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Abstract. Undo is an important feature of editors. However, even after over two
decades of active research and development, support of undo for real-time col-
laborative editing is still very limited. We examine issues concerning undo in
collaborative text editing and present an approach using a layered commutative
replicated data type (CRDT). Our performance study shows that it provides suf-
ficient responsiveness to the end users.

1 Introduction

Undo is a key feature of editors. In a single-user editor, a user can conveniently undo
earlier editing operations in reverse chronological order. In a collaborative editor, how-
ever, users at different sites may generate operations concurrently. This means that a
user cannot easily perceive a linear operation order. Some systems restrict what can be
undone. For example, with Google Drive (https://drive.google.com), a user can
only undo locally generated operations. User studies show that users indeed expect to be
able to undo other users’ operations when working on common tasks [1]. In the research
community of collaborative editing, selective undo is widely regarded as an important
feature [2–9]. With selective undo, a user can undo an earlier operation, regardless of
when and where the operation was generated.

Current systems that support selective undo are subject to two main limitations.
Firstly, they only support undo of operations on atomic objects (e.g. characters or un-
breakable lines). In the case of string-wise operations such as copy-paste, find-replace
or select-delete, users can typically only undo earlier operations character by charac-
ter. Secondly, selective undo may lead to undesirable effects. For example, a user first
inserts a misspelled word and then makes a correction. The correction depends on the
first insertion of the word. It is undesirable to undo the insertion alone and leave the
correction behind as a groundless modification.

In this paper we propose a novel approach to collaborative text editing that supports
selective undo of string-wise operations. This is the first work that manages undesirable
effects of undo.



2 Related Work

There are two general approaches to collaborative editing, based either on operation
transformation (OT) [6, 7, 10] or on commutative replication data types (CRDT) [8, 9,
11–14]. With OT, a remote operation is transformed and integrated in the local site. The
time complexity depends on the lengths of operation histories (linear at best). Further-
more, it is hard to design correct operation transformation functions [15]. One common
way to relax certain required conditions for transformation functions is to restrict the
order in which operations are transformed at all sites. Therefore OT approaches gener-
ally do not scale well and practically require the involvement of central servers. With
CRDT, concurrent insertions are ordered based on the underlying data structure, so the
time complexity may not depend on the lengths of operation histories. [16] reported
that CRDT algorithms are better suited for large-scale distributed environments and
outperform OT algorithms by orders of magnitudes.

Supporting string operations and selective undo requires obtaining at runtime rela-
tions among operations, such as whether a string is part of a larger insertion or whether
an operation is an undo of another operation. Since strings might be split by subsequent
operations and operations are executed concurrently, obtaining such relations can be
complicated. Deriving such relations through operation transformation is particularly
difficult. Currently, most related work can only apply undo to insertion and deletion of
atomic objects [2–8]. To the best of our knowledge, only our previous work [9] sup-
ports selective undo of string operations. However, [9] does not account for possible
undesirable effects of undo.

In this paper, we propose a novel CRDT that captures useful relations among op-
erations. Our approach offers support for string-based undo and deals with undesirable
effects of selective undo. Our current work is built on our previous work. The gen-
eral view-model system structure is similar to the one described in [9]. The underlying
scheme for character identifiers is similar to the one described in [11].

3 Undo Effects

Allowing undo of any operation without restriction might lead to undesirable effects.

Example 1 The state after two insertions ins1 (with string “this is hard”) and ins2
(“not ”) is “this is not hard”. Undoing ins1 results in state “not ”. If the text
“is hard” is a single unit and the string “not ” is part of it, then, without the text
“is hard”, the string “not ” becomes groundless.

When a user inserts a string str into an existing unit string str0, str0 is the ground of
str. If str0 had not existed, the user would not have inserted str and the existence of str
is groundless.

The definition of unit strings depends on the types of documents. Without loss of
generality, we define a unit string as being generated by a single operation, such as an
insertion or the undo of a deletion. More specifically, if op0 generates string str0 and
ins inserts string str into str0, op0 is the ground operation of op (or op is built on op0)



and str0 is the ground string of str. Furthermore, the built-on relation is transitive. That
is, if op2 is built on op1 and op1 is built on op0, then op2 is also built on op0.

The effect of undoing an operation op should be as if op and all operations built on
op had never occurred. More specifically, suppose Hs = H0 ·op ·H1 ·undo(op) ·H2 is the
history of operations at site s, where H0 represents the sequence of operations executed
before op, H1 the sequence of operations after op and H2 the sequence of operations
after the undo of op. If we denote by H õp the sequence of operations as the result of
removal from H of all operations built on op, then Hs and H0 ·H õp

1 ·H
õp
2 should produce

the same strings. Notice that op and undo(op) may be generated from different sites.
Also, although the operations in H2 occur after the undo of op at site s, H2 may still
contain operations built on op, due to concurrent operations.

Our definition of ground operations might be too general to the user. In practice, the
user may not agree that string str is built on str0 (or str is useful outside the context of
str0). In such situations, the user should be able to decide which operations are not built
on the operation being undone (or to manually select which groundless strings, detected
by the editor, should remain after the undo). Thus, when a user tries to perform an undo
that results in groundless strings, the editor should warn the user, so that the user is able
to determine the final effect of the undo, or to simply give up the undo.

However, due to concurrent operations, a collaborative editor is not always able to
warn the user of possible groundless strings in time. In Example 1, when a user at a
remote site undoes ins1 before ins2 arrives, the undo does not cause any groundless
string. In such cases, all sites should unanimously (without user intervention) eliminate
the groundless string “not ” when they receive both undo(ins1) and ins2.

Example 2 In Example 1, another site first executes ins1 and then executes del1 (“ is

hard”) concurrently with ins2. The string “not ” inserted by ins2 becomes groundless
after a site executes both ins2 and del1.

A concurrent deletion may also cause groundless strings. Notice that a deletion
never causes groundless strings locally. Hence the sites should always unanimously
eliminate groundless strings caused by remote deletions.

Our work ensures that there is no groundless effect of local undo (unless the user
explicitly wants the effect) and there is no groundless effect of remote undo or deletion.
Furthermore, it ensures the traditional correctness criteria convergence and intention
preservation [6] as discussed in Section 6.

4 View and Model

With a collaborative editor, a document is concurrently updated from a number of peers
at different sites. Every peer consists of a view of the document, a model, a log of
operation history and several queues.

A peer concurrently receives local operations generated by the user and remote
operations sent from other peers. Local operations take immediate effect in the view.
The peer stores executed local operations and received remote operations in queues.
During a synchronization cycle, it integrates the stored operations in the model and



shows the effects of integrated remote operations in the view. The peer also records
integrated operations in the log. Later, it broadcasts integrated local operations to other
peers. At any time, the user may undo an operation selected from the log.

Every peer has a unique peer identifier pid. An operation originated at a peer has
a peer update number pun that is incremented with every integrated local operation.
Therefore, we can uniquely identify an operation with the pair (pid,pun). In what fol-
lows, we use oppid

pun to denote an operation op identified with (pid,pun).
A view is mainly a string of characters. A user at a peer can insert or delete a sub-

string at a position in the view, and undo an earlier integrated local or remote operation
selected from the log.

A model materializes editing operations and relations among them. It consists of
layers of linked nodes that encapsulate characters. Conceptually, characters have unique
identifiers that are totally ordered (though not every identifier is explicitly represented
in the model). For two characters cl and cr, if cl .id < cr.id, then cl appears to the
left of cr. A character identifier is represented as a sequence of integers. For cl .id =
p0 . . . pk−1 pl

k . . . , cr.id = p0 . . . pk−1 pr
k . . . and pl

k < pr
k, the two identifiers start to differ

at the (k+1)-th integer. Suppose we insert a string of characters c0 . . .cn between cl and
cr. The identifier of character ci (0≤ i≤ n) in the string is p0 . . . pk−1 pk pk+1(pk+2 + i),
where pl

k < pk < pr
k and pk+1 is a function of pid. If another peer inserts a string c′0 . . .c

′
m

at the same place and generates p′k, p′k+1 and p′k+2, the two strings are ordered according
to pk and p′k. If pk = p′k, the two strings are then ordered according to pk+1 and p′k+1
(i.e. according to pids). We refer the interested readers to [11] for a more complete
description of the generation of character identifiers.

Nodes at the lowest layer of a model represent insertions and contain inserted char-
acters. Nodes at higher layers represent deletions. That is, a higher-layer node (outer
node) deletes the characters in the lower-layer nodes (inner nodes) it contains.

A node contains the identifier cidl of its leftmost character and cidr of its rightmost
character. The identifiers of the other characters (i.e. not at the edges of the node) are
not explicitly represented in the model. An insertion node also contains a string str of
characters.

Subsequent operations may split existing nodes. Nodes of the same operation share
an op element as the operation’s descriptor. The descriptor contains the identifier and
type of the operation, a set P (for parents) of references to the descriptors of op’s
ground operations and a set C (for children) of operations built on op. The descriptor
also has an undo element that contains a set U of identifiers of its undo operations
(there might be more than one, as multiple peers might concurrently undo the same
operation). An undo element may itself have its own undo element (e.g. when the orig-
inal operation is redone). Thus the undo elements of an operation form a chain. The
operation is effectively undone if the length of the chain is an odd number.

An insertion is self-visible if it is not effectively undone. A deletion is self-visible
if it is effectively undone. An operation is visible if it is self-visible and all its ground
operations are visible. A character is visible if all operations on it are visible.

There are three types of links among nodes: l-r links maintain the left-right character
order; opl-opr links connect nodes of the same operations; i-o links maintain the inner-
outer relations. The outermost nodes and the nodes inside the same outer node are linked
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Fig. 1. Examples of model updates

with l-r links. When the view and the model are synchronized, the view equals to the
concatenation of all visible characters of the outermost nodes through the l-r links.

Figure 1 shows an example with three peers. The upper part shows a number of
operations generated at the peers. The lower part shows the model snapshots at Peer 2.
Nodes of the same deletion are aligned horizontally. Nodes with dotted border are self-
invisible. Characters in light gray are invisible. We describe how to update the model in
the following section.

5 Operations and Undo

A user may execute the following normal view operations: (i) ins(pos,str) inserts string
str at position pos. (ii) del(pos, len) deletes len characters right to position pos. In addi-
tion to the normal operations, the user can undo any operation selected from the log.

A peer stores executed normal view operations in a queue. It may aggregate con-
secutive operations, for instance, to form string operations from character operations.
During a synchronization cycle, the peer turns view operations into model operations
before integration.

To avoid traversing a large number of nodes for every local operation, a model
maintains a current position, (νcurr, pcurr), where νcurr is the current node and pcurr is



the offset to the left edge of νcurr. Because a user typically focuses on a small region at
a time, the distances between consecutive operations are often short.

There are three normal model operations: (i) move(m) moves the current position a
distance of m visible characters (leftwards when negative). (ii) ins(str) inserts string str
at the current position. (iii) del(len) deletes len characters right to the current position.

A peer processes a local undo operation in the order opposite to normal operations.
It first integrates the undo in the model and then synchronizes it to the view.

For each integrated local operation, a peer broadcasts a representation of the model
update to remote peers. A node is uniquely identified by (op.pid,op.pun,cidl), where
(op.pid,op.pun) is the identifier of its operation and cidl is the identifier of its leftmost
character. The peer uses the identifiers of the involved nodes, offsets to the leftmost
characters etc. to describe the update, so that remote peers can unambiguously locate
the referent nodes and split boundaries. Each peer maintains a hash table of nodes using
their identifiers, so locating a referent node takes near-constant time.

A model-view synchronization does the following tasks sequentially: (1) integrating
local operations, (2) integrating remote operations, and (3) updating the view (with a
render procedure). This ensures that, when a model integrates a local operation, there
is no concurrent remote operation in the model.

Procedure localIns(pid, pun, str)
1 (νl ,νr)← split(nextVisible(νcurr, pcurr,0))
2 νins← Node(cidsBetween(νl .cidr,νr.cidl ,pid,str.len),Op(pid,pun),str)
3 setInsGroundOps(νins.op,νl ,νr)
4 insertBetween(νins,νl ,νr)
5 νcurr, pcurr← νr,0

Procedure localIns integrates a local insertion. It places the new inserted string to
the right of all invisible characters at the current position. Procedure nextVisible(ν , p,n),
called from localIns (line 1) and localDel (lines 1 and 2), returns the position of the n-th
visible character right to position (ν , p). In Fig. 1-5, Peer 2 inserts “A” of ins2

5 to the
right of the invisible “34”.

If the insertion position is inside an existing node, localIns splits the node (line 1).
Procedure split returns either the new nodes after the split, or two existing nodes if the
split position is at the edge of an existing node. It also splits the corresponding inner
nodes, recursively down to an insertion node at the lowest layer. This way, it exposes the
character identifiers at the position of the split. In Fig. 1-6, when inserting “B”, Peer 2
splits the “56” nodes of both del23 and ins2

1.
Next, localIns creates a new insertion node (line 2). Procedure cidsBetween gener-

ates the character identifiers using the ones at the insertion position.
Procedure setInsGroundOps updates the P and C sets of the insertion and its

ground operations (line 3). If νl and νr are of the same operation, then this operation
is a ground operation of the new insertion. The procedure goes on with νl’s rightmost



inner node and νr’s leftmost inner node, downward until the lowest layer. In Fig. 1-6,
both del23 and ins2

1 are ground operations of ins2
6.

Finally, localIns connects the new insertion node with the neighboring nodes (line 4)
and moves the current position to the right end of the inserted string (line 5).

Procedure localDel(pid, pun, len)
1 (νl ,νr)← split(nextVisible(νcurr, pcurr,0))
2 (ν ′l ,ν

′
r)← split(nextVisible(νr,0, len))

3 νdel ← Node(νr.cidl ,ν
′
l .cidr,Op(pid,pun))

4 insertInners(νdel, [νr..ν
′
l ])

5 insertBetween(νdel,νl ,ν
′
r)

Procedure localDel splits existing nodes at the deletion boundaries (lines 1 and 2),
inserts a new node for the deletion at the outermost layer (lines 3 and 5) and associates
to it the corresponding inner nodes (line 4). Notice that a deletion may contain invisible
characters inside the deleted string. For example, del23 in Fig. 1-3 contains “34”.

A model integrates a remote update only when the update is ready for integration,
i.e., when all nodes and elements which the update refers to exist in the model (possibly
after some split). For example, ins3

1 in Fig. 1 is ready for integration in models in which
a node of ins2

1 exists. The ready-for-integration condition is less strict than the general
“happen-before” condition in the literature (such as [6]), because only the nodes and
elements which the update directly refers to must exist in the model.

Procedure remoteIns(pid, pun, cid, str, G , ν , p)
1 νins← Node(cid,stringRightEndCid(cid,str.len),Op(pid,pun),str)
2 setGroundOps(νins.op,G )
3 (νl ,νr)← insNarrow(cid,split(ν , p))
4 extendInsGroundOps(νins.op,νl ,νr)
5 insertBetween(νins, top(νl), top(νr))

A remote insertion specifies the inserted string str, the identifier of the leftmost
character cid, ground operations G of the insertion, and the insertion position (ν , p).
Procedure remoteIns re-generates the insertion node νins (line 1) and updates the P
and C sets of νins.op and operations in G (line 2).

Next, remoteIns splits (if necessary) the nodes at the insertion position and narrows
down the position among the concurrent insertions using character identifiers (line 3).
In Fig. 1-7, there is already a concurrent insertion “A” at the position of ins3

1. When the
identifier of “X” is smaller than that of “A”, Peer 2 inserts “X” between “4” and “A”.

The procedure then updates the information about ground operations with respect
to the concurrent operations (line 4): if the neighboring node νl (or νr) is a concurrent
insertion, its ground operations become also the ground operations of the new insertion;
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Fig. 2. Integrating a remote deletion

if a concurrent deletion contains both νl and νr, the deletion becomes a ground operation
of the new insertion. The visibility of the remote insertion is therefore dependent on the
visibility of the containing concurrent deletions. This addresses the issue illustrated in
Example 2. In Fig. 1-7, del23, which is a ground operation of ins2

5 (“A”), becomes a
ground operation of the new ins3

1 (“X”).
Finally, remoteIns connects the nodes at the outermost layer (line 5). In Fig. 1-7, the

“X” node of ins3
1 connects to “234” of del23 and “A” of ins2

5.
A remote deletion specifies the inner nodes of the deletion at the time of its creation.

The referent inner nodes at the current peer may differ from the specified ones in two
ways: (1) the remote peer might have split the inner nodes at deletion boundaries (as
shown with the upward arrows in Fig. 2-1); (2) the current peer might have split the
inner nodes when integrating concurrent operations (as shown with the downward ar-
rows in Fig. 2-1). In the figure, del1 is undone and the insertion of “a” sees the restored
characters of del1. del2 sees both “a” and the restored characters of del1.

Procedure remoteDel(pid, pun, inners)
1 (inners,νl ,νr)← prepareInners(inners)
2 del← Op(pid,pun); D ← makeDels(pid,pun,del, inners)
3 for ν ∈D do placeDel(ν ,overlappingDels(ν))
4 for ν between(νl ,νr),ν .op.type = ins∧¬overlapping(ν ,D) do
5 setGroundOps(ν .op,{del})
6 connectTopNodes(D)

The prepareInners procedure (line 1 of Procedure remoteDel) uses the specified
inner nodes to split the existing nodes at deletion boundaries and returns the new refer-
ent inner nodes and their left and right neighbors νl and νr (as shown in Fig. 2-2). The
makeDels procedure (line 2) generates a set D of nodes for the remote deletion based on
the referent inner nodes and concurrent operations. Procedure placeDel (line 3) places
the generated deletion nodes against the nodes of the overlapping concurrent deletions.
For example, a deletion with a larger pid is placed above a concurrent deletion with a
smaller pid. The deletion becomes a ground operation of the concurrent insertions in-
side the inners nodes (lines 4 and 5). For the new deletion nodes at the outermost layer,
connectTopNodes connects them with the neighboring nodes (line 6).



In Fig. 1-8, the del11 update specifies a single inner node “4567” of ins2
1. Proce-

dure prepareInners splits the “34” nodes of ins2
1, del22 and del23. Procedure makeDels

generates the nodes for del11. Procedure placeDel places the del11 nodes below those
of del22 and del23. del11 becomes a ground operation of the concurrent insertions ins2

5,
ins2

6 and ins3
1, which makes characters “X”, “A” and “B” invisible. Finally, Procedure

connectTopNodes connects node “7” of del11 with neighboring nodes “6” of del23 and
“8” of ins2

1.
When a user tries to undo an operation and makes the operation invisible, any oper-

ation built on the undone operation becomes groundless (and therefore also invisible).
In Fig. 1-7, undo of undo2

4, or redo of del23, would make the insertions ins2
5, ins2

6 and
ins3

1 (that are contained in del23.op.C ) groundless. If there were other operations built
on these insertions, they would also become groundless.

The user may selectively keep the effects of operations built on the operation being
undone. In Fig. 1-7, if the user decides to redo del23 and keep the visible effect of ins2

6,
the model then removes ins2

6 from del23.op.C and del23 from ins2
6.op.P .

The execution of a local undo starts in the model, with the following steps: (1) in-
tegrate local and remote operations in the queues; (2) integrate the undo with the undo
procedure; (3) move the current position to the edge of the undo; (4) synchronize the
model with the view so that the user sees the effects of the undo.

Procedure undo(pid, pun, op)
1 push((pid,pun),op.undo.U )

Procedure undo integrates both local and remote undo of an operation, which is
either a normal operation or an undo of another operation. Procedure undo can receive
either an op or an undo element as the argument of the op parameter. The procedure
simply inserts the identifier of the undo into the corresponding U set.

For a remote undo, if there has been a concurrent identical undo and the U set was
not empty, inserting a new identifier does not change the visibility of the operation and
there is therefore no effect in the view. For a local undo, the real overhead is the move
of the current position and the synchronization with the view.

6 Correctness

We consider two traditional correctness criteria, convergence and intention preserva-
tion, as defined in [6]. A formal proof is outside the scope of this paper.

Convergence requires that, all peers have the same view when they have integrated
and synchronized the same set of operations. Our approach guarantees convergence
by enforcing the following properties: (a) models of all peers have the same set of
characters; (b) the characters have the same left-right order; (c) the characters have the
same visibility.



Intention preservation requires that, for any operation op, (a) the effects of executing
op at all peers are the same as the intention of op, and (b) the effect of executing op does
not change the intention of independent operations.

Intention is not formally defined in [6] and is open to different interpretations. Gen-
erally, the intention of an operation is decided at the view of the originating peer. More
specifically, an insertion is between two specific characters; a deletion removes a string
of characters from the view; undo of an insertion removes the inserted characters from
the view; undo of a deletion makes the removed characters re-appear in the view and
the positions of the re-appeared characters must preserve the intentions of the corre-
sponding insertions.

In our approach, there is also induced intention due to concurrent operations and
selective undo. More specifically, the intention of an operation is preserved only when
the intentions of all its ground operations are preserved. When the effect of an operation
disappears (e.g. due to an undo or a deletion), the effects of all operations built on
it should also disappear. The algorithms take care that every operation has the same
induced intention at all peers.

Notice that undoing a deletion brings the deleted characters back in the view only
when the insertions of the corresponding characters are not undone and the characters
are not deleted by any concurrent overlapping deletion. That is, undoing a deletion does
not change the intention of undoing any insertion or the intention of any other deletions.
This is in contrast with related work that defines the effect of concurrent deletions of
the same character as a single deletion: undoing a deletion thus changes the intention of
all concurrent deletions of the same character. For example, in Fig. 1-8., if undoing del11
makes the entire “4567” visible, the intentions of del22 and del23 are not preserved. On
the other hand, concurrent undos of the same operation are regarded as a single undo,
because they are always unambiguously defined on the same operation.

7 Performance

The response time of view operations is an important part of an editor’s responsiveness
to local user operations. Except selective undo, all view operations are executed com-
pletely in the view. Their performance therefore are nearly the same as a single-user
editor. However, local view operations are executed only when system resources (CPU,
memory etc.) are available, so responsiveness is dependent on the overall performance
of the editor, including the more expensive model operations.

Table 1. Time complexity of procedures

split O(hn+ l) move O(m)
render O(m+ rh) undo O(1)
local ins O(s+hn+ l) local del O(s+hn+ l)
remote ins O(kil + kd +hn) remote del O(kd(s+hn+ l)+ ki)

Table 1 summarizes the time complexity of the different procedures. In the table,
parameter m is the distance of a move, i.e. the number of nodes at the outermost layer
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a move traverses. l is the length of a character identifier. s is the span of an operation,
i.e. the number of nodes between the leftmost and rightmost nodes of the operation,
including those not belonging to the operation. h is the height of a node, i.e. the number
of layers in the outer-inner structure. n is the number of a node’s inner nodes. ki is
the number of concurrent conflicting insertions and kd is the number of concurrent
overlapping deletions. r is the size of the region to be rendered, i.e. the number of nodes
in the region where new updates should be synchronized to the view.

We have implemented the core algorithms in Emacs Lisp, aiming at supporting
collaborative editing in a widely used open-source editor. We ran two experiments for
performance study. The first one is based on a trace of operations for editing a paper.
This experiment can be considered to be representative for real-life editing sessions.
It is nonetheless based on the trace of a single-user editor. The second experiment is
based on generated operation traces that force a large number of conflicting concurrent
operations. The measurement was taken under GNU Emacs 24.3.1 running in 32-bit
Linux 3.14.2-ARCH on an old ThinkPad T61p (2007 model) with 2.2GHz Intel Core2
Duo CPU T7500 and 2GB RAM.

In the first experiment, we captured the trace of operations for editing a technical
paper in a two-week period. The paper is based on the templates and even contents
of other papers. Therefore the editing involves a number of copy, paste and deletion
of relatively large text. This trace forms the view operations. We then aggregated and
converted the view operations into model operations. Figure 3 shows the number of
model operations and their lengths (numbers of characters) obtained from the trace.

We ran the trace with two peers. To make sure that operations are valid (i.e. with
valid positions and lengths), the peers behave in the following way. For each operation,
each peer generates and integrates a local operation, and sends the encoded representa-
tion of the update to the other peer. It then receives and integrates the identical update
from the other peer, and undoes immediately the last identical operation of the second
peer. Therefore, only the effects of the operations originated from the first peer remain.
Finally, each peer sends the encoded representation of the undo to the other peer, and
integrates the identical concurrent undo from the other peer.

Figure 4 shows the execution time of different procedures. The y-axis represents
the execution time in milliseconds (ms). The x-axis represents the time at which the
procedures are called.
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Fig. 4. Execution time (ms) of different procedures

The first important observation is that the execution time of all procedures stays
pretty stable and is generally independent of the length of the operation history. This is
mostly due to the use of hashing to locate nodes.

Integrating local and remote insertions takes around 0.05 ∼ 0.1 ms. Note that the
sizes of inserted strings vary from one character to nearly 100K characters, but still
the time for integration varies with very small margins. The reason is that character
strings are mainly generated by view and networking procedures. Furthermore, string
and buffer management in Emacs is efficient.

Integrating local and remote deletions takes around 0.2 ms. There are cases where
integrating a local and remote deletion can take up to 0.6 ms and 17 ms respectively. In
these cases, a deletion involves a relatively large number of nodes. That is, the s and n
in Table 1 are relatively large.

Integrating a local undo takes around 0.2 ms. This includes checking for groundless
strings, moving the current position to the undo, and synchronizing the view with the
model. Integrating a remote undo takes only 0.04 ms.

Procedure move takes less than 0.2 ms the vast majority of times, because editing
operations often focus on a small region for a period of time. Even in the occasions
where the move distances are long, it takes less than 2 ms.

Procedure render takes around 0.1 ms. In the experiment, the model and view are
synchronized after the integration of every remote update or local undo. Therefore, the
execution time of Procedure render does not vary much. It should be pointed out that in
the figure, the time of render is included in the integration of local undo but not in the
other operations.

With respect to memory usage, at the peek, Emacs used an additional 10 MiB of
main memory during the experiment. Totally, 20 MiB was allocated for the experiment,
including the part that has been freed. This memory consumption is shared by two peers.

The first experiment simulates how the algorithms work with a real-life session.
However, it does not reveal how they work when a document is simultaneously edited
by a large number of users, because there are only two peers and conflicts of concurrent
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operations follow exactly the same patterns. In the second experiment, we study the
performance of our work when there are varying number of conflicting or overlapping
concurrent operations. In what follows, we use conflicting operation to mean either
conflicting insertions or overlapping insertions and deletions.

We generate the operations for N peers as follows. First, we generate a random po-
sition p in the view. Then for every peer, we generate a random operation at a random
position near p. For the random operations, 50% of them are insertions, 30% are dele-
tions and 20% are undo of an earlier operation that contains position p. An insertion
inserts 10 characters. A deletion deletes 7 characters. They are at random positions be-
tween p− 3 and p+ 3, inclusive. After all peers have integrated all local and remote
operations, we generate a new random position p, and the same process continues. We
run this process until the execution time stabilizes. We vary the number of peers N from
2 to 12. For a reasonably sized document, the number of users that simultaneously edit a
very small region, is normally only a very small fraction of the total number of users. So
we believe the experiment is sufficient for the most challenging situations in real-world
scenarios.

Figure 5 shows the time for integrating remote updates. The time for integrating
local operations is not shown, because when a local operation is integrated, there are
no concurrent remote operations integrated in the model. The results indicate that the
increase of the number of conflicts does not have observable effect on delay.

8 Conclusion

Selective undo has long been regarded as a desirable feature of collaborative editors.
However, support for selective undo has remained for two decades at the “necessary first
step”, namely for character-only operations without any regard of possible undesirable
effects. In this work, we proposed support for selective undo in collaborative editing,
including support for string operations and management of possible undesirable undo
effects. Key to our approach is a layered CRDT that materializes operation relations



essential for string operations and selective undo. We analyzed the complexity of the
algorithms and presented experimental results. The results indicate that the approach
provides sufficient responsiveness to end users.

There are still open issues to be addressed before end users can finally use this work.
Our next tasks include a GUI for selection of operations to be undone and management
of undo effects, and session management that supports dynamic groups, combination
of synchronous and asynchronous operations, network partition, and so on.

Acknowledgments. The authors are grateful for sabbatical support from UiT - The
Arctic University of Norway and The Research Council of Norway. This work is par-
tially funded by the french national research program STREAMS (ANR-10-SEGI-010).

References

1. T. Seifried, C. Rendl, M. Haller, and S. D. Scott, “Regional undo/redo techniques for large
interactive surfaces,” in CHI, 2012, pp. 2855–2864.
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