
HAL Id: hal-01244838
https://hal.archives-ouvertes.fr/hal-01244838

Submitted on 16 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Strong Distillery
Beniamino Accattoli, Pablo Barenbaum, Damiano Mazza

To cite this version:
Beniamino Accattoli, Pablo Barenbaum, Damiano Mazza. A Strong Distillery. Programming Lan-
guages and Systems - 13th Asian Symposium, APLAS 2015, Nov 2015, Pohang, South Korea. pp.231-
250, �10.1007/978-3-319-26529-2_13�. �hal-01244838�

https://hal.archives-ouvertes.fr/hal-01244838
https://hal.archives-ouvertes.fr

A Strong Distillery

Beniamino Accattoli1, Pablo Barenbaum2, and Damiano Mazza3

1 INRIA & LIX, École Polytechnique
beniamino.accattoli@inria.fr

2 University of Buenos Aires – CONICET
pbarenbaum@dc.uba.ar

3 CNRS, UMR 7030, LIPN, Université Paris 13, Sorbonne Paris Cité
Damiano.Mazza@lipn.univ-paris13.fr

Abstract. Abstract machines for the strong evaluation of λ-terms (that
is, under abstractions) are a mostly neglected topic, despite their use in
the implementation of proof assistants and higher-order logic program-
ming languages. This paper introduces a machine for the simplest form of
strong evaluation, leftmost-outermost (call-by-name) evaluation to nor-
mal form, proving it correct, complete, and bounding its overhead. Such
a machine, deemed Strong Milner Abstract Machine, is a variant of the
KAM computing normal forms and using just one global environment. Its
properties are studied via a special form of decoding, called a distillation,
into the Linear Substitution Calculus, neatly reformulating the machine
as a standard micro-step strategy for explicit substitutions, namely linear
leftmost-outermost reduction, i.e. the extension to normal form of linear
head reduction. Additionally, the overhead of the machine is shown to
be linear both in the number of steps and in the size of the initial term,
validating its design. The study highlights two distinguished features of
strong machines, namely backtracking phases and their interactions with
abstractions and environments.

1 Introduction

The computational model behind functional programming is the weak λ-calculus,
where weakness is the fact that evaluation stops as soon as an abstraction is
obtained. Evaluation is usually defined in a small-step way, specifying a strategy
for the selection of weak β-redexes. Both the advantage and the drawback of
λ-calculus is the lack of a machine in the definition of the model. Unsurprisingly
implementations of functional languages have been explored for decades.

Implementation schemes are called abstract machines, and usually account
for two tasks. First, they switch from small-step to micro-step evaluation, delay-
ing the costly meta-level substitution used in small-step operational semantics
and replacing it with substitutions of one occurrence at a time, when required.
Second, they also search the next redex to reduce, walking through the program
according to some evaluation strategy. Abstract machines are machines because
they are deterministic and the complexity of their steps can easily be measured,

2

and are abstract because they omit many details of a real implementation, like
the actual representation of terms and data-structures or the garbage collector.

Historically, the theory of λ-calculus and the implementation of functional
languages have followed orthogonal approaches. The former rather dealt with
strong evaluation, and it is only since the seminal work of Abramsky and Ong [1]
that the theory took weak evaluation seriously. Dually, practical studies mostly
ignored strong evaluation, with the notable exception of Crégut [13, 14] (1990)
and, more recently, the semi-strong approach of Grégoire and Leroy [23] (2002)—
see also the related work paragraph below. Strong evaluation is nonetheless es-
sential in the implementation of proof assistants or higher-order logic program-
ming, typically for type-checking in frameworks with dependent types as the
Edinburgh Logical Framework or the Calculus of Constructions, as well as for
unification modulo βη in simply typed frameworks like λ-prolog.

The aim of this paper is to move the first steps towards a systematic and
theoretical exploration of the implementation of strong evaluation. Here we deal
with the simplest possible case, call-by-name evaluation to strong normal form,
implemented by a variant of the Krivine Abstract Machine. The study is carried
out according to the distillation methodology, a new approach recently introduced
by the authors and previously applied only to weak evaluation [3].

Distilling Abstract Machines. Many abstract machines can be rephrased as
strategies in λ-calculi with explicit substitutions (ES for short), see at least [15,
24, 14, 10, 25, 9]. The Linear Substitution Calculus (LSC)—a variation over a λ-
calculus with ES by Robin Milner [27] developed by Accattoli and Kesner [2,
5]—provides more than a simple reformulation: it disentangles the two tasks
carried out by abstract machines, retaining the micro-step operational seman-
tics and omitting the search for the next redex. Such a neat disentangling, that
we prefer to call a distillation, is a decoding based on the following key points:

1. Partitioning : the machine transitions are split in two classes. Principal tran-
sitions are mapped to the rewriting rules of the calculus, while commutative
transitions—responsible for the search for the redex—are mapped on a no-
tion of structural equivalence, specific to the LSC.

2. Rewriting : structural equivalence accounts both for the search for the re-
dex and garbage collection, and commutes with evaluation. It can thus be
postponed, isolating the micro-step strategy in the rewriting of the LSC.

3. Logic: the LSC itself has only two rules, corresponding to cut-elimination in
linear logic proof nets. A distillation then provides a logical reading of an
abstract machine (see [3] for more details).

4. Complexity : by design, a principal transition has to take linear time in the
input, while a commutative transition has to be constant.

A distillery is then given by a machine, a strategy, a structural equivalence,
and a decoding function satisfying the above points. In bilinear distilleries, the
number of commutative transitions is linear in both the number of principal
transitions and the size of the initial term. Bilinearity guarantees that distilling
away the commutative part by switching to the LSC preserves the asymptotical

3

behavior, i.e. it does not forget too much. At the same time, the bound on the
commutative overhead justifies the design of the abstract machine, providing a
provably bounded implementation scheme.

A Strong Distillery. Our machine is a strong version of the Milner Abstract
Machine (MAM), a variant with just one global environment of the Krivine
Abstract Machine (KAM), introduced in [3].

The first result of the paper is the design of a distillery relating the Strong
MAM to linear leftmost-outermost reduction in the LSC [5, 6]—that is at the
same time a refinement of leftmost-outermost (LO) β-reduction and an extension
of linear head reduction [26, 16, 2] to normal form—together with the proof of
correctness and completeness of the implementation. Moreover, the linear LO
strategy is standard and normalizing [5], and thus we provide an instance of
Plotkin’s approach of mapping abstract machines to such strategies [28].

The second result is the complexity analysis showing that the distillery is
bilinear, i.e. that the cost of the additional search for the next redex specific
to the machine is negligible. The analysis is simple, and yet subtle and robust.
It is subtle because it requires a global analysis of executions, and it is robust
because the overhead is bilinear for any evaluation sequence, not necessarily to
normal form, and even for diverging ones.

For the design of the Strong MAM we make various choices:

1. Global Environment : we employ a global environment, which is in opposi-
tion to having closures (pairing subterms with local environments), and it
models a store-based implementation scheme. The choice is motivated by fu-
ture extensions to more efficient strategies as call-by-need, where the global
environment allows to integrate sharing with a form of memoization [18, 3].

2. Sequential Exploration and Backtracking : we fix a sequential exploration of
the term (according to the leftmost-outermost order), in opposition to the
parallel evaluation of the arguments (once a head normal form has been
reached). This choice internalizes the handling of the recursive iterations,
that would be otherwise left to the meta-level, providing a finer study of the
data-structures needed by a strong machine. On the other hand, it forces
to have backtracking transitions, activated when the current subterm has
been checked to be normal and evaluation needs to retrieve the next sub-
term on the stack. Call-by-value machines usually have a similar but simpler
backtracking mechanism, realized via an additional component, the dump.

3. (Almost) No Garbage Collection: we focus on time complexity, and thus
ignore space issues, that is, our machine does not account for garbage collec-
tion. In particular, we keep the global environment completely unstructured,
similarly to the (weak) MAM. Strong evaluation however is subtler, as to
establish a precise relationship between the machine and the calculus with
ES, garbage collection cannot be completely ignored. Our approach is to iso-
late it within the meta-level: we use a system of parenthesized markers, to
delimit subenvironments created under abstractions that could be garbage
collected once the machine backtracks outside those abstraction. These la-
bels are not inspected by the transitions, and play a role only for the proof of

4

the distillation theorem. Garbage collection then is somewhat accounted for
by the analysis, but there are no dedicated transitions nor rewriting rules,
it is rather encapsulated in the decoding and in the structural equivalence.

Efficiency? It is known that LO evaluation is not efficient. Improvements are
possible along three axis: refining the strategy (by turning to strong call-by-
value/need, partially done in [23, 14, 8]), speeding up the substitution process
(by forbidding the substitution of variables, see [7, 8]), and avoiding useless sub-
stitutions (by adding useful sharing, see [6, 8]). These improvements however
require sophisticated machines, left to future work.

LO evaluation is nonetheless a good first case study, as it allows to isolate the
analysis of backtracking phases and their subtle interactions with abstractions
and environments. We expect that the mentioned optimizations can be added
in a quite modular way, as they have all been addressed in the complementary
study in [8], based on the same technology (i.e. LSC and distilleries).

(Scarce) Related Work. Beyond Crégut’s [13, 14], we are aware of only two other
similar works on strong abstract machines, Garćıa-Pérez, Nogueira and Moreno-
Navarro’s [22] (2013), and Smith’s [30] (unpublished, 2014). Two further studies,
de Carvalho’s [12] and Ehrhard and Regnier’s [20], introduce strong versions of
the KAM but for theoretical purposes; in particular, their design choices are
not tuned towards implementations (e.g. rely on a näıve parallel exploration
of the term). Semi-strong machines for call-by-value (i.e. dealing with weak
evaluation but on open terms) are studied by Grégoire and Leroy [23] and in a
recent work by Accattoli and Sacerdoti Coen [8] (see [8] for a comparison with
[23]). More recent work by Dénès [19] and Boutiller [11] appeared in the context
of term evaluation in Coq. These works, which do offer the nice perspective of
concretely dealing with proof assistants, are focused on quite specific Coq-related
tasks (such as term simplification) and the difference in reduction strategy and
underlying motivations makes a comparison difficult.

Of all the above, the closest to ours is Crégut’s work, because it defines an
implementation-oriented strong KAM, thus also addressing leftmost-outermost
reduction. His machine uses local environments, sequential exploration and back-
tracking, scope markers akin to ours, and a calculus with ES to establish the
correctness of the implementation. His calculus, however, has no less than 13
rewriting rules, while ours just 2, and so our approach is simpler by an order
of magnitude. Moreover, we want to stress that our contribution does not lie in
the machine per se, or the chosen reduction strategy (as long as it is strong),
but in the combined presence of a robust and simple abstraction of the ma-
chine, provided by the LSC, and the complexity analysis showing that such an
abstraction does not miss too much. In this respect, none of the above works
comes with an analysis of the overhead of the machine nor with the logical and
rewriting perspective we provide. In fact, our approach offers general guidelines
for the design of (strong) abstract machines. The choice of leftmost-outermost
reduction showcases the idea while keeping technicalities to a minimum, but it is
by no means a limitation. The development of strong distilleries for call-by-value

5

or lazy strategies, which may be more attractive from a programming languages
perspective, are certainly possible and will be the object of future work (again,
an intermediary step has already been taken in [8]).

Global environments are explored by Fernández and Siafakas in [21], and used
in a minority of works, e.g. [29, 18]. We introduced the distillation technique in
[3] to revisit the relationship between the KAM and weak linear head reduction
pointed out by Danos and Regnier [16]. Distilleries have also been used in [8]. The
idea to distinguish between operational content and search for the redex in an
abstract machine is not new, as it underlies in particular the refocusing semantics
of Danvy and Nielsen [17]. The LSC, with its roots in linear logic proof nets,
allows to see this distinction as an avatar of the principal/commutative divide
in cut-elimination, because machine transitions may be seen as cut-elimination
steps [9, 3]. Hence, it is fair to say that distilleries bring an original refinement
where logic, rewriting, and complexity enlighten the picture, leading to formal
bounds on machine overheads.

Omitted proofs may be found in [4].

2 Linear Leftmost-Outermost Reduction

The language of the linear substitution calculus (LSC for short) is given by the
following term grammar:

LSC Terms t, u, w, r ::= x | λx.t | tu | t[x�u].

The constructor t[x�u] is called an explicit substitution, shortened ES (of u
for x in t). Both λx.t and t[x�u] bind x in t, and we silently work modulo
α-equivalence of these bound variables, e.g. (xy)[y�t]{x�y} = (yz)[z�t].

The operational semantics of the LSC is parametric in a notion of (one-hole)
context. General contexts, that simply extend the contexts for λ-terms with the
two cases for ES, and the special case of substitution contexts are defined by:

Contexts C,C ′ ::= 〈·〉 | λx.C | Ct | tC | C[x�t] | t[x�C];
Substitution Contexts L,L′ ::= 〈·〉 | L[x�t].

The plugging C〈t〉 of a term t into a context C is defined as 〈·〉〈t〉 := t,
(λx.C)〈t〉 := λx.(C〈t〉), and so on. As usual, plugging in a context can capture
variables, e.g. ((〈·〉y)[y�t])〈y〉 = (yy)[y�t]. The plugging C〈C ′〉 of a context C ′

into a context C is defined analogously.
We write C ≺p t if there is a term u s.t. C〈u〉 = t, call it the prefix relation.
The rewriting relation is→:=→m ∪ →e where→m and→e are the multiplica-

tive and exponential rules, defined by

Rule at Top Level Contextual closure
Multiplicative L〈λx.t〉u 7→m L〈t[x�u]〉 C〈t〉 →m C〈u〉 if t 7→m u

Exponential C〈x〉[x�u] 7→e C〈u〉[x�u] C〈t〉 →e C〈u〉 if t 7→e u

The rewriting rules are assumed to use on-the-fly α-equivalence to avoid vari-
able capture. For instance, (λx.t)[y�u]y →m t{y�z}[x�y][z�u] for z /∈ fv(t),

6

and (λy.(xy))[x�y] →e (λz.(yz))[x�y]. Moreover, in →e the context C is as-
sumed to not capture x, in order to have (λx.x)[x�y] 6→e (λx.y)[x�y].

The above operational semantics ignores garbage collection. In the LSC, this
may be realized by an additional rule which may always be postponed, see [2].

Taking the external context into account, an exponential step has the form
C ′〈C〈x〉[x�u]〉 →e C

′〈C〈u〉[x�u]〉. We shall often use a compact form:

Exponential Rule in Compact Form
C ′′〈x〉 →e C

′′〈u〉 if C ′′ = C ′〈C[x�u]〉

Definition 1 (Redex Position). Given a →m-step C〈t〉 →m C〈u〉 with t 7→m u
or a compact →e-step C〈x〉 →e C〈t〉, the position of the redex is the context C.

We identify a redex with its position, thus using C,C ′, C ′′ for redexes, and
use d : t →k u for derivations, i.e. for possibly empty sequences of rewriting
steps. We write |t|[·] for the number of substitutions in t, and use |d|, |d|m, and
|d|e for the number of steps, m-steps, and e-steps in d, respectively.

Linear Leftmost-Outermost Reduction, Two Definitions. We give two definitions
of linear LO reduction →LO, a traditional one based on ordering redexes and a
new contextual one not mentioning the order, apt to work with LSC and relate
it to abstract machines. We start by defining the LO order on contexts.

Definition 2 (LO Order). The outside-in order C ≺O C ′ is defined by

1. Root: 〈·〉 ≺O C for every context C 6= 〈·〉;
2. Contextual closure: if C ≺O C ′ then C ′′〈C〉 ≺O C ′′〈C ′〉 for any context C ′′.

Note that ≺O can be seen as the prefix relation ≺p on contexts. The left-to-right
order C ≺L C ′ is defined by

1. Application: if C ≺p t and C ′ ≺p u then Cu ≺L tC ′;
2. Substitution: if C ≺p t and C ′ ≺p u then C[x�u] ≺L t[x�C ′];
3. Contextual closure: if C ≺L C ′ then C ′′〈C〉 ≺L C ′′〈C ′〉 for any context C ′′.

Last, the left-to-right outside-in order is defined by C ≺LO C ′ if C ≺O C ′ or
C ≺L C ′.

Two examples of the outside-in order are (λx.〈·〉)t ≺O (λx.(〈·〉[y�u]))t and
t[x�〈·〉] ≺O t[x�uC], and an example of the left-to-right order is t[x�C]u ≺L
t[x�w]〈·〉. The next immediate lemma guarantees that we defined a total order.

Lemma 1 (Totality of ≺LO). If C ≺p t and C ′ ≺p t then either C ≺LO C ′ or
C ′ ≺LO C or C = C ′.

Remember that we identify redexes with their position context and write
C ≺LO C ′. We can now define linear LO reduction, first considered in [5], where
it is proved that it is standard and normalizing, and then in [6], extending linear
head reduction [26, 16, 2] to normal form.

7

Definition 3 (Linear LO Reduction→LO). Let t be a term. C is the leftmost-
outermost (LO for short) redex of t if C ≺LO C ′ for every other redex C ′ of t.
We write t→LO u if a step reduces the LO redex.

We now define LO contexts and prove that the position of a linear LO step
is always a LO context. We need two notions.

Definition 4 (Neutral Term). A term is neutral if it is →-normal and it is
not of the form L〈λx.t〉.

Neutral terms are such that their plugging in a context cannot create a
multiplicative redex. We also need the notion of left free variable of a context,
i.e. of a variable occurring free at the left of the hole.

Definition 5 (Left Free Variables). The set lfv(C) of left free variables of
C is defined by:

lfv(〈·〉) := ∅ lfv(tC) := fv(t) ∪ lfv(C)

lfv(λx.C) := lfv(C) \ {x} lfv(C[x�t]) := lfv(C) \ {x}
lfv(Ct) := lfv(C) lfv(t[x�C]) := (fv(t) \ {x}) ∪ lfv(C)

Definition 6 (LO Contexts). A context C is LO if

1. Right Application: whenever C = C ′〈tC ′′〉 then t is neutral, and
2. Left Application: whenever C = C ′〈C ′′t〉 then C ′′ 6= L〈λx.C ′′′〉.
3. Substitution: whenever C = C ′〈C ′′[x�u]〉 then x /∈ lfv(C ′′).

Lemma 2 (LO Reduction and LO Contexts). Let t → u by reducing a
redex C. Then C is a →LO step iff C is LO.

Structural Equivalence. A peculiar trait of the LSC is that the rewriting rules
do not propagate ES. Therefore, evaluation is usually stable by structural equiv-
alences moving ES around. In this paper we use the following equivalence, in-
cluding garbage collection (≡gc), that we prove to be a strong bisimulation.

Definition 7 (Structural equivalence). The structural equivalence ≡ is the
symmetric, reflexive, transitive, and contextual closure of the following axioms:

(λx.t)[y�u] ≡λ λx.t[y�u] if x 6∈ fv(u)
(t u)[x�w] ≡@l t[x�w]u if x 6∈ fv(u)
(t u)[x�w] ≡@r t u[x�w] if x 6∈ fv(t)

t[x�u][y�w] ≡com t[y�w][x�u] if y 6∈ fv(u) and x 6∈ fv(w)
t[x�u][y�w] ≡[·] t[x�u[y�w]] if y 6∈ fv(t)

t[x�u] ≡gc t if x 6∈ fv(t)
t[x�u] ≡dup t[y]x [x�u][y�u]

In ≡dup, t[y]x denotes a term obtained from t by renaming some (possibly none)
occurrences of x as y, with y a fresh variable.

Proposition 1 (Structural Equivalence ≡ is a Strong Bisimulation). If
t ≡ u →LO w then exists r s.t. t →LO r ≡ w and the steps are either both
multiplicative or both exponential.

8

3 Distilleries

An abstract machine M is meant to implement a strategy(via a distillation, i.e.
a decoding function · . A machine has a state s, given by a code t, i.e. a λ-term
t without ES and not considered up to α-equivalence, and some data-structures
like stacks, dumps, environments, and heaps. The data-structures are used to
implement the search for the next (-redex and some form of substitution, and
they decode to evaluation contexts for (. Every state s decodes to a term s,
having the shape Cs〈t〉, where t is the code currently under evaluation and Cs
is the evaluation context given by the data-structures.

A machine computes using transitions, whose union is denoted by , of two
types. The principal one, denoted by p, corresponds to the firing of a rule
defining (, up to structural equivalence ≡. The commutative transitions, de-
noted by c, only rearrange the data structures, and on the calculus are either
invisible or mapped to ≡. The terminology reflects a proof-theoretic view, as
machine transitions can be seen as cut-elimination steps [9, 3]. The transforma-
tion of evaluation contexts is formalized in the LSC as a structural equivalence
≡, which is required to commute with evaluation (, i.e. to satisfy

t

u

r

≡ ⇒ ∃q s.t.
t

u

r

q
≡ ≡

for each of the rules of (, preserving the kind of rule. In fact, this means that
≡ is a strong bisimulation (i.e. one step to one step) with respect to(, that is
what we proved in Proposition 1 for the equivalence at work in this paper. Strong
bisimulations formalize transformations which are transparent with respect to
the behavior, even at the level of complexity, because they can be delayed without
affecting the length of evaluation:

Lemma 3 (Postponement of ≡). If ≡ is a strong bisimulation, t ((∪ ≡)∗ u
implies t (∗≡ u and the number and kind of steps of (in the two reduction
sequences is exactly the same.

We can finally introduce distilleries, i.e. systems where a strategy (simu-
lates a machine M up to structural equivalence ≡ via the decoding · .

Definition 8. A distillery D = (M,(,≡, ·) is given by:

1. An abstract machine M, given by

(a) a deterministic labeled transition system (lts) over states s, with labels
in {m, e, c}; the transitions labelled by m, e are called principal, the others
commutative;

(b) a distinguished class of states deemed initial, in bijection with closed
λ-terms; from these, the reachable states are obtained by applying ∗;

2. a deterministic strategy (, i.e., a deterministic lts over the terms of the
LSC induced by some strategy on its reduction rules, with labels in {m, e}.

9

3. a structural equivalence ≡ on terms which is a strong bisimulation with
respect to (;

4. a decoding function · from states to terms whose graph, when restricted to
reachable states, is a weak simulation up to ≡ (the commutative transitions
are considered as τ actions). More explicitly, for all reachable states:
– projection of principal transitions: s p s′ implies s (p≡ s′ for all

p ∈ {m, e};
– distillation of commutative transitions: s c s

′ implies s ≡ s′.

The simulation property is a minimum requirement, but a stronger form of
relationship is usually desirable. Additional hypotheses are required in order to
obtain the converse simulation and provide complexity bounds.

Terminology: an execution ρ is a sequence of transitions from an initial state.
With |ρ|, |ρ|p and |ρ|c we denote respectively the length, the number of principal
and commutative transitions of ρ, whereas |t| denotes the size of a term t.

Definition 9 (Distillation Qualities). A distillery is

– Reflective when on reachable states:
• Termination: c terminates;
• Progress: if s is final then s is a (-normal form.

– Bilinear when, given an execution ρ from an initial term t:
• Execution Length: the number of commutative steps |ρ|c is linear in both
|t| and |ρ|p, i.e. |ρ|c ≤ c·(1+|ρ|p)·|t| for some non-zero constant c (when
|ρ|p = 0, O(|t|) time is still needed to recognize that t is normal).

• Commutative: each commutative transition is implementable in O(1)
time on a RAM;

• Principal: each principal transition is implementable in O(|t|) time on a
RAM.

A reflective distillery is enough to obtain a weak bisimulation between the
strategy(and the machine M, up to structural equivalence ≡ (again, the weak-
ness is with respect to commutative transitions). With |ρ|m and |ρ|e we denote
respectively the number of multiplicative and exponential transitions of ρ.

Theorem 1 (Correctness and Completeness). Let D be a reflective dis-
tillery and s an initial state.

1. Simulation up to ≡: for every execution ρ : s ∗ s′ there is a derivation
d : s(∗≡ s′ s.t. |ρ|m = |d|m and |ρ|e = |d|e.

2. Reverse Simulation up to ≡: for every derivation d : s (∗ t there is an
execution ρ : s ∗ s′ s.t. t ≡ s′ and |ρ|m = |d|m and |ρ|e = |d|e.

Bilinearity, instead, is crucial for the low-level theorem.

Theorem 2 (Low-Level Implementation Theorem). Let (be a strategy
on terms with ES s.t. there exists a bilinear reflective distillery D = (M,(,≡
, ·). Then a derivation d : t (∗ u is implementable on RAM machines in
O((1+ |d|) · |t|) steps, i.e. bilinear in the size |t| of the initial term and the length
|d| of the derivation.

10

Proof. Given d : t (n u by Theorem 1.2 there is an execution ρ : s ∗ s′

s.t. u ≡ s′ and |ρ|p = |d|. The cost of implementing ρ is the sum of the costs
of implementing the commutative and the principal transitions. By bilinearity,
|ρ|c = O((1 + |ρ|p) · |t|) and so all the commutative transitions in ρ require
O((1 + |ρ|p) · |t|) steps, because a single one takes a constant number of steps.
Again by bilinearity, each principal one takes O(|t|), and so all the principal
transitions together require O(|ρ|p · |t|) steps. ut

4 Strengthening the MAM

The machine we are about to introduce implements leftmost-outermost reduction
and may therefore be seen as a strong version of the Krivine abstract machine
(KAM). However, it differs from the KAM in the fundamental point of using
global, as opposed to local, environments. It is therefore more appropriate to
say that it is a strong version of the machine we introduced in [3], which we
called MAM (Milner abstract machine). Let us briefly recall its definition:

Code Stack Env Code Stack Env

tu π E c1 t u : π E
λx.t u : π E m t π [x�u] : E
x π E e t

α
π E if E(x) = t

Note that the stack and the environment of the MAM contain codes, not closures
as in the KAM. A global environment indeed circumvents the complex mutually
recursive notions of local environment and closure, at the price of the explicit α-
renaming t

α
which is applied on the fly in e. The price however is negligible, at

least theoretically, as the asymptotic complexity of the machine is not affected,
see [3] (the same can be said of variable names vs de Bruijn indexes/levels).

We know that the MAM performs weak head reduction, whose reduction
contexts are (informally) of the form 〈·〉π. This justifies the presence of the stack.
It is immediate to extend the MAM so that it performs full head reduction, i.e.,
so that the head redex is reduced even if it is under an abstraction. Since head
contexts are of the form Λ.〈·〉π (with Λ a list of abstractions), we simply add a
stack of abstractions Λ and augment the machine with the following transition:

Abs Code Stack Env Abs Code Stack Env

Λ λx.t ε E c2 x : Λ t ε E

The other transitions do not touch the Λ stack.
LO reduction is nothing but iterated head reduction. LO reduction con-

texts, which we formally introduced in Definition 6, when restricted to the pure
λ-calculus (without ES) are of the form Λ.rCπ, where: Λ and π are as above; r,
if present, is a neutral term; and C is either 〈·〉 or, inductively, a LO context.
Then LO contexts may be represented by stacks of triples of the form (Λ, r, π),
where r is a neutral term. These stacks of triples will be called dumps.

The states of the machine for full LO reduction are as above but augmented
with a dump and a phase ϕ, indicating whether we are executing head reduction

11

(H) or whether we are backtracking to find the starting point of the next iteration
(N). To the above transitions (which do not touch the dump and are always in
the H phase), we add the following:

Abs Code Stack Env Dump Ph Abs Code Stack Env Dump Ph

Λ x π E D H c3 Λ x π E D N
if E(x) = ⊥

x : Λ t ε E D N c5 Λ λx.t ε E D N
ε u ε E (Λ, t, π) : D N c7 Λ tu π E D N
Λ t u : π E D N c6 ε u ε E (Λ, t, π) : D H

where E(x) = ⊥ means that the variable x is undefined in the environment E.
In the machine we actually use we join the dump and the Λ stack into the

frame F , to reduce the number of machine components (the analysis will however
somewhat reintroduce the distinction). In the sequel, the reader should bear in
mind that a state of the Strong MAM introduced below corresponds to a state
of the machine just discussed according to the following correspondence:4

Discussed Machine:
Abs Code Stack Env Dump Ph

Λ0 t π E (Λ1, t1, π1) : · · · : (Λn, tn, πn) ϕ
l

Strong MAM:
Frame Code Stack Env Ph

Λ0 : (t1, π1) : Λ1 : · · · : (tn, πn) : Λn t π E ϕ

5 The Strong Milner Abstract Machine

The components and the transitions of the Strong MAM are given by the first
two boxes in Fig. 1. As above, we use t, u, . . . to denote codes, i.e., terms not
containing ES and well-named, by which mean that distinct binders bind distinct
variables and that the sets of free and bound variables are disjoint (codes are not
considered up to α-equivalence). The Strong MAM has two phases: evaluation
(H) and backtracking (N).

Initial states. The initial states of the Strong MAM are of the form ε | t | ε | ε | H,
where t is a closed code called the initial term. In the sequel, we abusively say
that a state is reachable from a term meaning that it is reachable from the
corresponding initial state.

Scope Markers. The two transitions to evaluate and backtrack on abstractions,
 Hc2 and Nc4 , add markers to delimit subenvironments associated to scopes.
The marker Hx is introduced when the machine starts evaluating under an ab-
straction λx, while Nx marks the end of such a subenvironment.

Slight Notation Abuse. The data structures we are going to use are defined as
lists, using ε for the empty list and “:” for both the cons and append operation.
The overloading of : means that in the case of, e.g., an environment E we have
E : ε = E = ε : E, and in particular ε : ε = ε. Such an abuse will be used
thoughout the whole paper.

4 Modulo the presence of markers of the form Nx and Hx in the environment, which
are needed for bookkeeping purposes and were omitted here.

12�

�
	Frames F ::= ε | (t, π) : F | x : F Stacks π ::= ε | t : π

Environments E ::= ε | [x�t] : E | Hx : E | Nx : E Phases ϕ ::= H | N'

&

$

%

Frame Code Stack Env Ph Frame Code Stack Env Ph
F tu π E H Hc1 F t u : π E H
F λx.t u : π E H m F t π [x�u] : E H
F λx.t ε E H Hc2 x : F t ε Hx : E H
F x π E H e F t

α
π E H

if E(x) = t
F x π E H Hc3 F x π E N

if E(x) = H
x : F t ε E N Nc4 F λx.t ε Nx : E N

(t, π) : F u ε E N Nc5 F tu π E N
F t u : π E N Nc6 (t, π) : F u ε E H�
�

�
�

Frames (Ordinary, Weak, Trunk)
F ::= Fw | Ft | Fw : Ft

Fw ::= ε | (t, π) : F
Ft ::= ε | x : F

Environments (Well-Formed, Weak, Trunk)
E ::= Ew | Et | Ew : Et

Ew ::= ε | [x�t] : Ew | Nx : Ew : Hx : E′
w

Et ::= ε | Hx : E

Fig. 1. The Strong MAM.

Weak and Trunk Frames. A frame F may be uniquely decomposed into F =
Fw : Ft, where Fw = (t1, π1) : · · · : (tn, πn) (with n possibly null) is a weak frame,
i.e. where no abstracted variable appear, and Ft is a trunk frame, i.e. not of the
form (t, π) : F ′ (it either starts a variable entry or it is empty). More precisely,
we rely on the alternative grammar in the third box of Fig. 1. We denote by
Λ(F) the set of variables in F , i.e. the set of x s.t. F = F ′ : x : F ′′.

Weak, Trunk, and Well-Formed Environments. Similarly to the frame, the envi-
ronment of a reachable state has a weak/trunk structure. In contrast to frames,
however, not every environment can be seen this way, but only the well-formed
ones (reachable environments will be shown to be well-formed). A weak envi-
ronment Ew does not contain any open scope, i.e. whenever in Ew there is a
scope opener marker (Hx) then one can also find the scope closer marker (Nx),
and (globally) the closed scopes of Ew are well-parenthesized. A trunk environ-
ment Et may instead also contain open scopes that have no closing marker in
Et (but not unmatched closing markers Nx). Formally, weak Ew, trunk Et, and
well-formed environments E (all the environments that we will consider will be
well-formed, that is why we note them E) are defined in the third box in Fig. 1.

Closed Scopes and Meta-level Garbage Collection. Fragments of the form Nx :
Ew : Hx within an environment will essentially be ignored; this is how a simple
form of garbage collection is encapsulated at the meta-level in the decoding. In

13

particular, for a well-formed environment E we define E(x) as:

ε(x) := ⊥ (Ny : Ew : Hy : E)(x) := E(x)
([x�t] : E)(x) := t (Hx : E)(x) := H
([y�t] : E)(x) := E(x) (Hy : E)(x) := E(x)

Note that the only potential source of non-determinism for the Strong MAM
is the choice among e and Nc4 in the variable case. The operation E(x),
however, is a function, and so the machine is deterministic.

We write Λ(E) to denote the set of variables bound to H by an environment
E, i.e. those variables whose scope is not closed with N.

Lemma 4 (Weak Environments Contain only Closed Scopes). If Ew is
a weak environment then Λ(Ew) = ∅.

Compatibility. In the Strong MAM, both the frame and the environment record
information about the abstractions in which evaluation is currently taking place.
Clearly, such information has to be coherent, otherwise the decoding of a state
becomes impossible. The following compatibility predicate captures the correla-
tion between the structure of the frame and that of the environment.

Definition 10 (Compatibility F ∝ E). Compatibility F ∝ E between frames
and environments is defined by

1. Base: ε ∝ ε;
2. Weak Extension: (Fw : Ft) ∝ (Ew : Et) if Ft ∝ Et;
3. Abstraction: (x : F) ∝ (Hx : E) if F ∝ E;

Lemma 5 (Properties of Compatibility).

1. Well-Formed Environments: if F and E are compatible then E is well-
formed.

2. Factorization: every compatible pair F ∝ E can be written as (Fw : Ft) ∝
(Ew : Et) with Ft = x : F ′ iff Et = Hx : E′;

3. Open Scopes Match: Λ(F) = Λ(E).
4. Compatibility and Weak Structures Commute: for all Fw and Ew, F ∝ E

iff (Fw : F) ∝ (Ew : E).

Invariants. The properties of the machine that are needed to prove its correct-
ness and completeness are given by the following invariants.

Lemma 6 (Strong MAM invariants). Let s = F | u | π | E | ϕ be a state
reachable from an initial term t0. Then:

1. Compatibility: F and E are compatible, i.e. F ∝ E.
2. Normal Form:

(1) Backtracking Code: if ϕ = N, then u is normal, and if π is non-empty,
then u is neutral;

(2) Frame: if F = F ′ : (w, π′) : F ′′, then w is neutral.

14

3. Backtracking Free Variables:
(1) Backtracking Code: if ϕ = N then fv(u) ⊆ Λ(F);
(2) Pairs in the Frame: if F = F ′ : (w, π′) : F ′′ then fv(w) ⊆ Λ(F ′′).

4. Name:
(1) Substitutions: if E = E′ : [x�t] : E′′ then x is fresh wrt t and E′′;
(2) Markers: if E = E′ : Hx : E′′ and F = F ′ : x : F ′′ then x is fresh wrt

E′′ and F ′′, and E′(y) = ⊥ for any free variable y in F ′′;
(3) Abstractions: if λx.t is a subterm of F , u, π, or E then x may occur only

in t and in the closed subenvironment Nx : Ew : Hx of E, if it exists.
5. Closure:

(1) Environment: if E = E′ : [x�t] : E′′ then E′′(y) 6= ⊥ for all y ∈ fv(t);
(2) Code, Stack, and Frame: E(x) 6= ⊥ for any free variable in u and in any

code of π and F .

Since the statement of the invariants is rather technical, let us summarize
the dependencies (or lack thereof) of the various points and their use in the
distillation proof of the next section.

– The compatibility, normal form and backtracking free variables invariants
are independent of each other and of the subsequent invariants.

– The name invariant relies on the compatibility invariant only.
– The closure invariant relies on the compatibility, name and backtracking free

variable invariants only. It is crucial for the progress property (because in
the variable case at least one among e and Nc4 applies).

The proof of every invariant is by induction on the number of transitions leading
to the reachable state. In this respect, the various points of the statement of each
invariant (e.g. points 5.1 and 5.2) are entangled, in the sense that each point
needs to use the induction hypothesis of one of the other points, and thus they
cannot be proved separately.

Implementing Environments. Note that substitutions in closed scopes are never
used by the machine, because the operation E(x) is defined by ignoring them.
Moreover, the name invariant guarantees that if E(x) = Hx then E does not
contain a substitution on x. These two facts imply that the scope markers Nx
and Hx are not really needed in an actual implementation: the test E(x) = Hx
in Hc3 can indeed be replaced—in the variant without markers (also redifining
E(x) as simple look-up in E)—by a test of undefinedness. The markers are in fact
needed only for the analysis, as they structure the frame and the environment of
a reachable state into weak and trunk parts, allowing a simple decoding towards
terms with ES.

Moreover, variables are meant to be implemented as memory locations, so
that the environment is simply a store, and the list structure of environments
is not necessary either. Such an assumption allows to access the environment in
constant time on RAM, and will be essential for the proof of the bilinearity of
the distillery (to be defined).

Therefore, the structure of environments—given by the scope markers and
the list structure—is an artifice used to define the decoding and develop the
analysis, but it is not meant to be part of the actual implementation.

15

6 Distilling the Strong MAM

The definition of the decoding relies on the notion of compatible pair.

Definition 11 (Decoding). Let s = (F, t, π, E, ϕ) be a state s.t. F ∝ E is a
compatible pair. Then s decodes to a state context Cs and a term s as follows:'

&

$

%

Weak Environments: Compatible Pairs:
ε := 〈·〉 ε ∝ ε := 〈·〉

[x�u] : Ew := Ew〈〈·〉[x�u]〉 (Fw : Ft) ∝ (Ew : Et) := Ft ∝ Et〈Ew〈Fw〉〉
Nx : Ew : Hx : E′

w := E′
w (x : F) ∝ (Hx : E) := F ∝ E〈λx.〈·〉〉

Weak Frames: Stacks: States:
ε := 〈·〉 ε := 〈·〉 Cs := F ∝ E〈π〉

(u, π) : Fw := Fw〈π〈u〈·〉〉〉 u : π := π〈〈·〉u〉 s := Cs〈t〉

The following lemmas sum up the properties of the decoding.

Lemma 7 (Closed Scopes Disappear). Let F ∝ E be a compatible pair.
Then F ∝ (Nx : Ew : Hx : E) = F ∝ E.

Lemma 8 (LO Decoding Invariant). Let s = F | u | π | E | ϕ be a reachable
state. Then F ∝ E and Cs are LO contexts.

Lemma 9 (Decoding and Structural Equivalence ≡).

1. Stacks and Substitutions Commute: if x does not occur free in π then
π〈t[x�u]〉 ≡ π〈t〉[x�u];

2. Compatible Pairs Absorb Substitutions: if x does not occur free in F then
F ∝ E〈t[x�u]〉 ≡ F ∝ ([x�u] : E)〈t〉.

The next theorem is our first main result. By the abstract approach presented
in Sect. 3 (Theorem 1), it implies that the Strong MAM is a correct and complete
implementation of linear LO evaluation to normal form.

Theorem 3 (Distillation). (Strong MAM,→LO,≡, ·) is an explicit and reflec-
tive distillery. In particular:

1. Projection of Principal Transitions:
(a) Multiplicative: if s m s

′ then s→m≡ s′;
(b) Exponential: if s e s

′ then s→e s
′, duplicating the same subterm.

2. Distillation of Commutative Transitions:
(a) Garbage Collection of Weak Environments: if s c4 s

′ then s ≡gc s
′;

(b) Equality Cases: if s c1,2,3,5,6 s
′ then s = s′.

Proof. Recall, the decoding is defined as (F, t, π, E, ϕ) := F ∝ E〈π〈t〉〉. Deter-
minism of the machine follows by the deterministic definition of E(x), and that
of the strategy follows from the totality of the LO order (Lemma 1). Transitions:

16

– Case s = (F, λx.t, u : π,E,H) m (F, t, π, [x�u] : E,H) = s′. Note that
Cs′ = F ∝ E〈π〉 is LO by the LO decoding invariant (Lemma 8). Moreover
by the closure invariant (Lemma 6.5) x does not occur in F nor π, justifying
the use of Lemma 9 in:

(F, λx.t, u : π,E,H) = F ∝ E〈u : π〈λx.t〉〉
= F ∝ E〈π〈(λx.t)u〉〉
→m F ∝ E〈π〈t[x�u]〉〉
≡L.9.1 F ∝ E〈π〈t〉[x�u]〉
≡L.9.2 F ∝ ([x�u] : E)〈π〈t〉〉 = (F, t, π, [x�u] : E,H)

– Case s = (F, x, π,E,H) e (F, t
α
, π, E,H) = s′ with E(x) = t. As before,

Cs is LO by Lemma 8. Moreover, E(x) = t guarantees that E, and thus Cs,
have a substitution binding x to t. Finally, Cs = Cs′ . Then

s = Cs〈x〉 →e Cs〈t
α〉 = s′

– Case s = (x : F, t, ε, E,N) Nc4 (F, λx.t, ε,Nx : E,N) = s′. By Lemma 6.1
x : F ∝ E, and by Lemma 5.2 E = Ew : Hx : E′. Then

(x : F) ∝ E = (x : F) ∝ (Ew : Hx : E′) = (x : F) ∝ (Hx : E′)〈Ew〉

Since we are in a backtracking phase (N), the backtracking free variables in-
variant (Lemma 6.3.1) and the open scopes matching property (Lemma 5.3)
give fv(t) ⊆L.6.3.1 Λ(F) =L.5.3 Λ(Ew : Hx : E′) =L.4 Λ(Hx : E′), i.e. Ew

does not bind any variable in fv(t). Then Ew〈t〉 ≡∗gc t, and

(x : F, t, ε, E,N) = (x : F) ∝ E〈t〉
= (x : F) ∝ (Ew : Hx : E′)〈t〉
= (x : F) ∝ (Hx : E′)〈Ew〈t〉〉
≡∗gc (x : F) ∝ (Hx : E′)〈t〉
= F ∝ E′〈λx.t〉
=L.7 F ∝ (Nx : Ew : Hx : E′)〈λx.t〉
= F ∝ (Nx : E)〈λx.t〉 =(F, λx.t, ε,Nx : E,N)

– Case (F, tu, π,E,H) Hc1 (F, t, u : π,E,H).

(F, tu, π,E,H) = F ∝ E〈π〈tu〉〉 = F ∝ E〈u : π〈t〉〉 = (F, t, u : π,E,H)

– Case (F, λx.t, ε, E,H) Hc2 (x : F, t, ε,Hx : E,H).

(F, λx.t, ε, E,H) = F ∝ E〈λx.t〉
= (x : F) ∝ (Hx : E)〈t〉 = (x : F, t, ε,Hx : E,H)

– Case (F, x, π,E,H) Hc3 (F, x, π,E,N).

(F, x, π,E,H) = F ∝ E〈π〈x〉〉 = (F, x, π,E,N)

17

– Case ((t, π) : F, u, ε, E,N) Nc5 (F, tu, π,E,N).

((t, π) : F, u, ε, E,N) = (t, π) : F ∝ E〈u〉 = F ∝ E〈π〈t u〉〉 = (F, tu, π,E,N)

– Case (F, t, u : π,E,N) Nc6 ((t, π) : F, u, ε, E,H).

(F, t, u : π,E,N) = F ∝ E〈u : π〈t〉〉
= F ∝ E〈π〈t u〉〉
= ((t, π) : F) ∝ E〈u〉 = ((t, π) : F, u, ε, E,H)

For what concerns reflectiveness, termination of commutative transitions is
subsumed by bilinearity (Theorem 4 below). For progress, note that

1. the machine cannot get stuck during the evaluation phase: for applications
and abstractions it is evident and for variables one among e and Hc3
always applies, because of the closure invariant (Lemma 6.5).

2. final states have the form (ε, t, ε, E,N), because
(a) by the previous consideration they are in a backtracking phase,
(b) if the stack is non-empty then Nc6 applies,
(c) otherwise if the frame is not empty then either Nc4 or Nc5 applies.

3. final states decode to normal terms: a final state s = (ε, t, ε, E,N) decodes
to s = E〈t〉 which is normal and closed by the normal form (Lemma 6.2.1)
and backtracking free variables (Lemma 6.3.1) invariants. ut

7 Complexity Analysis

The complexity analysis requires a further invariant, bounding the size of the
duplicated subterms. For us, u is a subterm of t if it does so up to variable
names, both free and bound. More precisely: define t− as t in which all variables
(including those appearing in binders) are replaced by a fixed symbol ∗. Then,
we will consider u to be a subterm of t whenever u− is a subterm of t− in the
usual sense. The key property ensured by this definition is that the size |u| of u
is bounded by |t|.

Lemma 10 (Subterm Invariant). Let ρ be an execution from an initial code
t. Every code duplicated along ρ using e is a subterm of t.

Via the distillation theorem (Theorem 3), the invariant provides a new proof
of the subterm property of linear LO reduction (first proved in [6]).

Lemma 11 (Subterm Property for →LO). Let d be a →LO-derivation from
an initial term t. Every term duplicated along d using →e is a subterm of t.

The next theorem is our second main result, from which the low-level imple-
mentation theorem (Theorem 2) follows. Let us stress that, despite the simplicity
of the reasoning, the analysis is subtle as the length of backtracking phases (Point
2) can be bound only globally, by the whole previous evaluation work.

18

Theorem 4 (Bilinearity). The Strong MAM is bilinear, i.e. given an execu-
tion ρ : s ∗ s′ from an initial state of code t then:

1. Commutative Evaluation Steps are Bilinear: |ρ|Hc ≤ (1 + |ρ|e) · |t|.
2. Commutative Evaluation Bounds Backtracking: |ρ|Nc ≤ 2 · |ρ|Hc.
3. Commutative Steps are Bilinear: |ρ|c ≤ 3 · (1 + |ρ|e) · |t|.

Proof. 1. We prove a slightly stronger statement, namely |ρ|Hc + |ρ|m ≤ (1 +
|ρ|e) · |t|, by means of the following notion of size for stacks/frames/states:

|ε| := 0 |x : F | := |F |
|t : π| := |t|+ |π| |(t, π) : F | := |π|+ |F |

|(F, t, π, E,H)| := |F |+ |π|+ |t| |(F, t, π, E,N)| := |F |+ |π|

By direct inspection of the rules of the machine it can be checked that:
– Exponentials Increase the Size: if s e s

′ is an exponential transition,
then |s′| ≤ |s|+ |t| where |t| is the size of the initial term; this is a con-
sequence of the fact that exponential steps retrieve a piece of code from
the environment, which is a subterm of the initial term by Lemma 10;

– Non-Exponential Evaluation Transitions Decrease the Size: if s a s
′

with a ∈ {m,Hc1,Hc2,Hc3} then |s′| < |s|;
– Backtracking Transitions do not Change the Size: if s a s

′ with a ∈
{Nc4,Nc5,Nc6} then |s′| = |s|.

Then a straightforward induction on |ρ| shows that

|s′| ≤ |s|+ |ρ|e · |t| − |ρ|Hc − |ρ|m

i.e. that |ρ|Hc + |ρ|m ≤ |s|+ |ρ|e · |t| − |s′|.
Now note that | · | is always non-negative and that since s is initial we have
|s| = |t|. We can then conclude with

|ρ|Hc + |ρ|m ≤ |s|+ |ρ|e · |t| − |s′|
≤ |s|+ |ρ|e · |t| = |t|+ |ρ|e · |t| = (1 + |ρ|e) · |t|

2. We have to estimate |ρ|Nc = |ρ|Nc4 + |ρ|Nc5 + |ρ|Nc6 . Note that
(a) |ρ|Nc4 ≤ |ρ|Hc2 , as Nc4 pops variables from F , pushed only by Hc2 ;
(b) |ρ|Nc5 ≤ |ρ|Nc6 , as Nc5 pops pairs (t, π) from F , pushed only by Nc6 ;
(c) |ρ|Nc6 ≤ |ρ|Hc3 , as Nc6 ends backtracking phases, started only by Hc3 .
Then |ρ|Nc ≤ |ρ|Hc2 + 2|ρ|Hc3 ≤ 2|ρ|Hc.

3. We have |ρ|c = |ρ|Hc + |ρ|Nc ≤P.2 |ρ|Hc + 2|ρ|Hc =P.1 3 · (1 + |ρ|e) · |t|.
Last, every transition but e takes a constant time on a RAM.The renaming

in a e step is instead linear in |t|, by the subterm invariant (Lemma 10). ut

Acknowledgments. This work was partially supported by projects Logoi ANR-

2010-BLAN-0213-02, Coquas ANR-12-JS02-006-01, Elica ANR-14-CE25-0005, the

Saint-Exupéry program funded by the French embassy and the Ministry of Education

in Argentina, and the French–Argentinian laboratory in Computer Science INFINIS.

19

References

1. Abramsky, S., Ong, C.L.: Full abstraction in the lazy lambda calculus. Inf. Comput.
105(2), 159–267 (1993)

2. Accattoli, B.: An abstract factorization theorem for explicit substitutions. In: RTA.
pp. 6–21 (2012)

3. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: ICFP.
pp. 363–376 (2014)

4. Accattoli, B., Barenbaum, P., Mazza, D.: A strong distillery. CoRR abs/1509.00996
(2015), http://arxiv.org/abs/1509.00996

5. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization
theorem. In: POPL. pp. 659–670 (2014)

6. Accattoli, B., Dal Lago, U.: Beta Reduction is Invariant, Indeed. In: CSL-LICS.
p. 8 (2014)

7. Accattoli, B., Sacerdoti Coen, C.: On the value of variables. In: WoLLIC 2014. pp.
36–50 (2014)

8. Accattoli, B., Sacerdoti Coen, C.: On the relative usefulness of fireballs. In: LICS.
pp. 141–155 (2015)

9. Ariola, Z.M., Bohannon, A., Sabry, A.: Sequent calculi and abstract machines.
ACM Trans. Program. Lang. Syst. 31(4) (2009)

10. Biernacka, M., Danvy, O.: A concrete framework for environment machines. ACM
Trans. Comput. Log. 9(1) (2007)

11. Boutiller, P.: De nouveaus outils pour manipuler les inductif en Coq. Ph.D. thesis,
Université Paris Diderot - Paris 7 (2014)

12. de Carvalho, D.: Execution time of lambda-terms via denotational semantics and
intersection types. CoRR abs/0905.4251 (2009)

13. Crégut, P.: An abstract machine for lambda-terms normalization. In: LISP and
Functional Programming. pp. 333–340 (1990)

14. Crégut, P.: Strongly reducing variants of the Krivine abstract machine. Higher-
Order and Symbolic Computation 20(3), 209–230 (2007)

15. Curien, P.: An abstract framework for environment machines. Theor. Comput. Sci.
82(2), 389–402 (1991)

16. Danos, V., Regnier, L.: Head linear reduction (2004), unpublished
17. Danvy, O., Nielsen, L.R.: Refocusing in reduction semantics. Tech. Rep. RS-04-26,

BRICS (2004)
18. Danvy, O., Zerny, I.: A synthetic operational account of call-by-need evaluation.

In: PPDP. pp. 97–108 (2013)
19. Dénès, M.: Étude formelle d’algorithmes efficaces en algèbre linéaire. Ph.D. thesis,

Université de Nice - Sophia Antipolis (2013)
20. Ehrhard, T., Regnier, L.: Böhm trees, Krivine’s machine and the Taylor expansion

of lambda-terms. In: CiE. pp. 186–197 (2006)
21. Fernández, M., Siafakas, N.: New developments in environment machines. Electr.

Notes Theor. Comput. Sci. 237, 57–73 (2009)
22. Garćıa-Pérez, Á., Nogueira, P., Moreno-Navarro, J.J.: Deriving the full-reducing

krivine machine from the small-step operational semantics of normal order. In:
PPDP. pp. 85–96 (2013)

23. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: ICFP.
pp. 235–246 (2002)

24. Hardin, T., Maranget, L.: Functional runtime systems within the lambda-sigma
calculus. J. Funct. Program. 8(2), 131–176 (1998)

20

25. Lang, F.: Explaining the lazy Krivine machine using explicit substitution and ad-
dresses. Higher-Order and Symbolic Computation 20(3), 257–270 (2007)

26. Mascari, G., Pedicini, M.: Head linear reduction and pure proof net extraction.
Theor. Comput. Sci. 135(1), 111–137 (1994)

27. Milner, R.: Local bigraphs and confluence: Two conjectures. Electr. Notes Theor.
Comput. Sci. 175(3), 65–73 (2007)

28. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975)

29. Sands, D., Gustavsson, J., Moran, A.: Lambda calculi and linear speedups. In: The
Essence of Computation, Complexity, Analysis, Transformation. Essays Dedicated
to Neil D. Jones. pp. 60–84 (2002)

30. Smith, C.: Abstract machines for higher-order term sharing, Presented at IFL 2014

