the mea-

sure theory formalism. Measures can be used to describe intricate distribution

of “mass” on metric spaces. Starting from an IFS {X; fi; pi; i = 1, 2, . . . , N},

Barnsley introduces another IFS F = {P(X); fi; pi; i = 1, 2, . . . , N}, where

(P(X), dP) is the space of normalized Borel measures on X with the Monge-150

Kantorovich metric on it. He shows how a transformation f being contractive

on X inherits this property on P(X). Therefore, the induced transformation

F : P(X)→ P(X) has a unique fixed point called a fractal measure or a measure

attractor.

Back to our examples, both IFS have the same set attractor (the unit square),155

but different measure attractors.
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3. Theoretical framework

In spite of the fact that IFS theory deals with arbitrary complete metric

spaces, almost all implementations construct fractals in a 2D plane with affine

contractions. Very few approaches use three dimensions or (and) non-linear160

transformations. For example, one can point at works by Scott Draves [9, 10]

in the domain of rendering and special effects.

Here we propose to consider an IFS F = {H(X); f1, f2 . . . , fn}, where all

operators fi act on H(X), the space whose points are non-empty compact subsets

of X. It is convenient to visualize the space X as a white sheet of paper, and165

the space H(X) as the set of all possible black ink drawings on the sheet. In

order to simplify the presentation, we talk of two-dimensional images, however

all the techniques may be applied to arbitrary spaces. Thus, H(X) is the set of

all possible drawings on X.

In our case, induced Hutchinson operator F maps H(H(X)) onto H(H(X)).170

Recall that H(X) is the space of all possible black ink drawings; then H(H(X))

(non-empty compact subsets of H(X)) is the space of all possible collections1 of

drawings. One may visualize the fixed point AF as a “book” of drawings.

3.1. IFS with condensation

A very particular case of IFS that deals with compact subsets is the IFS with175

(constant) condensation, introduced by Barnsley in 1988: let (X, d) be a metric

space and let C ∈ H(X). Then a constant transformation f0 : H(X) → H(X)

defined by f0(B) = C for all B ∈ H(X) is called a condensation transformation

and C is called the associated condensation set. A condensation transformation

f0 : H(X) → H(X) is a contraction mapping on the metric space (H(X), dH)180

with contractivity factor equal to zero. Therefore, it possesses a unique fixed

point, namely the condensation set.

Then Barnsley defines a new IFS: let {X; f1, f2, . . . , fn} be a hyperbolic IFS

with contractivity factor 0 ≤ s < 1. Let f0 : H(X) → H(X) be a condensation

1Uncountable in general.
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transformation. Then {X; f0, f1, . . . , fn} is called a hyperbolic IFS with conden-

sation, with contractivity factor s. Note that the IFS rests in the space X. In

fact, Barnsley modified the Hutchinson operator only (by adding f0):

F(B) = C ∪ f1(B) ∪ f2(B) ∪ · · · ∪ fN (B) for all B ∈ H(X).

Let us consider an example, where the IFS consists of one two-dimensional

contraction f1(z) = 1
2z. Clearly, the attractor consists of a single point, namely

origin. But if we add a condensation transformation f0 which transforms any185

compact subset to a pine tree, then the attractor becomes a series of pine trees,

refer to figure 4 for an illustration.

(0, 0)

(1, 0)

Figure 4: A geometric series of pine trees, the attractor of an IFS with condensation.

3.2. A generalized implementation

We would like to enrich the notion of IFS with condensation. Let us con-

sider IFS with transformations action on the space of compact subsets H(X).190

Such IFS consists of contractions on (H(X), dH). As before, a contraction f

on (H(X), dH) is a mapping with unique fixed point. This means that for any

non-empty compact subset B the sequence {fk(B)}, recurrently defined by

f0(B) = B and fk+1(B) = fk(B) converges to the fixed point (with respect to

the Hausdorff metric). In his approach Barnsley chooses a fixed point C (the195

pine tree in the case of figure 4). Then, clearly, the corresponding constant

mapping is a contraction.
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The question is: is it possible to find contraction mappings on H(X) besides

obvious constant ones? Refer to figure 5 for an example. Let us suppose that

there is a set C given and there is a mapping f such as any non-empty compact200

subset morphes to the given set C under recurrent application of the mapping.

More strictly, the Meyer’s converse to Banach’s theorem [11] states that if

for any B ∈ H(X) the sequence {fk(B)}, recurrently defined by f0(B) = B

and fk+1(B) = fk(B), converges to C uniformly on a neighbourhood of C in

Hausdorff metric dH, then there is a topologically equivalent metric d′H on H(X)205

that makes f a strict contraction (note that the random iteration algorithm

works under a much weaker condition that the whole system is to be contractive

on average).

In this section we build an example of such a transformation. The problem

of defining contraction mappings on H(X) is closely related to the image inter-210

polation (binary image morphing) task. Image interpolation is a general term

for a set of techniques used in Computer Graphics to generate intermediate pic-

tures between two given images. For example, Iwanowski and Serra [12] propose

a morphing method consisting of three steps (figure 6 illustrates the process):

1. First, for two given binary images one detects bounding boxes in order to215

superpose the images.

lim
i→∞

f i(A)f 1(A) = f(A)A f 2(A) = f(f 1(A)) f 3(A) = f(f 2(A))

lim
j→∞

f j(B)f 1(B) = f(B)B f 2(B) = f(f 1(B)) f 3(B) = f(f 2(B))

Figure 5: An example of a contraction mapping on (H(X), dH). The fixed point (chosen by

the user) is shown black in the final image. Any non-empty compact subset morphes to the

given set by recurrent application of the mapping f .
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2. Then the authors calculate morphological median image.

3. Finally, they place the median image to its final position.

Figure 6: First image represents the source image, the second one is the destination image.

The idea is to superpose the input images in the central position (third image) and then to

calculate the median image (rightmost one).

The key step is the median set calculation. The authors define the median

set M(A,B) between two sets A and B as follows:

M(A,B) = {x ∈ X : d(x,A ∩B) < d(x,A ∪B)},

where d is the Euclidean pseudo-distance of a point to a set. In other words, the

median set consists of points which lie more close to the intersection between220

A and B than to the complement of their union. The interpolation sequence

(morphing of the first shape into the second) can be produced by the recurrent

generation of new medians.

Unfortunately, this method has a lot of restrictions. First, the union A ∪B

must not be equal to X. Next, the intersection A∩B must not be empty. More-225

over, the intersection between all connected components is to be non-empty.

To avoid the limitations, we propose a simple method of binary image mor-

phing. So, we have two images A and B. Let us define a left median image

DA(B) as an image drawn by following rules:

1 Input: Two binary images A and B230

2 Output: Left median image DA(B)

3 clear the sheet DA(B)

4 for each black point pA of A {
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5 find corresponding nearest black point pB in image B

6 draw a point in the image DA(B) in the center of the segment (pA, pB)235

7 }

Thus, left median image DA(B) is the image A deformed by the influence of

B. Right median image DB(A) is defined in the same way. Then final median

image is defined as a union of the left and the right median images: M(A,B) =

DA(B) ∪ DB(A). Figure 7 shows an illustration. For convenience reasons all240

the sets are drawn in the same sheet of paper, but in fact the figure represents

four superposed images. The image A is the comma drawn at left of a blank

canvas, the image B represents a character at right of another canvas etc.

fB(A) = M(A,B) f∞
B (A) = B

f2
B(A) = M(M(A,B), B)

A

Figure 7: An example of morphing sequence. Left and right medians are shown by dark and

light gray colours, respectively.

Having fixed a set C ∈ H(X), the mapping fC(·) := M(·, C) has a fixed

point: fC(C) = M(C,C) = C. Moreover, it is contractive with respect to the

Hausdorff metric:

lim
i→∞

dH(f iC(X), C) = 0 ∀X ∈ H(X).

We refer to the set C as a condensation set for a contraction mapping fC in

H(X).245

Let us resume: we use Iterated Function Systems of type {H(X); f1, f2 . . . , fn}.

The Hutchinson operator F maps H(H(X)) onto H(H(X)). It is convenient to
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visualize the fixed point AF as a book of black ink drawings (recall it can be

uncountable). The set attractor AF contains all fixed points of fi. Therefore,

if fi := M(·, Ci), then it is possible to control the attractor’s shape by choosing250

appropriate condensation sets Ci.

Note that all contraction mappings in X are contraction mappings in H(X).

For example, a contractive two-dimensional affine transformation is a contrac-

tion mapping in H(X), where corresponding condensation set is a compact set,

degenerated to a point. Therefore, new implementation contains the old one,255

inheriting all its properties such as contraction.

3.3. Deterministic algorithm

Figure 8 shows an example of Iterated Function System made of two trans-

formations: {H(X); fA, fB}. The condensation sets A and B are shown in the

upper corners of the image. As described in the section 2.2, the first step is to260

choose an arbitrary non-empty compact subset. Here we have chosen a bananas

image S. Then the iteration process consists of applying each transformation

fA and fB to the current set, and then taking the union of the resulting sets.

The limit of this process gives the attractor of the IFS, as shown above.

Therefore, we start from a “book” with one page in it, namely bananas S.265

Since there are two transformations, the number of pages in the book will double

with each step. At the second step the book contains two drawings: fA(S) and

fB(S). In order to clarify the notations we omit the symbol f , concatenating

the indices of transformations. For example, images ABS and fA(fB(S)) are

the same (we shall also call ABS an address of the image fA(fB(S))). Thus, at270

the second step the book contains two drawings: AS and BS. Then recurrent

call of the iteration step produces four new images: AAS, BAS, ABS, BBS.

The images (sorted alphabetically) are shown in the third row of the figure 8.

Since the limit of the process does not depend on the initial choice of drawing

S, the shape of bananas disappears in few iterations only. Note that in the case275

of two transformations the pages of the book (being sorted by their address)

represent a smooth morphing sequence between A and B.

14



AS

S

BASABS BBSAAS

BS

A B

BBBSBBASBAAS BABSABBSABASAABSAAAS

Figure 8: The deterministic algorithm for an IFS made of two transformations with conden-

sation sets A and B. Starting from an arbitrary non-empty compact set S (bananas, for

example), the system converges to the fixed point AF . Note that the attractor does not de-

pend on the initial set S. In few iterations only the shape of bananas disappears completely

from the “book” of drawings. Note that in the case of two transformations the pages of the

drawings book (being sorted by their address) represent a smooth morphing sequence between

A and B.

Note that in this example we have used two condensation functions, however,

it is possible to use arbitrary number of transformations. Obviously, in such a

case the tree will not be binary.280

3.4. Random iteration algorithm

Let us take sets A and B as it is shown in figure 7. Now let us build an IFS

F = {H(X); f1, f2} consisting of two contraction mappings with condensation

sets A and B, built as it is shown in section 3.2. Thus, f1 = M(·, A), f2 =

M(·, B) and X is a rectangular sheet of paper. In in this case the measure285

attractor µF (rendered in figure 9) shows a uniform transition from A to B. We

can approximate measure attractors using the random iteration algorithm:

1 Input: An IFS with probabilities F =
{
H(rectangle); f1, f2; p1 = 1

2 , p2 = 1
2

}
,

output image resolution (w, h)

2 Output: An approximation (a digital image) of the measure attractor µF290
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Figure 9: Image of a measure attractor for an IFS consisting of two simple contractions with

condensation sets. Refer to figure 7 for the condensation sets.

3 draw a random non-empty binary image I0 of resolution w × h

4 initialize a matrix P of size w × h with zeroes

5 iterate {

6 choose a transformation fi according to the probabilities {p1, p2}

7 Ik+1 = fi(Ik)295

8 if (k > 100) {

9 for each black pixel (i, j) of Ik+1

10 P (i, j) + +

11 }

12 }300

13 Draw a gray-scale image µF according to values of P

The main difference between the standard random iteration algorithm game

and this algorithm is that at each iteration we have to store not just a point

coordinates xk ∈ X, but an image of a compact subset Ik ∈ H(X).

Compare the result with the bottom row of figure 8: in this case the measure305

attractor µF is the “X-Ray image” of the book of drawings. We superpose all

the drawings and for each point we calculate in how many drawings it appears.

Then a gray-level image is rendered using the number of occurrences.
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4. Examples

4.1. Two dimensions310

Next example illustrates that any contraction in X is also contraction H(X),

therefore, an IFS in R2 is a particular case of IFS in H(R2). Let us consider an

example of an IFS with two transformations: F = {H(bi-unit square); f1, f2}.

Bi-unit square is a square with corners at (-1, -1), (1, -1), (1, 1) and (-1, 1).

Transformation f1 has a condensation set rendered in the left image of figure 10.315

Second contraction is a non-linear transformation defined as f2(r, θ) =
(

r√
2
, 2θ

)
.

In other words, one takes the bi-unit square and stretches it in such a way,

where for a point with polar coordinates (r, θ) the angle θ is doubled. Then the

transformed square is shrunk to fit the original bi-unit square. The origin rests

in his place. The image in the middle of figure 10 renders the transformation.320

Figure 10: An IFS consists of two transformations: f1 with a condensation set shown in the

left image and f2(r, θ) =
(

r√
2
, 2θ

)
. The corresponding measure attractor is rendered in the

right image.

Up to this moment we used only one type of contractions with condensations

in H(X). However, there are plenty of other contraction mappings which can

be constructed keeping the same condensation sets. For example, let us modify

a bit the process described in section 3.2: as before, we detect bounding boxes

of input sets A and B, superpose the boxes mid-way between A and B. Then325

we rotate it by angle proportional to the distance between A and B; finally we

compute the median set.

Examples of such transformations (for different degrees of rotation) are

shown at the top of figures 11 and 12. Note that by definition M̃(A,B) is a ro-
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A

f2
B(A) = M̃(M̃(A,B), B)

f∞
B (A) = BfB(A) = M̃(A,B)

Figure 11: The median set is calculated by exactly the same routine as in the previous example

(refer to figure 7), but finally it is rotated by the angle, proportional to the distance between

sets A and B. The measure attractor is rendered at the bottom of the figure.

A fB(A) = M(A,B) f∞
B (A) = B

f2
B(A) = M(M(A,B), B)

Figure 12: This example is given for another degree of rotation. The measure attractor is

rendered at the bottom of the figure.
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tated median setM(A,B), however other intermediate images, e.g. M̃(M̃(A,B), B),330

are completely different. Renderings of corresponding measure attractors are

given at the bottom of the figures. Resulting images depend continuously on

the parameters of transformations, e.g. the condensation sets and rotation de-

gree. Therefore, by changing slightly the parameters we can obtain smooth

animations.335

4.2. Three dimensions

Up to this moment all examples were constructed in 2D, but nothing forbids

to work in 3D, let us consider an example. The task is to create a cloud creature,

a bull. Here an artist created a polygonal model of the bull. Second model was

created by placing randomly (polygonal) balls inside the original shape. Refer340

to figure 13 for the renderings.

Figure 13: These quick sketches will give birth to a cloud creature.

Then the models were voxelized, in our example we used 2563 voxels. Now all

is ready to calculate a measure attractor of an IFS consisting of two condensation

functions. Figure 14 shows a rendering result of the measure attractor. Here

we imported the densities for the voxelized space to Maya fluids container to345

render the scene.

The rendering stage in Maya takes about 1 minute per image (including

shading, lighting, self-shadowing) and the random iteration algorithm takes less
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than 1 minute (at Intel Xeon CPU 1.6 GHz). Note that no hardware acceleration

was used and the implementation can be greatly improved. Still, the running350

times are hugely inferior to the time of the modeling phase, to create such a

bull mesh an experienced artist needs about one day of work.

Figure 14: The measure attractor for the IFS with condensation functions, shown in figure 13.

The probabilities are taken equal to 2
3

and 1
3

, respectively.

Difference between input sketches gives the effect of nebulosity. If a voxel is

present in all the sketches, then it will be opaque and dense in the final render.

Otherwise it will be more transparent. In this example the probabilities were355

taken equal to 2
3 and 1

3 , respectively. This choice forces the final render to be

closer to the first sketch. Figure 15 shows a cloudy version of the galleon we

have already met in the introduction.

Since resulting images depend continuously on the parameters of transforma-

tions (input 3D models), it is easy to create animations in the usual for artists360

manner. Moreover, measure attractors can be imported to Maya fluids, it allows

to combine our method of smoky objects creation with physics-based methods.
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Figure 15: This galleon is created from two input models shown in the bottom row.

5. Conclusions

Up to our knowledge, this paper is the first attempt to use non-constant

condensations for Iterated Function Systems. Besides purely aesthetic matters,365

IFS with condensation functions allow in some cases better control on the at-

tractor. We have also shown an application for such IFS: creation of artistic

renderings of vapourish objects. The main advantage of such application is its

simplicity, the only source code necessary is a binary image morphing and a

simple implementation of the random iteration algorithm, resulting in few hun-370

dreds lines of code. Besides clouds, we think that other phenomena might be

rendered by means of IFS with condensation functions. For example, fractal
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tops and similar techniques could give possibilities to draw textures of tissues.
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