Circular Sequence Comparison with q-grams

Robert Grossi, Costas Iliopoulos, Robert Mercas, Nadia Pisanti, Solon Pissis, Ahmad Retha, Fatima Vayani

To cite this version:

Robert Grossi, Costas Iliopoulos, Robert Mercas, Nadia Pisanti, Solon Pissis, et al.. Circular Sequence Comparison with q-grams. 15th International Workshop on Algorithms in Bioinformatics (WABI 2015), Sep 2015, Atlanta, United States. pp.203-216, 10.1007/978-3-662-48221-6_15 . hal01246271v2

HAL Id: hal-01246271 https://hal.inria.fr/hal-01246271v2

Submitted on 23 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Circular Sequence Comparison with q-grams

Roberto Grossi ${ }^{1}$, Costas S. Iliopoulos ${ }^{2}$, Robert Mercaş ${ }^{2}{ }^{2}{ }^{3 \star}$, Nadia Pisanti ${ }^{1}$, Solon P. Pissis ${ }^{2 \star \star}$, Ahmad Retha ${ }^{2}$, and Fatima Vayani ${ }^{2}$
${ }^{1}$ Department of Computer Science, University of Pisa, Italy \& Erable Team, INRIA
${ }^{2}$ Department of Informatics, King's College London, UK
${ }^{3}$ Department of Computer Science, Kiel University, Germany

Abstract

Sequence comparison is a fundamental step in many important tasks in bioinformatics. Traditional algorithms for measuring approximation in sequence comparison are based on the notions of distance or similarity, and are generally computed through sequence alignment techniques. As circular genome structure is a common phenomenon in nature, a caveat of specialized alignment techniques for circular sequence comparison is that they are computationally expensive, requiring from super-quadratic to cubic time in the length of the sequences. In this paper, we introduce a new distance measure based on q-grams, and show how it can be computed efficiently for circular sequence comparison. Experimental results, using real and synthetic data, demonstrate orders-of-magnitude superiority of our approach in terms of efficiency, while maintaining an accuracy very competitive to the state of the art.

1 Introduction

Circular molecular structures are present, in abundance, in all domains of life: bacteria, archaea, and eukaryotes; and in viruses. They can be composed of both amino and nucleic acids. The following is a superficial description of such occurrences. Exhaustive reviews can be found in [10] (proteins) and [19] (DNA).

Circular genomes and plasmids are found in bacteria and archaea. Wholegenome comparison is a very useful tool in identifying bacterial strains, as well as inferring phylogenies. The extended benefit of aligning plasmids is the ability to identify important genes, such as antibiotic resistance genes, thereby enabling their study and enhancement by genetic engineering techniques [12].

The most familiar examples of such structures in eukaryotes are mitochondrial (MtDNA) and plastid DNA. However, there exist other structures, called extrachromosomal circular DNA, which are described as one of the characteristics of genomic plasticity in eukaryotes [9]. MtDNA is generally conserved from parent to offspring, and so it can be used as an indicator of evolutionary relationships among species. The absence of recombination in these sequences allows

[^0]them to be used as simple tests of phylogenetic evolution, and their high mutation rate is a powerful discriminative feature $[17,33]$.

It is common knowledge that many viral genomes are circular. Multiple sequence alignment of viral genomes can be useful in the elucidation of novel sites of interest [4], as well as the inference of evolutionary relationships [3]. Viroids are plant pathogens that comprise very small single-stranded circular RNA. Their multiple sequence alignment could prove useful in the analysis of their secondary structures and pathogenicity [24].

Ribosomally synthesized circular proteins occur in both prokaryotes and eukaryotes [10]. An interesting phenomenon known to occur naturally in genes encoding linear protein structures is circular permutation [34]. This can be exemplified by swaposins: highly-similar proteins resulting from circularly permuted linear peptide sequences [29]. The ability to align linear sequences from circular proteins can significantly speed-up and enhance their analyses, and could also lead to the discovery of novel pairs of circularly permuted proteins.

Conventional tools to align circular sequences could yield an incorrectly high genetic distance between closely-related species. Indeed, when sequencing molecules, the position where a circular sequence starts can be totally arbitrary. Due to this arbitrariness, a suitable rotation of one sequence would give much better results for a pairwise alignment. A practical example of the benefit this can bring to sequence analysis is the following. Linearized human (NC_001807) and chimpanzee (NC_001643) MtDNA sequences do not start in the same region. Their pairwise sequence alignment using EMBOSS Needle [31] gives a similarity of 85.1% and consists of 1,195 gaps. However, taking different rotations of these sequences into account yields a much more significant alignment with a similarity of 91% and only 77 gaps. This example motivates the design of efficient algorithms that are devoted to the specific comparison of circular sequences, as they can be relevant in the analysis of organisms containing these structures.

Our Problem. We consider the pairwise circular sequence comparison problem. Under the edit distance model, it consists in finding an optimal linear alignment of two circular strings. This problem for two strings x and y of length m and $n \geq m$, respectively, can be solved under the edit distance model in time $\mathcal{O}(n m \log m)$ [21]. Several other super-quadratic [23] and approximate quadratictime [5] algorithms exist. Trivially, for molecular biology applications, the same problem can be solved in time $\mathcal{O}\left(\mathrm{nm}^{2}\right)$ with scoring matrices and affine gap penalty scores. A direct application of pairwise circular sequence comparison is for multiple circular sequence alignment $[1,14,24]$. The latter has also been considered in [20] under the Hamming distance model.

To the best of our knowledge, there is no fast (that is, with sub-quadratic time complexity) and exact (or at least very accurate) algorithm for circular sequence comparison under some realistic model (that is, allowing indels). Taking into account edit distance rather than Hamming distance is computationally challenging as the search space for seeking similarity is wider. Moreover, filters that work for Hamming distance do not work in general for edit distance [28] as well. An exception to this are the q-gram filtering techniques [32] that have
successfully been used for string matching under the edit distance model (e.g. [7, $30,26]$), as well as for multiple local alignments both under the Hamming [27] and edit [26] distance model.

Our Contribution. We present new efficient q-gram-based methods for pairwise circular sequence comparison. Specifically, our contribution is threefold.

1. We introduce the β-blockwise q-gram distance between two strings x and y, that is, a more powerful generalization of the q-gram distance introduced as a string distance measure in [32]. Intuitively, and similarly to [7, 30, 26], this generalization comprises partitioning x and y in β blocks each, as evenly as possible, computing the q-gram distance between the corresponding block pairs, and then summing up the distances computed blockwise.
2. We present an algorithm based on the suffix array [22] that finds the rotation of x such that the β-blockwise q-gram distance between the rotated x and y is minimal, in time and space $\mathcal{O}(\beta m+n)$, where $m=|x|$ and $n=|y|$, thereby solving exactly the circular sequence comparison problem under the β-blockwise q-gram distance measure. We also present a simple heuristic algorithm to solve an approximate version of the problem.
3. We present an experimental study, using real and synthetic data, which demonstrates orders-of-magnitude superiority of our approach, in terms of efficiency, while maintaining an accuracy very competitive to the optimal obtained after considering all rotations of x against y using EMBOSS Needle.

The paper is organized as follows. Section 2 gives some preliminary definitions, notation, and properties. Section 3 describes two algorithms, one is a heuristic approach and the other is an exact algorithm for circular sequence comparison. Section 4 shows the experimental results of performance and accuracy of our algorithms. Section 5 gives some concluding remarks and future proposals.

2 Definitions and Properties

We begin with a few definitions, following [11]. We think of a string x of length m as an array $x[0 \ldots m-1]$, where every $x[i], 0 \leq i<m$, is a letter drawn from some fixed alphabet Σ of size $|\Sigma|=\mathcal{O}(1)$. By a q-gram we refer to any string $x \in \Sigma^{q}$. The empty string of length 0 is denoted by ε. A string x is a factor of a string y if there exist two strings u and v, such that $y=u x v$. Let x be a non-empty string of length m and y be a string. We say that there is an occurrence of x in y, or, simply, that x occurs in y, when x is a factor of y. The Parikh vector associated with a string $w \in \Sigma^{*}$ is denoted by $\mathcal{P}(w)$ and represents a vector of size $|\Sigma|$, where each component denotes the number of occurrences in w of the corresponding letter from Σ.

Consider the strings x, y, u, and v, such that $y=u x v$. If $u=\varepsilon$, then x is a prefix of y. If $v=\varepsilon$, then x is a suffix of y. We denote by SA the suffix array of y of length n, that is, an integer array of size n storing the starting positions of all (lexicographically) sorted suffixes of y, i.e. for all $1 \leq r<n$, we have
$y[\mathrm{SA}[r-1] \ldots n-1]<y[\mathrm{SA}[r] \ldots n-1][22]$. Let $\operatorname{Icp}(r, s)$ denote the length of the longest common prefix between $y[\mathrm{SA}[r] \ldots n-1]$ and $y[\mathrm{SA}[s] \ldots n-1]$, for all positions r, s on y, and 0 otherwise. We denote by LCP the longest common prefix array of y defined by $\mathrm{LCP}[r]=\operatorname{Icp}(r-1, r)$, for all $1 \leq r<n$, and $\operatorname{LCP}[0]=0$. The inverse iSA of the array SA is defined by $\mathrm{iSA}[\mathrm{SA}[r]]=r$, for all $0 \leq r<n$. SA, iSA, and LCP of y can be computed in time and space $\mathcal{O}(n)$ [15].

A circular string of length m can be viewed as a traditional linear string which has the left- and right-most letters wrapped around and glued together in some way. Under this notion, the same circular string can be seen as m different linear strings, which would all be considered equivalent. Given a string x of length m, we denote by $x^{i}=x[i \ldots n-1] x[0 \ldots i-1], 0<i<m$, the i th rotation of x and $x^{0}=x$. Consider, for instance, the string $x=x^{0}=\mathrm{abababbc}$; this string has the following rotations: $x^{1}=$ bababbca, $x^{2}=$ ababbcab, and so on.

We give some further definitions following [32]. The q-gram profile of a string x of length m is the vector $G_{q}(x)$, where $q>0$ and $G_{q}(x)[v]$ denotes the total number of occurrences of $v \in \Sigma^{q}$ in x. The q-gram distance between two strings x and y is defined as

$$
\begin{equation*}
D_{q}(x, y)=\sum_{v \in \Sigma^{q}}\left|G_{q}(x)[v]-G_{q}(y)[v]\right| \tag{1}
\end{equation*}
$$

Note that D_{q} is a pseudo-metric as $D_{q}(x, y)$ can be 0 even if $x \neq y . D_{q}$ has the following properties [32] for all $x, y, z \in \Sigma^{*}$ of length at least q.

1. Positivity: $D_{q}(x, y) \geq 0$
2. Symmetry: $D_{q}(x, y)=D_{q}(y, x)$
3. Triangular inequality: $D_{q}(x, y) \leq D_{q}(x, z)+D_{q}(z, y)$
4. $|(|x|-|y|)| \leq D_{q}(x, y) \leq|x|+|y|-2 q-2$
5. $D_{q}\left(x_{1} x_{2}, y_{1} y_{2}\right) \leq D_{q}\left(x_{1}, y_{1}\right)+D_{q}\left(x_{2}, y_{2}\right)+2(q-1)$
6. $D_{q}(h(x), h(y)) \leq D_{q}(x, y)$, for a non-length-increasing morphism h on Σ^{*}.

For a given integer parameter $\beta \geq 1$, we define a generalization of the q-gram distance in (1) by partitioning x and y in β blocks as evenly as possible, and using the q-gram distance within each pair of blocks, one from x and one from y. The rationale is to enforce locality in the resulting distance. For the sake of presentation in the rest of the paper, we assume that the lengths $|x|=m$ and $|y|=n$ are both multiples of β, so that x and y are conceptually partitioned into β blocks, each of size m / β for x and n / β for y.

Definition 1. Given strings x of length m and y of length $n \geq m$ and integers $\beta \geq 1$ and $q>0$, the β-blockwise q-gram distance $D_{\beta, q}(x, y)$ is defined as

$$
\begin{equation*}
D_{\beta, q}(x, y)=\sum_{j=0}^{\beta-1} D_{q}\left(x\left[\frac{j m}{\beta} . \frac{(j+1) m}{\beta}-1\right], y\left[\frac{j n}{\beta} . . \frac{(j+1) n}{\beta}-1\right]\right) . \tag{2}
\end{equation*}
$$

In this paper, we consider the following problem, where we search for the i th rotation of x that minimizes its blockwise distance from y as defined in (2). Ties are broken arbitrarily.

Circular Sequence Comparison (CSC)
Input: strings x and y of lengths m and $n \geq m$, respectively, and integers $\beta \geq 1$ and $q<m$
Output: i such that $D_{\beta, q}\left(x^{i}, y\right)$ is minimal

3 Algorithms

We use the following result to first give a naïve solution to the CSC problem.
Lemma 2 ([32]). If we have space $\mathcal{O}\left(|\Sigma|^{q}\right)$ available, then the q-gram distance $D_{q}(x, y)$ can be computed in time $\mathcal{O}(m+n)$ and extra space $\mathcal{O}(m+n)$, where $m=|x|$ and $n=|y|$.

We then apply Lemma 2 to each pair of blocks of x and y separately.
Lemma 3. If we have space $\mathcal{O}\left(|\Sigma|^{q}\right)$ available, then the β-blockwise q-gram distance $D_{\beta, q}(x, y)$ can be computed in time $\mathcal{O}(m+n)$ and extra space $\mathcal{O}\left(\frac{m+n}{\beta}\right)$, where $m=|x|$ and $n=|y|$.
The naïve algorithm, denoted by nCSC , computes for $x^{\prime}=x x$ the values

$$
\delta_{i}=D_{\beta, q}\left(x^{\prime}[i \ldots i+m-1], y\right)
$$

for all $0 \leq i<m$; we report position i such that δ_{i} is minimal. This requires the application of Lemma 3, m times. Therefore, we obtain the following.
Lemma 4. If we have space $\mathcal{O}\left(|\Sigma|^{q}\right)$ available, then algorithm nCSC solves the CSC problem in time $\mathcal{O}(m(m+n))$ and extra space $\mathcal{O}\left(\frac{m+n}{\beta}\right)$.

3.1 Algorithm hCSC: a Heuristic Algorithm

Here we give a simple heuristic algorithm, denoted by hCSC, to solve the CSC problem faster than nCSC , and return an approximation of the best rotation.

Step 1: We split $x^{\prime}=x x$ in 2β non-overlapping string blocks of length m / β. We obtain strings $x_{0}, x_{1}, \ldots, x_{2 \beta-1}$, such that $x_{i}=x^{\prime}\left[\frac{i m}{\beta} \ldots \frac{(i+1) m}{\beta}-1\right]$, for all $0 \leq i<2 \beta$. We split y in β non-overlapping string blocks of length n / β. We obtain strings $y_{0}, y_{1}, \ldots, y_{\beta-1}$, such that $y_{i}=y\left[\frac{i n}{\beta} \ldots \frac{(i+1) n}{\beta}-1\right]$, for all $0 \leq i<\beta$.

Step 2: For a given sequence $x_{j}, \ldots, x_{j+\beta-1}$ of strings and y, we compute the β-blockwise q-gram distance as follows

$$
\delta_{j}=D_{\beta, q}\left(x^{\prime}\left[\frac{j m}{\beta} . . \frac{j m}{\beta}+m-1\right], y\right)=\sum_{i=0}^{\beta-1} D_{q}\left(x_{j+i}, y_{i}\right)
$$

We compute δ_{j}, for all $0 \leq j \leq \beta$. We choose $j_{\text {best }}=j$ such that δ_{j} is minimal, for all $0 \leq j \leq \beta$. In other words, we have found a window of length m starting at position $j_{\text {best }}$, such that $\left(j_{\text {best }}+1\right) \bmod (m / \beta)=0$, consisting of β blocks of length m / β each, that minimizes its β-blockwise q-gram distance from y.

Step 3: To perform a refinement on the position of the window, we consider all starting positions included in the two blocks starting at positions $j_{\text {best }}$ and $j_{\text {best }}-m / \beta$. This includes $2 m / \beta-1$ starting positions in total-we do not need to consider position $j_{\text {best }}-m / \beta$ as this was already considered by another window in Step 2. Similarly to Step 2, we obtain the β-blockwise q-gram distance δ_{i} between the window starting at position i and y, for all $j_{\text {best }}-m / \beta<i \leq$ $j_{\text {best }}+m / \beta-1$. We report position $i_{\text {best }}=i$ such that δ_{i} is minimal, for all $j_{\text {best }}-m / \beta<i \leq j_{\text {best }}+m / \beta-1$.

Analysis. Step 1 can be done trivially in time $\mathcal{O}(m+n)$. If we have space $\mathcal{O}\left(|\Sigma|^{q}\right)$ available, then, by Lemma $2, D_{q}\left(x_{j+i}, y_{i}\right)$ can be computed in time $\mathcal{O}\left(\frac{m+n}{\beta}\right)$. By Lemma $3, \delta_{j}$ can be computed in time $\mathcal{O}\left(\beta\left(\frac{m+n}{\beta}\right)\right)=\mathcal{O}(m+n)$. Hence, Step 2 can be done in time $\mathcal{O}(\beta(m+n))$. In Step 3, the blockwise q-gram distance δ_{i} between a single window and y can be computed in time $\mathcal{O}\left(\beta\left(\frac{m+n}{\beta}\right)\right)=\mathcal{O}(m+$ $n)$. There exist $2 m / \beta-1$ such windows. Hence, Step 3 can be done in time $\mathcal{O}\left(\frac{m(m+n)}{\beta}\right)$. Overall, the algorithm requires time $\mathcal{O}\left(\beta(m+n)+\frac{m(m+n)}{\beta}\right)$ and space $\mathcal{O}\left(|\Sigma|^{q}+m+n\right)$.

For practical purposes, setting $\beta=\mathcal{O}(\sqrt{m})$ and $q=\mathcal{O}\left(\log _{|\Sigma|} m\right)$ gives an algorithm with time complexity $\mathcal{O}(\sqrt{m}(m+n))$ and space complexity $\mathcal{O}(m+n)$.

3.2 Algorithm saCSC: an Exact Suffix-Array-based Algorithm

The above heuristics hCSC does not guarantee to find the exact value i, for which $\delta_{i}=D_{\beta, q}\left(x^{i}, y\right)$ is minimal. In particular, when we identify in Step $2 j_{\text {best }}$, that is, the j for which δ_{j} is minimal, we take into account only the values of j such that $(j+1) \bmod (m / \beta)=0$. Thus, Step 3 cannot guarantee that $i_{\text {best }}$, the local minimum obtained by shifting the window m / β positions to the right and left of $j_{\text {best }}$, is minimal for all $0 \leq i<m$. In this section, we give a fast and exact algorithm, denoted by saCSC, to find i such that $\delta_{i}=D_{\beta, q}\left(x^{i}, y\right)$ is minimal, based on the suffix array (see Section 2).

We partially follow the idea from [13]. This work investigates the string matching problem in the setting of k-abelian equivalences: two strings are considered k-abelian equivalent for some positive integer k, if they have the same length and share the same factors of length at most k, including multiplicities. Note that if k is greater than or equal to the string's length, then the strings must be equal. A version of this result, called extended k-abelian equivalence, focuses only on the factors of length k. By setting $k=q$, it is quite straightforward to notice the equivalence with q-grams. Therefore, in order to avoid confusion we will refer to the former notion from now on as q-abelian equivalence.

In [13], the authors propose a linear-time algorithm to solve the string matching problem when looking at q-abelian equivalent strings: given a string x of length m, a string y of length $n \geq m$, and a positive integer $q<m$, all factors of y that are q-abelian equivalent to x can be found in time and space $\mathcal{O}(m+n)$. The idea of the algorithm in [13] consists in constructing the suffix array of the string $x y$, and ranking sets of identical q-length prefixes of suffixes in the suffix
array in the order of their appearance. Then it constructs new strings based on this ranking, and solves the problem as in the jumbled matching case [6], i.e. identifying all factors of y that have the same Parikh vector as x.

Basic Algorithm for $\beta=1$. We construct the suffix array of the string $x x y$ and assign a rank to the prefix with length q of each suffix with length at least q, based on its order in the suffix array. That is, the first i_{0} suffixes in the suffix array, all sharing the same prefix of length at least q, will get rank 0 ; the next i_{1} suffixes sharing the same prefix of length at least q, different from the previous one, will get rank 1, and so on. Next, based on this ranking, we construct two new strings x^{\prime} of length $2 m-q+1$ and y^{\prime} of length $n-q+1$, such that $x^{\prime}[i]=j$, if j is the rank of the q-length prefix of the $(i+1)$ th suffix of $x x$ in the suffix array of $x x y$ (the same goes for y). It is not difficult to see that the ranks go up at most to value $m+n-q+1$. However, we can reduce this value to $m+2$ by introducing two new ranks a_{x} and a_{y} : we can conceptually replace by a_{x} every letter of x^{\prime} that does not occur in y^{\prime}, and by a_{y} every letter of y^{\prime} that does not occur in x^{\prime}. Hence we can consider that the new strings x^{\prime} and y^{\prime} are defined over an integer alphabet of size at most $\min (n-q+1, m)+2 \leq m+2$.

Example 5. Let $x=$ GAGTCTA, $y=$ TCTAGCG, and $q=3$. We denote $x x y$ by z.

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$z[i]$	G	A	G	T	C	T	A	G	A	G	T	C	T	A	T	C	T	A	G	C	G
$\mathrm{SA}[i]$	6	17	1	8	13	19	4	15	11	20	0	7	18	2	9	5	16	12	3	14	10
$\mathrm{LCP}[i]$	0	2	2	6	1	0	1	4	3	0	1	7	1	1	5	0	3	2	1	5	4
$x^{\prime}[i]$	a_{x}	a_{x}	a_{x}	2	a_{x}	1	a_{x}	a_{x}	a_{x}	a_{x}	a_{x}	0									
$y^{\prime}[i]$	2	0	1	a_{y}	a_{y}																

$x^{\prime}[3]=y^{\prime}[0]=2$ denotes that $x[3 \ldots 5]=y[0 \ldots 2]=$ TCT. $x^{\prime}[0]=a_{x}$ denotes that $x[0 \ldots 2]=$ GAG does not occur in y.

We observe that when identifying the q-gram distance between two blocks, we can apply the idea in [13], with the only difference that we should also maintain a Parikh vector that stores the differences between the number of occurrences of q-grams in the current block of $x x$ and y (in fact the new letters given by the ranks). Moreover, at the time of the construction of y^{\prime}, we also construct a Parikh vector $\mathcal{P}\left(y^{\prime}\right)$, storing, for each letter of y^{\prime}, the number of its occurrences in y^{\prime}. Notice that $\left|\mathcal{P}\left(y^{\prime}\right)\right| \leq m+2$. Later on, when computing the q-gram distances, we can construct another vector diff to store the letter differences between $\mathcal{P}\left(y^{\prime}\right)$ and the Parikh vector covering the $m-q+1$ letters of x^{\prime} associated with a window of length m on the string $x x$. This gives us the current Parikh difference and, in fact, represents the q-gram distance between the two analyzed blocks, where \mid diff $\mid \leq m+2$. Apart from these, we only need another vector δ of size m, which stores at each position i the actual q-gram distance δ_{i} between y and the window starting at position i in $x x$, which is the i th rotation x^{i} of x.

We use a sliding window of length m to maintain the above information. When the window is shifted one position to the right, we have to add to the
difference-vector diff the previous first element of the window, and deduct from it the current last element of it. The distance δ_{i} between y^{\prime} and the factor of x^{\prime} starting at position i is thus updated using, in addition, the value of the q gram distance δ_{i-1} as follows. If, after adding the previous first element to the vector, we have a non-positive value at this position, we update the distance by decreasing the previous value by 1 ; otherwise, we increase it by 1 . If, after deducting the current last element to the vector, we have a non-negative value at this position, we update the distance by decreasing the previous value by 1 ; otherwise, we increase it by 1 . The distance will never be less than the number of occurrences of a_{y}. Furthermore, if the previous first element was a_{x}, the new distance decreases by 1 , and for every newly added a_{x}, it increases by 1 . As these operations require constant time, after going once through x^{\prime} with y^{\prime}, we obtain the list of distances δ_{i} from y to each rotation x^{i} in linear time.

We are now able to give a more formal description of the steps to solve the CSC problem for $\beta=1$, which follow a dynamic programming scheme.

Step 1: Construct the SA, iSA, and LCP of $x x y$. Rank the q-length prefixes of suffixes using LCP-array queries. Construct x^{\prime} and y^{\prime}, as well as $\mathcal{P}\left(y^{\prime}\right)$, the Parikh vector storing, for each letter of y^{\prime}, the number of its occurrences in y^{\prime}; make proper use of letters a_{x} and a_{y}, the ranks that do not occur in either y^{\prime} or x^{\prime}, respectively. Further, create diff $=\mathcal{P}\left(y^{\prime}\right)$ and $\delta_{0}=\sum_{i=0}^{\left|\mathcal{P}\left(y^{\prime}\right)\right|-1} \mathcal{P}\left(y^{\prime}\right)[i]$.

Step 2: Read the first $m-q+1$ letters of x^{\prime}, which constitute our sliding window of length m on the string $x x$. When reading letter $x^{\prime}[i]$, update diff by decreasing by 1 the value of the newly read letter, and update δ_{0}, by either increasing the current value of the distance when there were read too many of the current letters, or decreasing it, when more of these letters still occur in y^{\prime}

$$
\operatorname{diff}\left[x^{\prime}[i]\right]=\operatorname{diff}\left[x^{\prime}[i]\right]-1 \quad \text { and } \quad \delta_{0}=\left\{\begin{array}{l}
\delta_{0}-1, \text { if } \operatorname{diff}\left[x^{\prime}[i]\right] \geq 0 \\
\delta_{0}+1, \text { if } \operatorname{diff}\left[x^{\prime}[i]\right]<0
\end{array}\right.
$$

Step 3: Let i be the current position in x^{\prime} and repeat this step, one position at a time. Shift the window to the right, update the information for diff

$$
\operatorname{diff}\left[x^{\prime}[i]\right]=\operatorname{diff}\left[x^{\prime}[i]\right]+1 \quad \text { and } \quad \operatorname{diff}\left[x^{\prime}[i+m]\right]=\operatorname{diff}\left[x^{\prime}[i+m]\right]-1,
$$

and calculate δ_{i+1}, based on this information, sequentially applying the two following rules

$$
\begin{gathered}
\delta_{i+1}=\left\{\begin{array}{l}
\delta_{i}-1, \text { if } \operatorname{diff}\left[x^{\prime}[i]\right] \leq 0 \\
\delta_{i}+1, \text { if } \operatorname{diff}\left[x^{\prime}[i]\right]>0
\end{array}\right. \\
\delta_{i+1}=\left\{\begin{array}{l}
\delta_{i+1}-1, \text { if } \operatorname{diff}\left[x^{\prime}[i+m]\right] \geq 0 \\
\delta_{i+1}+1, \text { if } \operatorname{diff}\left[x^{\prime}[i+m]\right]<0
\end{array}\right.
\end{gathered}
$$

Correctness. Steps 1 and 2 are trivially correct as at the end of them we have that diff is the difference between $\mathcal{P}\left(y^{\prime}\right)$ and the vector corresponding to the window. These operations follow directly from the definitions of SA and LCP, and are followed by a simple traversal of the suffix array in order to obtain the ranks and create the $\mathcal{P}\left(y^{\prime}\right)$ and diff vectors. Also, δ_{0}, which was initially
the number of letters in y^{\prime}, is decreasing as long as the difference between the vectors for a specific letter is non-negative (thus, we still have more occurrences of that letter in y^{\prime} compared to the window), and increasing otherwise. In Step 3 , we update the difference vector by increasing the value at position $x^{\prime}[i]$ and decreasing that of the new letter $x^{\prime}[i+m]$ added to the difference. The q-gram distance at that position is based on the values of the newly obtained difference vector, as well as the q-gram distance at the previous position: if $\operatorname{diff}\left[x^{\prime}[i]\right] \leq 0$, then obviously there were more letters $x^{\prime}[i]$ in y^{\prime} than in the window, thus we need to decrease, while, if $\operatorname{diff}\left[x^{\prime}[i]\right]>0$, then there were at least as many letters $x^{\prime}[i]$ in the window as in y^{\prime}, and taking one out increases the distance. The complementary reasoning applies to the newly added letter $x^{\prime}[i+m]$. The value of δ_{i} never goes below the number of occurrences of a_{y} in y^{\prime} (it is equal to that, when all other elements of diff are 0) and represents the q-gram distance between y and x^{i}, the corresponding window of length m starting at position i in $x x$.

Analysis. In Step 1, constructing SA, iSA, and LCP of $x x y$ can be done in time and extra space $\mathcal{O}(m+n)$ (Section 2). Furthermore, the construction of x^{\prime}, $y^{\prime}, \mathcal{P}\left(y^{\prime}\right)$, diff, and δ_{0} is done with the same time and space cost. In Step 2, updating diff and δ_{0} after reading each letter takes constant time, as we execute two operations, thus $\mathcal{O}(m)$ in total. Constant time is required for each iteration in Step 3 to compute the value of $\delta_{i}, 1 \leq i<m$, and update diff, since a constant number of operations are executed, thus $\mathcal{O}(m)$ in total. Hence, we can solve the CSC problem for $\beta=1$ in time and space $\mathcal{O}(m+n)$.

General Algorithm for $\beta \geq 1$. We can now generalize this algorithm to solve the CSC problem for any $\beta \geq 1$, which gives algorithm saCSC. We maintain a Parikh vector for each block, and apply the above basic algorithm for each pair of blocks, computing their q-gram distance. If we denote by $\mathcal{P}_{j}\left(y^{\prime}\right)$ and diff j_{j}, for all $0 \leq j<\beta$, the β Parikh vectors of y^{\prime} and of the q-gram distances, respectively, as well as by $\delta_{i, j}$ the q-gram distance between the j th block of y and x^{i}, then the updates will be given by the formulae below. Hence, at each position $i<m$, we can update all of the β Parikh vectors corresponding to the blocks, as previously described, in time $\mathcal{O}(\beta)$. As an example, see here the modification of the previous Step 3, with the other two steps being easily adapted in a similar fashion.

Step 3': When shifting the window one position to the right from position i, update the information for every diff_{j}, where $0 \leq j<\beta$, as follows

$$
\begin{aligned}
\operatorname{diff}_{j}\left[x^{\prime}\left[i+\frac{j m}{\beta}\right]\right] & =\operatorname{diff}_{j}\left[x^{\prime}\left[i+\frac{j m}{\beta}\right]\right]+1 \\
\operatorname{diff}_{j}\left[x^{\prime}\left[i+\frac{(j+1) m}{\beta}\right]\right] & =\operatorname{diff}_{j}\left[x^{\prime}\left[i+\frac{(j+1) m}{\beta}\right]\right]-1
\end{aligned}
$$

and calculate $\delta_{i+1, j}$, based on this information, sequentially applying the two following rules

$$
\delta_{i+1, j}=\left\{\begin{array}{l}
\delta_{i, j}-1, \text { if }^{\operatorname{diff}}{ }_{j}\left[x^{\prime}\left[i+\frac{j m}{\beta}\right]\right] \leq 0 \\
\delta_{i, j}+1, \text { if } \operatorname{diff}_{j}\left[x^{\prime}\left[i+\frac{j m}{\beta}\right]\right]>0
\end{array}\right.
$$

$$
\delta_{i+1, j}=\left\{\begin{array}{l}
\delta_{i+1, j}-1, \text { if } \operatorname{diff}_{j}\left[x^{\prime}\left[i+\frac{(j+1) m}{\beta}\right]\right] \geq 0 \\
\delta_{i+1, j}+1, \text { if } \operatorname{diff}_{j}\left[x^{\prime}\left[i+\frac{(j+1) m}{\beta}\right]\right]<0
\end{array}\right.
$$

Theorem 6. Algorithm saCSC solves the CSC problem in $\mathcal{O}(\beta m+n)$ time and space.

4 Experimental Results

We implemented algorithms nCSC, hCSC, and saCSC as the program CSC. Given one of the three methods, two sequences x and y in (Multi)FASTA format, the number β of blocks, and the length q of the q-grams, CSC finds the rotation of x (or an approximation of it) that minimizes its β-blockwise q-gram distance from y. The implementation is distributed under the GNU General Public License (GPL), and it is available at http://github.com/solonas13/csc. For comparison purposes, we also implemented a naïve algorithm that compares all rotations of x against y using the Needleman-Wunsch algorithm [25] with substitution matrices and affine gap penalty scores [18]; we denote this by cNW.

The following experiments were conducted on a desktop computer using one core of Intel ${ }^{\circledR}$ Core $^{\mathrm{TM}}$ i7-2600 CPU at 3.4 GHz and 12 GB of RAM under 64 -bit GNU/Linux. All programs were compiled with gcc version 4.7.3. We used both synthetic data (Sections 4.1-4.2) and real data (Section 4.3). All input datasets referred to in this section are publicly maintained at the same web-site.

4.1 Accuracy

We began with simulating three DNA sequence datasets using INDELible [16], with each dataset consisting of 12 sequences, each of length approximately 2,500 base pairs (bp). INDELible produces linear sequences with substitutions, insertions, and deletions at rates defined by the user. Three unique substitution rates were set per dataset using the substitution model JC69 (Jukes-Cantor, 69): 5\%, 20%, and 35%. The insertion and deletion rates were set, respectively, to 4% and 6%, relative to substitution rate of 1 , similar to those observed in MtDNA in primates and mammals [14]. We refer to these datasets as Original.

To allow for comparison of the performance of the algorithms in realigning randomly-rotated sequences, which should be similar to those obtained from sequencing circular DNA structures, such as MtDNA, one random rotation was generated from each sequence in all datasets, creating new datasets which will be referred to as Random. Using the three Random datasets allowed us to test the accuracy of hCSC and saCSC; notice that nCSC and saCSC always return the same rotation. For each Random dataset, an all-against-all sequence comparison was performed. That is, all possible pairs, 66 in total, of sequences in each dataset were input to both hCSC and saCSC. β was set to 50 and q was set to 6 . The resultant re-rotated sequences were aligned using EMBOSS Needle [31] and the similarity scores were compared to those of the Original and Random datasets, which were input directly to EMBOSS Needle. The results can be found in Fig. 1.
○ Original * Random $\boxtimes \mathrm{hCSC} \quad \diamond \mathrm{nCSC} / \mathrm{saCSC}$

Fig. 1: Accuracy comparison for substitution rates $5 \%, 20 \%$, and 35%; the black, green, and blue points coincide implying that algorithms hCSC, n nSC, and saCSC return the rotation maximizing the similarity score for all pairwise comparisons

The results show that: (a) hCSC and saCSC yield significantly improved similarity scores compared to those obtained from inputting Random datasets directly to EMBOSS Needle; and (b) hCSC and saCSC yield similarity scores that are identical or almost identical - notice that the black (Original), green (hCSC), and blue ($\mathrm{nCSC} / \mathrm{saCSC}$) points coincide - to those obtained from inputting Original datasets directly to EMBOSS Needle. This implies that algorithms hCSC, nCSC , and saCSC return the rotation maximizing the similarity score for all pairwise comparisons.

Hence what we establish here is that the introduced distance measure coupled with the respective algorithms consistently yield a very high accuracy, compared to the standard measure $[25,18,31]$, for both low and high substitution rates.

4.2 Time Performance

We then compared the time performance of the algorithms. Each algorithm was given a pair of randomly generated sequences starting from $m=n=50 \mathrm{bp}$ and doubling 8 times to a length of $m=n=12,800 \mathrm{bp}$. It was expected that the slowest algorithm would be cNW which runs in time $\mathcal{O}\left(\mathrm{nm}^{2}\right)$. Then it would be algorithm nCSC which runs in time $\mathcal{O}(m(m+n))$, then algorithm hCSC, which runs in time $\mathcal{O}\left(\beta(m+n)+\frac{m(m+n)}{\beta}\right)$, and lastly algorithm saCSC, which runs in time $\mathcal{O}(\beta m+n)$.

Initially, β was set to $\lceil\sqrt{m}$ and q was set to $\lceil\log m / \log |\Sigma|\rceil$. The results in Fig. 2 demonstrate orders-of-magnitude superiority of saCSC compared to cNW and nCSC , confirming our theoretical findings. hCSC is the second fastest. Although β was set to $\lceil\sqrt{m}$, saCSC clearly outperforms hCSC, due to the use of a highly optimized implementation of the suffix-array construction, thus high-

Fig. 2: Elapsed-time comparison
lighting the importance of suitably implemented data structures such as suffix arrays.

Since the time complexities of hCSC and saCSC depend on β, we repeated the same experiment with these two algorithms setting β to $\lceil m / 25\rceil$ and q to $\lceil\log m / \log |\Sigma|\rceil$-notice that q does not affect the time efficiency of the algorithms. The results in Fig. 2 show that hCSC and saCSC are still the fastest, even though $m=\mathcal{O}(\beta)$, and that saCSC is clearly the fastest of all. As expected for $m=\mathcal{O}(\beta)$, we observe that hCSC and saCSC become gradually slower when m grows.

More algorithms could have been included in the comparison but their (at least) quadratic time complexity [23,5] prevents them to compete with saCSC.

4.3 Application to Real Data

As the input dataset, we used two real sequences from GenBank [2]: human (NC_001807) and chimpanzee (NC_001643) MtDNA sequences. The MtDNA genome size for human is $16,571 \mathrm{bp}$ and for chimpanzee is $16,554 \mathrm{bp}$. Their pairwise sequence alignment using EMBOSS Needle with the default parameters (Gap opening penalty 10.0 and Gap extension penalty 0.5) gives a similarity of 85.1%. We used saCSC to obtain the rotation of NC_001807 that minimizes its β-blockwise q-gram distance from NC_001643, for $\beta=850$ and $q=5$. We obtained rotation 578 of NC_001807 and used EMBOSS Needle to align this rotation with NC_001643. EMBOSS Needle gave a significantly improved similarity of 91%. This rotation is exactly the rotation we obtained after naïvely searching for the rotation of NC_001807 that maximizes similarity using cNW. Finding this rotation took approximately 28 hours for cNW and only a quarter
of a second for saCSC. We repeated this experiment with the human and gorilla (NC_011120) MtDNA sequences. The MtDNA genome size for gorilla is 16, 412 bp. Their pairwise sequence alignment using EMBOSS Needle with the default parameters gives a similarity of 83.5%. After using saCSC to rotate sequence NC_001807, EMBOSS Needle gave a significantly improved similarity of 88.4%.

5 Final Remarks

In this paper, we introduced a new distance measure for sequence comparison based on q-grams, and showed how it can be applied effectively and computed efficiently for circular sequence comparison. Furthermore, we presented an experimental study, using both real and synthetic data, demonstrating orders-ofmagnitude superiority of our approach, in terms of efficiency, while maintaining an accuracy which is very competitive to the state of the art.

Our immediate target is twofold: (a) implement algorithm saCSC in BEAR [1], a state-of-the-art tool for improving multiple circular sequence alignment; and (b) evaluate alternative methods for circular sequence comparison based on local alignment heuristics [8].

References

1. Barton, C., Iliopoulos, C.S., Kundu, R., Pissis, S.P., Retha, A., Vayani, F.: Accurate and efficient methods to improve multiple circular sequence alignment. In: 14th SEA. LNCS, vol. 9125, pp. 247-258 (2015)
2. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A., Wheeler, D.L.: GenBank. Nucleic Acids Res 28(1), 15-18 (2000)
3. Bray, N., Pachter, L.: MAVID: constrained ancestral alignment of multiple sequences. Genome Res 14(4), 693-699 (2004)
4. Brodie, R., Smith, A.J., Roper, R.L., Tcherepanov, V., Upton, C.: Base-By-Base: Single nucleotide-level analysis of whole viral genome alignments. BMC Bioinform 5(1), 96 (2004)
5. Bunke, H., Buhler, U.: Applications of approximate string matching to 2D shape recognition. Pattern Recognit 26(12), 1797-1812 (1993)
6. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern matching in strings. Int J Found Comput Sci 23(2), 357-374 (2012)
7. Burkhardt, S., Crauser, A., Ferragina, P., Lenhof, H.P., Rivals, E., Vingron, M.: $q-$ gram based database searching using a suffix array (QUASAR). In: 3rd RECOMB. pp. 77-83 (1999)
8. Chao, K.M., Zhang, J., Ostell, J., Miller, W.: A tool for aligning very similar DNA sequences. CABIOS 13(1), 75-80 (1997)
9. Cohen, S., Houben, A., Segal, D.: Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J 53(6), 1027-1034 (2008)
10. Craik, D.J., Allewell, N.M.: Thematic minireview series on circular proteins. J Biol Chem 287(32), 26999-27000 (2012)
11. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press, New York, NY, USA (2007)
12. Del Castillo, C.S., Hikima, J.i., Jang, H.B., Nho, S.W., Jung, T.S., Wongtavatchai, J., Kondo, H., Hirono, I., Takeyama, H., Aoki, T.: Comparative sequence analysis of a multidrug-resistant plasmid from Aeromonas hydrophila. Antimicrob Agents Chemother 57(1), 120-129 (2013)
13. Ehlers, T., Manea, F., Mercaş, R., Nowotka, D.: k-abelian pattern matching. In: 18th DLT. LNCS, vol. 8633, pp. 178-190 (2014)
14. Fernandes, F., Pereira, L., Freitas, A.T.: CSA: An efficient algorithm to improve circular DNA multiple alignment. BMC Bioinform 10(1), 1-13 (2009)
15. Fischer, J.: Inducing the LCP-Array. In: 12th WADS. LNCS, vol. 6844, pp. 374-385 (2011)
16. Fletcher, W., Yang, Z.: INDELible: A flexible simulator of biological sequence evolution. Mol Biol Evol 26(8), 1879-1888 (2009)
17. Goios, A., Pereira, L., Bogue, M., Macaulay, V., Amorim, A.: mtDNA phylogeny and evolution of laboratory mouse strains. Genome Res 17(3), 293-298 (2007)
18. Gotoh, O.: An improved algorithm for matching biological sequences. J Mol Biol 162(3), 705-708 (1982)
19. Helinski, D.R., Clewell, D.B.: Circular DNA. Annu Rev Biochem 40(1), 899-942 (1971)
20. Lee, T., Na, J.C., Park, H., Park, K., Sim, J.S.: Finding consensus and optimal alignment of circular strings. Theor Comput Sci 468, 92-101 (2013)
21. Maes, M.: On a cyclic string-to-string correction problem. IPL 35(2), 73-78 (1990)
22. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches. SIAM J Comput 22(5), 935-948 (1993)
23. Marzal, A., Barrachina, S.: Speeding up the computation of the edit distance for cyclic strings. In: 15th ICPR. vol. 2, pp. 891-894 (2000)
24. Mosig, A., Hofacker, I.L., Stadler, P.F.: Comparative Analysis of Cyclic Sequences: Viroids and other Small Circular RNAs. In: GCB. LNI, vol. 83, pp. 93-102. GI (2006)
25. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3), 443-453 (1970)
26. Peterlongo, P., Sacomoto, G.T., do Lago, A.P., Pisanti, N., Sagot, M.F.: Lossless filter for multiple repeats with bounded edit distance. Algorithm Mol Biol 4(3) (2009)
27. Peterlongo, P., Pisanti, N., Boyer, F., do Lago, A.P., Sagot, M.F.: Lossless filter for multiple repetitions with Hamming distance. JDA 6(3), 497-509 (2008)
28. Pisanti, N., Giraud, M., Peterlongo, P.: Filters and seeds approaches for fast homology searches in large datasets. In: Elloumi, M., Zomaya, A.Y. (eds.) Algorithms in computational molecular biology, chap. 15, pp. 299-320. John Wiley \& sons (2010)
29. Ponting, C.P., Russell, R.B.: Swaposins: circular permutations within genes encoding saposin homologues. Trends Biochem Sci 20(5), 179-180 (1995)
30. Rasmussen, K., Stoye, J., Myers, E.: Efficient q-gram Filters for finding all epsilonmatches over a given length. J Comput Biol 13(2), 296-308 (2006)
31. Rice, P., Longden, I., Bleasby, A.: EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 16(6), 276-277 (2000)
32. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches. Theor Comput Sci 92(1), 191-211 (1992)
33. Wang, Z., Wu, M.: Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. PLoS ONE 10(9), e110685 (2014)
34. Weiner, J., Bornberg-Bauer, E.: Evolution of circular permutations in multidomain proteins. Mol Biol Evol 23(4), 734-743 (2006)

[^0]: * Supported by the P.R.I.M.E. programme of DAAD co-funded by BMBF and EU's 7th Framework Programme (grant 605728).
 ** Supported by a Research Grant (\#RG130720) awarded by the Royal Society.

