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Abstract. In this work, we propose a generic hierarchical spatiotem-
poral model for longitudinal manifold-valued data, which consist in re-
peated measurements over time for a group of individuals. This model
allows us to estimate a group-average trajectory of progression, consid-
ered as a geodesic of a given Riemannian manifold. Individual trajectories
of progression are obtained as random variations, which consist in paral-
lel shifting and time reparametrization, of the average trajectory. These
spatiotemporal tranformations allow us to characterize changes in the di-
rection and in the pace at which trajectories are followed. We propose to
estimate the parameters of the model using a stochastic approximation of
the expectation-maximization (EM) algorithm, the Monte Carlo Markov
Chain Stochastic Approximation EM (MCMC SAEM) algorithm.

This generic spatiotemporal model is used to analyze the temporal pro-
gression of a family of biomarkers. This progression model estimates
a normative scenario of the progressive impairments of several cognitive
functions, considered here as biomarkers, during the course of Alzheimer’s
disease. The estimated average trajectory provides a normative scenario
of disease progression. Random effects provide unique insights into the
variations in the ordering and timing of the succession of cognitive im-
pairments across different individuals.

1 Introduction

Neurodegenerative diseases such as Alzheimer’s disease (AD) or Parkinson’s dis-
ease are known to affect the metabolism, brain structure and cognitive func-
tions. The effect of the disease can be quantified by observing cerebrospinal fluid
(CSF), neuroimaging or neuropsychological biomarkers. In [9], Clifford R. Jack
et al. proposed an hypothetical model to describe the temporal progression of
these biomarkers during the course of the disease. However, there is still a need
for data-driven models which could give experimental evidence of such patterns
of disease progression. Statistical models for longitudinal data have been subject
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to a growing interest in the last few years. In particular, mixed-effects mod-
els, which include fixed and random effects, have a hierarchical structure which
allows us to describe the model at the group and subjects level.

Still, a statistical model of disease progression should take into account the
fact that the age of a given individual is not an indicator of his stage of disease
progression. Two individuals, observed at the same age, might actually be at very
different stages of disease progression. As a consequence, trajectories should be
registered in time to account for this variability in stages of disease progression.
In [6], the concept of “time-warps” was introduced to allow for the registration
in time of trajectories of shape changes. However, in order to combine the time-
warps with the variability of shapes accross individuals, the authors assumed
that the variance of shapes does not depend on time whereas it should adapt
to the average trajectory of shape changes. The set of the measurements of
an individual at a given time-point is often a high-dimensional and nonlinear
space. Building a model of disease progression therefore consists in estimating
continuous subject-specific trajectories and an average trajectory in this space.
At a given time point, the disease progression of two individuals will probably
be described by two different trajectories. To construct the average trajectory,
the individual trajectories need to be registered in space, where space may refer
to the 2D or 3D space of spatial objects, or more generally to the space of
measurements. In [15], time-warps were also used to define a metric between
curves which has the property of being invariant under time-reparametrization.
The authors did not spatially register the curves because of the small variability
of the trajectories.

The framework of mixed-effects models provides tools to deal with this hi-
erarchical problem. Mixed-effects models for longitudinal measurements were
introduced in the seminal paper of Laird and Ware [11] and have been widely
developed since then (see [4], [13] for instance). It should be pointed out that
this kind of models suffers from two main drawbacks regarding our problem.
These models describe the distribution of the measurements at a given reference
time. In many situations, this reference time is given by the experimental set-
ting: in plant growth studies, the point in time at which the plant was seeded is
a natural choice, as well as the date of birth in developmental studies. However,
in studies on neurodegenerative diseases, there is no natural choice of reference
time as the disease-onset time is most probably different for each individual.
Another limitation of usual mixed-effects models is that they are defined for
data lying in Euclidean spaces. Although the development of statistical models
for manifold-valued data is a blooming topic (see [14], [15]), the construction of
statistical models for longitudinal data on a manifold remains an open problem.

In this paper, we propose a statistical model to describe the temporal progres-
sion of a family of biomarkers. This progression model can be seen as a particu-
lar case of a more general spatiotemporal model for longitudinal manifold-valued
data. The Riemannian manifold and its metric are choosen a priori, which allows
us to introduce anatomical, physiological constraints into the model. The defi-
nition of the generic spatiotemporal model requires no other choice. The models
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which we introduce herein are based on the concept of parallel curves on a man-
ifold. The random effects of the model allow to spatially and temporally register
individual trajectories of progression. The generic spatiotemporal model belongs
to a class of statistical models for which maximum likelihood estimates cannot
be obtained in closed form. We address this issue by using a stochastic version of
the Expectation-Maximization algorithm [3], namely the MCMC SAEM [1], for
which theoretical results regarding the convergence have been proven in [2], [1].

In section 2, we will introduce our propagation model for a family of biomark-
ers and explain how this model appears as a particular case of a more general
mixed-effects model for longitudinal manifold-valued data. We explain how the
MCMC-SAEM was used in section 3. The last section consists of experimental
results obtained on neuropsychological test scores.

2 Propagation model for a family of biomarkers

2.1 Riemannian geometry prerequisites

Let (M, gM) be a Riemannian manifold of dimension N equipped with a Rieman-
nian metric gM, which we assume to be geodesically complete. Meaning that the
geodesics of M are defined on R. The Riemannian metric gM defines a unique
affine connexion on M, namely the Levi-Civita connexion, denoted by ∇M. Let
γ denote a geodesic of M and t0 ∈ R. We recall that, given a tangent vector ξ
in Tγ(t0)M, the parallel transport of ξ along γ, denoted by X(s) = Pγ,t0,s(ξ), is

a vector field along γ which satisfies : X(t0) = ξ and ∇MX(s) = 0. Let p ∈ M.
The Riemannian exponential in M at p is denoted by ExpM

p . For v ∈ TpM,

ExpM
p (v) denotes the value at time 1 of the geodesic in M issued from p with

initial velocity v.

2.2 Model description

We are interested in the temporal progression of a family of N (N ≥ 2) scalar
biomarkers. We consider a longitudinal dataset of the form (yi,j , ti,j)i,j , obtained
by observing p individuals at repeated time points. The vector yi,j denotes the
j-th observation (1 ≤ j ≤ ni) of the i-th individual. The k-th coordinate of yi,j ,
denoted by yi,j,k, corresponds to the measurement of the k-th biomarker, at time
ti,j . We will assume that each measurement yi,j,k belongs to a one dimensional
Riemannian manifold (M, g) which is geodesically complete. In this setting, the
observations yi,j = (yi,j,1, . . . , yi,j,N ) can be considered as points in the product
manifold M = MN . The average progression of this family of biomarkers is
modeled by a geodesic trajectory on the manifold M, which is equipped with the
product metric, denoted by gM.

The statistical model is described for observations on a manifold wich is a
product of one-dimensional manifolds. This framework is particularly convenient
to analyze the temporal progression of a family of biomarkers. The model can
be seen as a particular case of a more generic spatiotemporal model (2).
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Choice of the average trajectory

In order to determine relative progression of the biomarkers among them-
selves, the average trajectory is choosen among the parametric family of geodesics
:
(
t 7→ (γ0(t), γ0(t+δ1), . . . , γ0(t+δN−1))

)
δ
, where δ = (0, δ1, . . . , δN−1) and γ0

is a geodesic, of the one-dimensional manifold M , parametrized by a point p0 in
M , a time t0 and a velocity v0 in Tp0M . This parametrization of the geodesic
γ0 is the natural parametrization : γ0(t0) = p0 and γ̇0(t0) = v0. By choosing the
average trajectory among this parametrized family of geodesics, we assume that,
on average, the biomarkers follow the same trajectory but shifted in time. The
delay between the progression of the different biomarkers is measured by the
vector δ = (0, δ1, . . . , δN−1) ∈ RN . The parameters δi (1 ≤ i ≤ N − 1) measure
a relative delay between two consecutive biomarkers. The parameter t0 plays
the role of reference time as the trajectory of the first biomarker will reach the
value p0 at time t0 whereas the other trajectories will reach the same value p0
at different points in time, shifted with respect to t0.

Construction of subject-specific trajectories of disease progression
with time reparametrization

The model proposed herein is a hierarchical model : data points are assumed
to be sampled from subject-specific trajectories of progression. These individual
trajectories are derived from the average trajectory γδ. The subject-specific
trajectory of the i-th individual is constructed by considering a non-zero tangent
vector wi in Tγδ(t0)

M, orthogonal to γ̇δ(t0) for the inner product defined by the

metric (〈·, ·〉γδ(t0)
= gMγδ(t0)

). This tangent vector wi = (w1,i, . . . , wN,i) is a

space shift which allows us to register the individual trajectories in the space
of measurements. The tangent vector wi is transported along the geodesic γδ

from time t0 to time s using parallel transport. This transported tangent vector
is denoted by Pγδ,t0,s(wi). At the point γδ(s), a new point in M is obtained by
taking the Riemannian exponential of Pγδ,t0,s(wi). This new point is denoted by
ηwi(γδ, s). As s varies, this point describes the curve s 7→ ηwi(γδ, s), which is
considered as a “parallel” to the curve γδ (Fig. 1). The orthogonality condition
on the tangent vectors wi is an important hypothesis which ensures that a point
ηwi(γδ, s) on a parallel moves at the same pace on this parallel than on the
average trajectory. This hypothesis ensures the uniqueness of the decomposition
between spatial and temporal components.

The trajectory γi of the i-th individual is obtained by reparametrizing the
parallel ηwi(γδ, ·) : γi(s) = ηwi(γδ, ψi(s)), where the mapping ψi(s) = αi(s −
t0 − τi) + t0 is a subject-specific affine reparametrization which allows us to
register in time the different individual trajectories of progression. This time-
warp was introduced in [12] to define subject-specific trajectories of progression
from an average trajectory, in the case of univariate manifold-valued data. In
this univariate work, because the manifold is one-dimensional, no random effect
is associated to the fixed effect p0. Here, the tangent vector wi can be considered,
in the light of the univariate model, as a random effect associated to the point p0.
The effect αi is an acceleration factor which encodes whether the i-th individual
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is progressing faster or slower than the average individual. Whereas the effect τi
encodes the advance or delay of the i-th individual with respect to the average.
Both are assumed to be random, non observed, variables as are also the space
shifts wi.

Figure a) Figure b) Figure c) 

Fig. 1: Schematic description of parallel shifting. Figure a) (left) : A non-zero
tangent vector wi is choosen in Tγ(t0)M. Figure b) (middle) : the tangent vector
wi is transported along γ from γ(t0) to γ(s) using parallel transport on M. A
new point, ηwi(γ, s) is obtained at time s by shooting with the Riemannian ex-
ponential. Figure c) (right) : the curve ηwi(γ, ·) is the “parallel” to γ constructed
from wi.

Because M is equipped with the product metric, the parallel transport of the
tangent vector wi ∈ Tγδ(t0)

M is a N -dimensional vector whose k-th (1 ≤ k ≤
N) component is equal to the parallel transport of the tangent vector wk,i ∈
Tγ0(·+δk−1)M along the curve s 7→ γ0(s+ δk−1) in the one-dimensional manifold

M . It follows that Pγδ,t0,s(wi) =
( w1,i

γ̇0(t0)
γ̇0(s), . . . ,

wN,i
γ̇0(t+δN−1)

γ̇0(s+δN−1)
)
. Tak-

ing the Riemanniann exponential, in M, of the tangent vector Pγδ,t0,s(wi) boils
down to taking the Riemannian exponential, in M , of each component of the
vector. If ExpM denotes the Riemannian exponential map in M , the k-th (1 ≤
k ≤ N) component of ηwi(γδ, s) is given by : ExpMγ0(s+δk−1)

[ wk,i
γ̇0(t0+δk−1)

γ̇0(s +

δk−1)
]

= γ0
(
s + δk−1 +

wk,i
γ̇0(t0+δk−1)

)
. For the longitudinal dataset (yi,j , ti,j)

(1 ≤ i ≤ p, 1 ≤ j ≤ ni), our hierarchical model writes : yi,j = γi(ti,j) + εi,j . In
particular, for the k-th biomarker, this hierarchical model writes :

yi,j,k = γ0

(
wk,i

γ̇0(t0 + δk−1)
+ t0 + αi(ti,j − t0 − τi) + δk−1

)
+ εi,j,k. (1)

with αi = exp(ηi), wi = (w1,i, . . . , wN,i), wi = Asi and :

ηi
i.i.d.∼ N (0, σ2

η), τi
i.i.d.∼ N (0, σ2

τ ), εi,j
i.i.d.∼ N (0, σ2Ini) and sj,i

i.i.d.∼ Laplace(1/2).

The parameters of the model are θ = (p0, t0, v0, δ, ση, στ , σ, vec(A)) and the
random effects of the model are (αi, τi,wi) (1 ≤ i ≤ p). Note that the first
two random effects are scalars. The acceleration factor is assumed to follow a
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log-normal distribution to ensure its positiveness (the affine reparametrization
must not reverse time). The time shifts follow a Gaussian distribution with zero
mean. The space shifts are vectors of dimension N−1 which belong to the vector
space {γ̇δ(t0)}⊥. In the spirit of independent component analysis [8], we assume
that the tangent vectors wi are a linear combination of Ns < N statistically
independent components. This writes wi = Asi where A is a N × Ns matrix
of rank Ns whose columns are vectors in Tγδ(t0)

M and si is a vector of Ns
independent sources following a Laplace distribution with parameter 1/2. To
ensure the orthogonality condition on the tangent vectors wi, we assume that,
for all j ∈ {1, . . . , Ns}, 〈Aj , γ̇δ(t0)〉γδ(t0)

= 0, where Aj denotes the j-th column

of A.
The model given in (1) can be used to analyze longitudinal observations

on any geodesically complete Riemannian manifold. The generic spatiotemporal
model writes:

yi,j = ηwi(γδ, ψi(ti,j)) + εi,j . (2)

where the parallel s 7→ ηwi(γδ, s) is given by:

ηwi(γδ, s) = ExpM
γδ(s)

(
Pγδ,t0,s(wi)

)
, s ∈ R.

It should be pointed out that a parallel s 7→ ηwi(γδ, s) to the geodesic γδ

is not, in general a geodesic. In the Euclidean case, a parallel to γδ is just a
translation of γδ : ηwi(γδ, s) = γδ(s) + wi.

2.3 The logistic propagation model

If the measurements of the biomarkers can be normalized, we can consider these
measurements as points in the one-dimensional manifold M =]0, 1[. For example,
neuropsychological test scores are bounded above by a maximum score and can
therefore be normalized to produce measurements in ]0, 1[. In this case, the
model given in (1) can be used to analyze these measurements. We consider that
M =]0, 1[ is equipped with the Riemannian metric g given by : for p ∈]0, 1[,
(u, v) ∈ TpM × TpM , gp(u, v) = uG(p)v with G(p) = 1/(p2(1 − p)2). For this
Riemannian metric, the geodesics are the logistic curves of the form : γ0(t) =(
1 + ( 1

p0
− 1) exp

(
− v0

p0(1−p0) (t− t0)
))−1

. In this setting, (1) writes:

yi,j,k =

(
1+
( 1

p0
−1
)

exp

(
−
v0αi(ti,j − t0 − τi) + v0δk + v0

(Asi)k
γ̇0(t0+δk)

p0(1− p0)

))−1
+εi,j,k,

(3)
where (Asi)k denotes the k-th component of the vector wi = Asi.

3 Parameters estimation

A stochastic version of the Expectation-Maximization (EM) algorithm [3] is used
to estimate the parameters θ = (p0, t0, v0, δ, ση, στ , σ, vec(A)) of the model.
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Because of the nonlinearity of the model, the E step of the EM algorithm
is intractable. As a consequence, we consider a stochastic version of the EM
algorithm, namely the Monte-Carlo Markov Chain Stochastic Approximation
Expectation-Maximization (MCMC-SAEM) algorithm [1], based on [2].

In order to ensure the theoretical convergence of the MCMC SAEM algo-
rithm, the model must belong to the curved exponential family. Equivalently,
the complete log-likelihood of the model shall write : log q(y, z |θ) = −φ(θ) +
S(y, z)>ψ(θ), where S(y, z) is a sufficent statistic of the model. Note that the
logistic propagation model does not belong to the curved exponential family. A
usual workaround consists in regarding the parameters of the model as realiza-
tions of independents Gaussian random variables ([10]) : θ ∼ N (θ,D) where
D is a diagonal matrix with very small diagonal entries and the estimation now
targets θ. This yields: p0 ∼ N (p0, σ

2
p0), t0 ∼ N (t0, σ

2
t0), v0 ∼ N (v0, σ

2
v0) and,

for all k, δk ∼ N (δk, σ
2
δ ). The matrix A is also considered as a realization of a

Gaussian random variable and, in order to ensure the orthogonality condition on
the columns of A, we assume that A follows a normal distribution on the space

Σ = {A = (A1, . . . ,ANs) ∈
(
Tγδ(t0)M

)Ns
; ∀j, 〈Aj , γ̇δ(t0)〉γδ(t0) = 0}. Equiva-

lently, we assume that the matrix A writes : A =
∑(N−1)Ns
k=1 ckAk where, for all k,

ck
i.i.d.∼ N (ck, σ

2
c ) and (A1, . . . ,A(N−1)Ns) is an orthonormal basis of Σ obtained

by application of the Gram-Schmidt process to a basis of Σ. The random vari-
ables c1, . . . , c(N−1)Ns are considered as new hidden variables of the model. The

parameters of the model are θ = (p0, t0, v0, (δk)1≤k≤N−1, (ck)1≤k≤(N−1)Ns , ση, στ , σ)
whereas the hidden variables of the model are z = (p0, t0, v0, (δk)1≤k≤N−1, (ck)1≤k≤(N−1)Ns ,
(ηi)1≤i≤p, (τi)1≤i≤p, (sj,i)1≤j≤Ns, 1≤i≤p).

Overview of the MCMC-SAEM algorithm

The MCMC-SAEM itterates, until convergence, between three steps : simu-
lation, stochastic approximation and maximization. Let k be an integer greater
than 1 and θ(k−1) (respectively z(k−1)) denote the parameters (respectively the
hidden variables) at the k − 1-th iteration of the algorithm. The k-th iteration
is summarized as follows :

– Simulation : z(k) is sampled from the transition kernel of an ergodic Markov
Chain whose stationary distribution is the conditional distribution of the
hidden variables knowing the observations y = (yi,j)i,j and the current esti-

mates of the parameters θ(k−1). This sampling is done by using the Hasting-
Metropolis within Gibbs sampler.

– Compute the sufficent statistics : we compute the sufficent statistics S(k).

– Stochastic approximation : because the model belongs to the curved expo-
nential family, the stochastic approximation is done on the sufficent statistics
as follows : S(k+1) ← S(k)+εk(S(y, z(k))−S(k))., where (εk)k is a decreasing
sequence of positive step sizes.

– Maximization : parameters updates are obtained in closed form from the
stochastic approximation on the sufficent statistics.
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4 Experiments

4.1 Data

We use the neuropsychological assessment test “ADAS-Cog 13” from the ADNI1,
ADNIGO or ADNI2 cohorts of the Alzheimer’s Disease Neuroimaging Initiative
(ADNI). The “ADAS-Cog 13” consists of 13 questions, which allow to test the
impairment of several cognitive functions. To each of the 13 items of the test
a cognitive function was associated as follows : memory (items 1, 4, 7, 8 and 9),
language (items 2, 5, 10, 11 and 12), praxies (items 3 and 6), concentration (item
13). The score of each item was normalized by the maximum possible score.
Consequently, each data point of each individual consists in thirteen normalized
scores, which can be seen as a point on the manifold M =]0, 1[13.

We choose to consider 248 individuals who were diagnosed with mild cogni-
tive impairment (MCI) at their first visit and whose diagnosis changed to AD
before their last visit. Among this population, we have an average of 6 visits per
individual (with a minimum of 3 and a maximum of 11) and a typical duration
of either 6 or 12 months between consecutive visits.

4.2 Experimental results

In this situation where M =]0, 1[13, the number of independent sources Ns can be
any integer between 1 and 12. The choice of the number of independent sources
influences the number of parameters to be estimated, which equals 9 + 12Ns. In
order to keep a reasonable runtime, we conducted 3 experiments with Ns equal
to 1, 2 and 3. For each experiment, the MCMC-SAEM was run five times with
different initial parameters. Only the experiment which returned the smallest
residual noise variance was kept. Increasing the number of sources allowed to
decrease the residual noise among the experiments : σ2 = 0.02 for Ns = 1,
σ2 = 0.0162 for Ns = 2 and σ2 = 0.0159 for Ns = 3. Because the residual noise
was almost similar for Ns = 2 and Ns = 3 sources, we choose to report here the
results obtained with the less complex model. As a consequence, we report the
results obtained with 2 independent sources.

The average trajectory γδ is given in Fig. 2, where each curve represents the
temporal progression of one specific item of the ADAS-Cog test. The estimated
fixed effects are p0 = 0.74, t0 = 79.88 years, v0 = 0.047 unit per year, and
δ = [0;−14;−11; 4.6;−13;−14;−7.7;−0.9;−14.4;−14.05;
−11.80;−15.3292] years. This means that, on average, the memory-related items
(items 1, 4, 7, 8, 9) reach the value p0 = 0.74 at respectively t0, t0−δ4, t0−δ7, t0−
δ8 and t0 − δ9 years, which correponds to respectively 79.88, 75.2, 87.6, 80.7 and
94.3 years. The concentration item reaches the same value at t0−δ13 = 86.1 years.
The progression of the concentration item is followed by praxis and language
items.

Random effects show the variability of this average trajectory within the
studied population. The standard deviation of the time-shift equals στ = 8.3
years, meaning that the disease progression model in Fig. 2 is shifted in time by
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Fig. 2: The estimated average trajectory. In blue: the average trajectory of pro-
gression for the 5 memory-related items (item 1:∗, item 4:�, item 7:◦, item 8:+
and item 9:M). In orange: average trajectory for the 5 language-related items
(item 2:∗, item 5:�, item 10:◦, item 11:+ and item 12:M). In yellow: average pro-
gression trajectory for the 2 praxies-related items (item 3:∗ and item 6:�). In
purple: average progression trajectory for the concentration-related item (item
13:∗).

Fig. 3: Plot of the subject-specific random effects: the log-acceleration factor ηi
is plotted against the time-shifts t0 + τi. Each point is colored according to the
age of conversion to AD.

at most ±8.3 years for 95% of the population. This accounts for the variability in
the age of disease onset among the population. The effects of the variance of the
acceleration factors, and the two independent components of the space-shifts are
illustrated in Fig. 4. The first column of Fig. 4 illustrates the variability in pace of
disease progression (the time-shifts are assumed to be zero in order to illustrate
the effect of acceleration factor only). This variability is encoded by the variance
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-σ 

+σ 

Acceleration factor 𝛼𝑖 Independent component 𝐴1 Independent component 𝐴2 

Fig. 4: First column : plot of t 7→ γδ(α(t − t0) + t0) with α = exp(±ση) with
ση = 0.8. Second (resp. third) column : plots of parallels η±σsiAi(γδ, ·) in the
direction given by the independent components.

ση = 0.8 of the acceleration factor. The first and second independent components
illustrates the variability in the relative timing of the cognitive impairments.
The first independent direction shows that some memory items and language
items are shifted in time with respect to the other ones, especially for memory
item 4 (�) and item 7 (◦). The ordering of the memory item 7 (◦) and the
concentration item is inverted for individuals with a space shift wi = −σsi,1A1.
For those individuals, praxies items are impaired later, after the language items
2 (∗), items 12 (M) and item 5 (�). The second independent component shows
a greater variability for the memory-related items than for the first independent
components, in particular for memory item 9 (M) and item 4 (�). For individuals
with a space shift wi = σsi,2A2, language-related items might be impaired later
than the average individual, especially for the language item 12 (M).

The subject-specific random effects estimated for each individual are obtained
from the sampling step of the last iteration of the MCMC-SAEM and are plotted
in Fig. 3. The figure shows that the individuals who have a positive (respectively
negative) time shift (they are evolving ahead, respectively behind, the average
trajectory) are the individuals who converted late (respectively early) to AD.
This means that the individual time-shifts correspond well to the age at which
a given individual was diagnosed with AD. We also note that there is a negative
correlation, equal to −0.4, between the estimated log-acceleration factors and
time shifts. There is a tendancy for early onset patients to be fast progressers.

Through its subject-specific affine reparametrization, the age of a given indi-
vidual is registered to the common timeline of the average scenario. In figure 5
(left), t 7→

∑
i |t

diag
i − ψ−1i (t)| (where tdiagi corresponds to the age at which the
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Fig. 5: Left : Sum of |tdiagi − ψ−1i (t)| across the 248 individuals as a function of

the variable t (time). Right : histogram of the absolute errors |tdiagi − 77.45|.

i-th individual converted to AD) shows a unique minimum at t∗ = 77.45 years.
This age can be understood as the age of symptoms onset in the timeline of
the normative scenario of disease progression. The histogram in 5 shows that
the age t∗ is a prediction of the true age of conversion : the error of prediction
is less than 5 years for 50% of the population. This prediction is obtained by
analyzing cognitive scores, which are inherently noisy and the reproducibility of
these scores is questionable. We believe that the prediction can be improved by
analyzing other types of biomarkers which are more objective and indicative of
the progression of the disease.

4.3 Discussion and perspectives

We proposed a mixed-effects model to analyze the temporal progression of a
family of biomarkers. This model appears as a particular case of a generic spa-
tiotemporal model which can be used to analyze longitudinal manifold-valued
measurements. These two models allow to estimate an average trajectory of dis-
ease progression. Individual trajectories of disease progression are constructed
from the average trajectory by using subject-specific space shifts, acceleration
factors and time shifts, which allow to spatially and temporally register the
individual trajectories of progression.

The model for a family of biomarkers was used to estimate a scenario of
Alzheimer’s disease progression from neuropsychological tests. We validated the
estimates of the spatiotemporal registration between individual trajectories by
the fact that they put into correspondence the age at which patients were diag-
nosed with Alzheimer’s disease. Alternatives to estimate model of disease pro-
gression include the event-based model proposed in [7], which estimates the or-
dering of categorical variables. The combination of spatial and temporal sources
of variations in longitudinal data can be futher improved by use of methods
such as in [5]. In this work, we introduced the methodolocical background to
construct models of disease progression based on longitudinal manifold-valued
measurements. Improvements to the model we introduced above consist in an-
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alyzing multimodal biomarkers. By doing so, we could experimental evidence,
based on a data-driven model, of temporal progression of biomarkers as in [9].
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1. Allassonnière, S., Kuhn, E., Trouvé, A.: Construction of bayesian deformable mod-
els via a stochastic approximation algorithm: a convergence study. Bernoulli 16(3),
641–678 (2010)

2. Delyon, B., Lavielle, M., Moulines, E.: Convergence of a stochastic approximation
version of the em algorithm. Annals of statistics pp. 94–128 (1999)

3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society. Series B (method-
ological) pp. 1–38 (1977)

4. Diggle, P., Heagerty, P., Liang, K.Y., Zeger, S.: Analysis of longitudinal data.
Oxford University Press (2002)

5. Donohue, M.C., Jacqmin-Gadda, H., Le Goff, M., Thomas, R.G., Raman, R.,
Gamst, A.C., Beckett, L.A., Jack, C.R., Weiner, M.W., Dartigues, J.F., Aisen,
P.S., the Alzheimer’s Disease Neuroimaging Initiative: Estimating long-term mul-
tivariate progression from short-term data. Alzheimer’s & Dementia 10(5), 400–410
(2014)
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