
HAL Id: hal-01246534
https://hal.inria.fr/hal-01246534

Submitted on 18 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Design and Formalization of Mezzo, a
Permission-Based Programming Language
Thibaut Balabonski, François Pottier, Jonathan Protzenko

To cite this version:
Thibaut Balabonski, François Pottier, Jonathan Protzenko. The Design and Formalization of Mezzo,
a Permission-Based Programming Language. ACM Transactions on Programming Languages and
Systems (TOPLAS), ACM, 2016, 38 (4), pp.94. �10.1145/2837022�. �hal-01246534�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49443129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01246534
https://hal.archives-ouvertes.fr

XXXX

The Design and Formalization of Mezzo,
a Permission-Based Programming Language

THIBAUT BALABONSKI and FRANÇOIS POTTIER and JONATHAN PROTZENKO, INRIA

The programming language Mezzo is equipped with a rich type system that controls aliasing and access to
mutable memory. We give a comprehensive tutorial overview of the language. Then, we present a modular
formalization of Mezzo’s core type system, in the form of a concurrent λ-calculus, which we successively
extend with references, locks, and adoption and abandon, a novel mechanism that marries Mezzo’s static
ownership discipline with dynamic ownership tests. We prove that well-typed programs do not go wrong and
are data-race free. Our definitions and proofs are machine-checked.

CCS Concepts: •Theory of computation→ Separation logic; Type structures; Operational seman-
tics; Type theory; •Software and its engineering→ Imperative languages; Functional languages;
Concurrent programming languages; Abstract data types; Polymorphism; Data types and struc-
tures; Recursion; Procedures, functions and subroutines; Syntax; Semantics;

Additional Key Words and Phrases: Aliasing, Concurrency, Ownership, Side effects, Static type systems

ACM Reference Format:
Thibaut Balabonski, François Pottier, and Jonathan Protzenko. 2015. The Design and Formalization of
Mezzo, a Permission-Based Programming Language. ACM Trans. Program. Lang. Syst. V, N, Article XXXX
(January 2015), 94 pages.
DOI: http://dx.doi.org/10.1145/2837022

1. INTRODUCTION
A strongly-typed programming language rules out certain programming mistakes by
ensuring at compile-time that every operation is applied to arguments of appropriate
nature. As per Milner’s slogan, “well-typed programs do not go wrong”. If one wishes to
obtain stronger static guarantees, one must usually turn to static analysis or program
verification techniques. For instance, separation logic [Reynolds 2002] can prove that
private state is properly encapsulated; concurrent separation logic [O’Hearn 2007] can
prove the absence of interference between threads; and, in general, program logics can
prove that a program meets its specification.

The programming language Mezzo [Pottier and Protzenko 2013; Balabonski et al.
2014] is equipped with a static discipline that goes beyond traditional type systems
and incorporates some of the ideas of separation logic. The Mezzo type-checker reasons
about aliasing and ownership. This increases expressiveness, for instance by allowing
gradual initialization, and rules out more errors, such as representation exposure or
data races. Mezzo is descended from ML: its core features are immutable local vari-
ables, possibly-mutable heap-allocated data, and first-class functions. It also features
a new mechanism, adoption and abandon, which marries the static ownership disci-
pline with dynamic ownership tests. These tests do have costs, in terms of time, space,

Author’s current affiliations: T. Balabonski, LRI, Univ. Paris-Sud, Université Paris-Saclay and F. Pottier,
INRIA and J. Protzenko, Microsoft Research.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM. 0164-0925/2015/01-

ARTXXXX $15.00
DOI: http://dx.doi.org/10.1145/2837022

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:2 T. Balabonski et al.

1 open woref
2

3 val f (x: frozen int, y: frozen int) : int =
4 get x + get y
5

6 val _ : int =
7 let r = new () in
8 set (r, 3);
9 f (r, r)

Fig. 1. Using a write-once ref-
erence. The Mezzo type system
guarantees that the user must
call set before using get, and
can call set at most once.

and robustness; in return, they offer far greater expressiveness than a simple-minded,
purely static discipline could hope to achieve.

In this paper, we offer a comprehensive overview of Mezzo, including an informal,
user-level presentation of the language and a formal, machine-checked presentation
of its meta-theory. This unifies and subsumes the two conference papers cited above.
Furthermore, we revisit the theory of adoption and abandon, which was presented
informally in the first conference paper, and was absent from the second conference
paper. Our new account of adoption and abandon is not only machine-checked, but
also simpler and more expressive than that of the conference paper.

1.1. A few examples
We begin with two short illustrative examples. The first one concerns a type of write-
once references and shows how Mezzo guarantees that the client follows the intended
usage protocol. The second example is a racy program, which the type system rejects.
We show how to fix this ill-typed program by introducing a lock.

A usage protocol. A write-once reference is a memory cell that can be assigned at
most once and cannot be read before it has been initialized. Fig. 1 shows some client
code that manipulates a write-once reference. The code refers to the module woref,
whose implementation we show later on (§2.1).

At line 7, we create a write-once reference by calling woref::new. (Thanks to the
declaration open woref, one can refer to this function by the unqualified name new.)
The local variable r denotes the address of this reference. In the eyes of the type-
checker, this gives rise to a permission, written r @ writable. This permission has
a double reading: it describes the layout of memory (i.e., “the variable r denotes the
address of an uninitialized memory cell”) and grants exclusive write access to this
memory cell. That is, the type constructor writable denotes a uniquely-owned writable
reference, and the permission r @ writable is a unique token that one must possess
in order to write r.

Permissions are tokens that exist at type-checking time only. Many permissions have
the form x @ t, where x is a program variable and t is a type. At a program point
where such a permission is available, we say informally that “x has type t (now)”.
Type-checking in Mezzo is flow-sensitive: at each program point, there is a current
permission, which represents our knowledge of the program state at this point, and our
rights to alter this state. The current permission is typically a conjunction of several
permissions. The conjunction of two permissions p and q is written p * q.

Permissions replace traditional type assumptions. A permission r @ writable su-
perficially looks like a type assumption Γ ` r : writable. However, a type assumption
would be valid everywhere in the scope of r, whereas a permission should be thought
of as a token: it can be passed from caller to callee, returned from callee to caller,
passed from one thread to another, etc. If one gives up this token (say, by assigning the
reference), then, even though r is still in scope, one can no longer write the reference.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:3

1 open thread
2

3 val r = newref 0
4 val f (| r @ ref int) : () =
5 r := !r + 1
6 val () =
7 spawn f; spawn f

Fig. 2. Ill-typed code. The function f increments the global
reference r. The main program spawns two threads that
call f. There is a data race: both threads may attempt to
modify r at the same time.

At line 8, we exercise our right to call the set function, and write the value 3 to the
reference r. In the eyes of the type-checker, this call consumes the token r @ writable,
and instead produces another permission, r @ frozen int. This means that any fur-
ther assignment is impossible: the set function requires r @ writable, which we no
longer have. Thus, the reference has been rendered immutable. This also means that
the get function, which requires the permission r @ frozen int, can now be called.
Thus, the type system enforces the desired usage protocol.

The permissions r @ writable and r @ frozen int are different in one important
way. The former denotes a uniquely-owned, writable heap fragment. It is affine: once it
has been consumed by a call to set, it is gone forever. The latter denotes an immutable
heap fragment. It is safe to share it: this permission is duplicable. If one can get ahold
of such a permission, then one can keep it forever (i.e., as long as r is in scope) and
pass copies of it to other parts of the program, if desired. Such a permission behaves
very much like a traditional type assumption Γ ` r : frozen int.

At line 9, we apply the function f to the pair (r, r). This function, defined at line 3,
expects a pair (x, y) and requires the right to use x and y at type frozen int. (At this
stage, the reader can understand the notation x: frozen int as a shorthand for “the
argument is named x” and “this function requires the permission x @ frozen int”.
This notation is explained in detail in §3.) At the call site at line 9, the duplicable
permission r @ frozen int is implicitly copied, so as to justify the fact that the pair
(r, r) has type (frozen int, frozen int), as required by f. The call causes r to be
read twice (through distinct aliases). This is permitted by the protocol.

A race. We now consider the tiny program in Fig. 2. This code exhibits a data race:
two threads may concurrently access the reference r, where one of the accesses is a
write. In Mezzo, racy code is viewed as incorrect, and is rejected by the type system.
Let us explain how the type-checker determines that this program must be rejected.

At line 3, we allocate a (traditional) reference r, thus obtaining a new permission
r @ ref int.

The function f at line 4 takes no argument and returns no result. Its type is not just
() -> (), though. Because f needs access to r, it must explicitly request the permis-
sion r @ ref int and return it. (The fact that this permission is available at the defini-
tion site of f is not good enough: a closure cannot capture a nonduplicable permission.
This restriction is made necessary by the fact that every function type is considered
duplicable.) This is declared by the type annotation. Thus, at line 6, in conjunction
with r @ ref int, we have f @ (| r @ ref int) -> (). This (duplicable) permission
means that f is a function of no argument and no result (at runtime), which (at type-
checking time) requires and returns the permission r @ ref int.

To clarify this, let us say a little more about the syntax of types. The type t | p
denotes a package of a value of type t and the permission p. It can be thought of as
a pair; yet, because permissions do not exist at runtime, a value of type t | p and a
value of type t have the same runtime representation. We write (| p) for (() | p),
where () is the unit type. Furthermore, by default, a permission that appears in the
domain of a function type is implicitly repeated in the codomain. By this conven-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:4 T. Balabonski et al.

tion, f @ (| r @ ref int) -> () means that f requires and returns the permission
r @ ref int. When one wishes to indicate that a function requires some permission
but does not return it, one must precede that permission with the keyword consumes.

On line 7 is a sequencing construct. The second call to spawn is type-checked
using the permissions that are left over after the first spawn. A call spawn f re-
quires two permissions: a (duplicable) permission that describes the function f, and
the nonduplicable permission r @ ref int, which f itself requires. It does not re-
turn the latter permission, which is transferred to the spawned thread. Thus, in
line 7, between the two spawns, we no longer have a permission for r. (We still have
f @ (| r @ ref int) -> (), as it is duplicable.) Therefore, the second spawn is ill-
typed. The racy program of Fig. 2 is rejected.

This behavior should be contrasted with that of the earlier example. In Fig. 1, the
permission r @ frozen int, which get requires, is duplicable. We can therefore obtain
two copies of it and justify the call f (r, r). We could also justify several concurrent
calls to get r.

A fix. In order to fix this program, one must introduce enough synchronization so as
to eliminate the race. A common way of doing so is to introduce a lock and place all
accesses to r within critical sections. In Mezzo, this can be done, and causes the type-
checker to recognize that the code is now data-race free. In fact, this common pattern
can be implemented as a polymorphic, higher-order function, hide (Fig. 3).

In Fig. 3, f is a parameter of hide. It has a visible side effect: it requires and re-
turns a permission s. When hide is invoked, it creates a new lock l, whose role is to
govern access to s. At the beginning of line 7, we have two permissions, namely s and
f @ (consumes a | s) -> b. At the end of line 7, after the call to lock::new, we have
given up s, which has been consumed by the call, and we have obtained l @ lock s.
The lock is created in the “released” state, and the permission s can now be thought of
as owned by the lock.

At line 8, we construct an anonymous function. This function does not request any
permission for f or l from its caller: according to its header, the only permission that
it requires is x @ a. Nevertheless, the permissions f @ (consumes a | s) -> b and
l @ lock s are available in the body of this anonymous function, because they are
duplicable, and a closure is allowed to capture a duplicable permission.

The fact that l @ lock s is duplicable is a key point. Quite obviously, this enables
multiple threads to compete for the lock. More subtly, this allows the lock to become
hidden in a closure, as illustrated by this example. Let us emphasize that s itself is
typically not duplicable (if it were, we would not need a lock in the first place).

1 open lock
2

3 val hide [a, b, s : perm] (
4 f : (consumes a | s) -> b |
5 consumes s
6) : (consumes a) -> b =
7 let l : lock s = new () in
8 fun (consumes x : a) : b =
9 acquire l;

10 let y = f x in
11 release l;
12 y

Fig. 3. The polymorphic higher-order function hide takes
a function f of type (consumes a | s) -> b. This means
that f needs access to a piece of state represented by the
permission s. hide requires s, and consumes it. It returns
a function of type (consumes a) -> b, which does not re-
quire s, hence can be invoked by multiple threads concur-
rently. The type variables a and b have kind type (this is
the default kind). The square brackets denote universal
quantification.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:5

The anonymous function at line 8 does not require or return s. Yet, it needs s in order
to invoke f. It obtains s by acquiring the lock, and gives it up by releasing the lock.
Thus, s is available only to a thread that has entered the critical section. The side effect
is now hidden, in the sense that the anonymous function has type (consumes a) -> b,
which does not mention s.

It is easy to correct the code in Fig. 2 by inserting the redefinition val f = hide f
before line 6. The type variables a and b in the type of hide are instantiated
with (), and the permission variable s is instantiated with r @ ref int. This call
consumes r @ ref int and produces f @ () -> (), so the two spawn instructions are
now type-correct. Indeed, the modified code is race-free.

1.2. A case for Mezzo
We believe that reasoning about unique ownership, or unique permission, is useful,
and even necessary, for several reasons.

(1) This allows the programming language designer to express and enforce protocols.
As a result, several properties of the programming language can be proved, once
and for all.

(2) This allows the programming language user to express and enforce protocols. This
helps to write secure, correct code, and to prove it.

The protocols imposed by the language designer restrict the use of the language’s
primitive features, such as mutable state and locks. Examples of protocol descriptions
may include: “accessing object x requires permission p”; “deallocating object x requires
and consumes permission p”; “acquiring lock l produces permission p”; “releasing lock l
requires and consumes permission p”; and so on. (Mezzo does not have manual memory
deallocation; languages that do, and guarantee its safe use, include Cyclone [Swamy
et al. 2006] and Rust [The Mozilla foundation 2014].) These protocols are designed
so as to guarantee a small number of fundamental metatheoretic properties, such as
memory safety (“only valid memory is ever accessed”) and data-race freedom (“no data
race ever occurs”).

The protocols imposed by the user restrict the use of user-defined abstractions. Ex-
amples of protocols that a user may wish to enforce include: “a write-once reference
must be fully initialized before it is used”; “a write-once reference may be initialized at
most once”; “this continuation must be called at most once”; “either of these two contin-
uations may be called, but not both; and it may be called at most once”; etc. Enforcing
such protocols rules out a class of programming mistakes that cannot be detected by
traditional type systems. Furthermore, ensuring that an abstraction uniquely owns
its internal state is necessary in order to impose and maintain an invariant about this
state. In other words, failure to ensure unique ownership of an abstraction’s internal
state, also known as representation exposure [Detlefs et al. 1998], may lead to bugs
and security flaws [Vitek and Bokowski 2001].

A huge number of tools exist that help detect bugs in software or prove their ab-
sence. Some have built-in support for reasoning about ownership or permissions: see,
among others, jStar [Distefano and Parkinson 2008], VeriFast [Jacobs and Piessens
2008], VCC [Cohen et al. 2009], and Facebook Infer [Calcagno et al. 2015]. We believe
that machine support for these concepts should ideally be built into the programming
language and into its compiler, so that they may serve as a guide and as a safety net
while the program is being designed and developed. Although several fairly large-scale
experiments have been reported in the literature [Fähndrich et al. 2006; Gordon et al.
2012], as of today, no mainstream programming language imposes a static discipline
based on these concepts.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:6 T. Balabonski et al.

If one attempted to design such a language, what would it be like? Could it be made
simple, elegant, powerful? It is often said that Milner [1978] discovered a “sweet spot”,
a striking compromise between simplicity and expressiveness, when he proposed the
foundations of ML. Is there a “sweet spot” out there with support for permissions and
uniqueness? The Mezzo project explores these questions. While Mezzo cannot be the
final answer, we believe that it is an interesting spot in the design space.

There are many different directions in which one might search for this sweet spot.
Because we intend Mezzo to be a high-level language, we place most emphasis on
simplicity, elegance, and expressiveness.

As the runtime model, we choose ML. More specifically, we re-use the OCaml
garbage collector and runtime system: this is achieved by compiling Mezzo down to
untyped OCaml. Even before we impose a static discipline, this guarantees that we
need not worry about certain classes of runtime errors, including null pointer deref-
erences and accesses to deallocated memory. This choice has a certain cost in terms
of efficiency (no manually managed memory; no stack-allocated objects; no unboxed or
specialized data representations; no sub-word control of memory layout; etc.) but gives
us greater freedom and greater hope of success in the design of a simple and pow-
erful type and permission discipline. For instance, the fact that every value occupies
one word of storage makes it easy to support polymorphism. Reasoning with algebraic
data types (that is, tagged sums) is easier than working with disjunctions (that is,
untagged sums), disequalities (such as x != null) and inductive predicates, as in the
traditional separation-logic encoding of null-terminated lists. Reasoning about tail-
recursive functions is easier than reasoning about while loops, as it obviates the need
for thinking in terms of list (or tree) segments (§2.2).

In the design of the static type and permission discipline, we make several decisions
with simplicity in mind. Let us mention a few salient points:

— We do not annotate types with owners: following separation logic, in Mezzo, “own-
ership is in the eye of the beholder”. That is, whoever is able to say “this is a hash
table” in fact is the current owner of this hash table. This keeps types concise. More
subtly, this means that a polymorphic function is polymorphic not only in the “shape”
of its argument, but also in the “ownership regime” of its argument. For instance,
the list length function, whose type is [a] list a -> int, can be applied either to a
list of shareable elements or to a list of uniquely-owned elements, and does not care
“who” owns the elements. In fact, the owner of the list elements must be the caller of
length, and length itself becomes their owner while it is active: permission transfer
is one of the key mechanisms that allows us to get away without naming owners.

— We draw a distinction between immutable, shareable data, on the one hand, and
mutable, uniquely-owned data, on the other hand (and favor the use of the former),
but do not attempt to incorporate more sophisticated ideas, such as per-field permis-
sions, temporary immutable views of mutable data, or fractional permissions, as we
wish to assess how far and how well one can fare without them.

— To deal with the situations where our static type and permission discipline is
too coarse, we provide an “escape hatch”, known as adoption and abandon. This
mechanism replaces static proof obligations, which would require complex compile
time arguments, with dynamic ownership tests. Whereas Mezzo’s basic metaphor
is “a thread owns an object”, the metaphor offered by adoption and abandon is “an
object (the adopter) owns an object (the adoptee)”. The operations of “adoption” and
“abandon”, known more simply as give and take, move from one metaphor to the
other, thus marrying them in a manner that we believe is quite natural and easy to
understand.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:7

Simplicity is not our sole guideline: the core features of the static discipline are
chosen with expressiveness in mind as well.

— Reasoning about unique ownership and state change requires distinguishing be-
tween duplicable and affine types and allowing strong updates.

— Distinguishing between a value (say, a pointer) and the right to use this value (say,
to dereference this pointer) requires introducing a notion of permission and letting
permissions depend on values. For instance, the permission r @ ref int, which
means “r is a reference to an integer”, mentions the variable r. The permission
l @ lock (r @ ref int), which means “the lock l protects the integer reference r”,
refers to the variables l and r.

— Writing modular code requires polymorphism and type abstraction.

None of these concepts is new. Our experience with Mezzo confirms (if necessary)
that their combination is very powerful. It enables us to express the protocols that
govern the use of concurrency primitives (locks (§1.1, §6), channels, . . .), adoption and
abandon (§2.5, §7), nesting (§2.6), and so on, simply by ascribing an appropriate type
to each operation.

One key question that one faces in the design of a permission-based programming
language is: should the permission discipline come on top of a traditional type system?
Or, on the contrary, should the language enjoy a single, unified type-and-permission
discipline? The former approach allows type-checking and permission-checking to be
carried out in two separate phases; this sounds technically attractive. The latter ap-
proach offers greater expressiveness (for instance, it supports gradual initialization of
uniquely-owned objects), potentially greater conciseness (because types and permis-
sions express layout and ownership at the same time), and a rather different mindset.
In Mezzo, we explore the latter approach, which appears to have received relatively
little attention in the literature.

1.3. Outline
In this paper, we give an in-depth presentation of Mezzo. We start off with a tutorial in-
troduction to Mezzo (§2). We come back to the above examples and informally explain
how they are type-checked. We move on to more advanced examples involving lists
and trees. We demonstrate a few programming patterns that cannot be type-checked
in ML, such as list concatenation in destination-passing style. We conclude this tuto-
rial introduction with the example of a mutable graph data structure, which involves
arbitrary aliasing. We give two variants of this example. One variant exploits adop-
tion and abandon, a mechanism that defers some of the ownership tests to runtime.
Another variant exploits nesting, a mechanism that serves the same purpose and does
not require any runtime tests, but has more limited expressiveness.

The surface language that we expose to the user differs slightly from the core lan-
guage that the type-checker uses, and whose meta-theory we have formalized. The gap
is not very large: it is mostly a matter of desugaring the syntax of types. We give an
informal description of the translation of surface Mezzo down to Core Mezzo (§3).

Finally, we give a modular formalization of the core layers of Mezzo. We identify a
kernel layer: a concurrent, call-by-value λ-calculus (§4). In its typed version, it is an
affine, polymorphic, value-dependent system, which enjoys type erasure: values exist
at runtime, whereas types and permissions do not. Although this calculus does not
have explicit side effects, we endow it with an abstract notion of machine state, and
we organize the proof of type soundness in such a way that the statements of the main
lemmas need not be altered as we introduce new forms of side effects. The next three
layers are heap-allocated references (§5), locks (§6), and adoption and abandon (§7).
These three layers are almost independent of one another. There is one dependency:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:8 T. Balabonski et al.

1 data mutable writable =
2 Writable { contents: () }
3

4 data frozen a =
5 Frozen { contents: (a | duplicable a) }
6

7 val new () : writable =
8 Writable { contents = () }
9

10 val set [a] (consumes r: writable, x: a | duplicable a)
11 : (| r @ frozen a) =
12 r.contents <- x;
13 tag of r <- Frozen
14

15 val get [a] (r: frozen a) : a =
16 r.contents

Fig. 4. Implementation of write-once references

adoption and abandon is piggybacked on top of heap-allocated state. Yet, we are able
to structure the meta-theory in such a way that there is very little interaction between
these two features. Our definitions and proofs are machine-checked and are available
online [Balabonski and Pottier 2014].

The paper ends with an overview of the features of Mezzo that we could not describe
here (§8), a discussion of the implementation of Mezzo (§9), and a review of the related
work (§10).

2. A MEZZO TUTORIAL
In this section, we expand on the examples that we mentioned earlier (§1). We give
a more thorough introduction to permissions, present more examples, including a few
typical library functions, and show how to deal with the pervasive problem of arbitrary
aliasing over mutable data structures.

2.1. Write-once references
In the introduction (§1), we showed a tiny client of the module woref of write-once
references. We now explain how this module is implemented. Its code appears in Fig. 4.

To be or not to be duplicable. The type writable (line 1) describes a mutable heap-
allocated block. Such a block contains a tag field (which must contain the tag Writable,
as no other data constructors are defined for this type) and a regular field, called
contents, which has unit type. The function new (line 7) allocates a fresh memory
block of type writable and initializes its contents field with the unit value. A call
to this function, such as let r = woref::new() in ..., produces a new permission
r @ writable.

The definition of writable contains the keyword mutable. This causes the type-
checker to regard the type writable, as well as the permission r @ writable, as affine
(i.e., nonduplicable). This ensures that r @ writable represents exclusive access to
the memory block at address x. If one attempts to duplicate this permission (for in-
stance, by writing down the static assertion assert r @ writable * r @ writable, or
by attempting to call set (r, ...) twice), the type-checker rejects the program.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:9

The parameterized data type frozen a (line 4) describes an immutable heap-
allocated block. Such a block contains a tag field (which must contain the tag Frozen)
and a regular field, also called contents1, which has type (a | duplicable a). This
is a type of the form t | p: indeed, a is a type, while duplicable a is a permission.
This means that the value stored at runtime in the contents field has type a, and is
logically accompanied by a proof that the type a is duplicable.

Why do we impose the constraint duplicable a as part of the definition of the type
frozen a? The reason is, a write-once reference is typically intended to be shared after
it has been initialized. (If one did not wish to share it, then one could use a standard
read/write, uniquely-owned reference.) Thus, its content is meant to be accessed by
multiple readers. This is permitted by the type system only if the type a is duplicable.
Technically, the constraint duplicable a can be imposed either when the write-once
reference is initialized, or when it is read. We choose the former approach because it is
simpler to explain. The latter would work just as well.

The definition of frozen does not contain the keyword mutable, so a block of type
frozen a is immutable. Thus, it is safe to share read access to such a block. Further-
more, because we have imposed the constraint duplicable a, it is also safe to share the
data structure of type a whose address is stored in the contents field. In other words,
by inspection of the definition, the type-checker recognizes that the type frozen a is
duplicable as a whole. This means that a write-once reference can be shared after it
has been initialized.

In the absence of duplicable a on line 5, the type parameter a would conservatively
be considered affine (i.e., nonduplicable). Thus, the type frozen a would describe a
shareable block containing a pointer to a nonshareable data structure of type a. The
type frozen a as a whole would be considered nonduplicable.

Changing states: strong updates. The use of the consumes keyword in the type of set
(line 10) means that the caller of set must give up the permission r @ writable. In
exchange, the caller receives a new permission for r, namely r @ frozen a (line 11).
One may say informally that the type of r changes from “uninitialized” to “initialized
and frozen”.

The code of set is in two steps. First, the value x is written to the field r.contents
(line 12). After this update, the memory block at address r is described by the permis-
sion r @ Writable { contents: a }. This is a structural permission: it describes the
tag and the fields of the memory block. This permission is not an unfolding of writable;
neither is it an unfolding of frozen a. The memory block is in an intermediate state.

Then, the tag of r is changed from Writable to Frozen: this is a tag update (line 13).
This particular tag update instruction is ghost code: it has no runtime effect, because
both Writable and Frozen are represented at runtime as the tag 0. This pseudo-
instruction is just a way of telling the type-checker that our view of the memory block r
changes. After the tag update instruction, this block is described by the permission
r @ Frozen { contents: a }.

This permission can be combined with the permission duplicable a (which exists
at this point, because set requires this permission from its caller) so as to yield
r @ Frozen { contents: (a | duplicable a) }. This is the right-hand side of the
definition of the type frozen a. By folding it, one obtains r @ frozen a. Thus, the
permissions available at the end of the function set match what has been advertised
in the header (line 11).

In general, the tag update instruction allows changing the type of a memory block
to a completely unrelated type, with two restrictions: (i) the block must initially be

1Mezzo allows two user-defined types to have fields that go by the same name.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:10 T. Balabonski et al.

1 abstract writable
2 abstract frozen a
3 fact duplicable (frozen a)
4 val new: () -> writable
5 val set: [a] (consumes r: writable, x: a | duplicable a)
6 -> (| r @ frozen a)
7 val get: [a] frozen a -> a

Fig. 5. Interface of write-once references

mutable, hence uniquely owned; and (ii) the old and new types must have the same
number of fields. This instruction is compiled down to either an update of the tag field,
or nothing at all, as is the case above. (The distinction between these two cases depends
on the mapping of tags to numbers. A programmer who does not wish to depend on this
low-level detail may conservatively assume that a tag update is not a no-op.)

An interface for woref. Mezzo currently offers a simple notion of module, or unit.
Each module has an implementation file (whose extension is .mz) and an interface file
(whose extension is .mzi). This system supports type abstraction as well as separate
type-checking and compilation. It is inspired by OCaml and by its predecessor Caml-
Light.

The interface of the module woref is shown in Fig. 5.
The type writable is made abstract (line 1) so as to ensure that set is the only

action that can be performed with an uninitialized reference. If the concrete definition
of writable were exposed, it would be possible to read and write such a reference
directly, without going through the functions offered by the module woref.

The type frozen is also made abstract (line 2). One could expose its definition with-
out endangering the intended usage protocol. Nevertheless, it is good practice to hide
the details of its implementation; this may facilitate future evolutions.

The fact that frozen a is a duplicable type is published (line 3). In the absence of
this declaration, frozen a would by default be regarded affine, so that sharing access
to an initialized write-once reference would not be permitted. This fact declaration is
implicitly universally quantified in the type variable a. One can think of it as a univer-
sally quantified permission, [a] duplicable (frozen a), that is declared to exist at
the top level. This permission is itself duplicable, hence exists everywhere and forever.

The remaining lines in Fig. 5 declare the types of the functions new, get, and set,
without exposing their implementation. In the type of set, the first argument r must
be named (line 5), because we wish to refer to it in the result type (line 6). In a function
header or in a function type, the name introduction form r: t binds the variable r and
at the same time requests the permission r @ t. In contrast, in the permission r @ t,
the variable r occurs free. The second argument of set, x, need not be named; we name
it anyway (line 5), for the sake of symmetry.

2.2. Lists
The example of write-once references has allowed us to discuss a number of concepts,
including affine versus duplicable permissions, mutable versus immutable memory
blocks, and strong updates. References are, however, trivial data structures, in the
sense that their exact shape is statically known. We now turn to lists. Lists are data
structures of statically unknown length, which means that many functions on lists
must be recursive. Lists are representative of the more general case of tree-structured
data.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:11

The algebraic data type of lists, list a, is defined in a standard way (Fig. 6). This
definition does not use the keyword mutable. These are standard immutable lists, that
is, lists with an immutable spine. The list elements may be mutable or immutable,
depending on how the type parameter a is instantiated.

Concatenation. Our first example of an operation on lists is concatenation. There are
several ways of implementing list concatenation in Mezzo. We begin with the function
append, also shown in Fig. 6, which is the most natural definition.

The type of append (line 5) states that this function takes two arguments xs and ys,
together with the permissions xs @ list a and ys @ list a, and produces a result,
say zs, together with the permission zs @ list a. The consumes keyword indicates
that the permissions xs @ list a and ys @ list a are not returned: the caller must
give them up. Before discussing the implications of this fact, let us first explain how
append is type-checked.

At the beginning of line 6, the permission xs @ list a guarantees that xs is the
address of a list, i.e., a memory block whose tag field contains either Nil or Cons. This
justifies the match construct: it is safe to read xs’s tag and to perform case analysis.

Upon entry in the first branch, at the beginning of line 8, the permission xs @ list a
has been refined into xs @ Nil. This is a structural permission. It is more precise than
the former; it tells us not only that xs is a list, but also that its tag must be Nil.
This knowledge, it turns out, is not needed here: xs @ Nil is not exploited when type-
checking this branch. On line 8, we return the value ys. The permission ys @ list a
is used to justify that this result has type list a, as advertised in the function header.
This consumes ys @ list a, which is an affine permission.

Upon entry in the second branch, at the beginning of line 10, our knowledge about xs
also increases. The permission xs @ list a is refined into the structural permission
xs @ Cons { head: a; tail: list a }. This permission is obtained by looking up the
definition of the data type list a and specializing it for the tag Cons.

The pattern Cons { head; tail } on line 9 involves a pun: it is syntactic sugar
for Cons { head = head; tail = tail }, which binds the variables head and tail to
the contents of the fields xs.head and xs.tail, respectively. Thus, we now have two
names, head and tail, to refer to the values stored in these fields. This allows the
type-checker to decompose the structural permission above into a conjunction of three
atomic permissions:
xs @ Cons { head: =head; tail: =tail } *
head @ a *
tail @ list a

The first conjunct describes just the memory block at address xs. It indicates that
this block is tagged Cons, that its head field contains the value head, and that its tail
field contains the value tail. The types =head and =tail are singleton types [Smith
et al. 2000]: each of them is inhabited by just one value. In Mezzo and from here on in
the paper, we write xs @ Cons { head = head; tail = tail } as syntactic sugar for
xs @ Cons { head: =head; tail: =tail }.

In the following, the permission xs @ Cons { head = head; tail = tail } is not
used, so we do not repeat it, even though it remains available until the end.

The second conjunct describes just the first element of the list, that is, the value
head. It guarantees that this value has type a, so to speak, or more precisely, that we
have permission to use it at type a. The last conjunct describes just the value tail, and
means that we have permission to use this value as a list of elements of type a.

In order to type-check the code on line 10, the type-checker automatically expands it
into the following form, where every intermediate result is named:

110 let ws = append (tail, ys) in

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:12 T. Balabonski et al.

1 data list a =
2 | Nil
3 | Cons { head: a; tail: list a }
4

5 val rec append [a] (consumes (xs: list a, ys: list a)) : list a =
6 match xs with
7 | Nil ->
8 ys
9 | Cons { head; tail } ->

10 Cons { head; tail = append (tail, ys) }
11 end

Fig. 6. Definition of lists and list concatenation

1 data mutable cell a =
2 Dummy | Cell { head: a; tail: () }
3

4 val rec appendAux [a] (consumes (
5 dst: Cell { head: a; tail: () },
6 xs: list a,
7 ys: list a
8)) : (| dst @ list a) =
9 match xs with

10 | Nil ->
11 dst.tail <- ys;
12 tag of dst <- Cons
13 | Cons ->
14 let dst’ = Cell { head = xs.head; tail = () } in
15 dst.tail <- dst’;
16 tag of dst <- Cons;
17 appendAux (dst’, xs.tail, ys)
18 end
19

20 val append [a] (consumes (xs: list a, ys: list a)) : list a =
21 match xs with
22 | Nil ->
23 ys
24 | Cons ->
25 let dst = Cell { head = xs.head; tail = () } in
26 appendAux (dst, xs.tail, ys);
27 dst
28 end

Fig. 7. List concatenation in tail-recursive style

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:13

111 let zs = Cons { head = head; tail = ws } in
112 zs

The call append (tail, ys) on line 110 requires and consumes the permissions
tail @ list a and ys @ list a. It produces the permission ws @ list a. Thus, after
this call, at the beginning of line 111, the current permission is:

head @ a *
ws @ list a

The permission head @ a, which was not needed by the call append (tail, ys), has
been implicitly preserved. In the terminology of separation logic, it has been “framed
out” during the call.

The memory allocation expression Cons { head = head; tail = ws } on line 111
requires no permission at all, and produces a structural permission that describes the
newly-allocated block in an exact manner. Thus, after this allocation, at the beginning
of line 112, the current permission is:

head @ a *
ws @ list a *
zs @ Cons { head = head; tail = ws }

At this point, since append is supposed to return a list, the type-checker must verify
that zs is a valid list. It does this in two steps. First, the three permissions above can
be conflated into one composite permission:

zs @ Cons { head: a; tail: list a }

This step involves a loss of information, as the type-checker forgets that zs.head is
head and that zs.tail is ws. Next, the type-checker recognizes the definition of the
data type list, and folds it:

zs @ list a

This step also involves a loss of information, as the type-checker forgets that zs is a
Cons cell. Nevertheless, we obtain the desired result: zs is a valid list. So, append is
well-typed.

When is a list duplicable? It is natural to ask: what is the status of the permission
xs @ list t, where t is a type? Is it duplicable or affine?

Since the list spine is immutable, it is certainly safe to share (read) access to the
spine. What about the list elements, though? If the type t is duplicable, then it is
safe to share access to them, which means that it is safe to share the list as a whole.
Conversely, if the type t is not duplicable, then list t must not be duplicable either.
In short, the fact that describes lists is:

fact duplicable a => duplicable (list a)

This fact is inferred by the type-checker by inspection of the definition of the type
list. If one wished to export list as an abstract data type, this fact could be explicitly
written down by the programmer in the interface of the list module.

By exploiting this fact, the type-checker can determine, for instance, that list int
is duplicable, because the primitive type int of machine integers is duplicable; and
that list (ref int) is not duplicable, because the type ref t is affine, regardless of
its parameter t.

A type variable a is regarded as affine, unless the permission duplicable a happens
to be available at this program point. In the definition of append (Fig. 6), no assumption
is made about a, so the types a and list a are considered affine.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:14 T. Balabonski et al.

To consume, or not to consume. Why must append consume xs @ list a and
ys @ list a? Could it, for instance, not consume the latter permission?

In order to answer this question, let us attempt to change the type of append
to [a] (consumes xs: list a, ys: list a) -> list a, where the consumes keyword
bears on xs only. Recall that, by convention, the absence of the consumes keyword
means that a permission is requested and returned. In other words, the above type is
in fact syntactic sugar for the following, more verbose type:

[a] (consumes xs: list a, consumes ys: list a)
-> (list a | ys @ list a)

It is not difficult to understand why append does not have this type. At line 8, where
ys is returned, one would need two copies of the permission ys @ list a: one copy
to justify that the result of append has type list a, and one copy to justify that the
argument ys still has type list a after the call. Because the type list a is affine, the
type-checker rejects the definition of append when annotated in this way.

A similar (if slightly more complicated) analysis shows that the consumes annotation
on xs is also required.

These results make intuitive sense. The list append (xs, ys) shares its elements
with the lists xs and ys. When the user writes let zs = append (xs, ys) in ...,
she cannot expect to use xs, ys and zs as if they were lists with disjoint sets of ele-
ments. If the permission xs @ list (ref int) * ys @ list (ref int) exists before
the call, then, after the call, this permission is gone, and zs @ list (ref int) is avail-
able instead. The integer references are now accessible through zs, but are no longer
accessible through xs or ys.

The reader may be worried that this discipline is overly restrictive when the user
wishes to concatenate lists of duplicable elements. What if, for instance, the permission
prior to the call is xs @ list int * ys @ list int? There is no danger in sharing an
integer value: the type int is duplicable. It would be a shame to lose the permissions
xs @ list int and ys @ list int. Fortunately, these permissions are duplicable. So,
even though append requests them and does not return them, the caller is allowed to
copy each of them, pass one copy to append, and keep the other copy for itself. The
type-checker performs this operation implicitly and automatically. As a result, after
the call, the current permission is xs @ list int * ys @ list int * zs @ list int:
all three lists can be used at will.

Technically, this phenomenon may be summed up as follows. In a context where the
type t is known to be duplicable, the function types (consumes t) -> u and t -> u are
equivalent, that is, subtypes of one another. It would be premature to prove this claim
at this point; let us simply say that one direction is obvious, while the other direc-
tion follows from the frame rule and the duplication rule (FRAMESUB and DUPLICATE,
Fig. 26).

As a corollary, the universal type [a] (consumes (list a, list a)) -> list a,
which is the type of append in Fig. 6, is strictly more general than the type
[a] (list a, list a | duplicable a) -> list a, where the consumes keyword has
been removed, but the type a of the list elements is required to be duplicable. In partic-
ular, this explains why append effectively does not consume its arguments when they
have duplicable type.

List concatenation in tail-recursive style. The append function that we have discussed
so far is a direct translation into Mezzo of the standard definition of list concatenation
in ML. It has one major drawback: it is not tail-recursive, which means that it needs
a linear amount of space on the stack, and may well run out of space if the operating
system places a low limit on the size of the stack.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:15

One could work around this problem by performing concatenation in two passes:
that is, in OCaml, by composing List.rev and List.rev_append.

If instead one insists on performing concatenation in one pass and in constant stack
space, then one must write append in destination-passing style [Larus 1989]. Roughly
speaking, the list xs must be traversed and copied on the fly. When the end of xs is
reached, the last cell of the copy is made to point to ys.

In ML, unfortunately, this style requires breaking the type discipline. To wit, the au-
thors of the OCaml library “Batteries included” [2014] implement concatenation (and
other operations on lists) in this style by using an unsafe type cast. There are two (re-
lated) reasons why destination-passing style cannot be well-typed in ML. One reason
is that the code allocates a fresh list cell and initializes its head field, but does not im-
mediately initialize its tail field. Instead, it makes a recursive call and delegates the
task of initializing the tail field to the callee. Thus, the type system must allow the
gradual initialization of an immutable data structure. The other reason is that, while
concatenation is in progress, the partly constructed data structure is not yet a list: it
is a list segment. Thus, the type system may have to offer support for reasoning about
list segments.

We now show how to write and type-check in Mezzo a tail-recursive version of
append, in destination-passing style. The code appears in Fig. 7. We recall that, even
though this approach uses mutation internally, the goal is to concatenate two im-
mutable lists so as to obtain an immutable list.

The reviewers pointed out that, in the presence of a generational garbage collector,
updating a mutable field is significantly more costly than a single write instruction. As
a result, append in destination-passing style may well be slower than the composition
of List.rev and List.rev_append. Nevertheless, we believe that it is a good example of
the power of Mezzo’s type discipline. In particular, the manner in which Mezzo allows
traversing lists without explicitly reasoning about list segments applies to other data
structures as well (e.g., mutable lists; mutable trees).

A detailed look at the code. The append function (line 20) is where concatenation
begins. If xs is empty, then the concatenation of xs and ys is ys (line 23). Otherwise
(line 25), append allocates an unfinished, mutable cell dst. This cell contains the first
element of the final list, namely xs.head. It is not a valid list cell: its tail field contains
the unit value (). It is now up to appendAux to finish the work by constructing the
concatenation of xs.tail and ys and by writing the address of that list into dst.tail.
Once appendAux returns, dst has become a well-formed list (this is indicated by the
postcondition dst @ list a on line 8) and is returned by append.

The function appendAux expects an unfinished, mutable cell dst and two lists xs
and ys. Its purpose is to write the concatenation of xs and ys into dst.tail, at which
point dst can be considered a well-formed list.

If xs is Nil (line 10), the address ys is written to the field dst.tail (line 11). Then,
dst, a mutable block whose tag is Cell, is turned by a tag update instruction (line 12)
into an immutable block whose tag is Cons. (As in §2.1, this instruction has no runtime
effect, because Cell and Cons are both represented by the number 1 at runtime. This
is the reason why we have declared the apparently useless data constructor Dummy on
line 2. This is not essential, though: in the absence of Dummy, the tag update instruction
would have an actual runtime effect, and appendAux would still be tail-recursive.)

If xs is a Cons cell (line 13), we allocate a new destination cell dst’ (line 14), let
dst.tail point to it (line 15), freeze dst (line 16), and repeat the process via a tail-
recursive call (line 17). We explain below why this code is well-typed.

Reasoning without segments. Operations on (mutable or immutable) lists with con-
stant space overhead are traditionally implemented in an iterative manner, using a

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:16 T. Balabonski et al.

while loop. For instance, Berdine et al.’s formulation of mutable list melding [2005a],
which is proved correct in separation logic, has a complex loop invariant, involving two
list segments, and requires an inductive proof that the concatenation of two list seg-
ments is a list segment. In contrast, in our tail-recursive approach, the “loop invariant”
is the type of the recursive function appendAux (Fig. 7). This type is quite natural and
does not involve list segments.

How do we get away without list segments and without an inductive auxiliary
lemma? The trick is that, even though appendAux is tail-recursive, which means that
no code is executed after the call by appendAux to itself, a reasoning step still takes
place after the call.

Let us examine lines 14–17 in detail. Upon entering the Cons branch, at the start
of line 14, the permission for xs is xs @ Cons { head: a; tail: list a }. As in the
earlier version of append (Fig. 6), the type-checker automatically decomposes it into
a conjunction. Here, this requires introducing fresh auxiliary names for the head and
tail fields, because the programmer did not provide explicit names for these fields as
part of the pattern on line 13. For clarity, we use the names head and tail. Thus, at
the beginning of line 14, the current permission is:
dst @ Cell { head: a; tail: () } *
xs @ Cons { head = head; tail = tail } *
head @ a *
tail @ list a *
ys @ list a

On line 14, we read xs.head. According to the second permission above, this read
is permitted, and produces a value whose type is the singleton type =head. In other
words, it must produce the value head. Then, we allocate a new memory block, dst’.
This yields one new permission, which comes in addition to those above:
dst’ @ Cell { head = head; tail: () }

Although this does not play a key role here, it is worth noting that these permis-
sions imply that the fields xs.head and dst’.head contain the same value, namely
head. Besides, we have one (affine) permission for this value, head @ a. So, the type-
checker “knows” that xs.head and dst’.head are interchangeable, and that either of
them (but not both in parallel) can be used as a value of type a. Thanks to this precise
knowledge, we do not need a “borrowing” convention [Naden et al. 2012] so as to decide
which of xs.head or dst’.head has type a. The idea of recording must-alias informa-
tion (i.e., equations) via structural permissions and singleton types is taken from Alias
Types [Smith et al. 2000]. Separation logic [Reynolds 2002] offers analogous expres-
siveness via points-to assertions and ordinary variables.

The assignment of line 15 and the tag update of line 16 are reflected by updat-
ing the structural permission that describes the cell dst. Before the assignment, we
have dst @ Cell { head: a; tail: () }. After the assignment dst.tail <- dst’,
we have dst @ Cell { head: a; tail = dst’ }. After the tag update instruction
tag of dst <- Cons, we have we have dst @ Cons { head: a; tail = dst’ }. It may
be worth stressing that the last two structural permissions can be folded neither to
dst @ cell a nor to dst @ list a. There is no obligation for a structural permission
to coincide at all times with the unfolding of some algebraic data type. A structural
permission that is not an unfolding of some algebraic data type typically represents an
intermediate state in a sequence of transitions.

At the beginning of line 17, just before the recursive call, the current permission is:
dst @ Cons { head: a; tail = dst’ } *
xs @ Cons { head = head; tail = tail } *

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:17

head @ a *
tail @ list a *
ys @ list a *
dst’ @ Cell { head = head; tail: () }

The call consumes the last four permissions and produces a new permission for dst’.
Immediately, after the call, the current permission is thus:

dst @ Cons { head: a; tail = dst’ } *
xs @ Cons { head = head; tail = tail } *
dst’ @ list a

We have reached the end of the code. There remains to verify that the postcondition
of appendAux is satisfied. By combining the first and last permissions above, the type-
checker obtains dst @ Cons { head: a; tail: list a }. At this point, the types of
the head and tail fields match the definition of the type list a (Fig. 6, line 3), so
this permission can be folded back to dst @ list a. Thus, the postcondition is indeed
satisfied: dst is now a valid list.

The fact that the structural permission dst @ Cons { ... } was framed out during
the recursive call, as well as the folding steps that take place after the call, are the
key technical mechanisms that obviate the need for list segments. In short, the code is
tail-recursive, but the manner in which one reasons about it is recursive.

Minamide [1998] proposes a notion of “data structure with a hole”, or in other words,
a segment, and applies it to the problem of concatenating immutable lists. Walker and
Morrisett [2000] offer a tail-recursive version of mutable list concatenation in a low-
level typed intermediate language, as opposed to a surface language. The manner in
which they avoid reasoning about list segments is analogous to ours. There, because
the code is formulated in continuation-passing style, the reasoning step that takes
place “after the recursive call” amounts to composing the current continuation with a
coercion. Maeda et al. [2011] study a slightly different approach, also in the setting of
a typed intermediate language, where separating implication offers a way of defining
list segments.

Our approach could be adapted to an iterative setting by adopting a new proof
rule for while loops. This is noted independently by Charguéraud [Charguéraud 2010,
§3.3.2] and by Tuerk [2010].

2.3. A higher-order function
We briefly present a minimal implementation of stacks on top of linked lists. This
allows us to show an example of a higher-order function, which is later re-used in the
example of graphs and depth-first search (§2.5).

The implementation appears in Fig. 8. A stack is defined as a mutable reference to
a list of elements. Here, we use traditional ML references, which are allocated with
newref2, assigned with :=, and dereferenced with !.

The function new creates a new stack. The function push inserts a list of elements
into an existing stack. It relies on list concatenation (§2.2). The higher-order function
work abstracts a typical pattern of use of a stack as a work list: as long as the stack
is nonempty, extract one element out of it, process this element (possibly causing new
elements to be pushed onto the stack), and repeat. This is a loop, expressed as a tail-
recursive function. The parameter s is the stack; the parameter f is a user-provided
function that is in charge of processing one element. This function has access to the per-
mission s @ stack a, which means that it is allowed to update the stack. The code is

2This function is named newref, instead of ref in ML. Indeed, the type of references is called ref already,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:18 T. Balabonski et al.

1 alias stack a =
2 ref (list a)
3

4 val new [a] (consumes xs: list a) : stack a =
5 newref xs
6

7 val push [a] (consumes xs: list a, s: stack a) : () =
8 s := append (xs, !s)
9

10 val rec work [a, p : perm] (
11 s: stack a,
12 f: (consumes a | s @ stack a * p) -> ()
13 | p) : () =
14 match !s with
15 | Cons { head; tail } ->
16 s := tail;
17 f head;
18 work (s, f)
19 | Nil ->
20 ()
21 end

Fig. 8. A minimal implementation of stacks, with a higher-order iteration function

polymorphic in the type a of the elements. It is also polymorphic in a permission p that
is threaded through the whole computation: if f requires and preserves p, then work
also requires and preserves p. One can think of the conjunction s @ stack a * p as the
loop invariant. The pattern of abstracting over a permission p is typical of higher-order
functions.

2.4. Borrowing elements from containers
In Mezzo, a container naturally “owns” its elements, if they have affine type. A list is
a typical example of this phenomenon. Indeed, in order to construct a permission of
the form xs @ list t, one must provide a permission x @ t for every element x of the
list xs.

If the type t is affine, then one must give up the permission x @ t when one inserts x
into the list. Conversely, when one extracts an element x out of the list, one recovers
the permission x @ t. Other container data structures, such as trees and hash tables,
work in the same way.

If the type t is duplicable, then the permission x @ t does not have an ownership
reading. One can duplicate this permission, give away one copy to the container when
x is inserted into it, and keep one copy so that x can still be used independently of the
container.

An ownership problem. The fact that a container “owns” its elements seems fairly
natural as long as one is solely interested in inserting and extracting elements. Yet, a
difficulty arises if one wishes to borrow an element, that is, to obtain access to it and
examine it, without taking it out of the container.

We illustrate this problem with the function find, which scans a list xs and returns
the first element x (if there is one) that satisfies a user-provided predicate ok. Translit-

and Mezzo places types and values in a single namespace.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:19

erating the type of this function from ML to Mezzo, one might hope that this function
admits the following type:

val find: [a] (xs: list a, ok: a -> bool) -> option a

However, in Mezzo, find cannot have this type. There is an ownership problem: if
a suitable element x is found and returned, then this element becomes reachable in
two ways, namely through the list xs and through the value returned by find. Thus,
somewhere in the code, the permission x @ a must be duplicated. In the absence of
any assumption about the type a, this is not permitted.

One can give find the following type, where the list is consumed:

val find: [a] (
consumes xs: list a,
ok: a -> bool

) -> option a

Naturally, in most situations, this type is too restrictive. We do not expect to lose the
permission to use the entire list after just one call to find.

Another tentative solution is to give find the following type, where the type param-
eter a is required to be duplicable:

val find: [a] (
xs: list a,
ok: a -> bool

| duplicable a
) -> option a

Naturally, this does not solve the problem. This means that find is supported only
in the easy case where the elements are shareable. Certainly, this is an important
special case: we explain later on (§2.5) that, provided one is willing to perform dynamic
ownership tests, one can always arrange to be in this special case. Nevertheless, it is
desirable to offer a solution to the borrowing problem. In the following, we give an
overview of two potential solutions, each of which has shortcomings.

A solution in indirect style. A simple approach is to give up control. Instead of asking
find to return the desired element, we provide find with a function f that describes
what we want to do with this element. The signature of find thus becomes:

val find: [a] (
xs: list a,
ok: a -> bool,
f: a -> ()

) -> ()

Recall that, in Mezzo, a function argument that is not annotated with the keyword
consumes is preserved: that is, the function requires and returns a permission for this
argument. Thus, this version of find preserves xs @ list a. The function f, which
the user supplies, preserves x @ a, where x is a list element. That is, f is allowed to
work with this element, but must eventually relinquish the permission to use this
element. Note that f does not have access to the list: it does not receive the permission
xs @ list a. If it did, the ownership problem would arise again!

A moment’s thought reveals that the above signature for find is not as simple as it
could be. The user is asked to provide two functions, ok and f. The function ok is sup-
posed to recognize the desired element, while the function f is supposed to do some-
thing with it. Without loss of generality, we may combine these two functions into one,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:20 T. Balabonski et al.

1 val rec exists [a, p : perm] (
2 xs: list a,
3 ok: (a | p) -> bool
4 | p
5) : bool =
6 match xs with
7 | Nil -> False
8 | Cons -> ok xs.head || exists (xs.tail, ok)
9 end

Fig. 9. Definition of list::exists

whose type is a -> bool. This function is expected to do something with the element,
if desired, and return a Boolean result that indicates whether the search should stop
or continue. In addition to this, we may as well change the result type of find to bool,
so as to report whether the search was stopped or went all the way to the end of the
list. The signature becomes:

val exists: [a] (
xs: list a,
ok: a -> bool

) -> bool

We have changed the name of the function from find to exists, because it is now
identical to the function known as List.exists in OCaml’s standard library.

One soon finds out that this type is not expressive enough, as it does not provide
any permission to ok beside x @ a, where x is the list element that ok receives as an
argument. This means that ok cannot perform any side effect, except possibly on x.
In order to relax this restriction, one must parameterize exists over a permission p,
which is transmitted to (and preserved by) ok. This is a typical idiom for higher-order
functions in Mezzo, which already appeared in the work function from Fig. 8.

val exists: [a, p: perm] (
xs: list a,
ok: (a | p) -> bool

| p
) -> bool

The definition of this function is shown in Fig. 9.
This approach works, to some extent, but is awkward. Working with a higher-order

function is unnatural and rigid: elements must be borrowed from the container and
returned to the container in a syntactically well-parenthesized manner; and one can
borrow at most one element at a time. Furthermore, this style is verbose, especially in
light of the fact that, in Mezzo, anonymous functions must be explicitly type-annotated.

In short, there is a reason why OCaml’s standard library offers two distinct functions
find and exists. Here, in an attempt to express find in Mezzo, we have ended up with
exists, a higher-order function. We still do not have a satisfactory way of expressing
find as a first-order function.

A solution in direct style. The root of the problem lies in the fact that the permissions
xs @ list a and x @ a cannot coexist. Thus, the function find, if written in a standard
style, must consume xs @ list a and produce x @ a. Of course, there must be a way
for the user to signal that she is done working with x, at which point she would like to
relinquish x @ a and recover xs @ list a.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:21

1 data result (p: perm) a =
2 | NotFound { | p }
3 | Found { found: a }
4

5 alias wand (pre: perm) (post: perm) =
6 {ammo: perm} (
7 (| consumes (pre * ammo)) -> (| post)
8 | ammo)
9

10 alias focused a (post: perm) =
11 (x: a, w: wand (x @ a) post)
12

13 val rec find [a] (consumes xs: list a, pred: a -> bool)
14 : result
15 (xs @ list a)
16 (focused a (xs @ list a))
17 = match xs with
18 | Nil ->
19 NotFound
20 | Cons { head; tail } ->
21 if pred head then begin
22 let w (| consumes (head @ a * tail @ list a))
23 : (| xs @ list a) = () in
24 Found { found = (head, w) }
25 end
26 else begin
27 let r = find (tail, pred) in
28 match r with
29 | NotFound ->
30 r
31 | Found { found = (x, w) } ->
32 let flex guess: perm in
33 pack w @ wand (x @ a) (xs @ list a)
34 witness (head @ a * guess);
35 r
36 end
37 end
38 end

Fig. 10. Borrowing an element from a container in direct style

Fig. 10 shows a version of find that follows this idea. The function find requires
the permission xs @ list a, which it consumes (line 13). If no suitable element exists
in the list, then it returns a unit value, together with the permission xs @ list a
(line 15). If one exists, then it returns a focused element (line 16). This alternative is
expressed on line 14 via the algebraic data type result. According to the definition of
this type (lines 1–3), an object of type result p a either is tagged NotFound, has zero
fields, and carries the permission p; or is tagged Found and has one field of type a.

The notion of a focused element appears in our unpublished work on iterators, which
pose a similar problem [Guéneau et al. 2013]. A focused element (lines 10–11) is a pair
of an element x, which has type a, and a function w, a “magic wand” that takes away

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:22 T. Balabonski et al.

x @ a and produces xs @ list a instead.3 The idea is, when the user is provided with
a focused element (x, w), she can work with x as long as she likes; once she is done, she
invokes the function w. This function in principle does nothing at runtime: by calling
it, the user tells the type-checker that she is done with x and would now like to recover
the permission to use the list xs. A magic wand is affine: it can be used just once.

Mezzo does not currently have magic wand as a primitive notion. Instead, we define
a magic wand (lines 5–8) as a (runtime) function of no argument and no result, which
consumes a permission pre and produces a permission post. A magic wand typically
has some internal state, which, conjoined with pre, gives rise to post. (This is why the
magic wand can be used just once.) We represent this internal state as an existentially
quantified permission ammo. Within the existential quantifier {ammo: perm}, one finds
a package of (1) a function that consumes pre * ammo and (2) one copy of ammo. Be-
cause ammo is affine, a magic wand can indeed be used at most once: it is a one-shot
function. The name “ammo” suggests the image of a gun that needs a special type of am-
munition and is supplied with just one cartridge of that type. The reason why we need
this encoding of one-shot functions, involving an explicit ammo, is that we view every
function as duplicable and (therefore) forbid a function from capturing a nonduplicable
permission that exists at its definition site.

Equipped with these (fairly elaborate, but re-usable) definitions, we may explain the
definition of find.

At line 19, we have reached the end of the list. We return NotFound. By examining
the return type of find (lines 14–16) as well as the definition of the algebraic data type
result (lines 1–3), the type-checker determines that the permission xs @ list amust
be returned to the caller. We have this permission, so all is well.

At line 24, the element head is the one we are looking for. We return Found applied
to the pair (head, w), which should (therefore) have type focused a (xs @ list a).
To check that this is indeed the case, the type-checker must verify that we are able to
produce the permission:

w @ wand (head @ a) (xs @ list a)

The definition of w at lines 22–23 gives rise to the permission:

w @ (| consumes (head @ a * tail @ list a)) -> (| xs @ list a)

The type-checker verifies that this permission, combined with tail @ list a, entails
the desired permission, shown previously. This subsumption step involves an existen-
tial quantifier introduction, taking tail @ list a as the witness for ammo.

The type-checker must also verify that the definition of w at lines 22–23 is valid. This
is indeed the case because w has access not only to head @ a * tail @ list a, but also
to the duplicable permission xs @ Cons { head = head; tail = tail }. (In Mezzo, a
function has access to every duplicable permission that exists at its definition site.) By
combining these three permissions, one obtains xs @ list a, as desired.

At line 30, the desired element has not been found further down: the recursive call
to find returns NotFound. Even though the code is terse, the reasoning is nontrivial.
As we are in the NotFound branch, we have tail @ list a. Furthermore, we still hold
head @ a and xs @ Cons { head = head; tail = tail }, which were framed out dur-
ing the call. The type-checker recombines these permissions and verifies that we have
xs @ list a, as demanded in this case by the postcondition of find.

3Magic wands, also known as “separating implication” [Reynolds 2002], can be used to encode data struc-
tures with a hole, or data structure segments [Maeda et al. 2011]. They have also been used in the descrip-
tion of iterator protocols [Krishnaswami et al. 2009; Haack and Hurlin 2009].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:23

At line 31 is the last and most intricate case. The desired element x has been
found further down the list. The recursive call returns the value x, the permis-
sion x @ a, and a wand w that we are supposed to use when we are done with x.
This wand has type wand (x @ a) (tail @ list a). At lines 33–34, we argue that
it also has type wand (x @ a) (xs @ list a)4. Combined with the structural permis-
sion r @ Found { found = (x, w) } obtained at line 28, this implies that r has type
result (xs @ list a) (focused a (xs @ list a)), as promised on lines 14–16.

Limits of this approach. The strength of this approach is that it allows the user to
work in direct style. The fact that Mezzo’s type discipline is powerful enough to express
the concepts of one-shot function, magic wand, focused element, and to explain what
is going on in the find function, is good. Nevertheless, we are well aware that this
solution is not fully satisfactory, and illustrates some of the limitations of Mezzo, as it
stands today.

For one thing, the code is verbose, and requires nontrivial type annotations, in spite
of the fact that the type-checker already performs quite a lot of work for us, including
automatic elimination and (sometimes) automatic introduction of existential quanti-
fiers. The effort involved in writing this code is well beyond what most programmers
would expect to spend.

A related issue is that the definition of find contains a redundant case analysis,
which ideally should be unnecessary. Indeed, because let flex and pack have no run-
time effect, the entire match construct at lines 28–36 is equivalent to just r. If we could
replace this construct with just r, the code would be much more transparent, and it
would become clear that the recursive call is a tail call. At present, the Mezzo compiler
could in principle perform these optimizations behind the scene, but that is not quite
satisfactory.

Another criticism is that we encode a magic wand as a runtime function, even though
this function has no runtime effect. Ideally, there should be a way of declaring that a
function is a “ghost” function. The system would check that this function has no run-
time effect (including nontermination). This would clarify the program and improve
efficiency (by allowing ghost code to be erased).

4For the reader who would like to understand this code fragment in detail, let us say a little more. On line 31,
the type-checker automatically expands the type of w, namely wand (x @ a) (tail @ list a). This is an
abbreviation for an existential type, which is automatically unpacked. Thus, w is now viewed as a function
of type (| consumes (x @ a * ammo)) -> (| tail @ list a), where ammo is a fresh abstract permission;
and one copy of ammo is now available. Now, by the frame rule (FRAMESUB, Fig. 26), one can add a permis-
sion to the domain and codomain of a function. Here, by adding head @ a to the domain and codomain, we
find that w also has type (| consumes (x @ a * head @ a * ammo)) -> (| head @ a * tail @ list a). In
the presence of the duplicable permission xs @ Cons { head = head; tail = tail }, the codomain can be
further weakened: we find that w has type (| consumes (x @ a * head @ a * ammo)) -> (| xs @ list a).
This information about w and the fact that the permission head @ a * ammo is available allow us in principle
to recognize the definition of a magic wand and to conclude that w has type wand (x @ a) (xs @ list a),
as desired. This is an existential introduction step, where the witness this time is head @ a * ammo.
Unfortunately, as of today, the Mezzo type-checker is unable to automatically infer this witness. (This
should not be surprising, as the knowledge of the witness guides the subsumption steps that we have
just described.) Instead, the programmer must explicitly provide this information, via the construct
pack w @ <existential permission> witness <witness type or permission> (lines 33–34). This leads to
another difficulty, though. The programmer cannot write that the witness is “head @ a * ammo”. Because
the permission variable ammo has been automatically introduced by the type-checker, there is no way for
the programmer to refer to it. We solve this problem via the let flex construct on line 32. This construct
introduces a flexible permission variable, called guess. This allows us to supply head @ a * guess as the
witness on line 34. When examining the pack construct, the type-checker is able to guess that guess must
be unified with ammo. In principle, we could simplify things slightly by allowing the programmer to supply
“head @ a * _” as the witness on line 34. The wildcard would be considered syntactic sugar for a flexible
variable, obviating the need for an explicit let flex. This has not yet been implemented.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:24 T. Balabonski et al.

However, extending Mezzo with ghost code, while guaranteeing its termination,
could be nontrivial. We do not wish to restrict references to base types, as done by
Filliâtre et al. [2014] in order to prohibit recursion through the store. Perhaps, in-
stead, we could adopt the elaborate “call permissions” used by Jacobs et al. [2015] in
VeriFast. Or, perhaps, it is sufficient to forbid unfolding a recursive type inside ghost
code. We leave these questions for the future.

Limits of both approaches. In either approach, when one borrows an element x from
a list xs, one gains the permission x @ a, but loses xs @ list a. This means that at
most one element at a time can be borrowed from a container.

In a way, this restriction makes sense. One definitely cannot hope to borrow a single
element x twice, as that would entail duplicating the affine permission x @ a. Thus,
in order to borrow two elements x and y from a single container, one must somehow
prove that x and y are distinct. Such a proof is likely to be beyond the scope of a type
system; it may well require a full-fledged program logic.

At this point, the picture may seem quite bleak. One thing to keep in mind, though,
is that the whole problem vanishes when the type a is duplicable. This brings us nat-
urally to the next section. We propose a mechanism, adoption and abandon, which can
be viewed as a way of converting between an affine type a and a universal duplicable
type, dynamic. One can then use a container whose elements have type dynamic, and
look up multiple elements in this container, without restriction. Naturally, the conver-
sion from type dynamic back to type a involves a runtime check, so that attempting to
borrow a single element twice causes a runtime failure. The proof obligation x 6= y is
deferred from compile time to runtime.

2.5. Breaking out: arbitrary aliasing of mutable data structures
The type-theoretic discipline that we have presented up to this point allows construct-
ing a composite permission out of several permissions and (conversely) breaking a
composite permission into several components. For instance, a permission for a list is
interconvertible with a conjunction of separate permissions for the head cell and for
the tail (§2.2). More generally, a permission for a tree is interconvertible with a con-
junction of separate permissions for the root record and for the subtrees. Thus, every
tree-shaped data structure can be described in Mezzo by an algebraic data type.

There are two main limitations to the expressive power of this discipline.
First, because we adopt an inductive interpretation of algebraic data types, a permis-

sion cannot be a component of itself. In other words, it cannot be used in its own con-
struction. This holds of both duplicable and affine permissions. Thus, every algebraic
data type describes a family of acyclic data structures. The permission xs @ list int,
for instance, means that xs is a finite list of integers. (In this sense, Mezzo differs from
OCaml, which allows constructing a cyclic immutable list: let rec xs = 0 :: xs.)
This choice is intentional: we believe that it is most often desirable to ensure the ab-
sence of cycles in an algebraic data structure.

Second, an affine permission cannot serve as a component in the construction of
two separate composite permissions. Because every mutable memory block (and, more
generally, every data structure that contains such a block) is described by an affine
permission, this means that mutable data structures cannot be shared. Put in another
way, this discipline effectively imposes an ownership hierarchy on the mutable part of
the heap.

When one wishes to describe a data structure that involves a cycle in the heap or the
sharing of a mutable substructure, one must work around the restrictions described
above. This requires extra machinery.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:25

1 data mutable node a =
2 Node {
3 value : a;
4 visited : bool;
5 neighbors: list (node a);
6 }
7

8 val _ : node int =
9 let n = Node {

10 value = 10;
11 visited = false;
12 neighbors = ();
13 } in
14 let ns = Cons { head = n; tail = Nil } in
15 n.neighbors <- ns;
16 n

Fig. 11. A failed attempt to construct a cyclic graph

Illustration. In order to illustrate the problem, let us define a naïve type of graphs
and attempt to construct the simplest possible cyclic graph, where a single node points
to itself.

The definition of the type node is straightforward (Fig. 11, lines 1–6). Every node
stores a value of type a, where the type variable a is a parameter of the definition; a
Boolean flag, which allows this node to be marked during a graph traversal; and a list
of successor nodes. The type node is declared mutable: it is easy to think of applications
where all three fields must be writable.

Next (lines 8–16), we allocate one node n, set its neighbors field to a singleton list
of just n itself, and claim (via the type annotation on line 8) that, at the end of this
construction, n has type node int. This code is ill-typed, and is rejected by the type-
checker. Perhaps surprisingly, the type error does not lie at line 15, where a cycle in
the heap is constructed. Indeed, at the end of this line, the heap is described by the
following permission:

n @ Node {
value : int;
visited : bool;
neighbors = ns;

} *
ns @ Cons { head = n; tail: Nil }

This illustrates the fact that a cycle of statically known length can be described in
terms of structural permissions and singleton types. The type error lies on line 16,
where (due to the type annotation on line 8) the type-checker must verify that the
above permission entails n @ node int. This permission subsumption step is invalid.
This is the second limitation that was discussed earlier: since n @ Node { ... } is
affine, it cannot be used to separately justify that n is a node and ns is a list of nodes.
Furthermore, even if n @ Node { ... } was duplicable, this permission subsumption
step would still be invalid. This is the first limitation discussed earlier: since the al-
gebraic data type node is interpreted inductively, a node cannot participate in its own
construction.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:26 T. Balabonski et al.

1 data mutable node a =
2 Node {
3 content : a;
4 visited : bool;
5 neighbors: list dynamic;
6 }
7

8 data mutable graph a =
9 Graph {

10 roots : list dynamic;
11 } adopts node a
12

13 val g : graph int =
14 let n = Node {
15 content = 10;
16 visited = false;
17 neighbors = ();
18 } in
19 let ns = Cons { head = n; tail = Nil } in
20 n.neighbors <- ns;
21 assert n @ node int * ns @ list dynamic;
22 let g : graph int = Graph { roots = ns } in
23 give n to g;
24 g
25

26 val dfs [a] (g: graph a, f: a -> ()) : () =
27 let s = stack::new g.roots in
28 stack::work (s, fun (n: dynamic
29 | g @ graph a * s @ stack dynamic) : () =
30 take n from g;
31 if not n.visited then begin
32 n.visited <- true;
33 f n.content;
34 stack::push (n.neighbors , s)
35 end;
36 give n to g
37)

Fig. 12. Graphs, a cyclic graph, and depth-first search, using adoption and abandon

To sum up, the type node at lines 1–6 is not a type of possibly cyclic graphs, as one
might have naïvely imagined. It is in fact a type of trees, where each tree is composed
of a root node and a list of disjoint subtrees.

A solution. The problem with this naïve approach stems from the fact that types
have an ownership reading. Saying that neighbors is a list of nodes amounts to claim-
ing that every node owns its successors. Because ownership is a hierarchy, this implies
that the graph must be a hierarchy, that is, a tree.

In order to solve this problem, we must allow a node to point to a successor without
implying that there is an ownership relation between them. “Who” then should own
the nodes? A natural answer is, the set of all nodes should be owned as a whole by a
single distinguished object: say, the “graph” object.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:27

Fig. 12 presents a corrected definition of graphs, and shows how to build the cyclic
graph of one node. It also contains code for an iterative version of depth-first search,
using an explicit stack. Let us explain this example step by step.

The type dynamic. The only change in the definition of node a is that the neighbors
field now has type list dynamic (line 5).

The meaning of n @ dynamic is that n is a valid address in the heap, i.e., it
is the address of a memory block. When one allocates a new memory block, say
via let n = Node { ... } in ..., one obtains not only a structural permission
n @ Node { ... }, but also n @ dynamic. Although the former is affine (because Node
refers to a mutable algebraic data type), the latter is duplicable. Intuitively, it is sound
for the type dynamic to be considered duplicable because the knowledge that n is a valid
address can never be invalidated, hence can be freely shared. However, the permission
n @ dynamic does not allow reading or writing at this address. In fact, it does not even
describe the type of the memory block that is found there–and it cannot: this block is
owned by “someone else” and its type could change with time.

Because it is duplicable, the type dynamic does not have an ownership reading. The
fact that neighbors has type list dynamic does not imply that a node owns its succes-
sors; it means only that neighbors is a list of heap addresses.

Pointers and ownership are now decoupled. The existence of a pointer (at type
dynamic) from a node to a successor does not imply ownership. Conversely, owner-
ship does not imply the existence of a pointer: as we will see, the graph object owns all
nodes, even though it does not necessarily have a pointer (or even a path) to them.

Constructing a cyclic graph. As an example, we construct a node that points to it-
self (lines 14–21). The construction is the same as in Fig. 11. This time, it is well-
typed, though. Because we have n @ dynamic, we can establish ns @ list dynamic,
and, therefore, n @ node int. Furthermore, since ns @ list dynamic is duplicable, it
is not consumed in the process. The (redundant) static assertion on line 21 shows that
the desired permissions for n and ns co-exist.

The type graph a (lines 8–11) defines the structure of a “graph” object. This object
contains a list of so-called root nodes. Like neighbors, this list has type list dynamic.
Furthermore, the adopts clause on line 11 declares that an object of type graph a
adopts a number of objects of type node a. This is a way of saying that the graph “owns”
its nodes. Thus, an object of type graph int is an adopter, whose adoptees are objects of
type node int. The set of its adoptees changes with time, as there are two instructions,
give and take, for establishing or revoking an adoptee-adopter relationship.

The give and take instructions. The runtime effect of the adoption instruction
give n to g (line 23) is that the node n becomes a new adoptee of the graph g. At
the beginning of this line, the permissions n @ node int and g @ graph int are avail-
able. Together, they justify the instruction give n to g. (The type-checker verifies that
the type of g has an adopts clause and that the type of n is consistent with this clause.)
After the give instruction, at the end of line 23, the permission n @ node int has been
consumed, while g @ graph int remains. A transfer of ownership has taken place:
whereas the node nwas “owned by this thread”, so to speak, it is now “owned by g”. The
permission g @ graph int should be interpreted intuitively as a proof of ownership of
the object g (which has type graph int) and of its adoptees (each of which has type
node int). It can be thought of as a conjunction of a permission for just the memory
block g and a permission for the group of g’s adoptees; in fact, in our formalization (§7),
these permissions are explicitly distinguished.

Although g @ graph int implies the ownership of all of the adoptees of g, it does
not indicate who these adoptees are: the type system does not statically keep track

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:28 T. Balabonski et al.

of the relation between adopters and adoptees. After the give instruction at line 23,
for instance, the system does not know that n is adopted by g. If one wishes to assert
that this is indeed the case, one can use the abandon instruction, take n from g. The
runtime effect of this instruction is to check that n is indeed an adoptee of g (if that
is not the case, the instruction fails) and to revoke this fact. After the instruction, the
node n is no longer an adoptee of g; it is unadopted again. From the type-checker’s point
of view, the instruction take n from g requires the permissions n @ dynamic, which
proves that n is the address of a valid block, and g @ graph int, which proves that g
is an adopter and indicates that its adoptees have type node int. It preserves these
permissions and (if successful) produces n @ node int. This is a transfer of ownership
in the reverse direction: the ownership of n is taken away from g and transferred back
to “this thread”.

Conceptual model. An adopter owns its adoptees. Conceptually, one can imagine that
an adopter maintains a list of its adoptees. More precisely, if g has been declared to
adopt objects of type t, one can imagine that g has a field adoptees of type list t.
An instruction give n to g inserts the (new) element n into the list g.adoptees. An
instruction take n from g checks that n appears in this list (if not, the instruction
fails) and removes it from the list.

In fact, this simple view of adoption and abandon could be implemented in Mezzo as
a library. An adopter y would be a reference to a list of adoptees. Calling give (x,y)
would consume x @ t and insert x into the list. The type dynamic would be defined
as the “top” type {a}a, so the permission x @ dynamic would be duplicable and always
available. Calling take (x,y)would search for x in the list (based on its address). Once
found, the element x would be removed from the list of adoptees, and the permission
x @ t would be returned to the caller.

This implementation would work, but would be expensive, as the cost of take would
be linear in the number of adoptees. We propose an alternative representation, which
allows performing give and take in constant time.

Runtime model. We maintain a pointer from every adoptee to its adopter. Within
every object, there is a hidden adopter field, which contains a pointer to the object’s
current adopter, if it has one, and null otherwise. This information is updated when
an object is adopted or abandoned. In terms of space, the cost of this design decision
is one field per object. One could save some space by letting the programmer decide
which objects need this field (§7.10).

The runtime effect of the instruction give n to g is to write the address g to the field
n.adopter. The static discipline guarantees that this field exists and that its value,
prior to adoption, is null. The runtime effect of the instruction take n from g is to
check that the field n.adopter contains the address g and to write null into this field.
If this check fails, the execution of the program is aborted. We also offer an expression
form, g adopts n, which tests whether n.adopter is g and produces a Boolean result.
It is not described in this paper.

The reader may be worried that this mechanism introduces a data race on the
adopter field. We explain in §7.9 that, thanks to the type discipline, the only possible
race is between two take instructions on a single adoptee, i.e., between take x from y
and take x from z, where y and z are distinct. There, we argue informally that this
race is benign: intuitively, neither of these instructions can affect the outcome of the
other.

Illustration. We illustrate the use of adoption and abandon with the example of
depth-first search (Fig. 12, lines 26–37). The frontier (i.e., the set of nodes that must
be examined next) is represented as a stack; we rely on the stack module of Fig. 8.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:29

The stack s has type stack dynamic. We know (but the type-checker does not) that the
elements of the stack are nodes, and are adoptees of g.

The function dfs initializes the stack (line 27) and enters a loop, encoded as a call to
the higher-order function stack::work. At each iteration, an element n is taken out of
the stack; it has type dynamic (line 28). Thus, the type-checker does not know a priori
that n is a node. The take instruction (line 30) recovers this information. It is justi-
fied by the permissions n @ dynamic and g @ graph int and (if successful) produces
n @ node int. This proves that n is indeed a node, which we own, and justifies the
read and write accesses to this node that appear at lines 31–34. Once we are done
with n, we return it to the graph via a give instruction (line 36).

There are various mistakes that the programmer could make in this code and that
the type-checker would not catch. For instance, forgetting the final give would lead to
a runtime failure at a later take instruction, typically on line 30. In order to diminish
the likelihood of this particular mistake, we propose taking n from g begin ... end
as syntactic sugar for a well-parenthesized use of take and give.

Discussion. Because adoption and abandon are based on a runtime test, they are
simple and flexible. If one wished to avoid this runtime test, one would probably end
up turning it into a static proof obligation. The proof, however, may be far from trivial,
in which case the programmer would have to explicitly state subtle logical properties
of the code, and the system would have to offer sufficient logical power for these state-
ments to be expressible. The dynamic discipline of adoption and abandon avoids this
difficulty, and meshes well with the static discipline of permissions. We believe that we
have a clear story for the user: “when you need multiple pointers to a mutable object,
use adoption and abandon”.

Adoption and abandon is a flexible mechanism, but also a dangerous one. Because
abandon involves a dynamic check, it can cause the program to fail at runtime. In
principle, if the programmer knows what she is doing, this should never occur. There is
some danger, but, one may argue, that is the price to pay for a simpler static discipline.
After all, the danger is effectively less than in ML or Java, where a programming error
that creates an undesired alias remains undetected and can lead to incorrect runtime
behavior or security flaws [Vitek and Bokowski 2001; Tschantz and Ernst 2005].

A limitation of adoption and abandon is that give and take require exclusive own-
ership of the adopter. Thus, although this mechanism allows “sharing” in the sense of
establishing and exploiting multiple pointers to a mutable object or data structure, it
does not allow sharing mutable data between several threads. For this purpose, we use
locks (§1). It is typical to use the two mechanisms together: a lock controls access to an
adopter, which in turn gives access to a group of adoptees. An upside of this limitation
is that, even in a concurrent setting, give and take can be implemented cheaply, using
normal read and write instructions. Although a data race exists, it is benign (§7.9).

2.6. Nesting, an alternative to adoption and abandon
A drawback of adoption and abandon is that they incur a runtime cost in time and
space. In a sense, this is justified, as they are very powerful. In particular, they allow
regaining permanent ownership of an adoptee (by take-ing it away from its adopter),
and they allow take-ing two distinct adoptees simultaneously from the same adopter.
A purely static mechanism typically cannot support these features, because that would
require statically keeping track of which objects have been taken away and exhibiting
sophisticated nonaliasing proofs.

If one is willing to give up on these two features, though, it is possible to devise
static mechanisms for aliasing exclusively-owned, mutable data, at no runtime cost.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:30 T. Balabonski et al.

1 abstract nests (y : value) (p : perm) : perm
2 fact duplicable (nests y p)
3

4 val nest: [y : value, p : perm]
5 (| consumes p) -> (| nests y p)
6

7 abstract punched (a : type) (p : perm) : type
8

9 val focus: [y : value, p : perm, a] exclusive a =>
10 (| nests y p * consumes y @ a) -> (| p * y @ punched a p)
11

12 val defocus: [y : value, p : perm, a] exclusive a =>
13 (| consumes (p * y @ punched a p)) -> (| y @ a)

Fig. 13. Axiomatization of nesting in Mezzo

Nesting [Boyland 2010] is one such mechanism. In the following, we show how (a sim-
plified version of) nesting can be axiomatized in Mezzo.

An axiomatization of nesting. We axiomatize nesting by providing a module, nest,
whose interface (shown in Fig. 13) offers a small number of types and operations. Each
of these operations is a no-op: at runtime, it does nothing and returns a unit value.
In other words, nesting is a purely static mechanism. It is axiomatized, as opposed to
defined: that is, its implementation uses unsafe type casts. We have not proved type
soundness for Mezzo with nesting. We believe that it should be possible to do so, as an
extension of the type soundness proof presented in this paper.

The first item in Fig. 13 is nests (line 1). It is an abstract permission, that is, an
abstract type of kind perm. It is parameterized with a value y and a permission p. The
permission nests y p means that p has been “nested” in y, or delegated to y. In other
words, whoever has (exclusive) ownership of the object y also (implicitly) possesses the
permission p.

Nesting is similar to adoption and abandon. In both mechanisms, a permission is del-
egated to an object y. In nesting, an arbitrary permission p can be delegated. In adop-
tion and abandon, it must be a permission of the form x @ u, where x is the adoptee
and u is the agreed-upon type of y’s adoptees.

In nesting, the permission nests y p serves as a static witness that p has been
nested in y, whereas in adoption and abandon, there is no such witness. All we have is
x @ dynamic, which allows us to perform a dynamic ownership test, via the instruction
take x from y.

The permission nests y p is duplicable (line 2). In other words, the fact that p has
been nested in y can be advertised without restriction. This is sound because such a
fact, once true, remains true forever: nesting cannot be undone. Similarly, in adoption
and abandon, the type dynamic is duplicable. This serves a common purpose, namely
to allow sharing a piece of information about the nestee, or adoptee.

In adoption and abandon, a pair of dual operations, give and take, allow delegating
the ownership of some object x to an adopter y and taking it back. Nesting offers a
set of operations that serve a similar purpose. Their types are crafted in such a way
that one cannot simultaneously take two permissions away from a single object y. Two
operations, nest and defocus, correspond to give. One operation, focus, corresponds
to take. We stress, once more, that these operations have no runtime effect.

A new nesting relationship is established by a call to nest (line 4). Such a call takes
the permission p away from the caller and transfers it to the object y, or in other words,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:31

to whoever owns y. Thus, the caller loses p and gains the (duplicable) nesting witness
nests y p. Perhaps surprisingly, no permission for y is required.

If and when one wishes to regain p, one can do so by invoking focus (line 9). This
operation requires proof that p has been nested in y: this is encoded by requiring
nests y p. Furthermore, exclusive ownership of y is needed. This is expressed by re-
quiring y @ a, for an arbitrary exclusive type a.5 Naturally, one must not allow this
operation to be performed twice in sequence: that would allow the user to obtain two
copies of p, which may be nonduplicable. In order to disallow this, focus consumes the
exclusive permission y @ a. In its stead, it produces the permission y @ punched a p,
which is not exclusive (hence, does not allow focusing on y again).

The permission y @ punched a p is, in essence, a magic wand (in Boyland’s words,
a linear implication). It means that, once the user is done working with p, she may
give it up and recover y @ a. This is done via a call to defocus (line 12).

In a typical call to nest, focus, or defocus, the parameters y and pmust be explicitly
instantiated by the programmer, as they cannot be inferred. This is illustrated further
on in our re-implementation of graphs using nesting.

Our version of nesting is not as powerful as Boyland’s6. For instance, Boyland al-
lows per-field nesting: one may nest p in y.f. Furthermore, his theory includes frac-
tional permissions, which interact with nesting in subtle ways. Nevertheless, nesting
in Mezzo has potentially interesting applications. In the following, we re-formulate the
example of graphs (§2.5) using nesting.

Implementing graphs with nesting. The code in Fig. 14 defines graphs, constructs a
cyclic graph, and defines depth-first search, based on nesting. It should be compared
with the code in Fig. 12, which is based on adoption and abandon.

In both approaches, in order to allow aliasing, we wish to conceptually place all of
the graph nodes in a group and to have just one permission for the entire group, as
opposed to one permission per node.

In the present case, we do this by nesting the permission for every node in a single
object. This could be the graph g itself. Here, we prefer to use a separate (dummy)
object r, which we then store in a field of g. This object r serves no purpose besides
nesting every node. We refer to it as a “region”.

We begin by defining the algebraic data type region (line 3). Like the unit type (), it
has just one data constructor, of arity zero. Unlike the unit type, it is declared mutable,
which implies that a region has a unique owner and that the permission r @ region
is exclusive. This allows us to use r in focus and defocus operations.

For every graph node x, we intend to nest the permission for x in the region r. In
other words, we intend every node to become an inhabitant of this region. For greater
clarity, a type of “region inhabitants” is made explicit via a type abbreviation (line 6).
(The type unknown is surface syntax for >, that is, a duplicable type that carries no
information.) Thus, by definition, the permission x @ inhabitant r a is synonymous
with nests r (x @ a).

We are now ready to define the type node (line 9). We parameterize it not only over
the type a of the content field, as before (Fig. 12), but also over a region r. Indeed, this
time, we intend to statically keep track of which region the nodes inhabit. We declare

5Like duplicable a, exclusive a is an assertion about the type a, and can be viewed as a permission. It is
not formalized in this paper. Intuitively, exclusive a holds if and only if (1) the permission y @ a implies
exclusive ownership of the object that exists at address y in the heap and (2) y has not been focused. It is
not synonymous with affine a, which in Mezzo would be true of every type a.
6The operation nest corresponds roughly to transformation 7 in Boyland’s Theorem 6.4 [2010]. The opera-
tions focus and defocus correspond roughly to the second item and fourth items, counting from the end, in
Boyland’s Theorem 6.2.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:32 T. Balabonski et al.

1 open nest
2

3 data mutable region =
4 Region
5

6 alias inhabitant (r : value) a =
7 (x: unknown | nests r (x @ a))
8

9 data mutable node (r: value) a =
10 Node {
11 visited : bool;
12 content : a;
13 neighbors: list (inhabitant r (node r a))
14 }
15

16 alias inode (r: value) a =
17 inhabitant r (node r a)
18

19 alias graph a =
20 (r: region, roots: list (inode r a))
21

22 val g : graph int =
23 let r = Region in
24 let n = Node {
25 visited = false;
26 content = 10;
27 neighbors = nil;
28 } in
29 let ns = Cons { head = n; tail = Nil } in
30 nest [r, (n @ node r int)] ();
31 focus [r] ();
32 n.neighbors <- ns;
33 defocus [r] ();
34 (r, ns)
35

36 val dfs [a] (g: graph a, f: a -> ()): () =
37 let (r, roots) = g in
38 let s : stack (inode r a) = stack::new roots in
39 stack::work [inode r a] (s, fun (n: inode r a
40 | r @ region * s @ stack (inode r a)) : () =
41 focus [r] ();
42 if not n.visited then begin
43 n.visited <- true;
44 f n.content;
45 let ns = n.neighbors in
46 stack::push [inode r a] (ns, s);
47 end;
48 defocus [r] ()
49)

Fig. 14. Alternative implementation of graphs using nesting

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:33

that the neighbors field holds a list of nodes in the region r (line 13). It is important
to note that, although node r a is affine, inhabitant r (node r a) is duplicable. This
stems from the fact that nests r p is duplicable even if p is affine. Thus, the type of
the neighbors field indicates that the neighbors are nodes, and indicates which region
they inhabit, but does not claim that “each node owns its successors”. The ownership
of all nodes, collectively, lies with the unique permission r @ region.

We define inode r a as an abbreviation for inhabitant r (node r a) (line 16), and
define a graph as a pair of a region r and a list roots of nodes that inhabit r (line 19).
The ability for the components of a tuple to refer to one another is exploited here.

As before, we construct a cyclic graph g, composed of just one node that is its own suc-
cessor (lines 22–34). Whereas our earlier construction based on adoption and abandon
(Fig. 12, lines 13–24) involved just one give instruction, placed after the assignment
n.neighbors <- ns, here we must use nest before the assignment (line 30) and use
focus and defocus afterwards (lines 31 and 33). The reason why we can get away in
Fig. 12 with just one give instruction is that the permission ns @ list dynamic al-
ready exists before we give n to g. (Every node has type dynamic at every time, regard-
less of which give and take instructions have been executed.) In Fig. 14, in contrast, we
have a chicken-and-egg problem of sorts. In order to argue that the singleton list ns has
type list (inode r a), we need the node n to inhabit the region r. So, we must first
nest n in r. To do this, however, we must first prove that n is a well-formed node, that
is, we must exhibit n @ node r int. And, to do this, we need n.neighbors to have type
list (inode r a). We work around this circularity by initializing n.neighbors with
the empty list. This allows us to nest n in r, which is good, but unfortunately takes the
permission n @ node r int away from us. We temporarily recover this permission via
focus and defocus, which allows us to justify the assignment n.neighbors <- ns.

The call to nest (line 30) uses an explicit type application. Indeed, the type-checker
cannot guess which permission we wish to nest in which object. The calls to focus
and defocus (lines 31 and 33) also use explicit type applications. There, it is sufficient
to instantiate r. The type-checker is able to guess that p must be instantiated with
n @ node r int, as there is no other choice.

The code for depth-first search (lines 36–49) is very similar to its counterpart in
Fig. 12. Instead of a pair of give and take operations, we use a pair of focus and
defocus operations (lines 41 and 48).

Discussion. In light of this example, nesting may appear preferable to adoption and
abandon. Indeed, it has no runtime cost. Furthermore, it gives rise to more precise
types: inode r a is arguably a more satisfactory piece of information than dynamic.
However, adoption and abandon is more flexible. In particular, only adoption and aban-
don allows permanently detaching a node from a graph, perhaps in order to attach it
to some other graph, or perhaps in order to permanently reclaim unique ownership
of the value stored in its content field. Also, only adoption and abandon allows tak-
ing two elements at the same time. Finally, because every mutable object has type
dynamic even before it is adopted, adoption and abandon makes it easy to build cyclic
data structures. Nesting, in comparison, requires an object to have its final (fully ini-
tialized) type before it is nested, which may make it awkward or impossible to build a
cyclic data structure.

The fact that nesting can be axiomatized in Mezzo seems a testimony to the expres-
sive power of Mezzo’s basic type discipline. The distinction between duplicable and
affine types (and permissions), and the ability of types (and permissions) to refer to
values, are powerful features, which may well allow a variety of ownership disciplines
to be axiomatized.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:34 T. Balabonski et al.

3. TRANSLATING SURFACE MEZZO DOWN TO CORE MEZZO
The examples presented in the previous section (§2) are valid Mezzo code, expressed in
the surface syntax. However, the formal definition of the type and permission discipline
(§4–§7) is expressed in terms of a simpler core syntax. The type-checker translates
surface syntax down to core syntax, and performs the bulk of the type-checking work
at that level.

In this section, we give an informal presentation of this translation, so as to bridge
the gap between the examples of the previous section (§2) and the formal definitions
that follow (§4–§7). This translation and its properties have not been machine-checked;
they are outside of the scope of our Coq formalization.

As far as types and permissions are concerned, there are two differences between
surface syntax and core syntax. One difference is that the surface syntax offers a
name introduction construct x: t, together with a set of rules that dictate the scope
of the name x. This construct does not exist in the core syntax, where we only have
more traditional quantifiers. The second difference is that the surface syntax adopts
the convention that functions by default do not consume their argument, and offers
a consumes keyword to indicate that (part of) the argument is in fact consumed. In
contrast, the core syntax does not have a consumes keyword; it adopts the convention
that functions do consume their argument, and repeat the nonconsumed parts of their
argument in their return type.

The surface and core languages also differ in the syntax of terms. We do not describe
these differences, which consist mainly in syntactic sugar for function definitions.

This section is structured as follows. First, we illustrate the translation of types from
the surface syntax to the core syntax with a few examples (§3.1). These examples have
been chosen so as to highlight the main features of the translation, so the reader who
feels satisfied with it can safely skip ahead to the beginning of §4. Then, we proceed
to give a precise definition of the translation. In §3.2, we define the (combined) surface
and core syntaxes of types and permissions. We give a well-kindedness judgement,
which defines the scope of every name. Finally (§3.3), we define a translation of the
surface syntax into the core syntax.

3.1. Examples
Let us consider the following type, which is a simplified version of the type of find
(§2.4, Fig. 10).
[a] (consumes xs: list a) ->

(x: a, wand (x @ a) (xs @ list a))

The name introduction construct xs: list a binds the variable xs. The scope of xs
encompasses the domain and codomain of this function type. Consequently, the second
occurrence of xs (in the permission xs @ list a) is bound by the name introduction.

The codomain of this function type is a pair (..., ...). The left-hand component of
this pair is another name introduction construct x: a. The scope of x is the whole pair.
Consequently, the occurrence of x in the permission x @ a in the right-hand component
of the pair is bound by this second name introduction.

One way of explaining the meaning of these name introduction constructs, and of
making it clear where the names xs and x are bound, is to translate away the name
introductions. In this example, this can be done as follows. This type is equivalent to
the previous formulation, and is also valid surface syntax:
[a] [xs : value]

(consumes (=xs | xs @ list a)) ->
{x : value}
((=x | x @ a), wand (x @ a) (xs @ list a))

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:35

The name xs is now universally quantified (at kind value) above the function type.
Thus, its scope encompasses the domain and codomain of the function type. The name x
is existentially quantified (also at kind value) above the codomain. Thus, its scope is
the codomain.

The name introduction xs: list a is now replaced with (=xs | xs @ list a). This
is a conjunction of a (singleton) type and a permission. This means that the function
find expects a value (which is passed at runtime) and a permission (which exists only
at type-checking time). Although placing a singleton type in the domain of a function
type may seem absurdly restrictive, the universal quantification on xsmakes the func-
tion type general again. By instantiating xs with ys, one finds that, for any value ys,
the call find ys is well-typed, provided the caller is able to provide the permission
ys @ list a. Similarly, the name introduction x: a is replaced with (=x | x @ a).

The encoding of dependent products and dependent sums in terms of quantification
and singleton types is standard. It is worth noting that our name introduction form is
more expressive than traditional dependent products and sums, as it does not have a
left-to-right bias. For instance, in the type (x: t, y: u), both of the variables x and y
are in scope in both of the types t and u. The high flexibility of this name introduction
construct was illustrated in Fig. 14, where the type graph can name itself and refer to
itself.

It is easy to translate the above type into the core syntax:

∀(a : type)
∀(xs : value)
(=xs | xs@ list a)→
∃(x : value)
((=x | x@ a), wand (x@ a) (xs@ list a))

In this example, because the argument is entirely consumed, the translation is trivial.
All we have to do is erase the consumes keyword. In the core syntax, by convention,
the plain arrow→ denotes a function that consumes its argument, so this type has the
desired meaning.

The translation of consumes is slightly more complex when only part of the argument
is consumed: e.g., when the argument is a pair, one component of which is marked with
the keyword consumes. Consider, for instance, the type of a function that merges two
sets, updating its first argument and destroying its second argument:

[a] (set a, consumes set a) -> ()

The domain of this function type is a pair, whose second component is marked with
the keyword consumes. We translate this into the core syntax by introducing a name,
say x, for this pair, and by writing explicit pre- and postconditions that refer to x:

∀(a : type)
∀(x : value)
(=x | x@ (set a, set a))→
(() | x@ (set a,>))

The symbol > is an abbreviation for ∃(y : value) =y, which is a duplicable but noninfor-
mative type. Thus, in order for the call merge (s1, s2) to be accepted, the caller must
provide proof that s1 and s2 are valid sets; but, after the call, only s1 is known to still
be a set.

3.2. Well-kindedness
The combined surface and core syntaxes of Mezzo are presented in Fig. 15. The surface
syntax has the function type T1 T2, which is exposed to the user under the ASCII

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:36 T. Balabonski et al.

κ ::= value | type | perm | . . . (Kinds)

T, P ::= (Types and permissions)
| x (Variable)
| =x (Singleton type)
| T → T (Function type (core))
| (T | P) (Type/permission conjunction)
| (T, T) (Pair type)
| x@T (Atomic permission)
| empty (Empty permission)
| P ∗ P (Permission conjunction)
| duplicable T (Duplicability assertion)
| ∀(x : κ) T (Universal quantification)
| ∃(x : κ) T (Existential quantification)

| T T (Function type (surface))
| x : T (Name introduction (surface))
| consumes T (Consumes annotation (surface))

Fig. 15. Types and permissions: combined core and surface syntaxes

names(x : T) = {(x, value)}] names(T) (Name introduction)
names(T1, T2) = names(T1)] names(T2) (Pair type)
names(T | P) = names(T) (Type/permission conjunction)
names(consumes T) = names(T) (Consumes annotation)
names(T) = ∅ (Any other type)

Fig. 16. Name collection function

K-OPENNEWSCOPE
Γ; names(T) ` T : κ

Γ ` #T : κ

Fig. 17. Types and permissions: well-kindedness (auxiliary judgement)

form T1 -> T2. The core syntax has the function type T1 → T2 instead. The constructs
x : T and consumes T appear only in the surface syntax. All of the other constructs are
shared between the two levels.

The well-kindedness judgement checks (among other things) that every name is
properly bound. Thus, in a slightly indirect way, it defines the scope of every name.
In addition to the universal and existential quantifiers, which are perfectly standard,
Mezzo offers the name introduction construct x : T , which is nonstandard, since x is in
scope not just in the type T , but also “higher up”, so to speak. For instance, in the type
(x1 : T1, x2 : T2), both x1 and x2 are in scope in both T1 and T2.

In order to reflect this convention, in the well-kindedness rules, one must at cer-
tain well-defined points go down and collect the names that are introduced by some
name introduction form, so as to extend the environment with assumptions about these
names.

The auxiliary function names(T), which collects the names introduced by the type T ,
is defined in Fig. 16. In short, it descends into tuples, looking for name introduction
forms, and collects the names that they introduce.

The well-kindedness judgement Γ ` T : κ means that under the kind assumptions
in Γ, the type T has kind κ. Its definition (Fig. 18) relies on an auxiliary judgement,
Γ ` #T : κ, which by definition means Γ; names(T) ` T : κ (Fig. 17). Intuitively, # is a
“beginning-of-scope” mark: it means that, at this point, the names collected by the aux-
iliary function names are in scope. We stress that the # symbol is not part of the syntax

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:37

K-VAR
(x, κ) ∈ Γ

Γ ` x : κ

K-SING
Γ ` x : value

Γ ` =x : type

K-INTERNALARROW
Γ ` T1 : type Γ ` T2 : type

Γ ` T1 → T2 : type

K-BAR
Γ ` T : type Γ ` P : perm

Γ ` (T | P) : type

K-PAIR
Γ ` T1 : type Γ ` T2 : type

Γ ` (T1, T2) : type

K-ATOMIC
Γ ` x : value Γ ` #T : type

Γ ` x@T : perm

K-EMPTY
Γ ` empty : perm

K-CONJUNCTION
Γ ` P1 : perm Γ ` P2 : perm

Γ ` P1 ∗ P2 : perm

K-DUPLICABLE
Γ ` #T : κ κ ∈ {type, perm}

Γ ` duplicable T : perm

K-QUANTIFIER
Γ; (x, κ′) ` #T : κ

Γ ` ∀(x : κ′) T : κ
Γ ` ∃(x : κ′) T : κ

K-EXTERNALARROW
Γ; names(T1) ` T1 : type
Γ; names(T1) ` #T2 : type

Γ ` T1 T2 : type

K-NAMEINTRO
Γ ` x : value
Γ ` T : type

Γ ` (x : T) : type

K-CONSUMES
Γ ` T : κ

κ ∈ {type, perm}
Γ ` consumes T : κ

Fig. 18. Types and permissions: well-kindedness

T1-OPENNEWSCOPE
T I T ′

#T I ∃(names(T)) T ′

Fig. 19. Types and permissions: first translation phase (auxiliary judgement)

T1-VAR
x I x

T1-SING
=x I =x

T1-BAR
T I T ′ P I P ′

(T | P) I (T ′ | P ′)

T1-PAIR
T1 I T

′
1 T2 I T

′
2

(T1, T2) I (T ′1, T
′
2)

T1-ATOMIC
#T I T ′

x@T I x@T ′

T1-EMPTY
empty I empty

T1-CONJUNCTION
P1 I P

′
1 P2 I P

′
2

P1 ∗ P2 I P
′
1 ∗ P ′2

T1-DUPLICABLE
#T I T ′

duplicable T I duplicable T ′

T1-QUANTIFIER
#T I T ′

∀(x : κ) T I ∀(x : κ) T ′

∃(x : κ) T I ∃(x : κ) T ′

T1-EXTERNALARROW
T1 I T

′
1 #T2 I T ′2

T1 T2 I ∀(names(T1)) T ′1 T ′2

T1-NAMEINTRO
T I T ′

x : T I (=x | x@T ′)

T1-CONSUMES
T I T ′

consumes T I consumes T ′

Fig. 20. Types and permissions: first translation phase

of types, and is not exposed to the user. It is purely a technical means of formulating
our rules in a convenient manner.

There are additional restrictions that the well-kindedness rules should impose: for
instance, the consumes keyword should appear only in the left-hand side of an arrow,
and should not appear under another consumes keyword. This can be expressed by
extending the well-kindedness judgement with a Boolean parameter, which indicates
whether consumes is allowed or disallowed. In order to reduce clutter, we omit this
aspect.

3.3. Translation
We now define the translation of (well-kinded) types and permissions from the surface
syntax into the core syntax. For greater clarity, we present it as the composition of
two phases. In the first phase, we eliminate the name introduction construct. In the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:38 T. Balabonski et al.

T2-EXTERNALARROW
T1 B T

′
1 T2 B T

′
2

T ′in1 = [T/consumes T]T ′1 T ′out1 = [?/consumes T]T ′1

T1 T2 B ∀(x : value) (=x | x@T ′in1)→ (T ′2 | x@T ′out1)

Fig. 21. Types and permissions: second translation phase (only one rule shown)

second phase, we transform the surface function type into its core counterpart, and at
the same time eliminate the consumes construct.

Phase 1. The first phase is described by the translation judgement T I T ′, whose
definition (Fig. 20) relies on the auxiliary judgement #T I T ′ (Fig. 19).

The main rules of interest are T1-OPENNEWSCOPE, which introduces explicit existen-
tial quantifiers for the names whose scope begins at this point; T1-EXTERNALARROW,
which introduces explicit universal quantifiers, above the function arrow, for the
names introduced by the domain of the function; and T1-NAMEINTRO, which trans-
lates a name introduction form to a conjunction of a singleton type =x and a per-
mission x@T ′. The two occurrences of x in this conjunction are free: they refer to a
quantifier that has necessarily been introduced higher up by T1-OPENNEWSCOPE or
T1-EXTERNALARROW.

CLAIM 3.1. Well-kindedness is preserved by the first translation phase:

— Γ ` T : κ and T I T ′ imply Γ ` T ′ : κ.
— Γ ` #T : κ and #T I T ′ imply Γ ` T ′ : κ.

CLAIM 3.2. If T I T ′ or #T I T ′ holds, then T ′ does not contain a name introduction
construct.

Phase 2. The second phase is described by the translation judgement T B T ′, whose
definition appears in Fig. 21. Only one rule is shown, as the other rules (omitted)
simply encode a recursive traversal.

The rule T2-EXTERNALARROW does several things at once. First, it transforms a sur-
face arrow into a core arrow→. Second, it introduces a fresh name, x, which refers
to the argument of the function; this is imposed by the singleton type =x. Finally, in
order to express the meaning of the consumes keywords that may appear in the type T ′1,
it constructs distinct pre- and postconditions, namely x@T ′in1 and x@T ′out1 . These per-
missions respectively represent the properties of x that the function requires (prior to
the call) and ensures (after the call).

The type T ′in1 is defined as [T/consumes T]T ′1. By this informal notation, we mean “a
copy of T ′1 where every subterm of the form consumes T is replaced with just T ”, or in
other words, “a copy of T ′1 where every consumes keyword is erased”.

The type T ′out1 is defined as [?/consumes T]T ′1. By this informal notation, we mean
“a copy of T ′1 where every subterm of the form consumes T is replaced with ∃(x : κ) x,
where the kind κ is either type or perm, as appropriate”. We note that ∃(x : κ) x is a
“top” type or permission: it does not provide any useful information.

Thus, the permission x@T ′in1 represents the ownership of the argument, including
the components marked with consumes, whereas the permission x@T ′out1 represents
the ownership of the argument, deprived of these components.

CLAIM 3.3. Well-kindedness is preserved by the second translation phase: assuming
that T contains no name introduction forms, Γ ` T : κ and T B T ′ imply Γ ` T ′ : κ.

CLAIM 3.4. If Γ ` T : κ and T B T ′ hold, then T ′ contains no surface arrow and
no consumes keyword.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:39

4. KERNEL
Translating types (and terms) in the manner described in the previous section (§3)
yields a Core Mezzo program. The remainder of this paper is devoted to:

— defining what it means for a Core Mezzo program to be well-typed;
— proving that a well-typed program cannot go wrong and must be data-race free.

Another important question is: how does one effectively determine whether a program
is well-typed? This question is not addressed here: we provide a declarative definition
of well-typedness, not a type-checking algorithm. The type-checking algorithms that
we have implemented are described in Protzenko’s dissertation [2014a].

A (pseudo-)modular approach. Instead of defining Core Mezzo in a monolithic way,
we set it up in a modular manner. We begin with a kernel, on top of which sit several
relatively independent layers. This approach makes our presentation more gentle and
makes the maintenance of the Coq formalization easier.

In order to avoid any confusion, we must emphasize the fact that our Coq code is,
strictly speaking, not modular. The kernel and its extensions are not independent arti-
facts: they cannot be independently type-checked and later brought together. In reality,
the Coq code is monolithic: there is a single inductive type of the syntax of Core Mezzo,
which includes the kernel and its extensions. Still, the code is “pseudo-modular” in the
sense that the presence or absence of one extension in principle has little to no impact
on the code of the kernel or of the other extensions. We briefly come back to this issue
when we discuss the related work (§10).

Organization. The kernel, described in this section (§4), is a call-by-value λ-calculus,
equipped with a construct for dynamic thread creation. The three layers that we de-
scribe in this paper are heap-allocated references (§5), locks (§6), and adoption and
abandon (§7). Yet more layers would be needed in order to account for all of the fea-
tures of Mezzo, as implemented today; we describe them briefly in §8.

We now present the core elements of the formalization of Mezzo, that is, the kernel
of the proof. First, we axiomatize a notion of machine state, a notion of instrumented
machine state (also known as a resource), and a connection between the two (§4.1). We
present the syntax (§4.2) and operational semantics (§4.3) of the untyped calculus. We
equip the calculus with a type discipline (§4.4, §4.5, §4.6) and prove a type soundness
theorem (§4.7).

4.1. Machine states and resources
The kernel calculus does not include any explicit effectful operations. We will however
add various kinds of such operations at a later stage. We would like this addition to
take the form of an extension: that is, we would like to add new syntactic forms, new
reduction rules, new typing rules, new auxiliary lemmas, etc. We do not wish (insofar
as possible) to modify existing definitions or statements.

For this purpose, we build into the kernel calculus the notions of machine state and
instrumented machine state. We refer to the latter also as a resource. Even though
we we do not know at this stage what machine states are, they already appear in
the operational semantics. Even though we do not know yet what resources are, they
already appear in the typing rules; and the type preservation theorem for the kernel
calculus essentially means that the type system “keeps correct track of resources”.

Machine states. We write s for a machine state. At this stage, the nature of machine
states is unspecified. A machine state should be thought of as a tuple, some of whose
components are specified at a later stage in this paper: a reference heap (§5), a lock
heap (§6). There could be more: the type of machine states is informally considered

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:40 T. Balabonski et al.

open-ended. We assume that there is a distinguished machine state sinit in which the
execution of a program begins.

Resources. A running program is composed of multiple threads, each of which has
partial knowledge of the current machine state and the right to alter part of this state.
We account for this by working with a notion of resource, which one can think of as the
“view” of a thread [Dinsdale-Young et al. 2013]. We write R for a resource.

At this stage, again, the nature of resources is unspecified. One should think of a
resource as a partial, instrumented machine state.

A resource is “partial” because it represents possibly incomplete knowledge about
the machine state. A heap fragment in the style of Separation Logic [Reynolds 2002]
is an example of a partial resource: about a memory location in its domain, it contains
precise information (i.e., it indicates which value is stored there); about a memory
location outside its domain, it contains no information at all.

A resource is “instrumented” because it may contain information that does not exist
at runtime, but helps express an invariant of the type system. An example is a heap
fragment where a memory location is mapped not just to a value, but also to an ac-
cess right (e.g., read-only versus read-write; or a fraction between 0 and 1). Another
example is an ML store typing in the style of Wright and Felleisen [1994], where every
memory location is mapped to its type (which is fixed upon allocation). In Core Mezzo,
the lock heap (§6) plays a similar role: it maps every lock address to the invariant (a
permission) associated with this lock.

Axiomatization of resources. We require resources to form a monotonic separation
algebra [Pottier 2013, §10], also known as an MSA, for short. That is, we make the
following assumptions:

— A composition operator ? allows two resources (i.e., the views of two threads) to be
combined. It is total, commutative, and associative.

— A consistency predicate, R ok, identifies the well-formed resources. It is preserved
by splitting, i.e., R1 ? R2 ok implies R1 ok.

— A total function ·̂ maps every resource R to its core R̂, which represents the dupli-
cable (shareable) information contained in R.
— This element is a unit for R, i.e., R ? R̂ = R.
— Two compatible elements have a common core, i.e., R1 ? R2 = R and R ok imply
R̂1 = R̂.

— A duplicable resource is its own core, i.e., R ? R = R implies R = R̂.
— Every core is duplicable, i.e., R̂ ? R̂ = R̂.

— A relation R1 � R2, the rely, represents the interference that “other” threads are
allowed to inflict on “this” thread, by specifying how a known resource R1 can evolve
into a resource R2. This relation typically allows “other” threads to allocate new
memory blocks, or new locks. The type discipline is defined in such a way that, if
R1 � R2 holds, then a typing judgement that assumes R1 can be transformed into a
typing judgement that assumes R2. (This is Stability, Lemma A.5 in Appendix A.)
— This relation is reflexive.
— It preserves consistency, i.e., R1 ok and R1 � R2 imply R2 ok.
— It is preserved by core, i.e., R1 � R2 implies R̂1 � R̂2.
— Finally, it is compatible with ?, in the following sense:

R1 ? R2 � R′ R1 ? R2 ok
∃R′1R′2, R′1 ? R′2 = R′ ∧R1 � R′1 ∧R2 � R′2

This means that an evolution of a composite resource can always be explained as
evolutions of the components.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:41

κ ::= value | term | soup | type | perm (Kinds)

v, t, u, T, U, P,Q, θ ::= x (Everything)
| λx.t (Values: v)
| v t | spawn v v (Terms: t, u)
| thread (t) | t ‖ t (Soups: t)
| =v | T → T | (T | P) (Types: T , U)
| v@T | empty | P ∗ P | duplicable θ (Permissions: P , Q)
| ∀x : κ.θ | ∃x : κ.θ (Types or permissions: θ)

E ::= v [] (Shallow evaluation contexts)
D ::= [] | E[D] (Deep evaluation contexts)

Fig. 22. Kernel: syntax of programs, types, and permissions

The consistency predicate is of no inherent interest, but plays a technical role of
easing the reasoning about combinations of resources. Indeed, at the level of Coq it
is important that ? be total and (unconditionally) commutative and associative. This
remark has been formulated by others before [Nanevski et al. 2010]. Now for ? to be
total, it must always produce some result, even in situations where its two arguments
cannot be meaningfully combined. In such a case, it produces an inconsistent result,
i.e., a resource R such that R ok does not hold. This allows us to reason relatively
easily about combinations of resources; in particular, we rely on Braibant and Pous’
plug-in [2011] for proving equalities and performing matching up to AC.

The above axiomatization is identical to that found in Pottier’s previous work [2013,
§10], up to a few technical simplifications. In particular, we are able to get away with
just one relation on resources, �, whereas the previous paper used two.

We note that this axiomatization is not necessary or canonical. It is just one possible
axiomatization that suffices for the purposes of the type soundness proof. Perhaps it
could be further simplified or generalized.

Connecting machine states and resources. We assume that a correspondence relation
between a machine state and a resource, written s ∼ R, is given. In the case of heaps,
for instance, this would mean that the heap s and the instrumented heap R have
a common domain and that, by erasing the extra information in R, one finds s. We
assume that the initial machine state corresponds to a distinguished initial resource,
i.e., sinit ∼ Rinit. We assume that s ∼ R impliesR ok. No other assumptions are required
at this abstract stage.

4.2. Syntax
Values, terms, soups (parallel compositions of several threads), types, and permissions
form a single syntactic universe, defined in Fig. 22. There is also a single name space
of variables.

The types and permissions in Fig. 22 are the same as in Fig. 15, except we omit the
constructs that are specific to the surface syntax, and (for simplicity) we omit pairs.

Within this universe, we impose a kind discipline, so as to distinguish several syn-
tactic categories: types, terms, etc. We find this approach particularly pleasant, as it
obviates the need for a quadratic number of weakening and substitution lemmas (type-
in-type, term-in-type, term-in-term, etc.).

For the sake of conciseness, we omit the (fairly mundane) definition of the well-
kindedness judgement. The part that concerns types and permissions can be deduced
from Fig. 18, while a complete definition can be found in the Coq code [Balabonski and
Pottier 2014].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:42 T. Balabonski et al.

Furthermore, throughout the paper, we hide the well-kindedness premises in every
typing rule and theorem. Instead, we use conventional metavariables (v, t, etc.) to indi-
cate the intended kind of each syntactic element. We note that these well-kindedness
premises also encode which variables are allowed to occur in which types or terms.
Thus, by hiding them, we effectively adopt Barendregt’s convention. In the Coq proof,
naturally, everything is formal: names are encoded as de Bruijn indices.

There are five kinds, or syntactic categories (Fig. 22).
The values v have kind value. At this stage, they are the variables of kind value (the

λ binder introduces such a variable) and the λ-abstractions. Since (for economy) we do
not have a unit value, we write () for a fixed, arbitrary, closed value, say λx.x.

The terms t have kind term. Every value is a term. Function application v t and
thread creation spawn v1 v2 are also terms (the latter is meant to execute the function
call v1 v2 in a new thread). The sequencing construct let x = t1 in t2 is encoded as
(λx.t2) t1.

By requiring the left-hand side of an application to be a value, and by requiring the
arguments of spawn to be values, we reduce the number of evaluation contexts to one.
The only (shallow) evaluation context is the right-hand side of an application, v [].
This does not cause any loss of expressiveness: for instance, the application t1 t2 can
be encoded as let x = t1 in x t2. The Mezzo type-checker performs this transformation
(which makes the evaluation order explicit, and names every intermediate result) on
the fly.

The soups, also written t, have kind soup. They are parallel compositions of threads.
A thread has the form thread (t), where t has kind term.

The types T , U have kind type; the permissions P , Q have kind perm. We write θ for
a syntactic element of kind type or perm.

The types T include the singleton type =v, inhabited by the value v only; the function
type T → U ; and the conjunction T | P of a type and a permission. As in §3, we
write > for the type ∃x : value.=x. Every value has this type. We write ⊥ for the type
∀x : type.x, which is uninhabited and can be thought of as the least type.

The permissions P include the atomic form v@T , which can be viewed as an asser-
tion that the value v currently has type T , or can be used at type T ; the trivial permis-
sion empty; the conjunction of two permissions, P ∗Q; and the permission duplicable θ,
which asserts that the type or permission θ is duplicable.

Universal and existential quantification is available in the syntax of both types and
permissions. The bound variable x has kind κ, which must be one of value, type, or
perm: we never quantify over terms or soups.

The syntax is meant to be stable under a kind-preserving substitution. In particular,
it should be stable under substitution of a value v for a variable x of kind value. This
explains why we allow =v and v@T , even though, in surface Mezzo, the programmer
has access only to =x and x@T . Thus, a type can refer to a value: this is a value-
dependent type system.

Core Mezzo does not have type annotations. A term cannot refer to a type or permis-
sion7. In other words, the syntax of terms is untyped. This means that the operational
semantics can be defined without any reference to the type discipline: Core Mezzo
enjoys type erasure. Naturally, this makes type-checking undecidable: an (informal)
argument is that Core Mezzo contains System F, whose type-checking problem, in the
absence of any type annotation, is undecidable already. In the present paper, this is
not a problem, as we are interested only in defining the type system and establishing
its soundness. In surface Mezzo, some type annotations are necessary: for instance,

7In particular, a variable x that appears in a closed term must be λ-bound, as there are no other binding
forms in the syntax of terms.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:43

initial configuration new configuration side condition
s / (λx.t) v −→ s / [v/x]t
s / E[t] −→ s′ / E[t′] s / t −→ s′ / t′

s / thread (t) −→ s′ / thread (t′) s / t −→ s′ / t′

s / t1 ‖ t2 −→ s′ / t′1 ‖ t2 s / t1 −→ s′ / t′1
s / t1 ‖ t2 −→ s′ / t1 ‖ t′2 s / t2 −→ s′ / t′2
s / thread (D[spawn v1 v2]) −→ s / thread (D[()]) ‖ thread (v1 v2)

Fig. 23. Kernel: operational semantics

every λ-abstraction must be annotated with its (argument and result) type, and type
applications must sometimes be made explicit.

4.3. Operational semantics
The calculus is equipped with a small-step operational semantics. The reduction rela-
tion acts on configurations c, which are pairs of a machine state s and a closed term or
soup t. In the rules of Fig. 23, the machine state is carried around, but never consulted
or modified.

The rules allow interleaved execution of multiple threads. The spawn construct runs
the application v1 v2 in a new thread and produces a unit value in the original thread.
join is not a primitive construct; in principle, it can be programmed up using channels,
which themselves can be implemented on top of locks [Protzenko 2014a].

4.4. The typing judgement and the permission interpretation judgement
The main two judgements, whose definitions are mutually inductive, are the typing
judgement R;K;P � t : T and the permission interpretation judgement R;K P .

Overview. The kind environmentK is a finite map of variables to kinds. It introduces
the variables that may occur free in P , t, and T . The parameter K is used only in the
well-kindedness premises, all of which we have elided in this paper. Nevertheless, we
mention K as part of the typing judgements, as this helps clarify where variables are
bound, and at what kind.

We must sometimes require canonical type derivations, that is, typing judgements
whose derivation does not use certain rules in certain places. (More details follow
shortly.) We write R;K;P ` t : T for a typing judgement whose derivation is unre-
stricted, R;K;P v : T for a typing judgement whose derivation is canonical (in that
case, the term t must in fact be a value v), and use the meta-variable � to stand for one
of the turnstiles ` or .

A typing judgement R;K;P � t : T states that, under the assumptions represented
by the resource R and by the permission P , the term t has type T . One can view the
typing judgement as a Hoare triple, where R and P form the precondition and T is
the postcondition. The parameter R can be thought of as the “resource” that the term
owns and is allowed to exploit, or as the term’s “view” of the machine state. When
type-checking an inert program (a source program), R is always Rinit. Non-trivial re-
sources R arise only at runtime: they are used to describe what it means for a running
program to be well-typed.

A permission interpretation judgement R;K P states that the resource R justifies
the permission P . If one thinks of R as an (instrumented) heap fragment and of P as
a separation logic assertion, one finds that this judgement plays the same role as the
interpretation of assertions in separation logic. It gives meaning, in terms of resources,
to the syntax of permissions.

Definition of the typing judgement. The typing judgement is defined in Fig. 24. The
manner in which the turnstiles ` and � are used can be summed up as follows: a

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:44 T. Balabonski et al.

SINGLETON
R;K;P � v : =v

FRAME
R;K;P � t : T

R;K;P ∗ Q � t : T | Q

FUNCTION
R̂;K,x : value;P ∗ x@T ` t : U

R;K; (duplicable P) ∗ P � λx.t : T → U

FORALLINTRO
t is harmless

R;K,x : κ;P � t : T

R;K; ∀x : κ.P � t : ∀x : κ.T

EXISTSINTRO
R;K;P � v : [U/x]T

R;K;P � v : ∃x : κ.T

CUT
R2;K;P1 ∗ P2 � t : T

R1;K P1

R1 ? R2;K;P2 � t : T

EXISTSELIM
R;K,x : κ;P ` t : T

R;K; ∃x : κ.P ` t : T

SUBLEFT
K ` P1 ≤ P2 R;K;P2 ` t : T

R;K;P1 ` t : T

SUBRIGHT
R;K;P ` t : T1 K ` T1 ≤ T2

R;K;P ` t : T2

APPLICATION
R;K;Q ` t : T

R;K; (v@T → U) ∗ Q ` v t : U

SPAWN
R;K; (v1 @T → U) ∗ (v2 @T) ` spawn v1 v2 : >

Fig. 24. Kernel: the typing judgement

canonical derivation must concern a value v (as opposed to an arbitrary term t) and
cannot use the rules EXISTSELIM, SUBLEFT, or SUBRIGHT outside of a λ-abstraction. In
other words, a canonical derivation uses only the first six rules of Fig. 24, except within
a λ-abstraction, where it may use all of the rules. Canonical derivations are used in
the definition of a “semantic” notion of permission subsumption, with respect to which
our syntactic notion of permission subsumption is proved sound (§4.5).

The first five rules of Fig. 24 can be viewed as introduction rules: when applied to a
value, they define the meaning of the five type constructors. Some of them can also be
applied to a term.

SINGLETON states that v is one (and the only) inhabitant of the singleton type =v.
This rule cannot be applied to a term: that would not make any sense, since =t is not a
well-kinded type.

When applied to a value, FRAME is the introduction rule for the conjunction of a type
and a permission, T | P . When applied to a term, it serves as a frame rule in the sense
of separation logic: the permission Q, which is not needed by the computation t, is
added simultaneously to its pre- and postconditions.

As usual, FUNCTION states that a function λx.t has type T → U if the body t has
type U under the assumption that the formal parameter x has type T . Here, one must
separately extend the kind environment K with the binding x : value and augment
the precondition P with the assumption x@T . The last unusual aspect of this rule is
its treatment of duplication. In Mezzo, by convention, every function type is considered
duplicable. (We comment on this design choice in §10.) In other words, every function
type carries an implicit, built-in “!” modality. This entails a necessary restriction: a
permission P that is available at the function definition site is available also in the
function body only if P is duplicable. For this reason, in the conclusion of FUNCTION,
the precondition contains duplicable P . The resource R must be treated in the same
manner. If R is available at the function definition site, only its duplicable core R̂ is
available in the function body.

Applied to a value, FORALLINTRO is the introduction rule for universal quantification.
If we wished to enforce the value restriction [Wright 1995] in its strictest form, then we
would restrict this rule to values. However, that would be more restrictive than strictly
necessary. We prefer to be more permissive, and to shed more light on the reason why
a restriction is necessary. Thus, we allow applying FORALLINTRO to a term, but only

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:45

to a so-called “harmless” term. The question is now: exactly how should the class of
harmless terms be defined?

It is well-known that the unrestricted combination of weak (shareable) refer-
ences and polymorphism is unsound [Damas 1985; Tofte 1988; Wright and Felleisen
1994]. This adverse interaction is traditionally avoided by viewing the allocation of
a (weak) reference as “harmful” (that is, non-generalizable). Yet, Charguéraud and
Pottier [2008] have pointed out that the combination of strong (uniquely-owned) ref-
erences and polymorphism is sound. Thus, in Mezzo, allocating a (uniquely-owned)
mutable memory block is harmless. The danger lies elsewhere: it is in fact inherent
in the combination of hidden state and polymorphism. This was noted, in a sequen-
tial setting, by Pottier [2013]. In Mezzo, hidden state appears when one introduces
locks (§6): in short, the newlock instruction must be considered “harmful”.

Here are two ways of seeing why newlockmust be harmful. (1) Equipped with strong
(unique) references and locks, one can encode a weak (shared) reference as a strong
reference, protected by a lock. If newref and newlock were both considered harmless,
then one could reproduce in Mezzo the unsound interaction between weak references
and polymorphism. Yet, newref alone is fine. (2) More technically, when a new lock k
whose invariant is some permission P is created by newlock, the current resource R,
which contains a mapping of every lock to its invariant, is extended with a mapping
of k to P . However, a resource R must map every lock to a closed invariant, otherwise
the typing judgement would not even be stable by substitution. Thus, it is necessary,
at this point, to ensure that P is closed. This can be guaranteed by viewing newlock as
harmful. Then, we are certain that newlock never executes under FORALLINTRO, hence
the invariant P of the newly-created lock cannot have a free variable. More generally,
not just newlock itself, but any term t whose execution may lead to executing newlock,
must be considered harmful. (Note that every value is harmless, as it does not execute.
In particular, a λ-abstraction whose body contains a newlock instruction is harmless.
The function hide of Fig. 3 illustrates this.)

This leads us to characterizing the class of harmless terms as follows. This class must
encompass the values, must be stable by substitution and by reduction, and (in §6)
must not contain a term of the form D[newlock]. Technically, the predicate “harmless”
is inductively defined, but the details of the definition do not matter, as long as these
properties are satisfied.

EXISTSINTRO is the introduction rule for existential quantification. It is applicable to
a value only. A version of EXISTSINTRO that is applicable to a term can be derived using
SUBRIGHT, as K ` [U/x]T ≤ ∃x : κ.T is part of the subtyping relation.

Because subtyping can be used to introduce an existential quantifier, one might
think that EXISTSINTRO is redundant and can be eliminated altogether. It is in fact
not redundant: in a canonical derivation, its use is permitted, whereas the use of sub-
typing is forbidden (outside of a λ-abstraction).

CUT moves information between the parameters P and R of a typing judgement. In
short, it says, if t is well-typed under the syntactic assumption P1, then it is well-typed
under the resource R1, provided R1 justifies P1. This justification takes the form of
a permission interpretation judgement (the second premise). CUT is the only rule in
Fig. 24 with two premises. As is standard in an affine type system, the resource that
appears in its conclusion, R1 ? R2, is split between the premises.

EXISTSELIM is a left-elimination rule for the existential quantifier. (As usual, x must
not occur in t or T . In Coq, this is enforced by shifting t and T in the premise.) The
universal quantifier is eliminated via SUBRIGHT, as K ` ∀x : κ.T ≤ [U/x]T is part of
the subtyping relation. The rules SUBLEFT and SUBRIGHT correspond to Hoare’s rule
of consequence.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:46 T. Balabonski et al.

ATOMIC
R1;K;P v : T R2;K P

R1 ? R2;K v@T

EMPTY
R;K empty

STAR
R1;K P1 R2;K P2

R1 ? R2;K P1 ∗ P2

DUPLICABLE
θ is duplicable

R;K duplicable θ

FORALL
R;K,x : κ P

R;K ∀x : κ.P

EXISTS
R;K [U/x]P

R;K ∃x : κ.P

Fig. 25. Kernel: the interpretation of permissions

APPLICATION is standard, except in the manner in which the requirements about the
subterms v and t are formulated. Whereas the requirement about t is formulated as a
premise, the assumption about v appears as part of the precondition. This is convenient
(because the rule has only one premise, as opposed to two, we do not have to split R),
yet not essential, and a more familiar-looking rule can be derived (Appendix B). In
fact, the simply-typed λ-calculus can be encoded in Core Mezzo (Appendix C).

According to SPAWN, the term spawn v1 v2 is type-checked just like a function call
v1 v2, except a unit value is returned in the original thread, and the result of type U is
lost.

Definition of the permission interpretation judgement. The judgement R;K P ,
whose definition appears in Fig. 25, assigns a meaning to permissions in terms of re-
sources. It is analogous to the interpretation of assertions in separation logic [Reynolds
2002]. The resourceR could be an (instrumented) heap fragment, and the permission P
can be thought of as a logical assertion that is satisfied, or justified, by R.

There is one introduction rule for each of the type constructors of kind perm. The
rules EMPTY, STAR, FORALL, EXISTS are straightforward.

ATOMIC states, roughly, that R justifies v@T if v has type T under R. (A variant of
CUT is built into this rule.) Its first premise is a canonical typing judgement: the rule
is applicable only if v has type T “now”, i.e., only if there is a derivation of this fact that
does not use subsumption outside of a λ-abstraction.

DUPLICABLE defines the meaning of the permission duplicable θ in terms of a meta-
level predicate, θ is duplicable. The latter is defined by cases over the syntax of the
type or permission θ. We omit the full definition. Some of the cases are: a singleton
type =v is duplicable; a function type T → U is duplicable; a conjunction T | P is
duplicable if T and P are duplicable; and so on.

It is somewhat unpleasant that the syntactic permission duplicable θ is interpreted
via a meta-level predicate θ is duplicable which itself is defined in a syntactic manner.
One would intuitively prefer a “semantic” definition: for instance, at kind perm, one
would expect P is duplicable to be defined (roughly) by “for every R, if R;K P holds,
then R;K P ∗ P holds as well”. However, one cannot naïvely adopt such a definition,
as the definition of R;K P would be ill-formed (recursive, but not positive). Perhaps
one could solve this problem via some form of step indexing [Birkedal et al. 2011]. We
have not investigated this avenue; for the moment, we break the circularity by giving
a syntactic definition of θ is duplicable and by checking a posteriori that this predicate
implies the desired semantic property (Lemma A.4).

4.5. Subsumption
There are two subsumption judgements:

— for permissions, K ` P ≤ Q;
— for types, K ` T ≤ U .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:47

MIXSTARINTROELIM
(v@T) ∗ P ≡ v@T | P

FRAMESUB
v@T1 → T2 ≤ v@ (T1 | P)→ (T2 | P)

HIDEDUPLICABLEPRECONDITION
(v@ (T | P)→ U) ∗ ((duplicable P) ∗ P)

≤ v@T → U

DUPLICATE
(duplicable P) ∗ P ≤ P ∗ P

DUPSINGLETON
empty ≤ duplicable =v

DUPDUP
empty ≤ duplicable (duplicable θ)

Fig. 26. Kernel: permission subsumption (a few rules only; K ` omitted)

The latter is defined in terms of the former, as follows: by definition, the type subsump-
tion judgement K ` T ≤ U holds if and only if the permission subsumption judgement
K,x : value ` x@T ≤ x@U holds.

One might wish to define permission subsumption K ` P ≤ Q in a “semantic” way,
as follows: “for every R, if R;K P holds, then R;K Q holds as well”. However,
the permission interpretation judgement R;K P depends (via ATOMIC) on the typing
judgement, which itself depends on permission subsumption. So, this definition would
be ill-formed (recursive, but not positive).

The fact that the first premise of ATOMIC must be a canonical derivation does not
directly eliminate this problem: indeed, a canonical derivation can use permission
subsumption (under a λ-abstraction). This fact is nevertheless essential. It means,
intuitively, that the circularity must go through a λ-abstraction. This allows us to pro-
ceed as follows. First, we give an axiomatic (i.e., inductive) definition of permission
subsumption. Then, we prove that this axiomatization is sound with respect to the in-
tended “semantic” definition (Lemma A.8). This proof relies crucially on the fact that
the first premise of ATOMIC is a canonical derivation.

Although this approach does not yield the largest possible notion of subsumption,
we find that, from a pragmatic standpoint, it works well. When some desirable sub-
sumption rule is found to be missing, it can be easily added. This usually gives rise to
one new case in the proof of Lemma A.8 and does not affect the rest of the system.

The permission subsumption judgement K ` P ≤ Q is inductively defined by many
rules, of which we show just a few (Fig. 26). In every rule, we omit the assumption
“K ` ”, as the parameter K is used only in the well-kindedness side conditions, which
(by convention) we omit everywhere.

Among the rules not shown in Fig. 26 are: subsumption is reflexive and transitive;
conjunction is commutative, associative, and has empty as a unit; every permission
is affine (i.e., can be silently discarded); equality of values is reflexive, symmetric,
transitive, and a congruence (i.e., equals can be substituted for equals); the universal
and existential quantifiers commute with many other type constructors; the universal
quantifier can be eliminated, and the existential quantifier can be introduced; each
type constructor is contravariant or covariant in each of its parameters.

The rules shown in Fig. 26 are the following.
MIXSTARINTROELIM is a compact way of summing up the relationship between the

two forms of conjunction, T | P and P ∗ P . One could say that it defines the former in
terms of the latter.

FRAMESUB is a version of the frame rule (FRAME, Fig. 24), stated as a subsumption
axiom. It asserts that a function with fewer side effects can be supplied in a context
where a function with more side effects is expected.

HIDEDUPLICABLEPRECONDITION states that if some function v has precondition P ,
and if P is provably duplicable and exists now, then one may pretend that v has no
precondition. This allows a closure to capture a duplicable permission after it has been

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:48 T. Balabonski et al.

THREAD
R;∅; empty ` t : T

R ` thread (t)

PAR
R1 ` t1 R2 ` t2
R1 ? R2 ` t1 ‖ t2

JCONF
s ∼ R R ` t
` s / t

Fig. 27. Kernel: typing rules for soups and configurations

constructed, whereas FUNCTION (Fig. 24) allows a closure to capture such a permission
when it is constructed.

DUPLICATE states that if P is provably duplicable, then P can be turned into P ∗ P .
The fact that the permission duplicable P appears to be consumed in the process
should not be a source of worry: one can in fact derive K ` (duplicable P) ∗ P ≤
(duplicable P) ∗ (P ∗ P) by using DUPLICATE (twice!) and DUPDUP.

We note that if Core Mezzo was extended with support for first-class erasable coer-
cions, i.e., extended in such a way that P ≤ Q is itself a permission, then duplicable P
would be just an abbreviation for P ≤ P ∗ P , and the rule DUPLICATE would be re-
placed with a more general form of modus ponens: K ` P ∗ (P ≤ Q) ≤ Q. We have not
investigated this extension.

DUPSINGLETON, DUPDUP, and a family of similar rules (not shown) produce permis-
sions of the form duplicable θ, where θ denotes a type or a permission. These rules
repeat, at the object level, the rules that define the meta-level predicate θ is duplicable.
DUPDUP is particularly interesting, as it resembles a form of “reflection”: the predicate
duplicable talks about itself.

4.6. Typing judgements for soups and configurations
The typing judgement for soups R ` t (Fig. 27, first two rules) ensures that every
thread is well-typed (the type of its eventual result does not matter) and constructs the
composition of the resources owned by the individual threads. This judgement means
that, under the precondition R, the thread soup t is safe to execute.

The typing judgement for configurations ` s / t (Fig. 27, last rule) ensures that the
thread soup t is well-typed under some resource R that corresponds to the machine
state s. This judgement means that s / t is safe to execute.

4.7. Type soundness
The kernel calculus is quite minimal: in its untyped form, it is a pure λ-calculus. As
a result, there is no way that a program can “go wrong”. Nevertheless, it is useful
to prove that (the typed version of) the kernel calculus enjoys subject reduction and
progress properties. Because abstract notions of machine state s, resource R, and cor-
respondence s ∼ R have been built in, our proofs are parametric in these notions.
Instantiating these parameters with concrete definitions (as we do when we introduce
references in §5, locks in §6, and adoption and abandon in §7) does not require any
alteration to the statements or proofs of the main lemmas. Introducing new primitive
values (such as memory locations in §5 and lock addresses in §6) and operations also
does not require altering the statements, but creates new proof cases.

For the sake of brevity, we state only the main two lemmas. A more detailed outline
of the proof is provided in an appendix (Appendix A).

LEMMA 4.1 (SUBJECT REDUCTION). If c1 reduces to c2, then ` c1 implies ` c2.

LEMMA 4.2 (PROGRESS). ` c implies that c is acceptable.

At this stage, a configuration is deemed acceptable if every thread either has reached
a value or is able to take a step. This definition is later extended (§6) to allow for the
possibility for a thread to be blocked (i.e., waiting for a lock).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:49

v, t, T, P ::= ... (Everything)
| ` (Values: v)
| newref v | !v | v := v | ghost (Programs: t)
| refm T (Types: T)

m ::= D | X (Modes)

Fig. 28. References: syntax

initial configuration new configuration side condition
s / newref v −→ s′ / limit h h = ↓s ∧ h′ = h :: v ∧ s′ = h′↑s
s / !` −→ s / v h = ↓s ∧ h(`) = v
s / ` := v′ −→ s′ / () h = ↓s ∧ h(`) = v ∧ h′ = h[` 7→ v′] ∧ s′ = h′↑s
s / ghost −→ s / ()

Fig. 29. References: operational semantics

5. REFERENCES
In this section, we extend the kernel calculus with heap-allocated references. We also
extend the type system, and prove that it ensures data-race freedom.

A reference is a memory block with no tag and just one field. The type of references,
refm T , should be viewed as a simplified form of the structural types for memory
blocks, such as Nil and Cons { head: a; tail: list a }, which exist in Mezzo. Mu-
table and immutable references are modeled, and freezing is supported. The reader
is referred to the end of the paper (§8) for a discussion of the features that are not
formalized here.

Of highest interest to an “end user” are the extensions of the syntax of terms and
types (§5.1), the typing rules for the operations on references (§5.4), and the permis-
sion subsumption rules for references (§5.5). The rest concerns the extension of the
operational semantics (§5.2, §5.3) and of the type soundness proof (§5.6–5.8).

5.1. Syntax
We extend the syntax as per Fig. 28.

Values now include the memory locations `, which are natural numbers.
Terms now include the three standard primitive operations on references, namely

allocating, reading, and writing. We add a special instruction, ghost. It represents a
“freeze” instruction, which has no runtime effect, but modifies the current permission
(see the typing rule FREEZE in Fig. 30). This instruction does not specify which block
one wishes to freeze: at this level, this is not necessary. In the surface syntax, the
programmer must use a tag update instruction (§2.1).

Types now include the type refm T of references whose current content is a value of
type T . The mode m indicates whether the reference is shareable (or duplicable, D) or
uniquely-owned (or exclusive, X). Only the latter allows writing: this is key to enforcing
data-race freedom.

5.2. Heaps
A value heap (or just a heap) h is either or a function of an initial segment of the
natural numbers to values. (In Coq, such a function is represented as a list.) As far as
the operational semantics is concerned, a heap is never . We introduce this “error”
element because it allows us, later on (§5.6), to equip heaps with the structure of a
monotonic separation algebra (MSA, §4.1). A memory location is a natural number.
We write ∅ for the empty heap. We write limit h for the first unallocated location in
the heap h. We write h :: v for the heap that extends h with a mapping of limit h

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:50 T. Balabonski et al.

NEWREF
R;K; v@T ` newref v : refm T

READ
R;K; (duplicable T) ∗ (v@ refm T) ` !v : T | (v@ refm T)

WRITE
R;K; (v@ refX T) ∗ (v′@T ′) ` v := v′ : > | (v@ refX T

′)
FREEZE
R;K; v@ refX T ` ghost : > | (v@ refD T)

Fig. 30. References: typing rules for terms

DECOMPOSEREF
v@ refm T

≡ ∃x : value.((v@ refm =x) ∗ (x@T))

UNIFYREF
(v@ refm1 =v1) ∗ (v@ refm2 =v2)

≤ (v@ refm1 =v1) ∗ (v@ refm2 =v2) ∗ (v1 = v2)

DUPREF
duplicable T ≤ duplicable (refD T)

COREF
T ≤ U

v@ refm T ≤ v@ refm U

Fig. 31. References: subsumption rules

REF
R1;K v@T ↓R2(`) = mv

R1 ? R2;K;P � ` : refm T

Fig. 32. References: typing rules for values

to the value v. If the memory location ` is in the domain of h, then h[` 7→ v] is the
heap that maps ` to v and agrees with h elsewhere. Later in the paper, we use the
same notation for other kinds of heaps: for instance, an instrumented value heap maps
memory locations to instrumented values (§5.6).

5.3. Operational semantics
In the kernel calculus (§4), the nature of machine states was completely unspecified.
At this point, we need a machine state s to contain at least a heap h. We specify that a
machine state is a tuple of several components, one of which is a heap: s ::= (. . . , h, . . .).
If s is a machine state, we write ↓s (pronounced “get”) for its “heap” component. If h is
a heap and s is a machine state, we write h↑s (pronounced “set”) for the machine state
obtained by updating the “heap” component of s with h.

The reduction rules for references are standard, up to the noise introduced by the
conversions between machine states and heaps (Fig. 29). The expression newref v ex-
pands the heap with a new binding of limit h (the first unallocated memory location)
to the value v, and reduces to the memory location limit h. The expression !` looks up
the value stored at location ` in the heap. The expression ` := v′ stores the value v′ at
location `. The instruction ghost does nothing: it reduces in one step to the unit value.

5.4. Assigning types to terms
The typing rules for the operations on references appear in Fig. 30.

According to NEWREF, a memory allocation expression newref v consumes v@T and
produces a memory location of type refm T . The mode m is arbitrary8. If m is X, it can
be later changed to D by freezing this reference.

One could restrict NEWREF to the case where T is the singleton type =v. In that
case, the precondition v@ =v is a tautology, and the postcondition refm =v is an ex-

8In surface Mezzo, the data constructor determines m. For instance, in the memory allocation expression
Cons { head = x; tail = xs }, the mode is D, because the data constructor Cons is part of an immutable
algebraic data type.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:51

act description of the newly allocated memory block. This echoes our comment about
line 111 in §2.2. Restricting NEWREF in this manner does not cause any loss of expres-
sive power9.

Reading a reference x requires a permission x@ refm T , which guarantees that x
is a valid memory location and stores a value of type T . Because reading a reference
creates a new copy of its content without consuming x@ refm T , READ requires T to
be duplicable. This is not a problem: in fact, thanks to the subsumption rule DECOM-
POSEREF (§5.5), one could without loss of expressive power restrict READ to the case
where T is a singleton type. This is illustrated by the expression xs.head on line 14 of
Fig. 7 and its explanation.

WRITE requires an exclusive permission x@ refX T , which ensures not only that x
is a valid memory location and stores a value of type T , but also that “nobody else”
knows about (or has access to) x. The rule allows strong update: the type of x changes
to refX T

′, where T ′ is the type of v′. Again, one could without loss of expressive power
restrict WRITE to the case where T is a singleton type and T ′ is the singleton type =v′.
This is illustrated by the assignment on line 15 of Fig. 7 and its explanation.

FREEZE states that the instruction ghost can transform v@ refX T into v@ refD T .
Following Charguéraud and Pottier [Charguéraud and Pottier 2008], we view all

operations on references, including allocation of mutable memory, as harmless. This
means that they can be used under JFORALLINTRO (§4.4), or in other words, they are
“generalizable”. Although we formalize only references here, this remains valid when
Core Mezzo is extended with full-blown memory blocks, containing a tag and multiple
fields (§8). For instance, the expression Nil (Fig. 6) may be formally considered as the
allocation of a memory block with zero fields. Because memory allocation is harmless,
Nil admits the polymorphic type [a] list a. The allocation of a mutable reference can
be generalized too: for instance, in surface syntax, the expression newref Nil has type
[a] ref (list a). This typing judgement is safe. The classic scenario where (first)
someone writes a list of apples into this reference and (later on) someone else reads
the reference, expects to find a list of oranges, and crashes, cannot arise, because this
reference is not shareable.

5.5. Subsumption
The subsumption relation is extended with new rules for reasoning about references
(Fig. 31). The Mezzo type-checker applies these rules transparently [Protzenko 2014a].

DECOMPOSEREF introduces a fresh name x for the content of the reference v. This
allows reasoning separately about the reference and about its content. Decomposition
was used in §2.2 when we examined lines 14–17 of Fig. 7. It is reversible: the rule can
be used in both directions.

UNIFYREF states that if we have two names for the content of a reference, then these
names must denote the same value. (In that case, we must also have m1 = m2 = D.)
For instance, the conjunction of the permissions x@ refD =x1 and x@ refD =x2 implies
the equation x1 = x2, which is sugar for x1 @ =x2.

DUPREF states that the type refD T of immutable references is duplicable, provided
the type T of the content is duplicable.

COREF states that refm · is covariant, regardless of m. Again, this is safe, even if m
is X, because refX · is a type of uniquely-owned references.

9By using the subsumption rule that introduces an existential quantifier, followed with the subsumption
rule DECOMPOSEREF (§5.5), used from right to left, one can combine the permissions x@ refm =v and
v@T so as to obtain x@ refm T .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:52 T. Balabonski et al.

5.6. Resources
An instrumented value is , N, D v, or X v, where v is a value. is an “error” element:
 ok does not hold, whereas iv ok holds of every other instrumented value iv. The in-
strumented value N means that “this” memory location is uniquely owned by “someone
else”, hence “we” have no information about its content and no right to access it. For
any m ∈ {D,X}, the instrumented value m v represents full information about a mem-
ory location: “we” know that the value stored there is v. Moreover, D v denotes a shared
read-only access right, whereas X v denotes an exclusive read-write access right.

Instrumented values form an MSA (§4.1), which is defined as follows:

D v ? D v = D v
N ? X v = X v
X v ? N = X v

N ? N = N
_ ? _ =

 ̂ =
N̂ = N

(̂D v) = D v

(̂X v) = N

N � D v
iv � iv

N ok
D v ok
X v ok

The definition of composition ? requires agreement about which locations are shared
(D v) versus uniquely-owned (N or X v). Furthermore, it requires agreement about the
content of shareable memory locations (D v1 ? D v2 is if the values v1 and v2 differ)
and requires separation at uniquely-owned memory locations (X v1 ? X v2 is).

The definition of the core ·̂ contains the clause (̂X v) = N, which means that an
exclusive instrumented value contains no shareable information.

The definition of rely � contains the clause N � D v, which means that “someone
else” may decide to turn a memory location that “they” own exclusively into a read-
only, shared location. This clause is needed when proving subject reduction for the
operation of freezing a reference.

A heap resource is an instrumented value heap (i.e., either or a function of an
initial segment of the natural numbers to instrumented values). Let us write iv for
an instrumented value and ih for a non- instrumented value heap. Heap resources
form an MSA, which is defined as follows. First, a non- heap resource ih is consistent
(i.e., ih ok holds) if and only if all the instrumented values iv in ih are consistent (i.e.,
satisfy iv ok).

The composition operation ? is defined pointwise:

∅ ? ∅ = ∅
(ih1 :: iv1) ? (ih2 :: iv2) = (ih1 ? ih2) :: (iv1 ? iv2)

_ ? _ =

This definition requires agreement on the allocation limit. This reflects the fact that
which locations are allocated (or unallocated) is shared knowledge.

The function “core” is also defined pointwise:

 ̂ =
∅̂ = ∅

̂(ih :: iv) = îh :: îv

The relation “rely” looks slightly more complex:

 �

limit ih1 ≤ limit ih2
∀` ` < limit ih1 ⇒ ih1(`) � ih2(`)

∀` limit ih1 ≤ ` < limit ih2 ⇒
{
ih2(`) ok
îh2(`) = ih2(`)

ih1 � ih2

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:53

The rule on the right-hand side has three premises. The first premise states that the
allocation limit can only increase with time. Thus, deallocation is forbidden10, and allo-
cation is permitted, subject to the next two premises. The second premise requires that,
at every existing memory location, one follows the “rely” relation over instrumented
values. The last premise requires that every newly allocated location ` be mapped
by ih2 to some consistent and duplicable instrumented value. The requirement that
ih2(`) be consistent is necessary in order to prove that “rely preserves consistency”,
i.e., ih1 ok and ih1 � ih2 imply ih2 ok. This is one of the MSA axioms (§4.1). The re-
quirement that ih2(`) be duplicable is not essential at this point; it is exploited in order
to establish that certain predicates are stable in §7.6.

The manner in which we have just constructed an “instrumented value heap” MSA
on top of an “instrumented value” MSA is generic. We make this definition parametric
in the underlying MSA, and re-use it when we define lock resources (§6.4) and adoption
resources (§7.6).

In the same way that we have taken a machine state to be a tuple of a heap and
possibly other components (§5.3), we take a resource R to be a tuple of a heap resource
and possibly other components. Again, we write ↓R for the “heap resource” component
of the resource R.

A notion of agreement between a value and an instrumented value is defined by
“v and m v agree”. On top of it, agreement between a heap and an instrumented heap
is defined pointwise. It is taken as the definition of correspondence between a machine
state and a resource, s ∼ R.

5.7. Assigning types to values
REF (Fig. 32) is the introduction rule for the type constructor ref. For now, it is the
only rule that assigns a type to a memory location. (New rules that concern memory
locations are introduced when we describe adoption and abandon in §7.) This rule
splits the current resource into two fragments. The fragment R2 must map ` to m v:
this means that R2 grants m-access to the location ` and, at the same time, that v is
the value stored at this location. The fragment R1 justifies that v has type T . The rule
concludes that ` has type refm T . Thus, intuitively, the type refm T represents the
separate ownership of the memory cell at address ` and of the value v that is currently
stored there, to the extent dictated by the type T .

Whereas all of the typing rules presented up to this point are independent of the
nature of resources, REF assumes that every resource has a “heap resource” component
(§5.6). This appears in the premise ↓R2(`) = mv, which looks up the location ` in the
instrumented value heap ↓R2.

5.8. Type soundness and data-race freedom
Type soundness, as stated earlier (§4.7), still holds in the presence of references. We
need not say more: although new cases appear in the proofs of several lemmas, the
proof outline (Appendix A) is unchanged.

We now express and prove the fact that “well-typed programs are data-race free”. We
need an auxiliary judgement t accesses ` for am. This judgement (whose definition
is omitted) means that the term t (which represents either a single thread or a thread
soup) is ready to access the memory location ` for reading or writing, as indicated by
the access mode am, which is R or W. Using this judgement, we define a racy thread

10Naturally, in practice, one can use a garbage collector to reclaim unreachable objects. The fact that this
is a valid implementation technique could be proved separately, if desired. This proof would not exploit the
type discipline in any way.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:54 T. Balabonski et al.

v, t, T, P ::= ... (Everything)
| k (Values: v)
| newlock | acquire v | release v (Programs: t)
| lock P | locked (Types: T)

Fig. 33. Locks: syntax

initial configuration new configuration side condition
s / newlock −→ s′ / limit kh kh = ↓s ∧ kh′ = kh :: L ∧ s′ = kh′↑s
s / acquire k −→ s′ / () kh = ↓s ∧ kh(k) = U ∧ kh′ = kh[k 7→ L] ∧ s′ = kh′↑s
s / release k −→ s′ / () kh = ↓s ∧ kh(k) = L ∧ kh′ = kh[k 7→ U] ∧ s′ = kh′↑s

Fig. 34. Locks: operational semantics

soup t as one where two distinct threads are about to access a single memory location `
and at least one of these accesses is a write.

The key reason why racy programs are ill-typed is the following lemma. If a thread
soup t is well-typed with respect to R and is about to access `, then the instrumented
heap R must contain a right to access `; moreover, in the case of a write access, this
access right must be exclusive. The proof of this lemma is immediate.

LEMMA 5.1 (TYPED ACCESS). Every memory access is justified by a suitable access
right.

R ` t t accesses ` for am R ok
∃m, ∃v, (↓R(`) = m v) ∧ (am = W⇒ m = X)

There follows that a well-typed configuration cannot be racy. Indeed, if two distinct
threads are about to access `, then these threads must be well-typed with respect to
two resources R1 and R2, respectively, such that ↓R1(`) = m1 v and ↓R2(`) = m2 v and
R1 ? R2 ok. It is not difficult to check that this implies m1 = m2 = D, i.e., both accesses
are read accesses.

THEOREM 5.2 (DATA-RACE FREEDOM). A well-typed configuration is not racy.

` h / t
¬(t is racy)

In conjunction with the subject reduction theorem, this implies that a well-typed
program can never reach a racy configuration. Well-typed programs are data-race free.

6. LOCKS
We now extend the kernel calculus with dynamically-allocated locks. This extension
is entirely independent of the previous one (§5). Naturally, references and locks are
intended to be used in concert: as illustrated earlier (§1), the point of using a lock is
precisely to allow a mutable data structure to be shared between several threads.

We follow the same outline as in the previous section (§5). An “end user” should be
interested only in the extensions of the syntax of terms and types (§6.1) and in the
typing rules for the operations on locks (§6.3). The rest concerns the extension of the
operational semantics (§6.2) and of the type soundness proof (§6.4–6.7).

6.1. Syntax
We extend the syntax as per Fig. 33. Values now include lock addresses k, which are
implemented as natural numbers. For simplicity, we allocate references and locks in
two separate heaps, with independent address spaces.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:55

NEWLOCK
R;K;Q ` newlock : ∃x : value.(=x | (x@ lock P) ∗ (x@ locked))

ACQUIRE
R;K; v@ lock P ` acquire v : > | P ∗ (v@ locked)

RELEASE
R;K;P ∗ (v@ locked) ∗ (v@ lock P) ` release v : >

Fig. 35. Locks: typing rules for terms

DUPLOCK
empty ≤ duplicable (lock P)

Fig. 36. Locks: subsumption rules

LOCK
↓R(k) = (P, _)

R;K;Q � k : lock P

LOCKED
↓R(k) = (_,X)

R;K;Q � k : locked

Fig. 37. Locks: typing rules for values

Terms now include the three standard primitive operations on locks, namely allocat-
ing, acquiring, and releasing a lock.

Types now include the type lock P of a lock whose invariant is the permission P .
The type lock P is duplicable (Fig. 36), regardless of P . This allows several threads to
share (and compete for) a lock. Types now also include the type locked. This type is
not duplicable. It serves as a proof that a lock is held and (hence) as a permission to
release the lock.

6.2. Operational semantics
A lock status is U (unlocked) or L (locked). A lock heap kh maps a lock address to a lock
status. We re-use the operations on heaps introduced earlier (§5.2). Mirroring the steps
of §5.3, we take a machine state to be a tuple of several components, one of which is a
lock heap: s ::= (. . . , kh, . . .). Again, we write ↓s (“get”) for the “lock heap” component
of the machine state s and kh↑s (“set”) for the machine state obtained by updating the
“lock heap” component of s with kh11.

The reduction rules for locks appear in Fig. 34. newlock creates a new lock in the
locked state (L). This may seem nonstandard, and is opposite to surface Mezzo, where
lock::new constructs an unlocked lock (§1). In principle, this convention is preferable,
because it offers more expressive power: see §6.3. acquire k needs the lock k to be
unlocked (U), and sets it to the locked state (L). release k does exactly the opposite. As
in concurrent separation logic [O’Hearn 2007], we choose non-reentrant locks, because
reentrant locks are more difficult to describe in terms of permissions [Haack et al.
2008].

6.3. Assigning types to terms
The typing rules for the operations on locks appear in Fig. 35. They are analogous to
(and inspired by) the axioms of concurrent separation logic with dynamically-allocated

11The operators ↓· and ·↑· are overloaded here, as well as the other operations on heaps. This overloading is
also present in the Coq development, and is managed by type classes.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:56 T. Balabonski et al.

locks [O’Hearn 2007; Gotsman et al. 2007; Hobor et al. 2008]; see, in particular, Buisse
et al.’s formulation [2011].

According to the rule NEWLOCK, the expression newlock creates a new lock, say x,
and produces the permissions x@ lock P and x@ locked. The permission x@ lock P
guarantees that x is a lock and records its invariant P . The invariant can be arbitrarily
chosen, but becomes fixed: it cannot be modified after the lock has been created. In
surface Mezzo, the invariant is typically provided by the programmer via an explicit
type annotation (see Fig. 3). The permission x@ locked guarantees that the lock x is
held and represents a permission to release it.

The type ∃x : value.(=x | (x@ lock P) ∗ (x@ locked)) may seem verbose. It is just
an encoding of the intersection type lock P ∧ locked. One could, if needed, use this
sugar. In surface Mezzo, this type is written as (x: lock p | x @ locked), which
seems fairly natural.

Because locks are created locked, creating a lock does not require any permission.
In particular, one may create a lock of type lock P even in the absence of the permis-
sion P . The opposite convention, whereby a new lock is created unlocked, can be simu-
lated by composing newlock and release. This composition requires P and is therefore
in principle less flexible.

According to ACQUIRE and RELEASE, the expressions acquire x and release x have
the precondition x@ lock P , which guarantees that x is a valid lock with invari-
ant P . acquire x produces the permissions P and x@ locked, whereas, symmetrically,
release x requires and consumes these permissions. It should be intuitively clear
that the type system prevents double release: indeed, because x@ locked is affine,
release x cannot be invoked twice. Formally, a configuration where a thread attempts
to release an unlocked lock cannot make progress (see Fig. 34) and is considered un-
acceptable (see §6.7). Hence, the type soundness theorem implies that a well-typed
program cannot reach such a configuration.

The type system does not rule out deadlocks. Formally, a configuration where a
thread attempts to acquire a locked lock is considered acceptable.

As noted earlier (§4.4), the interaction between polymorphism and hidden state is
unsound. For this reason, newlock is not considered harmless, hence cannot appear
under FORALLINTRO. This means that a new lock cannot receive the polymorphic type
[p : perm] lock p. A lock can, however, receive an invariant that has a free variable:
this was illustrated in Fig. 3, where the lock l has type lock s and s is a permission
variable.

6.4. Resources
In a syntactic proof of type soundness for ML [Wright and Felleisen 1994], the store
typing maps every memory location to a (closed) type (the type of its content). In the
same manner, here, we wish to maintain a mapping of every lock address to a (closed)
permission (its invariant). This mapping should be part of the resource that appears as
the first parameter of a typing judgement. In order to do this, we must equip the type
of all (closed) permissions with the structure of an MSA (§4.1). Furthermore, because
we would like to justify the idea that the type lock P is duplicable, this MSA should
be defined in such a way that every element is duplicable.

We achieve this by equipping the type of all permissions with the structure of a
“discrete MSA”, deduced from the notion of discrete separation algebra by Dockins et
al. [2009]. An element of the discrete MSA of permissions is either or a permission P .
The MSA operations are defined as follows:

P ? P = P
_ ? _ =

P̂ = P

 ̂ =
P � P
 � P ok

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:57

In short, every element is duplicable, and is compatible only with itself. The “rely”
relation is the identity: once fixed, a lock invariant can never change.

In addition to this, and independently of this, for every lock in existence, we wish to
keep track of “who” (if anyone) has acquired this lock and (hence) has an exclusive right
to release this lock. To do this, we use an MSA of exclusive access rights. The elements
of this MSA are , N, and X, where N intuitively represents no access right and X
represents an exclusive access right12. The MSA operations are defined as follows:

N ? X = X
X ? N = X
N ? N = N

_ ? _ =

 ̂ =
N̂ = N

(̂X) = N

 �
N � N
X � X

N ok
X ok

In short, X represents an exclusive right to release the lock: X ? X is .
In summary, with every lock, we wish to associate a pair of two independent pieces of

information: a lock invariant (or P) and an access right (, N, or X). We refer to such
a pair as an instrumented lock status. Because the product of two MSAs forms an MSA,
instrumented lock statuses form an MSA, where (for instance) (P,X) ? (P,N) is (P,X).
That is, the lock invariant represents shared information, whereas the ownership of a
locked lock is exclusive.

A lock resource is an instrumented lock status heap. Lock resources form an MSA,
whose construction is the same as the construction of heap resources in §5.6. As we
did there, we take a resource R to be a tuple of a lock resource and possibly other
components. Again, we write ↓R for the “lock resource” component of the resource R.

A notion of agreement between a lock status and an instrumented lock status is
defined by “U and (P,N) agree” and “L and (P,X) agree”. This is lifted to a notion of
agreement between a lock heap and a lock resource, kh and R agree. In short, this
relation means that, for every lock in existence, this lock is locked (according to kh) if
and only if (according to R) “someone” holds the right to release this lock.

To summarize, if one extends the kernel with both references (§5) and locks, then
a machine state s is a pair of a value heap and a lock heap; a resource R is a pair of
a heap resource and a lock resource. The agreement relation s and R agree requires
component-wise agreement.

6.5. Hidden state
The reader might expect the correspondence relation s ∼ R to be defined as agreement,
s and R agree. After all, this is how we proceeded when we dealt with references (§5.6).
However, there is something more subtle about locks. Locks introduce a form of hidden
state: when a lock is released, its invariant P disappears; when the lock is acquired
again (possibly by some other thread), P reappears, seemingly out of thin air. If we
defined s ∼ R simply as s and R agree, we would be unable to prove subject reduction
for acquire: we would not be able to exhibit a resource fragment that justifies P .

Intuitively, while the lock is unlocked, the resource fragment that justifies P is not
available to any thread. It is “owned by the lock”, in a certain sense, hence “hidden
from the program”. The operations acquire and release perform transfers of owner-
ship between a thread and a lock. We must somehow give a formal account of this
phenomenon.

This leads us to refine our understanding of the correspondence s ∼ R. This relation
should not be taken to mean that R represents the entire instrumented state; instead,
it means thatR is the fragment of the instrumented state that is visible to the program,

12This can be viewed as a simplified version of the MSA of instrumented values of §5.6. This time, X does
not carry any argument, and there is no element D.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:58 T. Balabonski et al.

while the rest is hidden. To account for this idea, we define the relation s ∼ R as
follows:

s and R ? R′ agree
R′;∅ hidden invariants of ↓(R ? R′)

s ∼ R

A machine state is a monolithic entity: it cannot be split. As a result, the premise
s and R ? R′ agree implies that the resourceR ? R′ represents the entire instrumented
state. We split this resource between a visible part R, which appears in the conclusion,
and a hidden part R′.

The second premise requires the hidden part R′ to justify the conjunction of
the invariants of all currently unlocked locks. The hidden invariant of an instru-
mented lock status is defined by the equations hidden invariant of (P,N) = P and
hidden invariant of (P, _) = empty. That is, if the lock is currently unlocked, then its
invariant P is currently hidden; otherwise, nothing is currently hidden. The hidden
invariants of a lock resource R are defined as follows: hidden invariants of R is the
(syntactic) conjunction, over all lock addresses k, of hidden invariant of R(k).

Thanks to this somewhat elaborate construction, we can now establish the subject
reduction lemma, and our earlier statement of it (Lemma A.10) does not need to be
altered in any way. The proof cases for acquire and release involve transferring the
resource fragment that justifies the invariant P between the hidden resource R′ and
the visible resource R.

6.6. Assigning types to values
The typing rules LOCK and LOCKED (Fig. 37) assign types to lock addresses, thus giving
meaning to the types lock P and locked. Their premises look up the lock resource ↓R.
According to LOCK, a lock address k whose invariant (as recorded in ↓R) is P receives
the type lock P . A well-kindedness premise (which, by convention, we have hidden)
requires P to be closed. According to LOCKED, a lock address k whose access right (as
recorded in ↓R) is X receives the type locked.

6.7. Soundness
A configuration is now deemed acceptable if every thread either (i) has reached a value;
(ii) is waiting on a lock that is currently held; or (iii) is able to take a step. The state-
ments of type soundness (including those of the main intermediate lemmas, described
in Appendix A) are unchanged. Well-typed programs cannot go wrong (i.e., they can
reach only acceptable configurations) (§4.7) and are data-race free13 (§5.8).

7. ADOPTION AND ABANDON
We extend the kernel calculus with adoption and abandon. This extension is entirely
independent of locks (§6). It interacts with references (§5), because the concepts of
adoption and abandon rely on the existing notions of memory location and memory
block. More specifically, in addition to their ordinary role as the address of a memory
block whose field(s) can be read and written, memory locations receive two new roles:

(1) they serve as adopter addresses;
(2) they serve as adoptee addresses, and (for this reason) every memory block receives

an extra field, which points from adoptee to adopter.

13The definition of a race does not change with locks. In particular, two competing accesses to a lock are not
considered as conflicting, since this is precisely what locks are used for.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:59

v, t, T, P ::= ... (Everything)
| give v1 to v2 | take v1 from v2 | fail | take! v1 from v2 (Terms: t)
| adoptable | unadopted | adopts T (Types: T)

Fig. 38. Adoption and abandon: syntax

initial configuration new configuration side condition
s / give ` to `′ −→ s′ / () h = ↓s ∧ h(`) = 〈 p | v 〉 ∧ h′ = h[` 7→ 〈 `′ | v 〉] ∧ s′ = h′↑s
s / take ` from `′ −→ s / take! ` from `′ h = ↓s ∧ h(`) = 〈 `′ | v 〉
s / take ` from `′ −→ s / fail h = ↓s ∧ h(`) = 〈 p | v 〉 ∧ p 6= `′

s / take! ` from `′ −→ s′ / () h = ↓s ∧ h(`) = 〈 p | v 〉 ∧ h′ = h[` 7→ 〈null | v 〉] ∧ s′ = h′↑s
s / E[fail] −→ s / fail

Fig. 39. Adoption and abandon: operational semantics

In order to minimize the interaction between these three roles, we use several orthog-
onal types for memory locations. In particular, the type refm T (§5) retains its original
meaning: it allows reading and (if permitted by the mode m) writing the ordinary
field(s) of a memory block. In addition, three new types are introduced to describe and
control the use of a memory location as an adopter and as an adoptee. This strategy
relies on the fundamental fact that one may have several permissions at the same time
for one given object.

We follow roughly the same outline as in the previous sections (§5, §6). An “end user”
should be interested mainly in the extensions of the syntax of terms and types (§7.1)
and in the typing rules and subsumption rules for adoption and abandon (§7.4, §7.5).
We also informally explain the gap between Mezzo and Core Mezzo (§7.2), discuss
the properties of adoption and abandon in a concurrent setting (§7.9), and reflect on
the design of adoption and abandon (§7.10). The rest concerns the extension of the
operational semantics (§7.3) and of the type soundness proof (§7.6–7.8).

7.1. Syntax
We extend the syntax as per Fig. 38. Two new instructions appear. The instruction
give x1 to x2 transfers the ownership of the object x1 from the executing thread to
the object x2. (We use the word “object” as a synonym for “memory block”.) In other
words, its effect is that x2 adopts x1. The instruction take x1 from x2 has the reverse
meaning. It checks (at runtime) that x1 is presently adopted by x2. If this check is
successful, then the ownership of x1 is taken away from x2 and transferred back to the
executing thread. In other words, x2 abandons x1.

In order to describe the operational semantics of take, we need two auxiliary forms.
fail arises as the reduct of an unsuccessful take instruction. take! x1 from x2 repre-
sents an intermediate state of the execution of take. It means that the dynamic check
has been performed and has succeeded, but abandon has not actually taken place yet.

No new forms of values appear. The arguments expected by give and take are mem-
ory locations.

Three new types appear, namely adoptable, unadopted, and adopts T . The first two
describe a memory location in its adoptee role, while the latter describes a memory
location in its adopter role.

The permission v@ adoptable guarantees that v is a memory location, hence is the
address of a memory block, which must have an adopter field. This permission is du-
plicable. This is a key point: this means that an adoptable object can be aliased. At the
cost of a pair of take and give instructions, such an object can be used via any alias.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:60 T. Balabonski et al.

The permission v@ unadopted is stronger than v@ adoptable: it guarantees not only
that v is a memory location, but also that v’s adopter field currently contains null
(hence, v is presently not adopted). It is affine.

The permission v@ adopts T guarantees that v is a memory location and asserts
that every adoptee of v (i.e., every object whose adopter field points to v) has type T . It
is affine.

The previous three paragraphs offer a descriptive interpretation of the three new
permissions: what do these permissions guarantee about the current state? There
is also a prescriptive interpretation: in what ways do these permissions allow alter-
ing the current state? The permission v@ adoptable allows reading v’s adopter field,
and is required when one wishes to (attempt to) take v from its adopter. The permis-
sion v@ unadopted allows writing v’s adopter field, and is required when one wishes to
give v to some adopter. v@ adopts T is a permission to use the address v as an adopter:
it is required when giving to and taking from v. Furthermore, it represents the collec-
tive ownership of all of the adoptees of v (at type T), and allows writing their adopter
fields (which takes place when they are abandoned).

7.2. From Mezzo to Core Mezzo
There is a little gap between Mezzo, as used in our tutorial introduction to adoption
and abandon (§2.5), and the theory presented here (§7). The theory relies on the three
types described above, whereas Mezzo hides some of these types from the user.

This gap can be bridged via a desugaring process, which we explain very briefly
and informally. The definition of the type graph a (Fig. 12) is annotated with the
clause adopts node a. This means that every graph can be used as an adopter
of nodes; more precisely, the permission g @ graph a in Mezzo is desugared as
g @ graph a * g @ adopts (node a) in Core Mezzo. Furthermore, in Mezzo, every
node can be adopted: to account for this, the permission n @ node a in Mezzo is
desugared as n @ node a * n @ unadopted in Core Mezzo. Finally, the type dynamic
of Mezzo is known as adoptable in Core Mezzo.

Core Mezzo is more verbose, but also more orthogonal and more expressive. For
instance, a function that takes an argument of type adopts (node a) is applicable not
just to a graph, but to any object that adopts nodes. In the future, we would like to
make this expressive power available in Mezzo. A set of automatically-generated type
abbreviations could be used to retain conciseness.

7.3. Operational semantics
Contrary to what happened when we extended the kernel with references and locks, we
need not extend the machine state with a new component. However, we must modify
the structure of the heap. Instead of mapping memory locations to values (§5.2), a
heap h now maps memory locations to blocks, where a block 〈 p | v 〉 is a pair of an
adopter pointer p and a value v. A pointer p is either null or a memory location `.

The operational semantics of references (Fig. 29) must be slightly adjusted so as to
account for the presence of adopter fields. When a new block is allocated, its adopter
field is null. When a block is read or written, its adopter field is ignored and unaffected.
We omit the details.

The operational semantics of adoption and abandon appears in Fig. 39.
The first reduction rule indicates that give ` to `′ is just a write instruction: the

adopter field at address ` is overwritten and receives the nonnull value `′. As we will
see, the type discipline guarantees that the value p previously held in this field was
null. This is not visible in the operational semantics. We intentionally omit the side
condition p = null: this makes it clear that no runtime check is required.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:61

NEWREFWITHADOPTION
R;K; v@T ` newref v : ∃x : value.(=x | (x@ refm T) ∗ (x@ adopts ⊥) ∗ (x@ unadopted))

GIVE
R;K; (v2 @ adopts U) ∗ (v1 @U) ∗ (v1 @ unadopted) ` give v1 to v2 : > |

(v2 @ adopts U)

TAKE
R;K; (v2 @ adopts U) ∗ (v1 @ adoptable) ` take v1 from v2 : > |

(v2 @ adopts U) ∗ (v1 @U) ∗ (v1 @ unadopted)

FAIL
R;K;P ` fail : T

TAKE!
R;K `′@ adopts U ↓R ` ` is adopted by `′

R;K;P ` take! ` from `′ : > | (`′@ adopts U) ∗ (`@U) ∗ (`@ unadopted)

Fig. 40. Adoption and abandon: typing rules for terms

DUPADOPTABLE
empty ≤ duplicable adoptable

UNADOPTEDADOPTABLE
v@ unadopted ≤ (v@ unadopted) ∗ (v@ adoptable)

COADOPTS
T ≤ U

v@ adopts T ≤ v@ adopts U

Fig. 41. Adoption and abandon: subsumption rules

The second and third reduction rules describe the runtime check performed by the
instruction take ` from `′. If the pointer p stored in the adopter field at address ` is
equal to `′, then the check succeeds, and the instruction reduces to take! ` from `′.
Otherwise, the check fails, and the instruction reduces to fail.

The fourth rule indicates that take! ` from `′ is just a write instruction: the adopter
field at address ` is overwritten with the value null. The type discipline guarantees
that the value previously held in this field was `′. In a concurrent setting, this is
nonobvious: even though the current thread has just ascertained that the adopter field
contains `′, another thread could in principle have stepped in and written a different
value. We come back to this issue below (§7.9).

The last rule in Fig. 39 is a standard reduction rule for fail. The evaluation context
is discarded, which means, intuitively, that once a thread encounters fail, it stops.

One could criticize the fact that, if take ` from `′ fails, this failure cannot be caught
and handled. Mezzo provides an expression y adopts x, which (statically) requires the
ownership of y and (at runtime) tests whether x is currently adopted by y, producing
a Boolean result. This test can be followed by an ordinary if construct; in the first
branch, take x from y is guaranteed to succeed, even in the face of interference by
other threads; in the second branch, appropriate action can be taken. The introduction
of this construct means that valuable information can be stored in the adopter field:
for instance, by using two distinct adopters, a graph traversal can use the adopter field
to record which nodes have been visited.

7.4. Assigning types to terms
The typing rules for adoption and abandon appear in Fig. 40. There is a new version
of the typing rule for memory allocation, as well as one typing rule for each of the
constructs that were introduced in Fig. 38. Remember that > is a unit type and that ⊥
is an uninhabited type.

The typing rule NEWREFWITHADOPTION replaces the rule NEWREF that was given
earlier (Fig. 30). The previous rule states that a memory allocation instruction of the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:62 T. Balabonski et al.

form “let x = newref v in . . .” consumes the permission v@T and gives rise to the
permission x@ refm T . The new rule states that two additional permissions are pro-
duced, namely x@ adopts ⊥ and x@ unadopted. This reflects the fact that the newly
allocated memory location plays three distinct roles. The permission x@ refm T still
states that x denotes the address of a reference, which can be read and (if permitted
by the mode m) written. The permission x@ adopts ⊥ states that x can be used as an
adopter (i.e., as the second argument of give or take), and that all of its adoptees cur-
rently have type ⊥ (i.e., it currently has no adoptees). The permission x@ unadopted
states that x is currently not adopted and also implies that it can be used as an adoptee
(i.e., as the first argument of give or take; this implication relies on the subsump-
tion rule UNADOPTEDADOPTABLE, see §7.5). The permission x@ refm T is duplicable or
affine, depending on the mode m, whereas x@ adopts ⊥ and x@ unadopted are affine.

GIVE describes the pre- and postcondition of the instruction give v1 to v2. Initially,
one must have permission to use v2 as an adopter (v2 @ adopts U) and one must have
proof that v1 is currently not adopted (v1 @ unadopted). One must also have proof that
v1 has the same type U as the current adoptees of v2 (v1 @U). If these requirements are
met, then the instruction give v1 to v2 is safe and, after the instruction, the fact that
all adoptees of v2 have type U is preserved, so the permission v2 @ adopts U remains
available. The other two conjuncts of the precondition, on the other hand, are con-
sumed: the ownership of v1 (at types U and unadopted) is effectively transferred from
the executing thread to the object v2. This ownership is now covered by the permission
v2 @ adopts U , whose footprint grows.

TAKE is the mirror image of GIVE. One needs permission to use v2 as an adopter
(v2 @ adopts U), and this permission is preserved. Furthermore, if the instruction
take v1 from v2 succeeds, then one learns that v1 was among the adoptees of v2, and
has now been abandoned by v2. Thus, v1 must have type U (v1 @U) and is no longer
adopted (v1 @ unadopted). The ownership of v1 is taken away from v2 and transferred
back to the executing thread: the footprint of the permission v2 @ adopts U shrinks.
One apparent source of asymmetry between GIVE and TAKE is that the latter requires
proof that v1 has an adopter field (v1 @ adoptable). This is required for soundness: the
instruction take v1 from v2 would be unsafe if the value v1 turned out to be something
other than a memory location (say, a λ-abstraction). This asymmetry is only appar-
ent, though. Because permission subsumption allows v1 @ adoptable to arise out of
v1 @ unadopted (see further on), one can derive a variant of GIVE where v1 @ adoptable
is part of the postcondition.

FAIL is standard. Since fail never terminates normally, its postcondition is false. In
other words, it is deemed to have every type T .

TAKE! plays a role in the type preservation proof, but is not used to type-check source
programs, since the take! construct is not available to the programmer. We explain it
after we present the new typing rules for memory locations (§7.7).

7.5. Subsumption
The subsumption relation is extended with new rules for reasoning about adoption and
abandon (Fig. 41).

The rule DUPADOPTABLE states that the type adoptable is duplicable. This is justi-
fied, intuitively, by the fact that an adopter field cannot be destroyed: if an adopter
field at address ` exists now, then it exists forever, so it is forever safe to read it (as
part of a take attempt).

The subsumption rule UNADOPTEDADOPTABLE states that, when one holds the affine
permission v@ unadopted, one can obtain, in addition, the duplicable permission
v@ adoptable. Indeed, v@ unadopted means that there is an adopter field at address v
which currently contains a null pointer, whereas v@ adoptable asserts only that there

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:63

is an adopter field at address v. According to NEWREFWITHADOPTION (Fig. 40), a new
memory location has type unadopted; hence, via this subsumption rule, a new memory
location also has type adoptable, and since this is a duplicable type, this fact remains
true forever.

The rule COADOPTS states that the type adopts T is covariant in T . This is intuitively
justified by the fact that, if every adoptee has type T , and T is a subtype of U , then
every adoptee has type U . According to NEWREFWITHADOPTION, a new memory location
has type adopts ⊥. Via this subsumption rule, one can (irreversibly) change this type
to adopts U , for some type U of one’s choosing, so as to allow this memory location to
adopt objects of type U .

7.6. Resources
We have explained the intuitive meaning of the types adoptable, unadopted, and
adopts T . They represent claims about the ownership of certain addresses as adoptee,
as adopter, or both. They also represent claims about the value of certain adopter point-
ers. We must now define this meaning in a formal manner. This is done in two steps.
First (§7.6), we extend resources with a new component, an adoption resource, and we
update the definition of agreement between a machine state and a resource. Later on
(§7.7), we introduce three new typing rules for memory locations, which serve as intro-
duction rules for the types adoptable, unadopted, and adopts T , and whose premises
contain assertions about the adoption resource.

An adoptee status is one of , N, and X p, where p is a pointer. (Recall that a pointer is
either null or a memory location.) X p means that we have exclusive ownership of this
memory location as an adoptee, and we know that its adopter pointer is currently p.
N represents no ownership, and no information about the current value of the adopter
pointer. Adoptee statuses form an MSA.

An adopter status is one of , N, and X. (These are the same as the lock statuses
of §6.4.) X means that we have exclusive ownership of this memory location as an
adopter, whereas N represents no ownership. Adopter statuses form an MSA.

An adoption status is a pair of an adoptee status and an adopter status. For every
memory location `, the roles “` as an adoptee” and “` as an adopter” are logically inde-
pendent, which is why we use a pair, whose components can be looked up and updated
independently of one another. Adoption statuses form an MSA.

An adoption resource is an adoption status heap. Adoption resources form an MSA.
We will shortly restrict our attention to a subset of “round” adoption resources, which
also forms an MSA.

We now introduce several predicates that will be used (§7.7) to give meaning to the
types adoptable, unadopted, and adopts T . These predicates are as follows. Here, R
ranges over adoption resources.

(1) R ` ` is adoptable holds iff ` is in the domain of R, i.e., ` is a valid memory location.
Because every memory block has an adopter field, this condition is sufficient to
ensure that there is an adopter field at address `.

(2) R ` ` is unadopted holds iff R maps ` to a pair of the form (X null,). That is, R
owns ` as an adoptee and the adopter pointer at ` is currently null.

(3) R ` `′ is an adopter holds iff R maps `′ to a pair of the form (,X). That is, R owns
`′ as an adopter.

(4) R ` ` is adopted by `′ holds iff R maps ` to a pair of the form (X `′,). That is, R
owns ` as an adoptee, and there is an edge from ` to `′, which one can think of as
“owned by R” as well.

(5) R ` ~̀ are the adoptees of `′ holds iff the following two conditions are met:
—R ` `′ is an adopter holds; and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:64 T. Balabonski et al.

— the list ~̀ contains all of the addresses ` such that R ` ` is adopted by `′ holds,
and it contains each such address just once. That is, ~̀ is a list of all adoptees of
`′ according to R, and R owns every member of the list ~̀ as an adoptee, and R
owns every edge from a member of ~̀ to `′.

Intuitively, these predicates represent knowledge about and ownership of certain frag-
ments of the adoption graph. In particular, R ` ` is unadopted represents the owner-
ship of an adoptee vertex at address `, together with the knowledge that this vertex
has no outgoing edge. R ` ~̀ are the adoptees of `′ represents the ownership of a star (in
the sense of graph theory) whose center is `′, i.e. the ownership of the adopter vertex `′,
of the adoptee vertices ~̀, of the edges from ~̀ to `′, and the knowledge that this star is
complete, i.e., there are no other edges entering `′.

We would like these predicates to be affine (i.e., preserved when one moves from R to
R ? R′) and stable (i.e., preserved when one moves from R to R′, where R � R′ holds).
One can, in fact, prove that they are stable. (This exploits the definition of “rely” for
the heap MSA, §5.6.) There is, however, one difficulty with affinity: the last predicate,
R ` ~̀ are the adoptees of `′, is not affine. That is, the following implication is invalid:

R1 ` ~̀ are the adoptees of `′ R1 ? R2 ok
R1 ? R2 ` ~̀ are the adoptees of `′

This implication is violated if there exists ` such that R2 ` ` is adopted by `′, that is,
there is an edge from the adoptee vertex `, owned by R2, to the adopter vertex `′, owned
by R1. In that case, the list of all adoptees of `′ according to R1 ? R2 is not just ~̀; it
includes ` as well.

In graphical terms, the problem arises because the adoption graph has been split
between R1 and R2 and we have allowed a star, whose center is `′, to be split. Thus,
what seems to be a complete star from the point of view of R1 is only a fragment of a
star from the point of view of R1 ? R2. In order to avoid this problem, when we split a
resource, we should promise to never split a star.

Put another way, the problem arises because R2 has a dangling adopter edge: R2

owns this edge (i.e., it owns ` as an adoptee and owns the edge from ` to `′) but it
does not own its destination (`′ as an adopter is owned by R1, hence not owned by R2).
In order to avoid this problem, when we split a resource, we should promise to never
create a dangling adopter edge.

Let us say that an adoption resource R is round iff it does not exhibit a dangling
adopter edge, i.e., R ` ` is adopted by `′ implies R ` `′ is an adopter. It is not difficult
to prove that roundness is preserved by the three MSA operations, namely ?, ·̂ and �.
This implies that the subset of the round adoption resources forms an MSA.

Thus, we restrict our attention, everywhere, to round adoption resources. This en-
tails some proof obligations: whenever we split a resource, we must prove that the
fragments are round. The benefit is that we can now prove that the five predicates
defined above are affine and stable. In particular, if R ` ~̀ are the adoptees of `′ holds,
then ~̀ is a list of all adoptees of `′, not just with respect to the partial adoption graph
represented by R, but also with respect to the (implicit) global adoption graph.

Agreement between a heap and an adoption resource is defined in a straightforward
way. A block 〈 p | v 〉 agrees with the adoptee status X p. A block 〈 p | v 〉 agrees with
the adopter status X. A block agrees with an adoption status (i.e., a pair of an adoptee
status and an adopter status) iff it agrees with each of its components. Agreement
between a heap and an adoption resource is then defined pointwise. Thus, if R is an
adoption resource, h and R agree means that R has X’s everywhere and represents the
global adoption graph.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:65

ADOPTABLE
↓R ` ` is adoptable

R;K;P ` ` : adoptable

UNADOPTED
↓R ` ` is unadopted

R;K;P ` ` : unadopted

ADOPTS
↓R1 ` ~̀ are the adoptees of `′

R2;K ~̀@U

R1 ? R2;K;P ` `′ : adopts U

Fig. 42. Adoption and abandon: typing rules for values

Agreement between a heap and a heap resource (§5.6) must be slightly adapted,
because we have altered the structure of heaps by adding an adopter pointer in every
memory block. We do so by setting that “〈 p | v 〉 and m v agree”, i.e., we simply ignore
the adopter pointer. The definition of heap resources is not modified: this helps disturb
the existing proof cases as little as possible.

To sum up, once we combine references (§5), locks (§6), and adoption and abandon,
a machine state s has two components (namely, a heap and a lock heap), whereas
a resource R has three components (namely, a heap resource, a lock resource, and an
adoption resource). Agreement between a machine state and a resource, s and R agree,
requires agreement between the heap and the heap resource, between the lock heap
and the lock resource, and between the heap and the adoption resource. On top of
that, the correspondence relation s ∼ R, which accounts for hidden state, remains
unchanged (§6.5).

7.7. Assigning types to values
The typing rules ADOPTABLE, UNADOPTED, and ADOPTS (Fig. 42) assign types to memory
locations, thus giving meaning to the types adoptable, unadopted, and adopts U . They
come in addition to the typing rule REF (Fig. 32), which is unmodified.

The premises of these typing rules look up the resource R via the predicates defined
above. In the case of ADOPTS, there are two premises. The first premise means that ~̀ is
a complete list of the adoptees of `′, that we own each of the addresses ~̀ as an adoptee,
and that we own the address ` as an adopter. The second premise means that every
adoptee, separately, has type U ; formally, we write ~̀@U for the iterated conjunction
of the permissions `@U , where ` ranges over the list ~̀. These two premises must
hold separately: the resource R1 ? R2 that appears in the conclusion is split between
the premises. Intuitively, the type adopts U represents a conjunction of two separate
claims: (i) the ownership of a fragment of the adoption graph, comprising all edges from
~̀ to `′, or in other words, all edges whose destination is `′; and (ii) for every member `
of ~̀, the ownership of the memory location `, to the extent dictated by the type U .

7.8. Soundness
A term t is an answer iff it is either a value or fail. A configuration is now deemed
acceptable if every thread either (i) has reached an answer; or (ii) is waiting on a lock
that is currently held; or (iii) is able to take a step. The statements of type sound-
ness (including those of the main intermediate lemmas, described in Appendix A) are
unchanged. Well-typed programs do not go wrong (§4.7) and are data-race free (§5.8).

Because fail is considered an answer, what we have proved is that “well-typed pro-
grams cannot go wrong, but they can fail at a take instruction”.

7.9. Adoption and abandon in a concurrent setting
While the soundness results we just stated apply to the full formalization, including
adoption and abandon and concurrency, it is worth giving some details on how these
two aspects interact.

The give instruction writes an adopter field, while the take instruction reads an
adopter field, performs a pointer comparison, and (if the comparison succeeds) writes

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:66 T. Balabonski et al.

this field. Hence these instructions may introduce a race condition on an adopter field,
if two threads simultaneously attempt to execute a give and a give, a give and a take,
or a take and a take, for the same adoptee `.

Because the type unadopted (which, on the side of the adoptee, enables give) is affine,
the case of two conflicting give instructions cannot occur in well-typed programs. On
the other hand, the type adoptable (which, on the side of the adoptee, enables a take
attempt) is duplicable. Hence, the other two cases can in fact arise: they are not ruled
out by the type discipline.

Is this a problem? We argue in the following that it is not. We give two arguments:
a formal one, under the assumption of sequential consistency, and an informal one,
without this assumption.

Our type soundness theorem guarantees that, whichever interleaving is considered,
“a well-typed program does not go wrong”. Since the operational semantics of take is
in two steps, this includes interleavings where the execution of a take instruction is in-
terrupted by another thread. Thus, under the assumption of a sequentially consistent
memory model, we have a formal proof that the type discipline is sound, even though
take is not implemented by an atomic compare-and-set instruction.

Our claim that “well-typed programs are data-race free” is formally valid as well,
because our definition of a data race (§5.8) views conflicting accesses to an ordinary
field as a race, but does not view conflicting accesses to an adopter field as a race. The
reader who is unhappy with this way of stating things may prefer the longer statement:
“well-typed programs are data-race free, except for possible races on adopter fields”.

We note that two concurrent give and/or take instructions must involve distinct
adopters. This follows from the fact that both give and take require a unique permis-
sion of the form v2 @ adopts U for the adopter.

This remark allows us to informally argue that all possible interleavings of give
and/or takemust lead to the same outcome. The argument is as follows. Let us consider
two concurrent instructions i1 and i2 on a common adoptee `. At least one of them,
say i1, must be a take instruction, say take ` from `′. This instruction reads the adopter
pointer stored at address ` and performs a dynamic test: is this pointer equal to `′, or
is it some other (possibly null) address? This test is stable under the interference that
may be inflicted by i2. Although i2 may write the adopter field at address `, it must
involve an adopter other than `′, which implies that it can change the adopter field
from some value other than `′ to some value other than `′, but not from `′ to some
other value or from some other value to `′. Thus, i2 cannot affect the outcome of the
dynamic test performed by i1. Furthermore, if this test succeeds, then i2 cannot be a
give instruction or a successful take instruction (that would contradict the fact that
the adopter pointer is `′). Thus, i2 must be a failing take instruction. This implies that
i2 will not write to memory and (therefore) commutes with the write performed by i1.

In summary, we have just informally argued that, under sequential consistency, any
two concurrent give and/or take instructions commute. In other words, a data race on
an adopter field is benign: it cannot be a source of nondeterminism.

It seems plausible that, under a relaxed memory model, appropriate memory-fence
instructions could be added to the implementation of give and take so as preserve type
soundness. In fact, we hypothesize that no memory fences are needed as part of give
and take. Intuitively, a memory fence is required when some permission is transferred
from one thread to another; but give and take cannot cause such a transfer. That said,
adapting our proof of type soundness to relaxed memory is a standing challenge. One
would need, first, to understand how to define a tractable operational semantics for a
relaxed memory model (either for one specific model in existence, such as TSO, or for
an imaginary “most relaxed” model), and that in itself is an open issue. One should
also clarify which sequence of machine instructions is executed when a high-level read

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:67

or write instruction takes place. Indeed, many garbage collectors impose read or write
barriers: a high-level read or write instruction can translate to more than one machine
instruction.

7.10. Design discussion
One might wonder why the type dynamic, or adoptable, is so uninformative: it gives
no clue as to the type of the adoptee or the identity of the adopter. Would it be possible
to parameterize it so as to carry either information? The short answer is negative. The
type adoptable is duplicable, so the information that it conveys should be stable (i.e.,
forever valid). However, through a combination of strong updates and give and take
instructions, the type of an adoptee may change with time (e.g., a graph node may
move from the type node () to the type node int), and the identity of its adopter may
change as well (e.g. a node may be adopted by some graph g1 at one point in time
and later adopted by some other graph g2). Thus, in theory, it does not make sense for
adoptable to carry more information.

That said, by using type abbreviations and abstract types, the programmer may
define restricted patterns of use of adoption and abandon, and in return, obtain
more informative types. She may, for instance, define a pair of parameterized types
adoptable_at a and unadopted_at a, accompanied with suitable variants of the give
and take operations, such that an object of one of these types is guaranteed to ever be
adopted only if (when) it has type a. (We omit the details.) She may even define a pair
of types adoptable_by y and unadopted_by y, where the parameter y has kind value,
such that an object of one of these types is guaranteed to ever be adopted only by the
adopter y. These idioms could be defined as part of the standard library.

There are a number of ways in which adoption and abandon could be optimized or
enhanced. Let us briefly mention two potential improvements:

— To avoid paying the cost of one adopter field in every object, one could let the pro-
grammer decide, for each data type, whether objects of this type should be adoptable
(hence, need an adopter field) or not. The tag update instruction would be restricted
so as to forbid going from an adoptable data type to a nonadoptable one, or vice-
versa. For now, for the sake of simplicity, we have considered only the uniform model
where every object has an adopter field.

— To permanently delegate y1’s adopter role to some other object y2, one could
add an instruction merge y1 into y2. The effect of this instruction would be that
all adoptees of y1 immediately become adopted by y2, and take x from y1 and
give x to y1 thereafter are synonymous with take x from y2 and give x to y2.
Its implementation would rely on a union-find data structure, and would cost one
extra field per (adopter) object.

8. EXTENSIONS
Let us briefly outline how the formal definition of Core Mezzo should be extended so
as to reduce the gap with Mezzo. Perhaps the most important feature of Mezzo that
is currently missing is algebraic data types. (In fact, this feature was present in an
earlier version of the machine-checked proof, but has not yet been ported to the current
version.) This feature can be introduced in several steps, as follows:

(1) Allow memory blocks to have multiple fields, designated by an integer offset. The
primitive type refm T is replaced with a record type, say m {~T}.

(2) Equip memory blocks with a tag, represented as an integer. The record type m {~T}
is replaced with a structural type i m {~T}, where i is a tag. This type is analogous
to the structural type Cons { head: a; tail: list a } found in Mezzo. Introduce
the tag update instruction, which allows changing the tag of a memory block.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:68 T. Balabonski et al.

(3) Introduce a union type, of the form T0 ∪ . . . ∪ Tn−1, with the condition that the i-th
summand, Ti, must exhibit the tag i. (That is, Ti should be a subtype of i m {~T},
for some m and ~T .) Add the injection axiom Ti ≤ T0 ∪ . . .∪ Tn−1. Introduce a switch
construct, whose typing rule refines T0 ∪ . . . ∪ Tn−1 to Ti in the i-th branch.

(4) (This item is independent of the previous three.) Add parameterized iso-recursive
type definitions, of the form τ ~x ∼ T , which are (un)folded via subsumption. For
instance, the nominal type list x could be declared isomorphic to the union type
0 D {} ∪ 1 D {x; list x}.

In Mezzo, the type ref of mutable references is defined as part of the core library:
data mutable ref a = Ref { contents: a }. Thus, ref t is a nominal type, and is
interconvertible with the structural type Ref { contents: t }. The latter corresponds
in spirit to the primitive type refX T of §5. Similarly, in Mezzo, one can define a type
of immutable references, as follows: data iref a = IRef { contents: a }. The type
IRef { contents: t } then corresponds to the primitive type refD T . Freezing, which
is written tag of r <- IRef in Mezzo, is represented by the instruction ghost in §5.
The implementation of write-once references (§2.1) is a closely related example of use
of these concepts.

A few more features, perhaps of lesser interest, would have to be formalized if one
wished to close the gap between Core Mezzo and Mezzo:

— Immutable tuples.
— Recursive functions.
— Named (as opposed to numbered) data constructors and fields. In Mezzo, the names

of data constructors have lexical scope. Field names are treated in a different way:
they are overloaded, and the resolution of overloading is type-directed.

— Compilation units, with implementation (.mz) and interface (.mzi) files.

Mezzo does not have exceptions. If one wished to extend Mezzo with exceptions,
then, in order to preserve type soundness, every function type would have to be an-
notated with a list of the exceptions that may be raised, and, for each such exception,
the permission that is returned in case this exception is raised. From the language
designer’s point of view, this would duplicate a lot of the machinery that exists for
dealing with sum types. So, our stance, for the moment, is that it seems preferable to
simulate exceptions, either by returning sums or by taking multiple continuations as
arguments. More experience with the language is needed in order to evaluate whether
this position is tenable in practice.

9. THE IMPLEMENTATION OF MEZZO
The current implementation of Mezzo is made up of about 12,500 (nonblank, noncom-
ment) lines of OCaml code, along with 3,000 (nonblank, noncomment) lines of Mezzo
code for the standard library. It features:

— a type-checker, which is the main contribution;
— an interpreter, which is used mainly in the online version of Mezzo [Protzenko

2014c], where programs are type-checked and run in a browser, via an OCaml-to-
JavaScript compilation scheme;

— an OCaml backend, which translates Mezzo into untyped OCaml, that is, OCaml
with unsafe casts (Obj.magic).

The compiler can be integrated within OCaml’s compilation toolchain. A sample project
shows how to drive the compilation of a Mezzo program using OCamlbuild [Protzenko
2014b].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:69

1 val x = newref 0
2 val l = lock::new [(x @ ref int)] ()

Fig. 43. An explicit type application

1 val x = newref 0
2 val l: lock (x @ ref int) = lock::new ()

Fig. 44. A more idiomatic type annotation

9.1. Problems addressed by the type-checker
The type-checker performs a flow-sensitive forward analysis of the code. At each
program point, it computes a (persistent) representation of the currently available
set of permissions. Permissions are consumed and added as the type-checker steps
through the program. This process can be described by a set of “algorithmic” typing
rules [Protzenko 2014a, Chapter 10], where the frame rule is no longer a stand-alone
rule, but instead is built into every axiom.

The type-checker faces several difficult problems, which we briefly explain below.
The first four points (entailment; frame inference; inference of polymorphic instantia-
tions; intersection types) in fact describe four facets of a single, complex problem. The
last one (join) describes a separate problem.

Entailment. At a function call site, the type-checker must prove that the current
permission P justifies the call, that is, P entails the preconditionQ of the function. This
may involve applying subsumption rules so as to obtain the desired permission. For
instance, if P contains the conjunct xs @ Cons { head: a; tail: list a }, then, in
order to justify the call length xs, the type-checker must first convert this permission
to xs @ list a. Entailment is used also at the end of a function’s body, where the type-
checker must verify that the current permission entails the function’s postcondition
(which is provided by the programmer as part of the function’s header).

The entailment problem in Mezzo is roughly analogous to the entailment problem
in separation logic. If formulae are restricted to (dis)equalities and spatial conjunc-
tions of points-to assertions and list segments, then the latter problem is decidable
[Berdine et al. 2004; Navarro Pérez and Rybalchenko 2011; Piskac et al. 2013] and
tractable [Cook et al. 2011]. However, the hardness results obtained by Antonopou-
los et al. [2014] indicate that entailment becomes intractable as soon as one combines
existential quantification and unbounded data structures.

Another informal argument why the entailment problem in Mezzo is probably hard
is that Mezzo contains System F, whose subtyping problem is undecidable [Chrzaszcz
1998]. In other words, quantifiers and function types alone give rise to undecidability.
This situation is further complicated in Mezzo by the nontrivial subsumption axioms
that involve function types, such as FRAMESUB and HIDEDUPLICABLEPRECONDITION in
Fig. 26.

Frame inference. At a function call site, the type-checker must not only prove that
the current permission P entails the precondition Q, but also find the strongest possi-
ble permission R such that P entails Q ∗ R. The permission R is the “remainder”, or
the “frame”. It is considered automatically preserved by the call. This problem, which
subsumes the entailment problem, is known as the frame inference problem [Berdine
et al. 2005b]. It can be viewed as an entailment problem with one flexible permission
variable (namely, R) on the right-hand side.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:70 T. Balabonski et al.

1 val x =
2 if ... then
3 (newref 0, newref 0)
4 else begin
5 let y = newref 0 in
6 (y, y)
7 end

Fig. 45. An ambiguity at a join point

Inference of polymorphic instantiations. At a function call site, if the callee is a poly-
morphic function, the type-checker must not only solve a frame inference problem, but
also (and at the same time) find a suitable instantiation of the universal quantifiers.
This can be viewed as an entailment problem with flexible variables on the right-hand
side.

In fact, due to the contravariance of function types, flexible variables can occur also
in the left-hand side of an entailment problem. In general, the type-checker faces prob-
lems of the form P ` Q where both P and Q contain flexible variables.

These problems do not in general have unique or “best” solutions. For instance, a
call to a function of type [p: perm] (| consumes p) -> () could consume no permis-
sion at all, or the entire current permission, or anything in between, depending on
how one chooses to instantiate the permission variable p. In this case, instantiating p
with empty is the best solution. As another example, in a call to a function of type
[p: perm] (| p) -> (), any instantiation of p is as good as any other, since p is not
consumed. In general, there are problems that admit several incomparable solutions.
The current type-checker picks one solution, based on a set of heuristics. If this solution
is not satisfactory, then the programmer must provide an annotation that indicates
how the polymorphic function should be instantiated. This can be done via an explicit
type application, as in Fig. 43, or via an annotation that indicates which permissions
one expects to possess after the call, as in Fig. 44.

Intersection types. Mezzo is able to encode intersection types: in the presence of the
permissions f @ t1 -> u1 and f @ t2 -> u2, the function f has type t1 -> u1 and
t2 -> u2 at the same time. Thus, a function call f x is well-typed if the current per-
mission entails x @ t1 or x @ t2. Such a situation requires the type-checker to explore
both avenues. This phenomenon has appeared in practice in our case study on iterators
[Guéneau et al. 2013], where a single function is used to encode several magic wands.

Join. At a join point in the control-flow graph, the type-checker must construct the
least upper bound of two (or more) permissions. For instance, after an if expression,
if the current permissions at the end of the then and else branches are respectively
P1 and P2, then the type-checker must compute a permission P such that P1 ≤ P and
P2 ≤ P hold. Naturally, it should compute the most precise such P , if one exists.

This problem would be trivial if the disjunction of two permissions, P1∨P2, was part
of the syntax of permissions. However, we deliberately choose not to allow it, for several
reasons. First, that would make type-checking significantly more costly: potentially
exponentially so. Second, that would change the model that the programmer must keep
in mind. Instead of “one current permission at each program point”, the programmer
would have to think in terms of “one out of several possible current permissions at
each program point, depending on which path was followed up to this point”. That
would draw us further away from the spirit of type-checking and closer to program
analysis.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:71

1 val f (): (ref int, unknown) =
2 if ... then
3 (newref 0, newref 0)
4 else begin
5 let y = newref 0 in
6 (y, y)
7 end

Fig. 46. An ambiguity at a join point, resolved by an explicit annotation

In the absence of a syntactic disjunction P1 ∨ P2, the type-checker must compute an
over-approximation P of it, as described above. This problem has been studied also in
the setting of shape analysis [Chang and Rival 2008]. In the presence of nonduplicable
resources, it does not in general admit a principal solution. For instance, in Fig. 45,
two possible types for x are (unknown, ref int) and (ref int, unknown). They are
incomparable. Furthermore, (ref int, ref int) is not a valid type for x, as the two
components of the pair x are not always distinct references. In such a situation, the
current type-checker emits a warning and makes a heuristic choice. We note that, by
performing a (backward) liveness analysis and by ignoring any variables that are dead
at the join point, one increases the chances that the join problem admits a principal
solution. This idea was suggested to us by Xavier Rival.

If the user is dissatisfied with the choice made by the type-checker, she can explicitly
provide P , in which case the join problem disappears altogether and is replaced with
a collection of entailment problems. In particular, when a match construct appears
in terminal position in a function, the join point after the match coincides with the
end of the function’s body, so the postcondition of the function (which must always be
explicitly provided) serves as an explicit P . This is the case in Fig. 46, where the return
type of f is explicitly provided by the user.

In light of these difficulties, it should come as no surprise that our current algorithms
are incomplete. More precisely, our frame inference and join algorithms sometimes
make arbitrary choices: an annotation must be provided so as to guide them. Even
in the presence of annotations, our entailment algorithm may fail to verify a valid
entailment and may fail to terminate. This is an admittedly rather unsatisfactory state
of affairs; future work in this area is needed.

9.2. Proof search and backtracking
When confronted with a frame inference problem: “from the permission P , can one
extract P ′ and, if so, what is the remainder R?”, the type-checker may have to explore
several avenues, backtracking when one of them fails. It may be the case that several
subsumption rules can be applied (and do not commute), or that a single subsumption
rule can be applied in several ways.

For instance, assume P is as follows:

xs @ Cons { head = h; tail = t } *
h @ (=h1, =h2) *
h1 @ int *
h2 @ int *
t @ list (int, int)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:72 T. Balabonski et al.

Assume further that P ′ is xs @ list a, where the type variable a is flexible, i.e., a
suitable instantiation of amust be guessed. Such a frame inference problem arises, for
instance, at a call to length xs.

Because xs is obviously a Cons cell, the type-checker first strengthens the goal, which
becomes xs @ Cons { head: a; tail: list a }. There is no loss of generality in this
step.

Then, the type-checker compares the structural permission that describes xs,
namely xs @ Cons { head = h; tail = t }, with the goal, and deduces that the goal
can be reduced to the conjunction h @ a * t @ list a. Again, this step involves no
loss of generality.

The type-checker now attempts to solve the two sub-goals h @ a and t @ list a,
one after the other, in an arbitrary order. This is where trouble begins: because these
sub-goals share the flexible variable a, they are not independent of one another.

Let us assume that the type-checker attempts to solve h @ a first. That is, it must
extract h @ a out of the current permission, for some choice of a. Perhaps surprisingly,
several choices of a are possible:

— Instantiating a with the singleton type =h solves the first sub-goal, because h @ =h
holds trivially. However, this choice leads to a failure in the second sub-goal, because
t @ list (=h) does not hold: not all elements of the list are equal to its head h.

— Instantiating a with (=h1, =h2) similarly solves the first sub-goal and leads to a
failure in the second sub-goal.

— Instantiating a with (int, int) is the right choice, as it allows both sub-goals to
succeed. More generally, the type-checker could decide that “a should be a pair type”
and encode this by introducing two new flexible variables a1 and a2, instantiating a
with the pair type (a1, a2), and resuming the search, which then recursively at-
tempts to obtain h1 @ a1 and h2 @ a2. This leads to instantiating a1 with int and
a2 with int, among several other possibilities.

— In fact, there are infinitely many successful ways of instantiating a. For instance,
one may instantiate with (int, int | empty), with (int, int | empty * empty),
and so on. Although these examples are contrived, the fact that the search tree has
an infinite branching factor is a major issue.

In this example, instantiating a with (int, int) is the simplest choice that eventu-
ally leads to a success. In order to come up with this conclusion, however, backtracking
appears to be necessary.

We have experimented with heuristics that attempt to favor the “right” choice up
front (e.g., “instantiate a type variable with a singleton type only as a last resort”).
We believe that they are useful insofar as they increase efficiency and they reduce
the number of situations where the type-checker commits an incorrect choice and an
explicit type annotation must be provided. They do not in general eliminate the need
for backtracking.

In order to limit the number of branches that the type-checker explores, we only
consider a subset of the valid instantiation choices. In particular, we never consider
instantiating a flexible variable with a conjunction, such as p1 * p2 or a1 | p2. If
a universally quantified variable must be instantiated with a type or permission
of this form, then an explicit type application is required. In Fig. 14, for instance,
the calls to the polymorphic functions stack::new, stack::work, and stack::push
(lines 38, 39, and 46) must be explicitly annotated: the type-checker is not able to
infer that the appropriate instantiation is inode r a. Indeed, this type is an abbre-
viation for (x: unknown | nests r (x @ node r a)), a complex type that involves a
conjunction and an existential quantification.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:73

Over the 3,000 lines of Mezzo code in the standard library, one finds only 73 explicit
type applications (as in Fig. 43) and 28 explicit type annotations (as in Fig. 44). This
amounts to roughly one annotation every 30 lines of code. We believe this to be an
acceptable burden, especially considering that some of the type annotations serve as
documentation.

We limit the scope of backtracking to one invocation of the frame inference algo-
rithm. If, upon type-checking a function call, we find several ways of successfully type-
checking the function call, then we make an arbitrary choice and stick to it when
type-checking the remainder of the code (as opposed to exploring every choice until
one is found that allows the remainder of the code to be type-checked). This strategy
seems less costly and more predictable than unlimited backtracking.

9.3. Implementation details
The type-checker’s implementation can be described by a set of “algorithmic” typing
rules [Protzenko 2014a, Chapter 10]. Unlike the typing rules shown in the present
paper, where every variable is “rigid”, these rules support “flexible” variables, which
represent deferred (as-yet-undetermined) instantiations of universal quantifiers. The
frame inference algorithm (also known as “subtraction”) and the join algorithm are
also described in Protzenko’s dissertation [Protzenko 2014a, Chapters 11 and 12].

10. RELATED WORK
The literature offers a wealth of type systems and program logics that are intended
to help write correct programs in the presence of mutable, heap-allocated state. We
review some of them and contrast their design principles with those of Mezzo.

Many of these systems rely on a concept of “ownership”, or “permission” to perform
certain actions. However, there are many ways of approaching this concept and its
implications on the programming discipline. What is an owner? A principal, a thread,
an object in memory? What kind of privileges are associated with ownership? Does
the discipline restrict who can read, who can write, who can point to an object? What
global invariant does the discipline enforce?

10.1. Annotating types with owners
Ownership Types and its descendants [Clarke et al. 2013] are type systems where
types are explicitly annotated (or implicitly associated) with owners. These systems
enforce topological restrictions on the heap (i.e., they restrict which paths may exist in
the heap) and may in addition enforce a form of “encapsulation” (i.e., limit the opera-
tions that can be performed through certain references).

In Clarke et al.’s original paper [1998], every object has (at most) one owner, and an
owner is an object. An “owner-as-dominator” principle is enforced: every path from a
root to an object x must go through x’s owner.

In Clarke et al.’s later paper [2001], there is a partially ordered set of ownership
“contexts”, where a context could be a class, a package, etc. (One may also think of a
context as a “region”.) An object x has both an “owner context”, which restricts which
objects may point to x, and a “representation context”, which restricts which objects
x may point to. The system enforces a “containment invariant”: a pointer from x to y
may exist only if rep(x) ≺: owner(y) holds.

Another member of the family, Universe Types [Dietl and Müller 2005], imposes an
“owner-as-modifier” principle. There, arbitrary paths are allowed to exist in the heap,
but only those that go through x’s owner can be used to modify x. This approach is
motivated by the desire to better support program verification, as it allows the owner
to impose an object invariant.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:74 T. Balabonski et al.

The literature on Ownership Types is too vast for us to survey here; the reader is
referred to the comprehensive overview by Clarke et al. [2013].

10.2. Annotating types with permissions
In a permission system, types are annotated not with owners, but with permissions.
The permission carried by a pointer tells how this pointer may be used (e.g., for reading
and writing, only for reading, or not at all) and how other pointers to the same object
(if they exist) might be used by others.

In Boyland’s work [2003], a permission is a fraction q in the interval (0, 1]. The unit
fraction 1 means “we” have read-write access, whereas “others” have no access at all.
Any fraction less than 1 means “everyone” has read-only access. Permissions can be
split and recombined, which allows a heap fragment to transition from the state “read-
write, exclusive” to the state “(temporarily) read-only, shared” and back. As of today,
this is impossible in Mezzo. Although it should be possible to extend Mezzo with frac-
tional permissions, we have not investigated this path yet.

Javari [Tschantz and Ernst 2005] extends Java (where, by default, “everyone” has
read-write access) with the permission readonly, which means that “we” have read-
only access, while “others” may have read and/or write access.

Plural [Bierhoff and Aldrich 2007; Bierhoff et al. 2009; Bierhoff et al. 2011], which
takes the form of a mostly automatic intraprocedural analysis, includes Boyland’s frac-
tions, under the names unique and immutable(q). It also includes the permissions full,
which means “we” have read-write access, whereas “others” have read-only access; and
pure, which is the dual of full. Most importantly, Plural introduces the idea that a per-
mission can carry typestate information (e.g., an iterator object may be in one of two
states, “available” or “finished”) and that a unique permission allows a strong update
(i.e., a typestate change).

In principle, permission systems need not impose any topological restrictions on the
heap. Their distinguishing feature is that permissions have a clear interpretation in
terms of “rely” and “guarantee”. A permission dictates what actions “we” can perform
on an object and what assumptions “we” can make about its current state. Dually, it
dictates what “others” may assume or do. This duality between what one may assume
and what one may do seems particularly pleasant, as it ties “policy” and “mechanism”
together in a compelling way. By “policy”, we mean the properties of objects that one
wishes to enforce (e.g., Dietl and Müller’s object invariants [2005], or Bierhoff and
Aldrich’s typestates [2007]). By “mechanism”, we mean the details of which operations
through which references must be allowed or forbidden. Ultimately, one may argue,
policy matters more than mechanism: as put in a provocative manner by Fähndrich,
“we couldn’t care less about aliasing” [Clarke et al. 2004].

10.3. Replacing types with permissions
The systems mentioned so far are refinements (i.e., restrictions) of a traditional type
discipline. Separation logic [Reynolds 2002] departs from this approach. Like many
other program logics, it does not rely on a type system: in principle, it can be used
equally well to reason about typed or untyped programs. It takes the idea of permission
systems to an extreme, where the permission is everything and there isn’t a need for
types any more.

Separation logic obeys a principle that we dub “owner-as-asserter”. (In O’Hearn’s
words, “ownership is in the eye of the asserter” [2007]. This principle has also been
referred to as “owner-as-privilege” [Clarke et al. 2004].) As usual in a program logic,
objects are described by assertions. The novelty lies in the fact that a separation logic
assertion is a permission: it not only represents knowledge about the current state
of an object, but also implies that “we” may act in certain ways on this object, and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:75

that “others” may not. Thus, “to assert is to own”. The assumption that “x is a linked
list” means that “we” may read and write the cells that form this list, and “others”
may not. Whereas the systems mentioned previously (§10.1, §10.2) combine traditional
structural descriptions (i.e., types) with owner or permission annotations, separation
logic assertions are at once structural descriptions and claims of ownership.

Mezzo follows this principle. A permission in Mezzo is fundamentally an assertion
in the sense of separation logic. (Technically, the permission interpretation judgement
R;K P in §4.4 is defined in essentially the same manner as the interpretation of as-
sertions in separation logic.) Let us give three key motivations for this design decision.

One motivation is that this makes the system conceptually less redundant. Indeed,
a traditional type assumption, such as “x has type list”, can be viewed as a duplicable
permission in the sense of Mezzo, stating that “everyone may assume that x points
to a linked list, and everyone must preserve this fact”. From a pragmatic standpoint,
eliminating the redundancy between (traditional) types and permissions leads to a
more concise system. In Mezzo, types are not annotated with owners (§10.1) or with
access permissions (§10.2). Polymorphic code is just type-polymorphic; it does not have
to be both type- and annotation-polymorphic. That said, there are situations in Mezzo
where something that resembles “ownership annotations” appears anyway: this is the
case, for instance, when working with static regions, whose encoding on top of nesting
is shown later on (§10.6).

The second motivation for this design decision is that it allows the “type” of an object
to change. In a traditional type system, types are fixed: because every object is poten-
tially shared, its type cannot be altered. In a system where permissions are layered
on top of types (§10.2), a strong update can alter the information carried by a unique
permission. For instance, in Bierhoff and Aldrich’s system [2007], the “typestate” of an
object can be changed by its owner. However, the object’s underlying type still cannot
be modified. In separation logic or in Mezzo, where information about the “type” of an
object is carried by the permission, a strong update can alter this information. This
enables gradual initialization (§2.2), memory re-use, and certain forms of typestate
tracking [Guéneau et al. 2013].

The last motivation is that “owner-as-asserter” seems a very natural approach from
the standpoint of program verification. More specifically, a program logic for Mezzo
could conceivably take advantage of its type and permission discipline. Permissions
would be annotated with logical assertions, expressed in a standard logic. A simple
mechanical procedure would extract a collection of proof obligations out of a well-typed
program. These obligations would be passed on to a standard theorem prover. The
prover would not need to reason about separation, because this reasoning would have
been carried out already by the Mezzo type-checker.

In contrast with ownership type systems (§10.1), Mezzo does not purposely impose
any topological restrictions on the heap. Nevertheless, it provides strong “end-to-end”
safety guarantees: well-typed programs do not go wrong (which, in the presence of
type-changing updates, is a nontrivial result) and are data-race free.

10.4. Containers, ownership, and ownership transfer
Does a container “own” its elements? Arguably, there are situations where one wishes
to view the elements as owned by the container, and situations where one doesn’t.

In principle, ownership type systems (§10.1) can easily describe both situations. It is
just a matter of annotating the type of the elements with an appropriate owner.

In Mezzo, the type of a container is typically parameterized with the type a of its
elements. One could say that a container always “owns” its elements, but only to the
extent described by the type a. If the parameter a is instantiated with an affine type,
such as ref int, then the container effectively has unique access to the elements. If

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:76 T. Balabonski et al.

the parameter a is instantiated with a duplicable type, such as list int or dynamic,
then the elements may be shared. One could say, in the latter case, that the container
“does not own” its elements.

The functions that insert an element into a container, or extract an element out of a
container, typically receive the following concise types:

val put: [a] (container a, key, consumes a) -> ()
val get: [a] (container a, key) -> a

We have written container a for the type of the container, whose elements have type a,
and key for an unspecified type of keys. These types express in a fairly natural way
the transfer of ownership that takes place when an element is inserted or extracted.
A call put(c, k, x) consumes the permission x @ t, if c has type container t. A call
let x = get(c, k) in ... produces the permission x @ t.

In contrast, the early ownership type systems (§10.1) do not keep track of unique-
ness, hence do not allow strong updates or ownership transfer. Later proposals [Clarke
and Wrigstad 2003; Müller and Rudich 2007] include a notion of “external uniqueness”
which supports ownership transfer.

One problem with containers that “own” their elements is that they typically do not
allow “consulting” or “borrowing” an element, i.e., getting access to it, without taking it
out of the container. We have discussed this issue in §2.4. In Mezzo, one works around
this problem by using a container that “does not own” its elements, that is, by using a
container at a duplicable element type.

There are several ways by which a mutable object may be assigned a duplicable type.
(1) Adoption and abandon allows assigning the duplicable type dynamic (also known as
adoptable, see §7) to an object. Access to the object, together with information about
its “real” type, is obtained via a take instruction. (2) Nesting allows assigning the
duplicable type inhabitant r a (Fig. 14) to an object x. The permission x @ a, which
allows accessing the object, is obtained via a focus instruction. Similarly, our encoding
of regions on top of nesting, shown later on (§10.6), allows assigning the duplicable type
rref r a to a mutable cell that inhabits the region r. (3) Pairing an object x together
with a lock that protects the permission x @ a results in a package of duplicable type
protected a, which is defined as an abbreviation for (x: unknown, lock (x @ a)).
Access is obtained by acquiring the lock. An example of this last possibility is a simple
definition of communication channels in Mezzo, which can be done using a (mutable)
queue protected by a lock [Protzenko 2014a].

10.5. Linearity, singleton types, and capabilities
Wadler [1990] notes that an object of linear type can be updated in place. Furthermore,
he proposes that a value that represents “the file system” should be assigned a linear
type. In the same manner, Clean uses uniqueness types to ensure that the “world” is
never duplicated [Smetsers et al. 1994; Achten and Plasmeijer 1995]. The early linear
type systems are often very restrictive, though. Because reading a reference creates
a copy of its content, a reference whose content has linear type cannot be read in the
usual manner. A destructive read operation, or a swap operation, must typically be
used instead.

Perhaps the main reason why linearity (or affinity, or uniqueness) matters is that
the type of a unique object can change with time, through a “strong update”. Smith et
al.’s Alias Types [2000] is perhaps the first system where this idea is clearly pointed
out and exploited.

Alias Types makes another major contribution, which is to recognize that it does not
really matter that there exist at most one pointer to an object. It is fine for multiple
pointers to exist, as long as there is a unique (static) capability to dereference any of

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:77

these pointers. Thus, Smith et al. introduce the distinction between values, which are
duplicable, and capabilities (or, in our terminology, permissions), which are linear or
affine, and need not exist at runtime.

In order to keep track of which capabilities give access to which objects, and (at the
same time) to keep track of the known equations between pointers, Alias Types uses
singleton types. A pointer p receives a singleton type ptr `, where ` is a type-level name
for a memory location. A pointer q that happens to also have type ptr ` is statically
known to be equal to p. A capability {` 7→ τ} guarantees that the memory location
represented by ` currently contains data of type τ . This capability allows reading and
writing, through p or q, and a strong update can change this capability to {` 7→ τ ′}, for
some new type τ ′.

Analogous ideas appear in the contemporary paper by Walker et al. [2000] on region-
based memory management. In one paper, there is one capability per object; in the
other, there is one capability per region. Vault [DeLine and Fähndrich 2001; Fähndrich
and DeLine 2002] has capabilities for both single objects and regions, together with a
“focusing” mechanism for temporarily singling out an inhabitant of a region.

Reynolds notes early on [2002] that separation logic is closely related to Alias
Types. He sketches a translation from a fragment of Alias Types into separation logic,
whereby a capability {` 7→ τ} is translated to a “points-to” assertion.

Quite obviously, Mezzo is strongly inspired by both Alias Types and separation logic.
However, it is meant to be a type discipline that helps structure high-level programs,
as opposed to a tool for low-level reasoning. This guides some of our design choices. For
instance, Mezzo has tagged sums (that is, algebraic data types), whereas separation
logic usually has untagged union and null pointers.

One contribution of Mezzo with respect to Alias Types is a simpler notion of singleton
type. As Mezzo is value-dependent, a type can refer directly to a value. Thus, every
variable p has the singleton type =p. There is no need for introducing a type-level
name ` in addition to the name p. From a pragmatic point of view, this economy is
quite important. From a theoretical point of view, this is also a simplification: whereas
the type ptr ` of Alias Types is at the same time a pointer type and a singleton type,
Mezzo has two distinct (orthogonal) type constructors, namely ref a and =p, for these
concepts. In that sense, Mezzo is analogous to separation logic, where an assertion can
refer directly to a value, and where “points-to” and equality are orthogonal concepts.

Although capabilities originally did not have first-class status, this was considered
by Walker and Morrisett [2000]. L3 [Ahmed et al. 2007] and Alms [Tov and Pucella
2011] are also linear or affine λ-calculi where capabilities have first-class status. In
fact, in these systems, capabilities are viewed as ordinary values, which one hopes the
compiler can erase. In contrast, Mezzo guarantees that permissions are erased: they do
not appear in its operational semantics (§4). Furthermore, the flow of permissions in a
Mezzo program is (to a large extent) implicit; it is reconstructed by the type-checker.

In the tradition of linear logic, many linear or affine type systems in the literature
adopt the convention that types are by default not duplicable. An explicit modality,
written “!”, must be used to indicate that a value is duplicable. This is the case, for
instance, in L3 [Ahmed et al. 2007], and in Pottier’s earlier work [2013], which was in-
spired in part by dual intuitionistic linear logic [Barber 1996]. From a theoretical point
of view, this approach may seem pleasant. In practice, however, it seems too verbose
to be tolerable. Several authors have suggested recording duplicability information at
the level of kinds [Charguéraud and Pottier 2008; Mazurak et al. 2010; Tov and Pu-
cella 2011]. In Mezzo, in contrast, this information is implicit in the syntax of types.
The type int, for instance, is inherently duplicable. The type ref int is inherently
nonduplicable. The tuple type (t, u) is duplicable if and only if t and u are duplicable;
and so on. The type-checker “knows” these rules and applies them transparently. (As

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:78 T. Balabonski et al.

abstract region

abstract rref (r : value) a
fact duplicable (rref r a)

val newregion:
() -> region

val newrref: [r: value, a]
(consumes y: a | r @ region) -> rref r a

val get: [r: value, a]
(x: rref r a | duplicable a | r @ region) -> a

val set: [r: value, a]
(x: rref r a, consumes y: a | r @ region) -> ()

Fig. 47. A signature for regions, which can be implemented on top of nesting

noted in §2.2, the type-checker infers the rules that govern user-defined types, such as
list t.) Formally, duplicable t is viewed as a permission, and the rules listed above
are permission subsumption rules. This approach seems lightweight, both in theory
and in practice. As illustrated by the types of get and set in Fig. 5, it is easy to express
both quantification with respect to an arbitrary type and quantification with respect
to a duplicable type. Mezzo’s duplicable permissions are analogous to the necessary
assertions found in CaReSL [Turon et al. 2013].

By convention, in Mezzo, every function type is duplicable. This means functions are
easy to use: they can be freely shared, and can be called as many times as one wishes,
provided one is able to supply an argument of appropriate type. The flip side is that
this can make functions difficult to construct: in particular, a function is not allowed
to capture an affine permission that exists at its definition site (see FUNCTION in §4.4).
This is not a problem, though, as the affine type T (U of functions that can be called
at most once can be defined as an abbreviation for ∃p : perm.(((T | p) → U) | p). (This
is Core Mezzo syntax.) This encoding, which was exploited already in the definition of
magic wands (§2.4), can be intuitively understood as a package of a shotgun and one
cartridge, represented by the abstract permission p. The shotgun can be fired at most
once, because it consumes p, which is not known to be duplicable. In fact, Mezzo allows
encoding not only the type T (U of one-shot functions, but also variations on this
theme. For instance, an affine type of functions that can be called many times can be
defined as ∃p : perm.(((T | p)→ (U | p)) | p). As another example, double-barrelled CPS
style, where one is handed a pair of a success continuation and a failure continuation
and one is allowed to invoke at most one of them, can be easily and faithfully encoded
in Mezzo.

10.6. Regions, nesting, adoption and abandon
From a type-theoretic point of view, a region is a type-level name for a set of values,
typically a set of memory locations.

A region may also exist at runtime, in which case it is typically an area where objects
can be dynamically allocated one by one, and can be deallocated all at once. In Tofte
and Talpin’s original work [1994; 1997], regions exist at type-checking time and at
runtime. This is the case also in Walker et al.’s paper [2000], in Vault [DeLine and
Fähndrich 2001; Fähndrich and DeLine 2002], and in Cyclone [Swamy et al. 2006]. In
some of these works, so as to avoid confusion, the type-level entity is referred to as a
region, whereas the runtime entity is referred to as a region handle.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:79

Nesting [Boyland 2010] is closely related to static regions. The name r of the
“nester” can be viewed as a region name; the “nestees” can be viewed as region in-
habitants. Whoever has (exclusive) permission for r also owns every inhabitant. This
relationship was illustrated in Fig. 14, where the types region and inhabitant r a
reflect this idea. If one wishes to push this idea slightly further, one can define in
Mezzo a library module that offers the signature in Fig. 47. The abstract type region
is defined internally by data mutable region = Region, as in Fig. 14. The function
call let r = newregion() in ... produces a new region r. The affine permission
r @ region then serves as a unique right to access the cells allocated in the region r.
The duplicable type rref r a describes a reference that inhabits the region r. This ab-
stract type is defined internally as an abbreviation for inhabitant r (ref a), where
inhabitant is defined as in Fig. 14. The operations newrref, get, and set respectively
allocate, read, and write a reference which (conceptually) inhabits the region r. Each
of these operations requires (and returns) the permission r @ region. The operation
get is restricted to the case where the type a is duplicable: this is another instance of
the “borrowing problem”, which we have discussed at length (§2.4).

This encoding of regions shows that Mezzo (with nesting) subsumes Haskell’s ST
monad. In Haskell, monads are used to encapsulate many sorts of effects, including
mutable state [Peyton Jones and Wadler 1993]. While the IOmonad gives unrestricted
access to mutable references in the style of ML, the ST monad offers more controlled
access. The type of a reference reflects which region it inhabits. The type of a computa-
tion reflects which region it affects: a computation that affects region r and produces
a result of type a has type ST r a. These regions exist at type-checking time only. In
Mezzo, this would be encoded as a function of type (| r @ region) -> a, i.e. a function
that requires and returns the permission r @ region. One benefit of this discipline, in
Haskell, is that a computation that uses only local state can be deemed pure; this is
encoded in the type of the primitive operation runST. In Mezzo, an analogue of runST
would be implemented in a straightforward way, as follows:

val runST [a] (f: [r: value] (| r @ region) -> a) : a =
let r = newregion() in
f [r] ()

This implementation of runST is just an exercise, though: in practice, a user would
typically use newregion() directly, instead of calling runST. We note in passing that
in Mezzo it is easy to work with multiple regions simultaneously, whereas we believe
that this would be awkward in Haskell.

In retrospect, Haskell’s primitive state monads can be viewed as a way of ensuring
that state is treated in a linear manner, even though Haskell’s type system does not
have linear types. In Mezzo, they can be programmed up, by relying on the primitive
notion of an affine permission.

As far as we understand, Rust [The Mozilla foundation 2014] uses (static) regions,
much in the same way as Cyclone and Haskell, so as to guarantee that a piece of
memory is not accessed outside of a certain lexical scope. Rust’s “borrowed pointer”
type &’a T is indexed with a “lifetime” ’a, another name for a region. Within function
bodies, lifetimes are usually inferred. Within function signatures, they must in princi-
ple be explicitly written down, although a small number of syntactic conventions allow
them to be “elided” in many cases. Rust and Mezzo have several common aspects. They
both borrow features from ML, such as first-class functions and algebraic data types
and pattern matching. They both keep track of ownership at type-checking time so
as to ensure memory safety and data race freedom. Their type systems seem rather
different: the central concepts in Rust appear to be lifetimes and borrowing, whereas
Mezzo attempts to explain everything in terms of permissions and permission transfer.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:80 T. Balabonski et al.

Some features of Rust, such as read-only borrows, cannot be simulated in Mezzo. For
efficiency, Rust supports several modes of memory management (garbage-collected;
stack-allocated; reference-counted; etc.) as well as various forms of unboxing, whereas
Mezzo has none of these features.

Bugliesi et al. [2015] define an affine refinement type system for the concurrent λ-
calculus RCF and use it to verify security properties of application code. This system
is doubly interesting in our eyes because it looks and feels very much like Mezzo and
furthermore (we believe) it includes a form of nesting, under the name “exponential
serialization”. Bugliesi et al. use affine formulae (or permissions, in our terminology)
to establish an injective correspondence between assert and assume instructions. For
instance, supposing the affine formula order x y means “an order has been placed by
client x for item y”, the instruction assume (order x y) produces this formula, while
the instruction assert (order x y) consumes it. Affine permissions also control the
use of nonces: in Mezzo syntax, the primitive function mknonce could have type () ->
(x: bytes | x @ nonce), where nonce is an affine type. A permission can be sent on
the network as part of a message; however, because the adversary may capture and
replay messages, every message is required to have duplicable type. This creates an
apparent difficulty: an affine permission such as order x y cannot be sent across the
network. How, then, can one send from principal A to principal B the information
that an order has been placed? Bugliesi’s et al.’s solution, rephrased in our terms,
involves nesting. Suppose B has created a nonce z and (via an earlier message) has
communicated z to A. Suppose B has retained the affine permission z @ nonce. Then,
A proceeds as follows. Instead of sending the affine permission order x y toB, which is
prohibited, A uses a nest operation (§2.6) to nest order x y in z. In return, A obtains
a duplicable nesting witness, nests z (order x y), which it can send to B. On the
receiving end, B uses a focus operation. This operation requires the nesting witness,
consumes z @ nonce, and produces order x y. Thus, the affine permission order x y
has been transmitted, as desired.

Mezzo’s adoption and abandon is inspired by adoption and focus [Fähndrich and
DeLine 2002] and by nesting [Boyland 2010]. The common purpose of all three mech-
anisms is to have just one permission for a group of objects (a region), together with a
way of recovering a permission for an individual member of the group (a region inhab-
itant), when necessary.

Adoption in the sense of Fähndrich and DeLine [2002] and nesting are purely static
mechanisms. They are irreversible: membership in a region, or nesting, cannot be un-
done. Access to an inhabitant can be gained only temporarily. Simultaneous access
to two inhabitants (if supported) requires proving that they are distinct. In contrast,
adoption in the sense of Mezzo can be undone: the take instruction revokes an adopter-
adoptee relationship (after checking, at runtime, that this relationship exists). If de-
sired, a member can leave a group forever. Obtaining simultaneous access to two or
more members is a simple matter of using several take instructions. The fact that
these objects are distinct is then checked at runtime.

For many practical purposes, adoption and abandon is a more flexible mechanism
than nesting. One price to pay is the runtime cost of give and take, as well as the
introduction of potential runtime failures. Another weakness of adoption and abandon
is that, in its simplest form, it does not support transferring all adoptees of adopter y1
to adopter y2 in constant time (this was discussed at the end of §7), whereas in the
case of purely static regions, one can imagine a ghost instruction that merges one
region into another.

One can view adoption and abandon as a region discipline where regions have a
runtime representation. However, in contrast with the traditional notions of runtime
regions, whose aim is to support mass deallocation, the runtime data structures main-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:81

tained by adoption and abandon serve to keep track of certain ownership relationships
at runtime. In this sense, adoption and abandon seems related to the variants of Own-
ership Types where ownership can be tested at runtime [Clarke et al. 2013, §4.3].

10.7. Concurrency and locks
The unique ownership discipline imposed by separation logic provides data-race free-
dom by default. On top of this basic discipline, it is necessary to offer a mechanism
by which several threads can synchronize and exchange permissions. In Mezzo, fol-
lowing concurrent separation logic [O’Hearn 2007] and its successors [Gotsman et al.
2007; Hobor et al. 2008; Buisse et al. 2011], this role is played by locks. Other mecha-
nisms, such as communication channels, can be implemented in Mezzo on top of locks.
It is worth noting that, in these logics and in Mezzo, it is possible for an object to be
protected by different locks, or not protected at all (i.e., owned by a single thread), at
different moments in its lifetime. Indeed, the only requirement that must be obeyed is
that each lock have a fixed invariant.

Like second-order separation logic, which forms the core of CaReSL [Turon et al.
2013], Mezzo supports quantification over permissions. This is exploited in the specifi-
cation of locks: the type lock p is parameterized over a permission p. Our specification
of locks is very close to the one found in iCAP [Svendsen and Birkedal 2014], an exten-
sion of higher-order separation logic. In Mezzo, of course, locks must be axiomatized,
because Mezzo rejects racy programs. In iCAP, in contrast, locks can be implemented.
iCAP supports reasoning about racy programs, under the assumption of a sequentially
consistent memory model.

Our duplicable permissions are analogous to the necessary assertions of CaReSL.
Our higher-order function hide (§1), which encodes a typical usage pattern of a lock, is
essentially identical to Turon et al.’s mkSync [2013, §3.2].

The introduction of locks into Mezzo changes the meaning of Mezzo’s function type in
quite a radical way. In the absence of locks, a function that modifies a piece of mutable
state must request a suitable permission (and, usually, returns this permission). As a
result, every side effect performed by a function must be advertised in its type. In the
presence of locks, however, this is no longer the case. As illustrated by the definition of
hide at the beginning of this paper (Fig. 3), a closure of type () -> ()may capture the
address l of a lock. By acquiring this lock, it obtains a permission (the lock invariant),
which may allow it to perform a side effect. We refer to this feature – the fact that not
every side effect is advertised in a function type – as hidden state. It is a good feature
in that it promotes certain kinds of modularity, and a bad one in that it makes rea-
soning about programs more difficult and destroys some potential type-based compiler
optimizations.

In a sequential setting, hidden state can be introduced via the anti-frame rule [Pot-
tier 2008; Schwinghammer et al. 2010; Pottier 2013]. In a concurrent setting, this rule
is unsound, so it is abandoned, and hidden state is typically introduced via locks. This
is a good thing anyway, because the anti-frame rule seems quite difficult to explain,
both to theorists and to end users. This complexity is perhaps due to the fact that
the anti-frame rule is more ambitious, in a sense, than the rules that govern locks in
Mezzo. In the case of locks, re-entrancy is ruled out via a runtime mechanism (which,
unfortunately, may give rise to deadlocks); whereas in the case of the anti-frame rule,
re-entrancy is ruled out via a purely static criterion (so there is no runtime cost and
no risk of deadlock).

The idea of using a type discipline to enforce the correct usage of locks can be traced
back to Flanagan and Abadi [1999]. There, every lock receives a type-level name, and
every reference cell receives a type that mentions this name. The code is type-checked
under a “current permission”, which is the set of the currently-held locks. This disci-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:82 T. Balabonski et al.

pline can be simulated in Mezzo (if desired) by letting a lock protect a region (in the
sense of §10.6). Thus, by acquiring the lock, one obtains a permission for the region,
which in turn allows one to access the region inhabitants. If one prefers to use adop-
tion and abandon rather than a static region, one can let a lock protect an adopter.
Acquiring the lock yields a permission for the adopter, which (via a take instruction)
gives access to the adoptees.

Boyapati, Lee and Rinard [2002] present an approach to safe locking that is based on
Ownership Types. As in Flanagan and Abadi’s work, the system keeps track of which
lock protects which object. It is quite expressive: it recognizes that synchronization
is unnecessary when the object is immutable or is accessible to a single thread. The
ownership of a unique object can be exchanged between two threads.

Chalice [Leino and Müller 2009; Leino et al. 2010] reasons about locks in a manner
that seems roughly similar to concurrent separation logic. A monitor (an object that
also serves as a lock) is equipped with an invariant, that is, a permission that is gained
by acquiring the lock and is given up when releasing the lock.

Fractional permissions [Boyland 2003; Bornat et al. 2005; Boyland 2010] are sup-
ported by several tools, including VeriFast [Jacobs and Piessens 2008] and Chalice,
which strives to hide them from the user, when possible [Heule et al. 2013]. Amighi et
al. [2015] are also developing such a tool. For greater simplicity, Mezzo does not have
fractional permissions; it distinguishes only between immutable and mutable data. In
Mezzo, a mutable data structure can become immutable and shareable, but not the
other way around. Furthermore, in Mezzo, one cannot create a temporary read-only
view of a mutable data structure. Extending Mezzo with fractional permissions should
allow removing these restrictions; we have not studied this extension. Regions, as in
Cyclone [Swamy et al. 2006] and Rust [The Mozilla foundation 2014], offer another
way of creating temporary read-only views, which does not require accounting.

Gordon et al. [Gordon et al. 2012] ensure data-race freedom in a simple extension of
C#. Their system, which is descended in part from Tschantz and Ernst’s Javari [2005],
qualifies types with permissions in the set immutable, isolated, writable, or readable.
The first two roughly correspond to our immutable and mutable modes, whereas the
last two have no Mezzo analogue. Shared (writable) references allow legacy sequen-
tial code to be considered well-typed. Quite remarkably, the system requires neither
permission accounting nor an alias analysis. This makes the system very simple, but
comes at a cost in expressiveness: mutable global variables, as well as shared objects
protected by locks, are disallowed.

Several of the works cited above [Flanagan and Abadi 1999; Boyapati et al. 2002;
Leino et al. 2010] enforce deadlock freedom. They impose a total order on locks, which
in the more expressive systems can be determined (and possibly evolve) at runtime.
These systems keep track of which locks are held and, when another lock is acquired,
check that the order is respected. In Mezzo, for the sake of simplicity, this is not done;
Mezzo does not guarantee deadlock freedom. It should be possible in principle to extend
Mezzo with these ideas; we have not studied this extension. It is tempting to view
the information that a certain lock is held as a permission. (Indeed, in Mezzo today,
l @ locked is a permission. It means that the lock l is held and acts as a permission to
release it.) However, one must be careful. In a system that aims to guarantee deadlock
freedom, the information that a lock l is held does not only allow us to release l;
it also forbids us from acquiring a lock that is not provably ordered above l. Thus,
this permission is not affine: it is not sound to forget (either forever or, via the frame
rule, temporarily) that a lock is held. In Leino et al.’s terminology [2010], it should
be thought of not as a permission, but as an obligation, or a “negative credit”. In an
extension of Mezzo with these concepts, one would perhaps remove the rule that “every
permission is affine”, and introduce an explicit predicate affine p so as to be able

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:83

to quantify over affine types and permissions, when desired. The type-checker would
ensure that the operations of dropping a permission, framing out a permission, and
hiding a permission (by protecting it with a lock) are applied only to affine permissions.

Locks form the foundation of the POSIX and Java concurrency APIs, and are widely
used in practice. Nevertheless, it is well-known that it is difficult to write correct, mod-
ular, efficient code that uses locks. Their numerous pitfalls include locking too little,
which (in the absence of a static discipline such as Mezzo’s) leads to data races; locking
too much, which leads to lack of parallelism and (in the worst case) deadlocks; and con-
tention. Furthermore, locks are a source of nondeterminism, which makes debugging
difficult.

Bocchino et al. [2009a] argue that parallel programming (where concurrency is not
part of the problem specification, but is used only for increased performance) should
be deterministic by default. They envision a type-and-effect discipline where the heap
is partitioned into disjoint regions, so as to ensure the absence of interference between
threads. Deterministic Parallel Java [Bocchino Jr. et al. 2009b; Bocchino Jr. and Adve
2011] can be viewed as a concrete proposal along these lines. Its type system groups
objects into (static) regions, and requires methods to be annotated with effects, which
indicate which regions are accessed. A region can be a class parameter or a class field.
Regions can be “nested” so as to express tree structure (hence, region disjointness
information). The constructs that express parallelism, namely the cobegin block and
the foreach loop, use effect information to ensure that parallel computations do not
interfere. There is support for subarrays, with dynamic bounds checking. In later work,
Bocchino et al. [2011] mix deterministic and nondeterministic code in a disciplined
manner, and guarantee data-race freedom. Bocchino [2013] provides a good summary
of this line of work as well as a survey of the related work.

Mezzo’s static discipline could conceivably serve as the basis of a similar programme.
It too can express tree structure and regions (for instance, in Fig. 14, a region is used as
a type parameter and as a record field). The only source of nondeterminism in Mezzo is
locks. Instead of defining (multiple-sender, multiple-receiver) communication channels
on top of locks, as done at present in Mezzo’s library, one could remove locks and view
(blocking, single-sender, single-receiver) channels as a primitive feature, thus preserv-
ing determinism. This would form the basis of a simple framework for deterministic
fork/join parallelism.

10.8. Proof techniques and modularity
The soundness of concurrent separation logic was first established by Brookes [2004],
based on a denotational semantics whereby programs are interpreted as sets of traces.
Vafeiadis [2011] proposes a different proof, based on a standard (i.e., uninstrumented)
operational semantics. He defines the meaning of a judgement in terms of the opera-
tional semantics; then, he proceeds to prove that every deduction rule is sound with
respect to this interpretation. Several more recent and more advanced logics, such as
iCAP [Svendsen and Birkedal 2014], follow a similar route, where the meaning of a
judgement is defined in terms of a “model” whose construction (on top of a standard
operational semantics) is quite elaborate but uses by-now well-understood techniques.
Our proof of soundness for Mezzo is also based on a standard operational semantics,
but follows Wright and Felleisen’s “syntactic” approach [1994]. Instead of defining up
front the meaning of a judgement, we view the set of deduction rules as a definition
of the judgement, and proceed to prove that this judgement is an invariant (i.e., it is
preserved by reduction) and is safe (i.e., every well-typed configuration is acceptable).

There has been some debate as to which approach is preferable. Vafeiadis [2011], for
instance, writes that the syntactic approach is “rather fragile”, because “if a new con-
struct were to be added to the language, the soundness of the existing rules would have

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:84 T. Balabonski et al.

to be reproved”. This criticism is valid. However, we believe that a similar criticism can
be made of the “semantic” approach, where the construction of the model and the in-
terpretation of triples can be viewed as a rather elaborate and monolithic summary of
all the features that the logic supports. The introduction of a single new feature, such
as locks, the higher-order frame rule [Schwinghammer et al. 2009], or the anti-frame
rule [Schwinghammer et al. 2010], can require a modification of the model and/or of
the interpretation of triples, which in turn requires checking every proof again.

In the end, we believe neither approach is fundamentally superior to the other. Fur-
thermore, we argue, if one relies on a mechanized proof assistant, the need to re-check
existing proofs is not really a problem. What matters is that the proof terms, or proof
scripts, be written in such a way that they remain valid, or are easy to fix, after some
definitions are altered. This pragmatic understanding of robustness has been rela-
tively under-studied, it seems.

We have emphasized the modular organization of the meta-theory of Mezzo. When
one extends the kernel in a new direction (references; locks), one must of course extend
existing inductive definitions with new cases and extend the state with new compo-
nents. However, one does not need to alter existing rules, or to alter the statements
of the main type soundness lemmas. Of course, one sometimes must add new cases
to existing proofs—only sometimes, though, as it is often possible to express an Ltac
“recipe” that magically takes care of the new cases [Chlipala 2013, chapter 16].

The manner in which this modularity is reflected in our Coq formalization reveals
pragmatic compromises. We use monolithic inductive types. Delaware et al. [2013]
have shown how to break inductive definitions into fragments that can be modularly
combined. This involves a certain notational and conceptual overhead, as well as a
possible loss of flexibility, so we have not followed this route. A moderate use of type
classes allows us to access or update one component of the state without knowing
what other components might exist. A similar feature is one of the key strengths of the
MSOS notation [Mosses 2004]. As often as possible, we write statements that concern
just one component of the state, and in the few occasions where it seems necessary to
explicitly work with all of them at once, we strive to write Ltac code in a style that is
insensitive to the number and nature of these components. It has been our experience
that each extension (references; locks) required very few undesirable amendments to
the existing code base.

Although the formalization of Mezzo was carried out independently, and in part grew
out of earlier work by Pottier [2013], it is in several ways closely related to the Views
framework [Dinsdale-Young et al. 2013]. In both cases, an abstract calculus is equipped
with a notion of machine state; a commutative semigroup of views, or resources; and a
projection, or correspondence, between the two levels. This abstract system is proven
sound, and is later instantiated and extended to accommodate features such as ref-
erences, locks, and more. The Views framework is meant to form a simple, abstract,
re-usable kernel on top of which more elaborate logics, such as CAP [Dinsdale-Young
et al. 2010], can be defined and proved sound.

From Pottier’s previous work [2013], we borrow some ideas, such as the axiomatiza-
tion of monotonic separation algebras. It is closely related to Dockins et al.’s separation
algebras [2009] and to Views. It differs in that it has explicit provision for reasoning
about duplicability (via the function “core”, which maps R to R̂) and about interfer-
ence (via the “rely” relation R1 � R2). Compared with Pottier’s previous mechanized
proof [2013], the absence of regions and the absence of an instrumented operational
semantics represent significant technical simplifications.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:85

11. CONCLUSION
In our tutorial introduction to Mezzo (§1, §2) we have strived to illustrate how a hy-
pothetical Mezzo programmer thinks and works. We believe that Mezzo makes it rel-
atively easy to work with with list- or tree-shaped mutable data structures, with im-
mutable data structures of arbitrary shape, and with (possibly higher-order) functions.
We believe that Mezzo’s static discipline helps the programmer reason about the trans-
fers of ownership that take place when a function is called or returns and when a lock
is acquired or released. Thanks to this discipline, certain mistakes caused by undesired
aliasing are ruled out, and data race freedom is guaranteed. We have also illustrated
the difficulties that arise when one wishes to borrow a (nonduplicable) element from
its container (§2.4) and when one wishes to build mutable data structures that involve
arbitrary aliasing patterns. One typically works around these difficulties by organiz-
ing objects in groups and by keeping track of just one permission for an entire group.
This is done by using either adoption and abandon, a dynamic mechanism (§2.5), part
of our formalization (§7), and a contribution of this paper; or nesting, a purely static
mechanism (§2.6), not part of our formalization.

We have presented a modular formalization of Mezzo, organized as a kernel, on top
of which sit three (almost) independent extensions. The kernel (§4) can be described
as a concurrent call-by-value λ-calculus, equipped with an affine, polymorphic, value-
dependent type-and-permission system. The extensions are:

— strong (i.e., affine, uniquely-owned) mutable references (§5);
— dynamically-allocated, shareable locks, which offer a form of hidden state (§6);
— adoption and abandon (§7).

This paper is accompanied with a Coq proof [Balabonski and Pottier 2014]. It is
about 14,000 (nonblank, noncomment) lines of code. Out of this, a de Bruijn index
library and a monotonic separation algebra library, both of which are reusable, occupy
about 2Kloc each. The remaining 10Kloc are split between the kernel (roughly 4Kloc)
and its three extensions (roughly 6Kloc). These are rough figures only, as the kernel
and its extensions are not clearly separated in the final artifact.

We have listed earlier (§1.2) the main goals that motivated and guided the design
of Mezzo. Which of these goals have been met? We believe that Mezzo is remarkably
simple, concise, expressive, often more so than competing proposals. Its modular and
machine-checked meta-theory not only guarantees that it can be trusted, but also ex-
plains its design and hopefully can serve as a guide in future endeavors. That said, not
everything is perfect. For instance, even though every function signature is explicitly
provided by the programmer, type-checking remains a hard problem, which involves a
good deal of inference, and which we have not fully solved (§9). Another issue is that,
even though Mezzo is implemented on top of the OCaml runtime system, safe inter-
operability with OCaml is currently missing: it is not clear how to safely translate a
Mezzo type to an OCaml type, or vice-versa. We reflect on these issues (among others)
in a conference paper [Pottier and Protzenko 2015]. Mezzo is but a step along the way.
There remains ample room for further research.

REFERENCES
Peter Achten and Marinus J. Plasmeijer. 1995. The Ins and Outs of Clean I/O. Journal of Functional Pro-

gramming 5, 1 (1995), 81–110.
Amal Ahmed, Matthew Fluet, and Greg Morrisett. 2007. L3: A Linear Language with Locations. Funda-

menta Informaticæ 77, 4 (2007), 397–449.
Afshin Amighi, Christian Haack, Marieke Huisman, and Clément Hurlin. 2015. Permission-based separa-

tion logic for multithreaded Java programs. Logical Methods in Computer Science 11, 1 (2015), 1–66.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.935
http://ttic.uchicago.edu/~amal/papers/linloc-fi07.pdf
http://arxiv.org/abs/1411.0851
http://arxiv.org/abs/1411.0851

XXXX:86 T. Balabonski et al.

Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max I. Kanovich, and Joël Ouaknine. 2014. Foun-
dations for Decision Problems in Separation Logic with General Inductive Predicates. In Foundations
of Software Science and Computation Structures (FOSSACS) (Lecture Notes in Computer Science), Vol.
8412. Springer, 411–425.

Thibaut Balabonski and François Pottier. 2014. A Coq formalization of Mezzo, take 2. (July 2014). http:
//gallium.inria.fr/~fpottier/mezzo/mezzo-coq.tar.gz.

Thibaut Balabonski, François Pottier, and Jonathan Protzenko. 2014. Type Soundness and Race Freedom
for Mezzo. In Proceedings of the 12th International Symposium on Functional and Logic Programming
(FLOPS 2014) (Lecture Notes in Computer Science), Vol. 8475. Springer, 253–269.

Andrew Barber. 1996. Dual Intuitionistic Linear Logic. Technical Report ECS-LFCS-96-347. Laboratory for
Foundations of Computer Science, School of Informatics at the University of Edinburgh.

Batteries included. 2014. BatList. (2014).
Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2004. A Decidable Fragment of Separation Logic.

In Foundations of Software Technology and Theoretical Computer Science (FSTTCS) (Lecture Notes in
Computer Science), Vol. 3328. Springer, 97–109.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005a. Smallfoot: Modular Automatic Assertion
Checking with Separation Logic. In Formal Methods for Components and Objects (Lecture Notes in
Computer Science), Vol. 4111. Springer, 115–137.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005b. Symbolic Execution with Separation Logic.
In Asian Symposium on Programming Languages and Systems (APLAS) (Lecture Notes in Computer
Science), Vol. 3780. Springer, 52–68.

Kevin Bierhoff and Jonathan Aldrich. 2007. Modular typestate checking of aliased objects. In Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA). 301–320.

Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich. 2009. Practical API Protocol Checking with Ac-
cess Permissions. In European Conference on Object-Oriented Programming (ECOOP) (Lecture Notes in
Computer Science), Vol. 5653. Springer, 195–219.

Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich. 2011. Checking Concurrent Typestate with Access
Permissions in Plural: A Retrospective. In Engineering of Software, Peri L. Tarr and Alexander L. Wolf
(Eds.). Springer, 35–48.

Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob Thamsborg, and Hongseok
Yang. 2011. Step-indexed Kripke models over recursive worlds. In Principles of Programming Lan-
guages (POPL). 119–132.

Robert L. Bocchino Jr. 2013. Alias Control for Deterministic Parallelism. In Aliasing in Object-Oriented
Programming. Types, Analysis and Verification, Dave Clarke, James Noble, and Tobias Wrigstad (Eds.).
Lecture Notes in Computer Science, Vol. 7850. Springer, 156–195.

Robert L. Bocchino Jr. and Vikram S. Adve. 2011. Types, Regions, and Effects for Safe Programming
with Object-Oriented Parallel Frameworks. In European Conference on Object-Oriented Programming
(ECOOP) (Lecture Notes in Computer Science), Vol. 6813. Springer, 306–332.

Robert L. Bocchino Jr., Vikram S. Adve, Sarita V. Adve, and Marc Snir. 2009a. Parallel Programming Must
Be Deterministic by Default. In USENIX Conference on Hot Topics in Parallelism (HotPar). 1–6.

Robert L. Bocchino Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann, Rakesh Komuravelli,
Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vakilian. 2009b. A type and effect system
for deterministic parallel Java. In Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). 97–116.

Robert L. Bocchino Jr., Stephen Heumann, Nima Honarmand, Sarita V. Adve, Vikram S. Adve, Adam Welc,
and Tatiana Shpeisman. 2011. Safe nondeterminism in a deterministic-by-default parallel language. In
Principles of Programming Languages (POPL). 535–548.

Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. 2005. Permission accounting
in separation logic. In Principles of Programming Languages (POPL). 259–270.

Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. 2002. Ownership types for safe programming:
preventing data races and deadlocks. In Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA). 211–230.

John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis Symposium
(SAS) (Lecture Notes in Computer Science), Vol. 2694. Springer, 55–72.

John Tang Boyland. 2010. Semantics of fractional permissions with nesting. ACM Transactions on Program-
ming Languages and Systems 32, 6 (2010), 22:1–22:33.

Thomas Braibant and Damien Pous. 2011. Tactics for Reasoning Modulo AC in Coq. In Certified Programs
and Proofs (Lecture Notes in Computer Science), Vol. 7086. Springer, 167–182.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/AGHKO-fossacs14.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/AGHKO-fossacs14.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/AGHKO-fossacs14.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/AGHKO-fossacs14.pdf
http://gallium.inria.fr/~fpottier/mezzo/mezzo-coq.tar.gz
http://gallium.inria.fr/~fpottier/mezzo/mezzo-coq.tar.gz
http://gallium.inria.fr/~fpottier/publis/bpp-mezzo.pdf
http://gallium.inria.fr/~fpottier/publis/bpp-mezzo.pdf
http://gallium.inria.fr/~fpottier/publis/bpp-mezzo.pdf
http://gallium.inria.fr/~fpottier/publis/bpp-mezzo.pdf
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347/
https://github.com/ocaml-batteries-team/batteries-included/blob/master/src/batList.ml
http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/unroll_collapse.pdf
http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/unroll_collapse.pdf
http://research.microsoft.com/pubs/67598/smallfoot.pdf
http://research.microsoft.com/pubs/67598/smallfoot.pdf
http://research.microsoft.com/pubs/67598/smallfoot.pdf
http://www.dcs.qmul.ac.uk/~berdine/papers/execution.pdf
http://www.dcs.qmul.ac.uk/~berdine/papers/execution.pdf
http://www.cs.cmu.edu/~kbierhof/papers/typestate-verification.pdf
http://www.cs.cmu.edu/~kbierhof/papers/typestate-verification.pdf
http://www.cs.cmu.edu/~kbierhof/papers/typestate-verification.pdf
http://www.cs.cmu.edu/~kbierhof/papers/permission-practice.pdf
http://www.cs.cmu.edu/~kbierhof/papers/permission-practice.pdf
http://www.cs.cmu.edu/~kbierhof/papers/permission-practice.pdf
http://www.cs.cmu.edu/~aldrich/papers/bierhoff-plural-festschrift11.pdf
http://www.cs.cmu.edu/~aldrich/papers/bierhoff-plural-festschrift11.pdf
http://www.cs.cmu.edu/~aldrich/papers/bierhoff-plural-festschrift11.pdf
http://www.eecs.qmul.ac.uk/~hyang/paper/popl11-long.pdf
http://www.eecs.qmul.ac.uk/~hyang/paper/popl11-long.pdf
http://www.eecs.qmul.ac.uk/~hyang/paper/popl11-long.pdf
http://dx.doi.org/10.1007/978-3-642-36946-9_7
http://dx.doi.org/10.1007/978-3-642-36946-9_7
http://dx.doi.org/10.1007/978-3-642-36946-9_7
http://rob-bocchino.net/Professional/Publications_files/DPJ-ECOOP-2011-Frameworks.pdf
http://rob-bocchino.net/Professional/Publications_files/DPJ-ECOOP-2011-Frameworks.pdf
http://rob-bocchino.net/Professional/Publications_files/DPJ-ECOOP-2011-Frameworks.pdf
http://rob-bocchino.net/Professional/Publications_files/DPJ-ECOOP-2011-Frameworks.pdf
http://dpj.cs.illinois.edu/DPJ/Publications_files/DPJ-HotPar-2009.pdf
http://dpj.cs.illinois.edu/DPJ/Publications_files/DPJ-HotPar-2009.pdf
http://dpj.cs.illinois.edu/DPJ/Publications_files/DPJ-HotPar-2009.pdf
http://rob-bocchino.net/Professional/Publications_files/Bocchino-OOPSLA-2009.pdf
http://rob-bocchino.net/Professional/Publications_files/Bocchino-OOPSLA-2009.pdf
http://rob-bocchino.net/Professional/Publications_files/Bocchino-OOPSLA-2009.pdf
http://rob-bocchino.net/Professional/Publications_files/Bocchino-OOPSLA-2009.pdf
http://rob-bocchino.net/Professional/Publications_files/Bocchino-POPL-2011.pdf
http://rob-bocchino.net/Professional/Publications_files/Bocchino-POPL-2011.pdf
http://www.dcs.qmul.ac.uk/~ohearn/papers/permissions_paper.pdf
http://www.dcs.qmul.ac.uk/~ohearn/papers/permissions_paper.pdf
http://www.dcs.qmul.ac.uk/~ohearn/papers/permissions_paper.pdf
http://doi.acm.org/10.1145/582419.582440
http://doi.acm.org/10.1145/582419.582440
http://doi.acm.org/10.1145/582419.582440
http://doi.acm.org/10.1145/582419.582440
http://www.cs.uwm.edu/~boyland/papers/permissions.pdf
http://www.cs.uwm.edu/~boyland/papers/permissions.pdf
http://www.cs.uwm.edu/~boyland/papers/permissions.pdf
http://dx.doi.org/10.1145/1749608.1749611
http://arxiv.org/abs/1106.4448
http://arxiv.org/abs/1106.4448
http://arxiv.org/abs/1106.4448

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:87

Stephen D. Brookes. 2004. A Semantics for Concurrent Separation Logic. In International Conference on
Concurrency Theory (CONCUR) (Lecture Notes in Computer Science), Vol. 3170. Springer, 16–34.

Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei. 2015. Affine Refinement Types
for Secure Distributed Programming. (2015). To appear.

Alexandre Buisse, Lars Birkedal, and Kristian Støvring. 2011. A Step-Indexed Kripke Model of Separation
Logic for Storable Locks. Electronic Notes in Theoretical Computer Science 276 (2011), 121–143.

Cristiano Calcagno, Dino Distefano, and Peter O’Hearn. 2015. Open-sourcing Facebook In-
fer: Identify bugs before you ship. https://code.facebook.com/posts/1648953042007882/
open-sourcing-facebook-infer-identify-bugs-before-you-ship/. (2015).

Bor-Yuh Evan Chang and Xavier Rival. 2008. Relational inductive shape analysis. In Principles of Program-
ming Languages (POPL). 247–260.

Arthur Charguéraud. 2010. Characteristic Formulae for Mechanized Program Verification. Ph.D. Disserta-
tion. Université Paris 7.

Arthur Charguéraud and François Pottier. 2008. Functional Translation of a Calculus of Capabilities. In
International Conference on Functional Programming (ICFP). 213–224.

Adam Chlipala. 2013. Certified Programming and Dependent Types. MIT Press.
Jacek Chrzaszcz. 1998. Polymorphic Subtyping Without Distributivity. In International Symposium on

Mathematical Foundations of Computer Science (Lecture Notes in Computer Science), Vol. 1450.
Springer, 346–355.

Dave Clarke, Sophia Drossopoulou, and James Noble. 2004. Aliasing, Confinement, and Ownership in
Object-Oriented Programming. In Object-Oriented Technology. ECOOP 2003 Workshop Reader. Lecture
Notes in Computer Science, Vol. 3013. Springer, 197–207.

Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. 2013. Ownership Types: A Survey. In Alias-
ing in Object-Oriented Programming. Lecture Notes in Computer Science, Vol. 7850. Springer, 15–58.

Dave Clarke and Tobias Wrigstad. 2003. External Uniqueness Is Unique Enough. In European Conference
on Object-Oriented Programming (ECOOP) (Lecture Notes in Computer Science), Vol. 2743. Springer,
176–200.

David G. Clarke, James Noble, and John Potter. 2001. Simple Ownership Types for Object Containment. In
European Conference on Object-Oriented Programming (ECOOP) (Lecture Notes in Computer Science),
Vol. 2072. Springer, 53–76.

David G. Clarke, John M. Potter, and James Noble. 1998. Ownership types for flexible alias protection. In
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). 48–64.

Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal, Thomas Santen,
Wolfram Schulte, and Stephan Tobies. 2009. VCC: A Practical System for Verifying Concurrent C. In
Theorem Proving in Higher Order Logics (TPHOLs) (Lecture Notes in Computer Science), Vol. 5674.
Springer, 23–42.

Byron Cook, Christoph Haase, Joël Ouaknine, Matthew J. Parkinson, and James Worrell. 2011. Tractable
Reasoning in a Fragment of Separation Logic. In International Conference on Concurrency Theory (CON-
CUR) (Lecture Notes in Computer Science), Vol. 6901. Springer, 235–249.

Luis Damas. 1985. Type Assignment in Programming Languages. Ph.D. Dissertation. University of Edin-
burgh.

Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2013. Meta-theory à La Carte. In Principles
of Programming Languages (POPL). 207–218.

Robert DeLine and Manuel Fähndrich. 2001. Enforcing High-Level Protocols in Low-Level Software. In
Programming Language Design and Implementation (PLDI). 59–69.

David L. Detlefs, K. Rustan M. Leino, and Greg Nelson. 1998. Wrestling with rep exposure. Research Report
156. SRC.

Werner Dietl and Peter Müller. 2005. Universes: Lightweight Ownership for JML. Journal of Object Tech-
nology 4, 8 (2005), 5–32.

Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok Yang.
2013. Views: compositional reasoning for concurrent programs. In Principles of Programming Lan-
guages (POPL). 287–300.

Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010.
Concurrent Abstract Predicates. In European Conference on Object-Oriented Programming (ECOOP)
(Lecture Notes in Computer Science), Vol. 6183. Springer, 504–528.

Dino Distefano and Matthew J. Parkinson. 2008. jStar: towards practical verification for Java. In Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA). 213–226.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

http://dx.doi.org/10.1007/978-3-540-28644-8_2
http://dx.doi.org/10.1007/978-3-540-28644-8_2
http://dx.doi.org/10.1007/978-3-540-28644-8_2
http://www.sps.cs.uni-saarland.de/affine-rcf/resources/long.pdf
http://www.sps.cs.uni-saarland.de/affine-rcf/resources/long.pdf
http://www.itu.dk/~birkedal/papers/locks.pdf
http://www.itu.dk/~birkedal/papers/locks.pdf
https://code.facebook.com/posts/1648953042007882/open-sourcing-facebook-infer-identify-bugs-before-you-ship/
https://code.facebook.com/posts/1648953042007882/open-sourcing-facebook-infer-identify-bugs-before-you-ship/
http://xisa.cs.colorado.edu/papers/popl08-relational.pdf
http://xisa.cs.colorado.edu/papers/popl08-relational.pdf
http://xisa.cs.colorado.edu/papers/popl08-relational.pdf
http://www.chargueraud.org/research/2010/thesis/thesis_final.pdf
http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://adam.chlipala.net/cpdt/
http://www.mimuw.edu.pl/~chrzaszc/papers/Chrzaszcz_Polymorphic-subtyping-without-distributivity.ps.gz
http://www.mimuw.edu.pl/~chrzaszc/papers/Chrzaszcz_Polymorphic-subtyping-without-distributivity.ps.gz
http://www.mimuw.edu.pl/~chrzaszc/papers/Chrzaszcz_Polymorphic-subtyping-without-distributivity.ps.gz
http://dx.doi.org/10.1007/978-3-540-25934-3_19
http://dx.doi.org/10.1007/978-3-540-25934-3_19
http://dx.doi.org/10.1007/978-3-540-25934-3_19
http://dx.doi.org/10.1007/978-3-642-36946-9_3
http://dx.doi.org/10.1007/978-3-642-36946-9_3
http://dx.doi.org/10.1007/978-3-642-36946-9_3
https://lirias.kuleuven.be/bitstream/123456789/203436/1/euiue.pdf
https://lirias.kuleuven.be/bitstream/123456789/203436/1/euiue.pdf
https://lirias.kuleuven.be/bitstream/123456789/203436/1/euiue.pdf
http://www.cs.washington.edu/education/courses/cse590p/00wi/simple.pdf
http://www.cs.washington.edu/education/courses/cse590p/00wi/simple.pdf
http://doi.acm.org/10.1145/286936.286947
http://doi.acm.org/10.1145/286936.286947
http://research.microsoft.com/apps/pubs/default.aspx?id=117859
http://research.microsoft.com/apps/pubs/default.aspx?id=117859
http://www.cs.ox.ac.uk/files/4048/sl.pdf
http://www.cs.ox.ac.uk/files/4048/sl.pdf
http://www.cs.ox.ac.uk/files/4048/sl.pdf
http://www.cs.ox.ac.uk/files/4048/sl.pdf
http://people.csail.mit.edu/bendy/MTC/MTC.pdf
http://people.csail.mit.edu/bendy/MTC/MTC.pdf
http://people.csail.mit.edu/bendy/MTC/MTC.pdf
http://research.microsoft.com/apps/pubs/default.aspx?id=67457
http://research.microsoft.com/apps/pubs/default.aspx?id=67457
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-156.pdf
http://www.jot.fm/issues/issue_2005_10/article1.pdf
http://cs.au.dk/~birke/papers/views.pdf
http://cs.au.dk/~birke/papers/views.pdf
http://cs.au.dk/~birke/papers/views.pdf
http://www.cl.cam.ac.uk/~md466/publications/ECOOP.10.concurrent_abstract_predicates.pdf
http://www.cl.cam.ac.uk/~md466/publications/ECOOP.10.concurrent_abstract_predicates.pdf
http://www.cl.cam.ac.uk/~mjp41/frp39distefano.pdf
http://www.cl.cam.ac.uk/~mjp41/frp39distefano.pdf
http://www.cl.cam.ac.uk/~mjp41/frp39distefano.pdf

XXXX:88 T. Balabonski et al.

Robert Dockins, Aquinas Hobor, and Andrew W. Appel. 2009. A Fresh Look at Separation Algebras and
Share Accounting. In Asian Symposium on Programming Languages and Systems (APLAS) (Lecture
Notes in Computer Science), Vol. 5904. Springer, 161–177.

Jean-Christophe Filliâtre, Léon Gondelman, and Andrei Paskevich. 2014. The Spirit of Ghost Code. In Com-
puter Aided Verification (Lecture Notes in Computer Science), Vol. 8559. Springer, 1–16.

Cormac Flanagan and Martín Abadi. 1999. Types for Safe Locking. In European Symposium on Program-
ming (ESOP) (Lecture Notes in Computer Science), Vol. 1576. Springer, 91–108.

Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt, James R. Larus, and Steven
Levi. 2006. Language support for fast and reliable message-based communication in Singularity OS. In
EuroSys. 177–190.

Manuel Fähndrich and Robert DeLine. 2002. Adoption and focus: practical linear types for imperative pro-
gramming. In Programming Language Design and Implementation (PLDI). 13–24.

Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy. 2012. Uniqueness
and reference immutability for safe parallelism. In Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). 21–40.

Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv. 2007. Local Reasoning for
Storable Locks and Threads. Technical Report MSR-TR-2007-39. Microsoft Research.

Armaël Guéneau, François Pottier, and Jonathan Protzenko. 2013. The ins and outs of iteration in Mezzo.
Higher-Order Programming and Effects (HOPE). (2013). http://goo.gl/NrgKc4.

Christian Haack, Marieke Huisman, and Clément Hurlin. 2008. Reasoning about Java’s Reentrant Locks.
In Asian Symposium on Programming Languages and Systems (APLAS) (Lecture Notes in Computer
Science), Vol. 5356. Springer, 171–187.

Christian Haack and Clément Hurlin. 2009. Resource Usage Protocols for Iterators. Journal of Object Tech-
nology 8, 4 (2009), 55–83.

Stefan Heule, K. Rustan M. Leino, Peter Müller, and Alexander J. Summers. 2013. Abstract Read Per-
missions: Fractional Permissions without the Fractions. In Verification, Model Checking and Abstract
Interpretation (VMCAI) (Lecture Notes in Computer Science), Vol. 7737. Springer, 315–334.

Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. 2008. Oracle Semantics for Concurrent
Separation Logic. In European Symposium on Programming (ESOP) (Lecture Notes in Computer Sci-
ence), Vol. 4960. Springer, 353–367.

Bart Jacobs, Dragan Bosnacki, and Ruurd Kuipe. 2015. Modular Termination Verification. In European Con-
ference on Object-Oriented Programming (ECOOP) (Leibniz International Proceedings in Informatics).
99–1023.

Bart Jacobs and Frank Piessens. 2008. The VeriFast Program Verifier. Technical Report CW-520. Depart-
ment of Computer Science, Katholieke Universiteit Leuven.

Neelakantan R. Krishnaswami, Jonathan Aldrich, Lars Birkedal, Kasper Svendsen, and Alexandre Buisse.
2009. Design Patterns in Separation Logic. In Types in Language Design and Implementation (TLDI).
105–116.

James Richard Larus. 1989. Restructuring Symbolic Programs for Concurrent Execution on Multiprocessors.
Ph.D. Dissertation. EECS Department, University of California, Berkeley. Technical Report UCB/CSD-
89-502.

K. Rustan M. Leino and Peter Müller. 2009. A Basis for Verifying Multi-threaded Programs. In European
Symposium on Programming (ESOP) (Lecture Notes in Computer Science), Vol. 5502. Springer, 378–393.

K. Rustan M. Leino, Peter Müller, and Jan Smans. 2010. Deadlock-Free Channels and Locks. In European
Symposium on Programming (ESOP) (Lecture Notes in Computer Science), Vol. 6012. Springer, 407–426.

Toshiyuki Maeda, Haruki Sato, and Akinori Yonezawa. 2011. Extended Alias Type System using Separating
Implication. In Types in Language Design and Implementation (TLDI). 29–42.

Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. 2010. Lightweight linear types in system F ◦. In Types
in Language Design and Implementation (TLDI). 77–88.

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. System Sci. 17, 3 (1978),
348–375.

Yasuhiko Minamide. 1998. A functional representation of data structures with a hole. In Principles of Pro-
gramming Languages (POPL). 75–84.

Peter D. Mosses. 2004. Modular structural operational semantics. Journal of Logic and Algebraic Program-
ming 60–61 (2004), 195–228.

Peter Müller and Arsenii Rudich. 2007. Ownership transfer in universe types. In Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA). 461–478.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

http://www.cs.princeton.edu/~appel/papers/fresh-sa.pdf
http://www.cs.princeton.edu/~appel/papers/fresh-sa.pdf
http://www.cs.princeton.edu/~appel/papers/fresh-sa.pdf
https://hal.archives-ouvertes.fr/hal-00873187/PDF/main.pdf
https://hal.archives-ouvertes.fr/hal-00873187/PDF/main.pdf
https://hal.archives-ouvertes.fr/hal-00873187/PDF/main.pdf
http://users.soe.ucsc.edu/~cormac/papers/esop99.pdf
http://users.soe.ucsc.edu/~cormac/papers/esop99.pdf
http://users.soe.ucsc.edu/~cormac/papers/esop99.pdf
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p177-fahndrich.pdf
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p177-fahndrich.pdf
http://research.microsoft.com/pubs/67459/pldi02.pdf
http://research.microsoft.com/pubs/67459/pldi02.pdf
http://research.microsoft.com/pubs/67459/pldi02.pdf
http://homes.cs.washington.edu/~csgordon/papers/oopsla12.pdf
http://homes.cs.washington.edu/~csgordon/papers/oopsla12.pdf
http://homes.cs.washington.edu/~csgordon/papers/oopsla12.pdf
http://homes.cs.washington.edu/~csgordon/papers/oopsla12.pdf
http://research.microsoft.com/pubs/70427/tr-2007-39.pdf
http://research.microsoft.com/pubs/70427/tr-2007-39.pdf
http://goo.gl/NrgKc4
http://www.cs.ru.nl/~chaack/papers/papers/reentrant.pdf
http://www.cs.ru.nl/~chaack/papers/papers/reentrant.pdf
http://www.jot.fm/issues/issue_2009_06/article3.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml225.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml225.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml225.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml225.pdf
http://www.cs.princeton.edu/~appel/papers/concurrent.pdf
http://www.cs.princeton.edu/~appel/papers/concurrent.pdf
http://www.cs.princeton.edu/~appel/papers/concurrent.pdf
http://people.cs.kuleuven.be/~bart.jacobs/ecoop2015.pdf
http://people.cs.kuleuven.be/~bart.jacobs/ecoop2015.pdf
http://people.cs.kuleuven.be/~bart.jacobs/ecoop2015.pdf
http://people.cs.kuleuven.be/~bart.jacobs/verifast/verifast.pdf
http://www.cs.cmu.edu/~neelk/design-patterns-tldi09.pdf
http://www.cs.cmu.edu/~neelk/design-patterns-tldi09.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/1989/CSD-89-502.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml191.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml191.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml191.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml200ext.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml200ext.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml200ext.pdf
http://dx.doi.org/10.1145/1929553.1929559
http://dx.doi.org/10.1145/1929553.1929559
http://dx.doi.org/10.1145/1929553.1929559
http://www.cis.upenn.edu/~stevez/papers/MZZ10.pdf
http://www.cis.upenn.edu/~stevez/papers/MZZ10.pdf
http://www.cis.upenn.edu/~stevez/papers/MZZ10.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.67.5276
http://www.score.cs.tsukuba.ac.jp/~minamide/papers/hole.popl98.pdf
http://www.score.cs.tsukuba.ac.jp/~minamide/papers/hole.popl98.pdf
http://www.score.cs.tsukuba.ac.jp/~minamide/papers/hole.popl98.pdf
http://www.brics.dk/RS/05/7/BRICS-RS-05-7.pdf
http://dx.doi.org/10.1145/1297027.1297061
http://dx.doi.org/10.1145/1297027.1297061
http://dx.doi.org/10.1145/1297027.1297061

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:89

Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff. 2012. A type system for borrowing
permissions. In Principles of Programming Languages (POPL). 557–570.

Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. 2010. Structuring the verification of heap-
manipulating programs. In Principles of Programming Languages (POPL). 261–274.

Juan Antonio Navarro Pérez and Andrey Rybalchenko. 2011. Separation logic + superposition calculus =
heap theorem prover. In Programming Language Design and Implementation (PLDI). 556–566.

Peter W. O’Hearn. 2007. Resources, Concurrency and Local Reasoning. Theoretical Computer Science 375,
1–3 (2007), 271–307.

Simon Peyton Jones and Philip Wadler. 1993. Imperative functional programming. In Principles of Program-
ming Languages (POPL). 71–84.

Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2013. Automating Separation Logic Using SMT. In
Computer Aided Verification (Lecture Notes in Computer Science), Vol. 8044. Springer, 773–789.

François Pottier. 2008. Hiding local state in direct style: a higher-order anti-frame rule. In Logic in Computer
Science (LICS). 331–340.

François Pottier. 2013. Syntactic soundness proof of a type-and-capability system with hidden state. Journal
of Functional Programming 23, 1 (2013), 38–144.

François Pottier and Jonathan Protzenko. 2013. Programming with permissions in Mezzo. In International
Conference on Functional Programming (ICFP). 173–184.

François Pottier and Jonathan Protzenko. 2015. A few lessons from the Mezzo project. In Summit on Ad-
vances in Programming Languages (SNAPL).

Jonathan Protzenko. 2014a. Mezzo: a typed language for safe effectful concurrent programs. Ph.D. Disserta-
tion. Université Paris Diderot.

Jonathan Protzenko. 2014b. A Mezzo sample project. (2014).
Jonathan Protzenko. 2014c. Mezzo-web: try Mezzo in your browser. (2014).
John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Logic in Com-

puter Science (LICS). 55–74.
Jan Schwinghammer, Lars Birkedal, Bernhard Reus, and Hongseok Yang. 2009. Nested Hoare triples and

frame rules for higher-order store. In Computer Science Logic (Lecture Notes in Computer Science), Vol.
5771. Springer, 440–454.

Jan Schwinghammer, Hongseok Yang, Lars Birkedal, François Pottier, and Bernhard Reus. 2010. A Se-
mantic Foundation for Hidden State. In Foundations of Software Science and Computation Structures
(FOSSACS) (Lecture Notes in Computer Science), Vol. 6014. Springer, 2–17.

Sjaak Smetsers, Erik Barendsen, Marko C. J. D. van Eekelen, and Marinus J. Plasmeijer. 1994. Guaran-
teeing Safe Destructive Updates Through a Type System with Uniqueness Information for Graphs. In
Dagstuhl Seminar on Graph Transformations in Computer Science (Lecture Notes in Computer Science),
Vol. 776. Springer, 358–379.

Frederick Smith, David Walker, and Greg Morrisett. 2000. Alias Types. In European Symposium on Pro-
gramming (ESOP) (Lecture Notes in Computer Science), Vol. 1782. Springer, 366–381.

Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates. In European
Symposium on Programming (ESOP) (Lecture Notes in Computer Science), Vol. 8410. Springer, 149–
168.

Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. 2006. Safe Manual Memory
Management in Cyclone. Science of Computer Programming 62, 2 (2006), 122–144.

The Mozilla foundation. 2014. The Rust programming language. (2014).
Mads Tofte. 1988. Operational Semantics and Polymorphic Type Inference. Ph.D. Dissertation. University of

Edinburgh.
Mads Tofte and Jean-Pierre Talpin. 1994. Implementation of the Typed Call-by-Value λ-Calculus using a

Stack of Regions. In Principles of Programming Languages (POPL). 188–201.
Mads Tofte and Jean-Pierre Talpin. 1997. Region-based memory management. Information and Computa-

tion 132, 2 (1997), 109–176.
Jesse A. Tov and Riccardo Pucella. 2011. Practical Affine Types. In Principles of Programming Languages

(POPL). 447–458.
Matthew S. Tschantz and Michael D. Ernst. 2005. Javari: adding reference immutability to Java. In Object-

Oriented Programming, Systems, Languages, and Applications (OOPSLA). 211–230.
Thomas Tuerk. 2010. Local reasoning about while-loops. (2010). Unpublished.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

http://cs.cmu.edu/afs/cs.cmu.edu/Web/People/kbn/pubs/poplBorrowing.pdf
http://cs.cmu.edu/afs/cs.cmu.edu/Web/People/kbn/pubs/poplBorrowing.pdf
http://cs.cmu.edu/afs/cs.cmu.edu/Web/People/kbn/pubs/poplBorrowing.pdf
http://software.imdea.org/~aleks/papers/reflect/reflect.pdf
http://software.imdea.org/~aleks/papers/reflect/reflect.pdf
http://software.imdea.org/~aleks/papers/reflect/reflect.pdf
http://www7.informatik.tu-muenchen.de/um/bibdb/navarro/pldi2011.pdf
http://www7.informatik.tu-muenchen.de/um/bibdb/navarro/pldi2011.pdf
http://www7.informatik.tu-muenchen.de/um/bibdb/navarro/pldi2011.pdf
http://www.dcs.qmul.ac.uk/~ohearn/papers/concurrency.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/imperative/imperative.ps.gz
http://homepages.inf.ed.ac.uk/wadler/papers/imperative/imperative.ps.gz
http://homepages.inf.ed.ac.uk/wadler/papers/imperative/imperative.ps.gz
https://www.mpi-sws.org/~piskac/publications/PiskacWiesZuffrey13SepLog.pdf
https://www.mpi-sws.org/~piskac/publications/PiskacWiesZuffrey13SepLog.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-ssphs.pdf
http://gallium.inria.fr/~fpottier/publis/pottier-protzenko-mezzo.pdf
http://gallium.inria.fr/~fpottier/publis/pottier-protzenko-mezzo.pdf
http://gallium.inria.fr/~fpottier/publis/pottier-protzenko-mezzo.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-protzenko-lessons-mezzo.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-protzenko-lessons-mezzo.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-protzenko-lessons-mezzo.pdf
https://hal.inria.fr/tel-01086106/document
https://github.com/protz/mezzo-sample-project/
http://gallium.inria.fr/~protzenk/mezzo-web/
http://www.cs.cmu.edu/~jcr/seplogic.pdf
http://www.cs.cmu.edu/~jcr/seplogic.pdf
http://www.cs.cmu.edu/~jcr/seplogic.pdf
http://www.itu.dk/~birkedal/papers/nested-triples-conf.pdf
http://www.itu.dk/~birkedal/papers/nested-triples-conf.pdf
http://www.itu.dk/~birkedal/papers/nested-triples-conf.pdf
http://gallium.inria.fr/~fpottier/publis/sfhs.pdf
http://gallium.inria.fr/~fpottier/publis/sfhs.pdf
http://gallium.inria.fr/~fpottier/publis/sfhs.pdf
http://gallium.inria.fr/~fpottier/publis/sfhs.pdf
http://www.mbsd.cs.ru.nl/publications/papers/1994/smes94-guaranteeing.pdf
http://www.mbsd.cs.ru.nl/publications/papers/1994/smes94-guaranteeing.pdf
http://www.mbsd.cs.ru.nl/publications/papers/1994/smes94-guaranteeing.pdf
http://www.cs.cornell.edu/talc/papers/alias.pdf
http://www.cs.cornell.edu/talc/papers/alias.pdf
http://www.cs.cornell.edu/talc/papers/alias.pdf
http://cs.au.dk/~birke/papers/icap-conf.pdf
http://cs.au.dk/~birke/papers/icap-conf.pdf
http://cs.au.dk/~birke/papers/icap-conf.pdf
http://www.cs.umd.edu/~mwh/papers/cyc-mm-scp.pdf
http://www.cs.umd.edu/~mwh/papers/cyc-mm-scp.pdf
http://www.rust-lang.org/
http://www.itu.dk/people/tofte/publ/phdthesis/thesis-part1and2.ps
http://www.irisa.fr/prive/talpin/papers/popl94.pdf
http://www.irisa.fr/prive/talpin/papers/popl94.pdf
http://www.irisa.fr/prive/talpin/papers/popl94.pdf
http://www.irisa.fr/prive/talpin/papers/ic97.pdf
http://www.eecs.harvard.edu/~tov/pubs/alms/
http://www.eecs.harvard.edu/~tov/pubs/alms/
http://www.eecs.harvard.edu/~tov/pubs/alms/
https://homes.cs.washington.edu/~mernst/pubs/ref-immutability-oopsla2005.pdf
https://homes.cs.washington.edu/~mernst/pubs/ref-immutability-oopsla2005.pdf
https://homes.cs.washington.edu/~mernst/pubs/ref-immutability-oopsla2005.pdf
http://www.cl.cam.ac.uk/~tt291/talks/vstte10.pdf

XXXX:90 T. Balabonski et al.

Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying refinement and Hoare-style reasoning in
a logic for higher-order concurrency. In International Conference on Functional Programming (ICFP).
377–390.

Viktor Vafeiadis. 2011. Concurrent Separation Logic and Operational Semantics. Electronic Notes in Theo-
retical Computer Science 276 (2011), 335–351.

Jan Vitek and Boris Bokowski. 2001. Confined types in Java. Software – Practice & Experience 31, 6 (2001),
507–532.

Philip Wadler. 1990. Linear types can change the world! In Programming Concepts and Methods, M. Broy
and C. Jones (Eds.). North Holland.

David Walker, Karl Crary, and Greg Morrisett. 2000. Typed memory management via static capabilities.
ACM Transactions on Programming Languages and Systems 22, 4 (2000), 701–771.

David Walker and Greg Morrisett. 2000. Alias Types for Recursive Data Structures. In Types in Compilation
(TIC) (Lecture Notes in Computer Science), Vol. 2071. Springer, 177–206.

Andrew K. Wright. 1995. Simple Imperative Polymorphism. Lisp and Symbolic Computation 8, 4 (1995),
343–356.

Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and
Computation 115, 1 (1994), 38–94.

A. PROOF OF TYPE SOUNDNESS
We outline the main steps along the way that leads to the statement of type soundness
(Theorem A.13).

A.1. Hygiene properties of well-kindedness
Well-kindedness is preserved by weakening (i.e., the insertion of a new, unused
variable) and by substitution. Furthermore, the typing judgements respect well-
kindedness, in the sense that (if seeded with a well-kinded precondition) they hold
of a well-kinded term and a well-kinded type. We omit these statements.

A.2. Hygiene properties of well-typedness
The typing judgement is preserved by weakening. (We omit this statement.) It is also
preserved by kind-preserving substitution at kind value, type, and perm. (These are
the kinds at which quantification is permitted.) Below, we state this lemma for the
main typing judgement. There are analogous statements about the auxiliary judge-
ments, namely the interpretation of permissions, subsumption, etc., which we omit.

LEMMA A.1 (SUBSTITUTION). Let κ be value, type, or perm. Typing is preserved by
the substitution of a syntactic element u of kind κ for a variable of kind κ.

R;K,x : κ;P ` t : T

R;K; [u/x]P ` [u/x]t : [u/x]T

Note that, when one replaces a variable of kind value with a value v, this value is
not required to be well-typed. This is a natural consequence of the fact that our kind
environments do not contain any type assumptions. This should be contrasted with
the substitution lemma of (say) simply-typed λ-calculus. A more conventional lemma
can be recovered by using the above lemma in conjunction with the rule CUT (Fig. 24):

LEMMA A.2 (SUBSTITUTION/CUT). Typing is preserved by the substitution of a
value v of type U for a variable x that was assumed to have type U .

R1;K v@U R2;K,x : value;x@U ` t : T

R1 ? R2;K; empty ` [v/x]t : T

A.3. Resources and well-typedness
The following three properties are established independently of one another. They
state that the typing judgement “respects” the main three constituents of the mono-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

http://www.mpi-sws.org/~turon/caresl/caresl.pdf
http://www.mpi-sws.org/~turon/caresl/caresl.pdf
http://www.mpi-sws.org/~turon/caresl/caresl.pdf
http://www.mpi-sws.org/~viktor/papers/mfps2011-cslsound.pdf
https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/2001-63.pdf
http://homepages.inf.ed.ac.uk/wadler/papers/linear/linear.ps
http://homepages.inf.ed.ac.uk/wadler/papers/linear/linear.ps
http://www.cs.princeton.edu/~dpw/papers/capabilities-toplas.pdf
http://www.cs.cornell.edu/talc/papers/alias-recursion.pdf
http://www.cs.cornell.edu/talc/papers/alias-recursion.pdf
http://www.cs.cornell.edu/talc/papers/alias-recursion.pdf
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/lasc95-w.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:91

tonic separation algebra, namely composition of resources ?, core ·̂, and rely �. Again,
we formulate each of these three statements only about the typing judgement; there
are analogous statements about the other judgements.

The typing judgement is affine: it never hurts to have more resources than necessary.

LEMMA A.3 (AFFINITY). Well-typedness is preserved by the addition of unnecessary
resources.

R1;K;P ` t : T R1 ? R2 ok
R1 ? R2;K;P ` t : T

The syntactic notion of duplicable types and permissions, as defined by the meta-
level predicate θ is duplicable (§4.4), is sound with respect to the semantic idea of a
duplicable resource. The lemma states that if a duplicable permission is justified by
some resource (say, R), then it is justified by some duplicable resource (in fact, it is
justified by R̂).

LEMMA A.4 (DUPLICATION). Duplicable permissions can be justified by duplicable
resources.

R;K P R ok P is duplicable
R̂;K P

As an immediate corollary of the above lemma, if R ok and P is duplicable hold,
then R;K P implies R;K P ∗ P . This shows that the subsumption rule DUPLICATE
(Fig. 26) is sound.

The actions of a thread cannot cause an inactive thread to become ill-typed. In other
words, well-typedness is stable in the face of permitted interference, as defined by the
“rely” relation � (§4.1).

LEMMA A.5 (STABILITY). Typing is preserved under an evolution of the resource
along the relation �.

R1;K;P ` t : T R1 ok R1 � R2

R2;K;P ` t : T

A.4. Classification and decomposition
We prove a classification lemma and a decomposition lemma for each type constructor.
These lemmas extract information out of a canonical typing judgement. By way of
example, we present the classification and decomposition lemmas for functions; similar
lemmas must be stated for each of the other type constructors.

LEMMA A.6 (CLASSIFICATION). Among the values, only λ-abstractions admit a
function type.

R;K v@T → U

∃x, ∃t, v = λx.t

These statements must allow for a nonempty environment K. Indeed, as
FORALLINTRO (Fig. 24) is not restricted to values, we must be able to reason about
“reduction under Λ”, that is, reduction in a nonempty environment.

In light of this remark, the classification lemma may seem surprising: since K can
contain a binding of the form x′ : value, couldn’t the value v be a variable x′, in which
case the conclusion would not hold? It turns out that the premise rules out this case:
in a canonical type derivation, a variable cannot receive a function type.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:92 T. Balabonski et al.

LEMMA A.7 (DECOMPOSITION). If λx.t has type T → U , then t has type U under the
precondition x@T .

R;K λx.t@T → U R ok
R̂;K,x : value;x@T ` t : U

The above decomposition lemma is slightly stronger than one might expect in view
of the typing rule FUNCTION (Fig. 24). Indeed, the lemma does not mention the fact
that the function body may need a duplicable permission P . We are able to establish
this strong statement because the permission P , if there is one, can be hidden by ap-
plication of Lemma A.4 and of the typing rule CUT.

A.5. Soundness of subsumption and canonicalization
Permission subsumption, which we have inductively defined (Fig. 26), is sound with
respect to the “semantic” notion of subsumption that arises out of the interpretation of
permissions. All of the previous lemmas (except Lemma A.5, Stability, which is used
only in the proof of Subject reduction) are used in this proof.

LEMMA A.8 (SOUNDNESS OF SUBSUMPTION). Permission subsumption is sound:

K ` P ≤ Q R;K P R ok
R;K Q

and so is subtyping:

K ` T ≤ U R;K v@T R ok
R;K v@U

This result immediately implies that an arbitrary type derivation for a value can
be turned into one that does not use the subsumption rules SUBLEFT and SUBRIGHT
outside of a λ-abstraction. Furthermore, it is possible to eliminate every use of EX-
ISTSELIM outside of a λ-abstraction. This is done by substituting the concrete witness
for the abstract variable, using the substitution lemma (Lemma A.1). In summary, an
arbitrary derivation about a value v, whose precondition is empty, can be turned into
a canonical derivation:

LEMMA A.9 (CANONICALIZATION). If a value v admits the type T under an empty
precondition, then there is a canonical derivation of this fact.

R;K; empty ` v : T R ok
R;K v@T

Canonicalization is exploited just once, in the proof of subject reduction for a β-redex.
There, the redex is of the form (λx.t) v. A priori, we have an arbitrary type derivation
for the value v. But, in order to prove that the reduct [v/x]t satisfies the desired typing
judgement, we must apply Lemma A.2, which requires a canonical derivation for v.

A.6. Subject reduction and progress
The proof of the subject reduction lemma is by induction over (a measure of the height
of) the type derivation and by induction over the reduction step. This requires the
statement to be written under a suitable form. One reasonably readable form is as
follows. (There is a more complex form, which allows for a nonempty environment K,
and explodes the hypothesis about t1 into multiple hypotheses. We omit it.)

LEMMA A.10 (SUBJECT REDUCTION, PRELIMINARY FORM). Let the configuration
s1 / t1 have kind term under an empty environment. (Thus, the term t1 is closed and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

The Design and Formalization of Mezzo, a Permission-Based Programming Language XXXX:93

VALUE
Rinit;K; v@T ` v : T

LETFRAME
Rinit;K;P ` t : T Rinit;K,x : value;Q ∗ (x@T) ` u : U

Rinit;K;P ∗ Q ` let x = t in u : U

NORMALAPP
Rinit;K;P ` t : U → T Rinit;K;Q ` u : U

Rinit;K;P ∗ Q ` let x = t in x u : T

Fig. 48. Derived typing rules: variable, sequencing, application

represents a single thread.) Assume s1 / t1 reduces in one step to s2 / t2. Assume the
machine state s1 corresponds to the resource R1 ? R

′
1, where R1 allows arguing that t1

has type T . Then, the machine state s2 corresponds to some resource of the form R2 ? R
′
2,

where R2 allows arguing that t2 has type T ; and the interference that has been imposed
to the environment, from R′1 to R′2, is permitted.

s1 / t1 −→ s2 / t2
s1 ∼ R1 ? R

′
1

R1;∅; empty ` t1 : T

∃R2R
′
2

 s2 ∼ R2 ? R
′
2

R2;∅; empty ` t2 : T
R′1 � R′2

This result allows deriving the following, much more compact corollary, which is
phrased in terms of the typing judgement for configurations (Fig. 27):

LEMMA A.11 (SUBJECT REDUCTION). Reduction preserves well-typedness.

c1 −→ c2 ` c1
` c2

A configuration s / t is deemed acceptable if and only if every thread in the thread
soup t either:

— has finished and produced a value; or
— is waiting on a lock that is currently held; or
— is able (with respect to the machine state s) to take a step.

In other words, a configuration is acceptable if no thread has gone wrong.

LEMMA A.12 (PROGRESS). Every well-typed configuration is acceptable.

` c
c is acceptable

The type soundness result states that well-typed programs do not go wrong. Note
that the type system does not rule out deadlocks or livelocks; it is possible for a thread
to wait indefinitely for a lock.

THEOREM A.13 (TYPE SOUNDNESS). Let t be a well-typed source program: that
is, assume Rinit;∅; empty ` t : T . Then, by executing the configuration sinit / t, one can
reach only acceptable configurations.

B. DERIVED RULES
None of the typing rules resemble the “axiom” rule of simply-typed λ-calculus, which
states that x has type T under the assumption that x has type T . Indeed, SINGLETON

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

XXXX:94 T. Balabonski et al.

(Fig. 24) only allows proving that x has type =x. Fortunately, an axiom rule, VALUE,
presented in Fig. 48, can be derived using SINGLETON, FRAME, and subsumption.

We have defined “let x = u in t” as sugar for “(λx.t) u”. Using the rules FUNCTION,
APPLICATION, CUT, FRAME, and subsumption, it is possible to derive a typing rule for
this construct. The rule LETFRAME, shown in Fig. 48, uses part of the precondition
(namely P) to prove that the term t has type T , while the rest (namely Q), together
with the new hypothesis x@T , is used to type-check the term u.

Finally, using LETFRAME, it is straightforward to obtain a new type-checking rule for
function application, NORMALAPP (Fig. 48). This rule has two premises and splits the
current permission between them. This is in contrast to APPLICATION (Fig. 24), which
has only one premise, and requires the operator to be a value v. Here, the operator can
be a term t, but an explicit sequencing construct must again be used.

C. ENCODING THE SIMPLY-TYPED λ-CALCULUS
Using the above derived rules, it is easy to encode the simply-typed λ-calculus into
Core Mezzo. The encoding of terms is as follows:

JxK = x

Jλx.tK = λx.JtK
Jt uK = let x = JtK in x JuK

Because the left-hand side of an application must be a value, an explicit sequencing
construct is introduced.

The types of the simply-typed λ-calculus are given by the grammar T ::= > | T → T .
The encoding JT K of a type T is T itself. A type environment E of the simply-typed
λ-calculus is encoded in two distinct ways: as a kind environment, JEK, and as a per-
mission, LEM. They are defined as follows:

Jx1 : T1, . . . , xn : TnK = x1 : value, . . . , xn : value

Lx1 : T1, . . . , xn : TnM = x1 @T1 ∗ . . . ∗ xn @Tn

Every JT K is a duplicable type, and (as a result) every LEM is a duplicable permission.
This property is necessary for the encoding to work: since the simply-typed λ-calculus
is not an affine calculus, a variable can be used more than once.

The encoding is type-preserving:

LEMMA C.1 (ENCODING). If E ` t : T holds in the simply-typed λ-calculus, then
Rinit; JEK; LEM ` JtK : JT K holds.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article XXXX, Publication date: January 2015.

	Introduction
	A few examples
	A case for Mezzo
	Outline

	A Mezzo tutorial
	Write-once references
	Lists
	A higher-order function
	Borrowing elements from containers
	Breaking out: arbitrary aliasing of mutable data structures
	Nesting, an alternative to adoption and abandon

	Translating surface Mezzo down to Core Mezzo
	Examples
	Well-kindedness
	Translation

	Kernel
	Machine states and resources
	Syntax
	Operational semantics
	The typing judgement and the permission interpretation judgement
	Subsumption
	Typing judgements for soups and configurations
	Type soundness

	References
	Syntax
	Heaps
	Operational semantics
	Assigning types to terms
	Subsumption
	Resources
	Assigning types to values
	Type soundness and data-race freedom

	Locks
	Syntax
	Operational semantics
	Assigning types to terms
	Resources
	Hidden state
	Assigning types to values
	Soundness

	Adoption and abandon
	Syntax
	From Mezzo to Core Mezzo
	Operational semantics
	Assigning types to terms
	Subsumption
	Resources
	Assigning types to values
	Soundness
	Adoption and abandon in a concurrent setting
	Design discussion

	Extensions
	The implementation of Mezzo
	Problems addressed by the type-checker
	Proof search and backtracking
	Implementation details

	Related work
	Annotating types with owners
	Annotating types with permissions
	Replacing types with permissions
	Containers, ownership, and ownership transfer
	Linearity, singleton types, and capabilities
	Regions, nesting, adoption and abandon
	Concurrency and locks
	Proof techniques and modularity

	Conclusion
	Proof of type soundness
	Hygiene properties of well-kindedness
	Hygiene properties of well-typedness
	Resources and well-typedness
	Classification and decomposition
	Soundness of subsumption and canonicalization
	Subject reduction and progress

	Derived rules
	Encoding the simply-typed lambda-calculus

