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Bayesian Mixed Effect Atlas Estimation with a Diffeomorphic Deformation Model∗

S. Allassonnière†, S. Durrleman‡, and E. Kuhn§

Abstract. In this paper we introduce a diffeomorphic constraint on the deformations considered in the de-
formable Bayesian mixed effect template model. Our approach is built on a generic group of diffeo-
morphisms, which is parameterized by an arbitrary set of control point positions and momentum
vectors. This enables us to estimate the optimal positions of control points together with a template
image and parameters of the deformation distribution which compose the atlas. We propose to use
a stochastic version of the expectation-maximization algorithm where the simulation is performed
using the anisotropic Metropolis adjusted Langevin algorithm. We propose also an extension of the
model including a sparsity constraint to select an optimal number of control points with relevant
positions. Experiments are carried out on the United States Postal Service database, on mandibles
of mice, and on three-dimensional murine dendrite spine images.
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1. Introduction. In this paper, we are interested in summarizing the variability observed
in a collection of images by a small number of characteristics. Each image is considered as
a different instance of the same “shape” or “object,” for instance, the same digit written by
different people or scans of the same bone observed in different individuals. This problem can
be addressed in the framework of computational anatomy as introduced in [24]. The goal is
to find a representative image of the object, called a template, and to quantify the observed
variability in shape of this object by template-to-subject deformations. This geometric char-
acteristic together with the template form the atlas. The corresponding model assumes that
each observed image is a smooth deformation of the template plus an additive noise. The
deformation is defined in the underlying space included in R

d, where d equals 2 or 3 in appli-
cations. The template-to-subject deformations are used to quantify the geometric variability
of the population via a metric on the set of characteristic mappings.

The study of the mathematical foundations of this deformable template model have been
initiated in [23]. The characterization of the geometric variability has been addressed in
different ways, for example, in [39] or [38]. This model could be considered from either a
deterministic or stochastic point of view based on the idea that observations come from random
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deformations of the template image. Such approaches were developed among others in [32,
29, 28, 31, 13], and have demonstrated great impact in the field of image analysis. Models
of deformations usually differ in the smoothness constraint of the mappings, which has to be
adapted to the observations. To deal with the large geometric variability observed in real data,
one could not restrict deformations to be rigid body and should consider nonrigid deformations
that may have up to an infinite number of degrees of freedom. A simple model of deformations
may be the so-called “linearized deformation model.” A linearized deformation φ is defined
by the displacement field v of each point in the domain D ⊂ R

d: for all r ∈ D, φ(r) =
r+ v(r). The main advantage of this class of deformations is its numerical simplicity since it
parameterizes the deformation by a single vector field v. Nevertheless, even with regularity
conditions on v, there is no guarantee that the deformation is invertible, which means that the
deformation may create holes or overlapping regions in the domain. To avoid such unrealistic
behaviors, one wants to consider diffeomorphic maps which preserve the topology of the shapes
in the image set. This amounts to assuming that every sample has the same topology or,
equivalently, that differences within sample shapes do not rely on changes of topology.

Diffeomorphic deformations can be built on linearized deformations in the framework of
the large diffeomorphic deformation metric mapping (LDDMM), which has been introduced
in [39, 16] and further developed among others in [26, 34, 12, 22, 25, 7]. In this framework,
the above linearized deformations are considered as infinitesimal deformations, and the vector
field v is seen as an instantaneous velocity field. The composition of such deformations creates
a flow of diffeomorphisms, which can be written at the limit as the solution of a differential
equation. The set of such diffeomorphisms can be equipped with a group structure and a
right-invariant metric, providing regularity on the driving velocity fields. It follows that the
set of images is given the structure of an infinite-dimensional manifold, on which distances
are computed as the geodesic length in the deformation group between the identity map and
the diffeomorphism that maps one image to another one.

It has been shown in [19] that this infinite-dimensional deformation set can be efficiently
approximated by a finite control point parametrization carrying momentum vectors. This
finite dimension reduction is a key aspect for statistical analysis. In [20], the authors have
enforced the velocity fields that are defined everywhere in the domain to be parameterized by
a finite set of control points. Positions of control points are not given as a prior but optimized
as parameters of the statistical model. As a consequence, control points tend to move to the
regions showing the largest variability among samples while optimizing a least-squares crite-
rion. This optimization allows us, at the same time, to reduce the number of control points
for the same matching accuracy, compared to the case where control points are fixed as the
nodes of a regular lattice.

Once the deformation model has been fixed, one needs to estimate the parameters of
the associated statistical model, including, in particular, the template image. Different al-
gorithms have been proposed to solve the template estimation. Most of them are based on
a deterministic gradient descent. In particular, in [20], the authors manage simultaneously
the optimization in control point positions and momentum vectors thanks to a joint gradient
descent. Although providing visually interesting results in several practical cases, the nature
of the limit is not identified. Moreover, this type of method fails in specific cases, in partic-
ular, using noisy training data. Another point of view is to consider stochastic algorithms.
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For example, in [42] the authors used a Hamiltonian Monte Carlo sampler in a Monte Carlo
expectation maximization algorithm in the dense LDDMM setting; however, there is no the-
oretical convergence property proved for this algorithm. In the linearized deformation setting
a convergent algorithm has been proposed in [6] to solve the atlas estimation issue. It is based
on the stochastic approximation expectation maximization (SAEM) introduced in [17], and
further extended using Monte Carlo Markov chain (MCMC) methods in [27, 6], thus allowing
for a wider scope of applications. Concerning the geometric variability, one can adapt the
kernel of the deformations using multiscale kernels such as in [36, 37] or learn the metric of
the deformation group as in [41]. These methods are interesting as prior knowledge on the
deformations. However, they do not take advantage of the simultaneous estimation of the
template image and its variability.

In this paper, we aim at estimating an atlas of a population of images which is composed
of a template image and a quantification of the geometric variability using the deformable
template framework. We consider the LDDMM setting where the deformations are parame-
terized by a finite number of initial control point positions and momenta such as in [20] and
extend the Bayesian mixed effect (BME) template model introduced in [2]. It is a statistical
generative model which enables us to regenerate new synthetic samples that can highlight
subtle behaviors in a given population. The Bayesian framework is particularly adapted to
the high-dimensional low sample size paradigm, very common in biomedical imaging. In this
model, the deformations are modeled as random variables which are not observed. This en-
ables us to estimate the representative parameters of their distribution which will characterize
the geometric variability. Moreover, we introduce the control point positions as population
parameters into the model, so that they can be optimized in the estimation process. This
enables us to better fit the deformation model leading to a more accurate estimation of the
geometric parameters.

From an algorithmic point of view, we propose to use the anisotropic Metropolis adjusted
Langevin algorithm (AMALA) within the SAEM algorithm introduced in [3] to estimate
the model parameters. This algorithm has shown very interesting theoretical and numerical
properties. Indeed, the AMALA sampler enables us to better explore the target distribution
support in very high dimension space compared to other samplers. It also increases the speed
of convergence of the estimation algorithm. Moreover, we take advantage in our sampler of
the efficient computation used in the joint gradient descent in [20] so that the optimization of
control point positions is of no additional cost at each iteration.

Another interesting question is how to optimize the number of control points required
to parameterize the deformations. Indeed, the number of control points essentially depends
on the variability in the data: it should be estimated rather than fixed by the user. In the
geometric approach given in [20], control points were automatically selected using an L1-type
penalty that tends to zero out momentum vectors of small magnitude. Numerically it is solved
by an adapted gradient descent called FISTA (see [11]). However, this penalty acts on each
observation separately, meaning that a control point that is needed to match only a single
observation will be kept in the final set of control points. From a statistical point of view, one
may think about this control point as an outlier and would like to remove it from the basis.
The L1 penalty is also not suitable for statistical purposes, since its associated distribution,
namely, the Laplace prior, does not generate sparse variables. In other words, the criterion
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with L1 penalty that is minimized in [20] could not be interpreted as the log-likelihood of a
statistical model generating sparse solutions.

In this paper, we propose to include a sparsity constraint in the parameter space of our
statistical model through a thresholding step, borrowing ideas from the Group LASSO lit-
erature initiated in [10]. This has the advantage of selecting control points based on their
importance for the description of the variability of the whole population, and not only of one
single sample. The thresholding step is then included in the maximization step, so that the
same AMALA-SAEM algorithm can be used for the estimation process. We also exhibit a
criterion to select an optimal threshold leading to an optimal number of control points.

This paper is organized as follows. We first recall the LDDMM setting in the case of control
point parametrization in section 2. The BME template model derived for the atlas estimation
issue is presented in section 3. The AMALA-SAEM algorithm is detailed in section 4. The
extension toward sparsity is presented in section 5. Section 6 is devoted to experiments on
handwritten digits, mouse mandible images, and three-dimensional (3D) murine dendrite spine
images. Section 7 gives conclusions and perspectives for this work.

2. Model of diffeomorphic deformations.

2.1. Large deformation diffeomorphic metric mapping. The model of diffeomorphic de-
formations we choose is derived from the LDDMM framework (see [39, 18, 32]), which gen-
eralizes the linearized deformation setting that has been used for the statistical estimation of
atlases in [2]. In the linearized deformation setting, the deformation φ is given by

(2.1) φ(r) = r + v(r) ∀r ∈ D ,

with d = 2 or 3, and v a vector field on R
d.

It is convenient to assume that v belongs to a reproducible kernel Hilbert space (RKHS)
in order to control its spatial smoothness. Essentially, the RKHS V is the set of the square
integrable functions regularized by the convolution with a known kernel Kg : V = L2(D)∗Kg

(see [9] for more theoretical details.)
One may further assume that v is given as a finite linear combination of the RKHS basis

vector fields, yielding

(2.2) v(r) =

kg∑
k=1

Kg(r, ck)αk,

where (ck)k is a set of kg geometric control points, (αk)k the vector weights attached to the
control points (called momenta in this context), and Kg is the geometric interpolation kernel.
The value of the vector field at any position r is obtained by interpolating the momenta
located at the control points.

The advantage of this formulation is restricting the vector v to belong to a finite-dimensional
subspace of the RKHS, which allows the straightforward definition and estimation of statistics
such as means and covariance matrices. Another advantage is that v depends linearly on the
momentum vectors, which greatly eases the derivation of the statistical model equations.

However, if the magnitude of the vector v(r) or if the Jacobian of the vector field v becomes
too large, then the linearized deformations are not invertible, thus leading to foldings or holes
that may be undesirable for applications.
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The LDDMM framework offers a generic way to define diffeomorphic maps, which guar-
antees their smoothness and invertibility. The approach introduced in [20] and [21] is a direct
extension of the linearized deformation setting. It is still built on parametrization of the
diffeomorphic maps lying in a finite-dimensional subspace of a given RKHS. However, the
dependence of the deformations on their parameters will not be linear anymore.

2.2. Parametric LDDMM construction. To build a diffeomorphic map, we use the lin-
earized deformations given in (2.1) as infinitesimal steps, and consider the corresponding
vector field as an instantaneous velocity field. More precisely, we consider time-dependent
velocity fields (vt)t for a time parameter t varying in [0, 1]. The motion of a point r0 in the
domain of interest D describes a curve t �→ r(t) which is the integral curve of the following
ordinary differential equation (ODE) called the flow equation:

(2.3)

⎧⎨
⎩

dr(t)

dt
= vt(r(t)),

r(0) = r0 .

The deformation φ1 is defined as follows:

∀r0 ∈ D, φ1(r0) = r(1) .

Conditions under which this map φ1 is diffeomorphic can be found in [12]. In particular, the
existence, uniqueness, and diffeomorphic property of the solution are satisfied if the velocity
vt belongs to an RKHS at all time t and is square integrable in time.

Under these conditions, the model builds a flow of diffeomorphic deformations φt : r0 �→
r(t) for all t ∈ [0, 1]. The flow describes a curve in a subgroup of diffeomorphic deformations
starting at the identity map. The RKHS V plays the role of the tangent space of such an
infinite-dimensional Riemannian manifold at the identity map Id. We can provide this group of
diffeomorphisms with a right-invariant metric, where the square distance between the identity
map Id = φ0 and the final deformation φ1 is given as the total kinetic energy used along
the path: d(Id, φ1)

2 =
∫ 1
0 ‖vt‖2V dt, where ‖ · ‖V is the norm in the RKHS. The existence and

uniqueness of minimizing paths under regularity conditions on the velocity vector field have
been shown in [32].

According to mechanical principles, one can show that the kinetic energy is preserved
along the geodesic paths, namely, for all t ∈ [0, 1], ‖vt‖V = ‖v0‖V . Moreover, the velocity
fields (vt) along such paths satisfy Hamiltonian equations, meaning that the geodesic is fully
parameterized by the initial velocity field v0. This velocity field plays the role of the Rieman-
nian logarithm of the final diffeomorphism φ1. Therefore, it belongs to a vector space and
allows the definition of tangent-space statistics in the spirit of [40] and [35].

Following [21] and [20], we further assume that v0 is the interpolation of momentum vectors
(α0,k)k at control point positions (c0,k)k:

(2.4) v0(r) =

kg∑
k=1

Kg(r, c0,k)α0,k ,

where Kg is the kernel associated with the RKHS V . In this context, it has been shown
in [33] that the velocity fields (vt)t along the geodesic path starting at the identity map in the
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direction of v0 keep the same form:

(2.5) vt(r) =

kg∑
k=1

Kg(r, ck(t))αk(t) ,

where the control point positions (ck(t))k and the momentum vectors (αk(t))k satisfy the
Hamiltonian equations

(2.6)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dck(t)

dt
=

kg∑
l=1

Kg(ck(t), cl(t))αl(t),

dαk(t)

dt
= −1

2

⎛
⎝ kg∑

l=1

dck(t)(Kg(ck(t), cl(t))αl(t))

⎞
⎠

t

αk(t)

with initial conditions ck(0) = c0,k and αk(0) = α0,k for all 1 ≤ k ≤ kg. This is sim-
ilar to the equations of motion of a set of kg self-interacting particles, with Kg modeling
the interactions. One can easily verify that the Hamiltonian defined as Ht = ‖vt‖2V =∑kg

k=1

∑kg
l=1 αl(t)

tKg(cl(t), ck(t))αk(t) is constant in time when control point positions and
momentum vectors satisfy the system (2.6).

This model defines a finite-dimensional subgroup of the group of diffeomorphisms. For a
given set of initial control points, the diffeomorphisms are parameterized by the momentum
vectors attached to them. For one instance of the initial momentum vectors, one builds the
motion of the control points and of the momentum vectors by integrating the Hamiltonian
system (2.6). Then, they define a dense velocity field at each time t according to (2.5).
Finally, one can find the motion φt(r0) of any point r0 in the domain D by integrating the
flow equation (2.3). In this framework, the tangent-space representation of the diffeomorphic
deformation φ1 is given by the initial velocity field v0 parameterized by z = ((c0,k, α0,k))k,
called the initial state of the particle system. The position φ1(r) depends on the parameters
((c0,k, α0,k))k via the integration of two nonlinear differential equations in (2.6) and (2.3).

Remark 1. The LDDMM framework formulation involves a coupling on the control point
and the momentum evolutions along the geodesic path, which is not the case in the linearized
deformation setting. This joint equation introduces more constraints reducing the dimension
of the solution space. Therefore, the identifiability of the control point positions may be
expected in our LDDMM framework. This property would most probably fail in the linearized
deformation setting where the momenta and the control points are not coupled.

In section 3, we define the stochastic model of deformations based on parametric distri-
butions of the initial state of particles.

3. Statistical model and parameter estimation. As pointed out in [2], the gradient de-
scent optimization with respect to the template together with the momenta does not neces-
sarily converge if the training set is noisy. To solve this problem, we propose here a statistical
estimation algorithm in the spirit of [6] extending the BME template model to the LDDMM
setting. This leads us to consider the deformations as well as the control point positions as
nonobserved random variables.
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3.1. Statistical generative model. We choose to model our data by a generative hier-
archical model. This allows us to generate images from the atlas. The ability to generate
synthetic images is important for interpreting the features captured by the model. It may
highlight variability patterns that could not be perceived by simple visual inspection of the
training images. In this model, the distribution of the deformations in the diffeomorphism
group is parameterized. In a statistical approach, these parameters are estimated from the
data, thus providing a metric in the shape space which is adapted to the data and takes
into account the deformation constraints. This is in contrast to geometric approaches that
estimate the template using a fixed metric.

More precisely, let I0 be a template image I0 : R
d → R. We consider an observation,

namely, an image y, as a noisy discretization on a regular grid Λ of a diffeomorphic deforma-
tion of the template image. Let φz

1 be the solution of both the flow equation (2.3) and the
Hamiltonian system (2.6) with initial condition z = ((c0,k, α0,k))k. Then, for all s ∈ Λ,

y(s) = I0((φ
z
1)

−1(rs)) + σε(s),(3.1)

where σε denotes an additive zero mean Gaussian random white noise on the grid Λ with
covariance matrix σ2Id and which is independent of all other variables, and rs is the coordinate
of the voxel s in the continuous domain D.

We are provided with n images y = (yi)1≤i≤n in a training set. We assume that each of
them follows the probabilistic model (3.1) and that they are independent.

We consider the initial state of particles, namely, the control point positions and the mo-
mentum vectors, as random variables and estimate their probabilistic distributions, restricting
ourselves to the case of parametric distributions. We assume that control points live in the
template domain D and that they are the same for all observations. By contrast, the mo-
mentum vectors attached to them are specific to each observation, as they parameterize the
matching of the template with each sample image.

Therefore, we propose the following probabilistic model: we assume that the initial control
point positions c0 = (c0,k)1≤k≤kg are drawn from a Gaussian distribution with mean c̄0 and
covariance acId, where Id is the identity matrix of dimension dkg. We choose a small value
of ac so that the control points are concentrated around their mean. We define the initial
momenta α0 = (αi

0)1≤i≤n with αi
0 = (αi

0,k)1≤k≤kg . We assume that the variables (αi
0)1≤i≤n

are independent identically distributed and follow a Gaussian distribution with mean 0 and
covariance matrix Γg. Note that this covariance matrix depends on the initial control point
positions, since the momenta are attached to them. Moreover the momenta α0 are assumed
to be independent of the control point positions c0 given Γg.

Following the same lines as in [2], we parameterize the template function I0 as a linear
combination of gray level values of fixed voxels (bk)1≤k≤kp equidistributed on the domain D.
The interpolation kernel is denoted by Kp (the subscript p refering to the photometric part
of the model in contrast to g for the geometric one) and the combination weights are denoted
by w ∈ R

kp . Thus we have for all r ∈ D,

(3.2) I0(r) =

kp∑
k=1

Kp(r, bk)wk .
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The action of a diffeomorphism on this template is the linear combination of the deformed
kernel with the same weights: for all r ∈ D,

(3.3) Kz
pw(r) = I0 ◦ (φz

1)
−1 (r) =

kp∑
k=1

Kp

(
(φz

1)
−1 (r), bk

)
wk .

The parameters of the model are θ = (w, σ2,Γg, c̄0) and the random variables (α0, c0) are
considered as hidden random variables. As we often deal with small sample size in practice, we
restrict our inference to a Bayesian setting. Some of the priors can be informative like the one
of Γg. Other priors may be noninformative, for instance, the expectation of the control point
positions for which no additional information is available. The complete model is therefore
written as

(3.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ = (w, σ2,Γg, c̄0) ∼ νp ⊗ νg,

c0 ∼ Ndkg(c̄0, acId)| θ,

αi
0 ∼ Ndkg(0,Γg)| θ, ∀1 ≤ i ≤ n ,

yi ∼ N|Λ|(K
(c0,αi

0)
p w, σ2Id) | (c0,αi

0), θ, ∀1 ≤ i ≤ n .

We define the prior distributions as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

νg(dΓg,dc̄0) ∝
(
exp(−〈Γ−1

g ,Σg〉F /2) 1√
|det(Γg)|

)ag

× exp
(− 1

2(c̄0 − μc)
tΣ−1

c (c̄0 − μc)
)
dΓgdc̄0,

νp(dw,dσ
2) ∝ exp

(− 1
2w

tΣ−1
p w

) · ( exp(− σ2
0

2σ2

)
1√
σ2

)apdwdσ2 ,

where 〈., .〉F designates the Frobenius scalar product and the hyperparameters satisfy
ag ≥ 4kg +1, Σg = Id, σ2

0 > 0, ap ≥ 3, and Σp is derived from the interpolation kernel Kp and
the photometric grid (bk)1≤k≤kp (see [2] for more details). Concerning the hyperparameters
of the control point prior (μc,Σc), we choose μc to be the vector of the equidistributed grid
coordinates. The covariance matrix Σc is assumed noninformative. All priors are the natural
conjugate priors and are assumed independent to ease derivations.

Remark 2. From a modeling point of view, the positions of the control points could have
been considered as parameters of our model since they are fixed effects of the whole population
as well as the template. However considering control points as parameters does not lead to
a model belonging to the exponential family. Thus, we could not benefit from the conver-
gence properties and efficient implementation of the SAEM algorithm for this class of models.
Therefore, we model the control point positions as random variables following a Gaussian
distribution.

3.2. Parameter estimation. Let us define y = (y1, . . . , yn). We consider the maximum a
posteriori (MAP) estimator denoted by θ̂n obtained by maximizing the posterior density of θ
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conditional to y as follows:

θ̂n = argmax
θ

q(θ|y).(3.5)

For the sake of simplicity all likelihoods will be denoted by q. We will state the existence and
the consistency of this MAP estimator in the next paragraphs.

We first show that for any finite sample the maximum a posteriori will lie in the parameter
set Θ; this is nontrivial due to the highly nonlinear relationship between parameters and
observations in the model.

Theorem 3.1. For any sample y, there exists θ̂n ∈ Θ such that q(θ̂n|y) = supθ∈Θ q(θ|y) .
The proof is provided in the appendix in section 8.
We are also interested in the consistency properties of the MAP estimator without making

strong assumptions on the distribution of the observations y denoted by P . We prove the
convergence of the MAP estimator to the set Θ∗ defined by

Θ∗ =
{

θ∗ ∈ Θ

∣∣∣∣ EP (log q(y|θ∗)) = sup
θ∈Θ

EP (log q(y|θ))
}
.

Theorem 3.2. Assume that Θ∗ is nonempty. Then, for any compact set K ⊂ Θ, for all
ε > 0,

lim
n→+∞P ( δ(θ̂n,Θ∗) ≥ ε ∧ θ̂n ∈ K ) = 0 ,

where δ is any metric compatible with the usual topology on Θ.
The proof follows the lines of [2]. Indeed, the observed likelihood of our diffeomorphic

BME template model has the same regularity properties and asymptotic behaviors in the
parameters as the linearized one.

Remark 3. In [2], the authors have proved that under a weak additional condition, Θ∗ is
not empty. This makes the use of an important property of the linearized deformations: the
amplitude of the deformation increases as the amplitude of its coefficients increases. This
enables us to prove that large amplitude deformations would not be suitable to optimize the
observed likelihood. In the LDDMM setting, this property cannot be guaranteed anymore.
The relation between the range of the deformation and its momenta depends on the curvature
of the diffeomorphisms space (which is flat in the linearized deformation framework). There-
fore, proving that Θ∗ is not empty will require us to know the curvature of the deformation
space. This is unfortunately not known except in very simple cases (see [30]) preventing a
direct generalization of the previous proof.

4. Algorithmic method. In this section, we detail the estimation algorithm chosen to
maximize the posterior distribution q(θ|y) in the parameter θ. We use the SAEM algorithm
introduced in [17] coupled with a MCMC method as suggested in [27] and [6]. Let us first
recall the principles of the SAEM-MCMC algorithm in the general case of a model belonging
to the curved exponential family. This algorithm is iterative, each iteration consisting in four
steps:
Simulation step. The missing data (here positions of initial control points and momentum

vectors) are drawn using a transition probability of a convergent Markov chain Πθ

having the conditional distribution πθ(.) = q(.|y, θ) as stationary distribution.
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Stochastic approximation step. A stochastic approximation is carried out on the sufficient
statistics of the model using the simulated value of the missing data and a decreasing
sequence of positive step sizes.

Projection on random boundaries. If the result of the stochastic approximation falls outside
a compact set of increasing size, it is projected back to a fixed compact set.

Maximization step. The parameters θ are updated by maximizing the complete log-likelihood
evaluated in the projected sufficient statistics.

Due to the high dimension of the hidden variables, we need to pay attention to the sampling
step, as detailed in subsection 4.1. The details of the other steps of the algorithm are presented
in subsection 8.2 in the appendix. The theoretical properties of this estimation algorithm are
discussed in subsection 4.2.

4.1. Simulation step of the stochastic expectation maximization algorithm.

4.1.1. AMALA sampler. In our applications, the missing variables composed of the initial
momenta and positions of control points z = (c0,α0) are of very high dimension. In this
case, the AMALA sampler proposed in [3] seems better suited for our stochastic extectation
maximization algorithm than more standard samplers. For example, the Gibbs sampler solves
the problems of low numerical acceptation rate and trapping states by looping over each
coordinate to better stride the target density support. However, this involves a huge number
of loops and heavy computations in the acceptation ratio preventing from any use in very high
dimensions. By contrast, the AMALA sampler is more performant in terms of computational
time while exploring the target support as well as the Gibbs sampler.

To be more precise, the AMALA sampler is an anisotropic version of the well-known
Metropolis adjusted Langevin algorithm, where the covariance matrix of the proposal is op-
timized to take into account the anisotropy and the coordinate correlations of the target
distribution. Using our previous notation, the drift vector denoted by Dθ(z) is equal to

(4.1) Dθ(z) =
b

max(b, |∇ log πθ(z)|)∇ log πθ(z) ,

with b > 0 a truncation boundary. This vector Dθ(z) is the concatenation of the truncated
gradients with respect to c0 and (αi

0)1≤i≤n denoted, respectively, by D0
θ(z),D

1
θ(z), . . . ,D

n
θ (z).

Starting from the current value zk of the Markov chain, the candidate zc is sampled from
the Gaussian distribution with expectation zk+δDθ(zk) and covariance matrix δΣθ(zk), where
Σθ(z) is given as

(4.2) Σθ(z) = εId(n+1)dkg + diag
(
D0

θ(z)D
0
θ(z)

t,D1
θ(z)D

1
θ(z)

t, . . . ,Dn
θ (z)D

n
θ (z)

t
)

with ε > 0 a small regularization parameter and δ > 0.
We denote by pθ the probability density function of this proposal distribution and by

ρθ(zk, zc) the acceptance rate defined as

(4.3) ρθ(zk, zc) = min

(
1,

πθ(zc)pθ(zc, zk)

pθ(zk, zc)πθ(zk)

)
.
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Then, the new value zk+1 of the Markov chain equals zc with probability ρθ(zk, zc), and zk
otherwise.

Remark 4. For numerical efficiency, we do not take into account correlations between the
momenta and the control point positions in the proposal. Moreover, the observations being
independent, the covariance matrix of the momenta is block diagonal since the momenta are
independent conditionally of the control point positions.

We now move to the computation of the gradient of the conditional distribution logarithm
which appears in the drift Dθ. It happens that the conditional distribution logarithm is
actually equaled to minus the usual energy used to compute the best match between images
in the LDDMM framework. Therefore, we pay attention to the computation of the gradient
of this quantity in the following paragraph.

4.1.2. Gradient computation in the LDDMM deformation model. We recall here the
result established in [20]. For clarity purposes, we adopt compact matrix notation. The
initial state of the system, which consists of the initial positions of control points c0 and their
n associated momentum vectors α0 for all n subjects is denoted by z = (c0,α0). The position
of this set of particles at later time t is denoted by z(t) = (c0(t),α(t)), and satisfies the set of
coupled ODEs (2.6). This system of ODEs can be rewritten in short as

(4.4)

{
ż(t) = F (z(t)),

z(0) = z .

Let Xz(t, .) denote the mapping r ∈ D → Xz(t, r) = φz
t ((φ

z
1)

−1(r)). For t = 1, Xz(1, .) =
IdL2(D) is the identity map. For t = 0, Xz(0, .) = (φz

1)
−1(.) is the inverse mapping of the

domain D that is needed to deform the images. The interest in using the flow φz
t ◦(φz

1)
−1 (and

not (φz
t )

−1, for instance) is that the trajectory of any pixel under this flow in D is exactly the
same as for the direct flow, but in the reverse direction. More precisely, Xz(t, .) is a solution
of the following ODE integrated backward from t = 1 to t = 0:

(4.5)

⎧⎪⎪⎨
⎪⎪⎩

∂Xz(t, .)

∂t
= −vt(X

z(t, .)) = −
kg∑
k=1

Kg(X
z(t, .), ck(t))αk(t),

Xz(1, .) = IdL2(D) ,

which can be rewritten in short as

(4.6)

⎧⎨
⎩

dXz(t, r)

dt
= G(Xz(t, r), z(t))

Xz(1, r) = r

for all r ∈ D.
The solution at t = 0, Xz(0, .), is used to deform the template image I0:

(4.7) I0((φ
z
1)

−1(r)) = I0(X
z(0, r)).

From a numerical point of view, we discretize the image domain D into an array of |Λ|
pixels. The map Xz(t, .) is therefore a vector of dimension d|Λ|: {Xz(t, rs)}s=1,...,|Λ|, which
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gives the trajectory of any pixel rs under the flow equation (4.5) (where G is a map from
R
d|Λ| × R

dng to R
d|Λ|). The gray value of the deformed image at pixel rs is computed by

interpolating the gray values in I0 located at pixels around position Xz(0, rs) using (3.2).
Proposition 1. Let us denote by z = (c0,α0) the (n + 1)dkg parameters of the following

criterion Eθ:

Eθ(z) = A(Xz(0, .)) + L(z),

where

(4.8)

A(Xz(0, .)) =
1

σ2

n∑
i=1

‖yi − I0((φ
zi
1 )

−1)‖2,

L(z) =
n∑

i=1

(αi
0)

tΓ−1
g αi

0,

ż(t) = F (z(t)), z(0) = z,

Ẋz(t, .) = G(Xz(t, .), z(t)), Xz(1, .) = IdL2(D),

.

and Xz(t, .) ∈ L2(D,Rd) for all t and A is a differentiable map from L2(D,Rd) to R.
Then, the gradient of Eθ is given by

(4.9) ∇zEθ = ξ(0) +∇zL,

where two auxiliary variables ξ(t) (in R
(n+1)dkg) and η(t, .) (in L2(D,Rd)) satisfy the following

linear ODEs: {
η̇(t, .) = −(∂1G(Xz(t, .), z(t)))∗η(t, .),
η(0, .) = −∇Xz(0,.)A ,

(4.10)

{
ξ̇(t) = −∂2G(Xz(t, .), z(t))∗η(t, .) − dz(t)F

tξ(t),

ξ(1) = 0 ,
(4.11)

where ∗ denotes the adjoint operator in L2(D,Rd).
This proposition states that the gradient is computed by integrating two linear ODEs that

couple the information in the initial momenta and in the initial control points. Computing
the gradient only with respect to the initial momenta does not decrease the computation time.
The coupling implies that the gradients with respect to each coordinate of the hidden variables
are computed simultaneously. The expression in coordinates of the terms in Proposition 1 as
well as its proof can be found in [20].

Remark 5. The gradient of Eθ is indeed equal to −∇z log πθ. This vector belongs to the
tangent space of the Riemannian manifold of the data at the template point. Thus it provides
crucial information about the local shape of this manifold. Therefore, it is of great interest
to include this quantity into the estimation algorithm. It has been done from a deterministic
point of view in [20] through a gradient descent on Eθ. Nevertheless, this algorithm may be
stuck into local minima of this energy Eθ. To avoid such behaviors, stochastic algorithms are
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well-known powerful tools. In particular, the AMALA-SAEM combines both advantages: it
is a stochastic algorithm whose samples are based on this gradient direction.

Remark 6. The AMALA-SAEM requires the computation of this gradient at each iteration
of the algorithm. Its numerical cost has to be compared with the cost when using other
samplers. The hybrid Gibbs sampler that was chosen in [6] for the linearized deformation
may also be used here. Although it does not require us to compute the gradient, it needs to
loop over each coordinate of the hidden variables. This loop in our generalized LDDMM model
would involve an integration of the Hamiltonian system (2.6) and the flow equation (2.3) for
each coordinate. This scheme would be particularly inefficient due to the coupling between
all control points and initial momenta in these equations: one would need to compute the
full set of coupled equations each time one updates a coordinate. For kg control points
in dimension d and n observations, the hidden variable is of dimension (n + 1)dkg . The
Gibbs sampler needs then to integrate (n + 1)dkg times the Hamiltonian system (2.6) and
the flow equation (2.3) which are differential systems in dimension (n+ 1)dkg and d|Λ|. The
AMALA only requires a single one of this step and the gradient computation which involves
two differential equations (4.10) and (4.11), both in dimension (n + 1)dkg. Although the
differential equations in the gradient are more complex than those in the Hamiltonian system
(as they require the Hessian of the kernel and not only its gradient), the AMALA sampler is
still much more efficient for random variables of very high dimension than the Gibbs sampler.

We summarize the complete estimation procedure in Algorithm 1.

4.2. Discussion on theoretical properties. The AMALA-SAEM algorithm has already
been applied to the BME template model in the context of linearized deformations (see [3]).
In that paper, the almost sure convergence of the parameter sequence as well as its asymptotic
normality (Theorems 1 and 2 in [3]) have been proven under the usual assumptions on both
the model and the step size sequences. Thus, we can wonder whether our LDDMM BME
template model fits into these assumptions. First of all, we note that our model belongs to
the curved exponential family. Moreover, it satisfies the regularity and integrability condi-
tions required in assumptions (M1)–(M6) and (B2) of Theorem 1 in [3]. However, due to
the very complex dependencies of the LDDMM model, the superexponential property (B1)
of the conditional density and, related to it, its polynomial upper bound (M8) cannot be
guaranteed. Nevertheless, both assumptions sound reasonable in the applications that we are
targeting. In the following experiments, the convergence of the algorithm is demonstrated,
thus corroborating our hypothesis.

5. Extension toward sparse representation of the geometric variability. Obviously, the
number of degrees of freedom needed to describe the variability of a given shape should be
adapted to this shape. Therefore, the number of control points in our model should be es-
timated as a parameter of the model and not fixed by the user. This leads to optimizing
automatically the dimension of the deformation model. We propose here to optimize the posi-
tions of the control points and to select a subset of the most relevant ones for the description
of the variability simultaneously.

In [20], the control point selection is done adding an L1 penalty on the momenta to the
energy Eθ and performing an adapted gradient descent called FISTA (see [11]). The effect of
this penalty is to zero out momenta of small magnitude and to slightly decrease the magnitude
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Algorithm 1. AMALA-SAEM with truncation on random boundaries.
Set κ0 = 0, s0 ∈ K0 and z0 ∈ K.
for all k ≥ 1 do
Sample z̄ from the AMALA transition kernel :

Sample zc ∼ N (zk + δDθk (zk), δΣθk(zk)) where

Dθ(z) =
b

max(b, |∇ log πθ(z)|)∇ log πθ(z) ,

and

Σθ(z) = εId(n+1)dkg + diag
(
D0

θ(z)D
0
θ(z)

t,D1
θ(z)D

1
θ(z)

t, . . . ,Dn
θ (z)D

n
θ (z)

t
)
,

with ε > 0 a small regularization parameter and δ > 0.
Then set z̄ = zc with probability ρθk(zk, zc) and z̄ = zk otherwise, where ρθ

is given in (4.3).

Compute s̄ = sk−1+Δk−1(S(z̄)−sk−1) where (Δk)k∈N is a decreasing positive step

size sequence.
if s̄ ∈ Kκk−1

and |s̄− sk−1| ≤ εk−1 then
set (sk, zk) = (s̄, z̄) and κk = κk−1,

else
set (sk, zk) = (s̃, z̃) ∈ K0 ×K and κk = κk−1 + 1,
where (s̃, z̃) ∈ K0 ×K.

end if
θk = θ̂(sk)

end for

of the other ones. A control point which does not contribute to at least one of the template-
to-observation deformations at the convergence of the algorithm is called inactive. Note that
since control points move in the domain, inactive control points may become active during
the optimization process, and vice versa.

This method suffers from three main limitations. First, the Laplace prior associated with
the L1 penalty does not generate sparse observations. Second, the method keeps active con-
trol points that may contribute to only a few template-to-observation deformations. Last, L1

penalty implies a soft thresholding step on the momentum vectors, thus reducing the norm
of these vectors keeping the direction and therefore the local curvature. As a consequence,
important momenta for the description of the variability will also be penalized. In the fol-
lowing, we propose to select control points given their importance to describe the variability
of the whole population, and not of outliers. The idea is to inactivate a control point if the
distribution of the momenta attached to it is not strongly correlated with the momentum
distribution of other control points. Therefore our procedure selects control point positions
and their number, relevant with regards to the whole population.

This constraint on the momenta is taken into account in the model by modifying the update
of the geometrical parameter in (8.5) in the maximization step. We assume that the geometric
covariance matrix Γg is no longer the barycenter between the stochastic approximation of the



LDDMM-BME ATLAS ESTIMATION 1381

empirical covariance matrix and the prior but is of the form Γg = Ag + εgId, where εg is a
small positive real number and Ag is a sparse symmetric positive matrix. To construct Ag,
we modify the empirical covariance term in the third equation of (8.5). Let cgk be one of
the control points. We compute the sum of the Frobenius norms of the submatrices of the
stochastic approximation s3 of the sufficient statistic S3 (see (8.3)) which is the empirical
covariance of this control point with all others:

(5.1) tk =

kg∑
j=1

‖s3(cgk, cgj )‖F ,

where s3(c
g
k, c

g
j ) is the d × d submatrix of s3 corresponding to the control points cgk and cgj .

Let us fix a positive threshold λ. The control point cgk is said to be active if

(5.2) tk ≥ λ .

Let us denote A the set of all active points. Then, we define the sparse matrix Ag as
follows:

(5.3) ∀(k, j) ∈ {1, . . . kg}, Ag(c
g
k, c

g
j ) = s3(c

g
k, c

g
j )1ck∈A1cj∈A .

By analogy with (8.5), the matrix Γg is updated as follows:

(5.4) Γg =
1

n+ ag
(Ag + agIddkg ) ,

which also corresponds to introduce a specific prior on Γg.
This update is performed at each iteration of the estimation algorithm in the M-step. The

threshold λ in our approach plays an equivalent role as the weight of the L1 penalty in the
criterion optimized in [20]. The larger λ, the sparser the solution.

In order to be self-adapted to the data, it could be a benefit to fix the threshold λ as a
ratio of the maximum correlations between control points instead of setting a fixed value as
in (5.2). Thus, a control point cgk is now active if

(5.5) tk ≥ λ max
1≤j≤kg

tj .

Moreover, starting to threshold before the Markov chain reaches its stationarity can lead to
poor covering of the target distribution support. Therefore, in practice, we start the threshold
process after the burn-in period of the estimation algorithm.

To go one step further, we propose to automatically select an optimal threshold λ. We
consider a criterion based on two relevant quantities, namely, the data attachment residual over
the training images and the number of active control points. Indeed, the larger the threshold,
the larger the residual and the lower the number of active control points. These quantities
are computed for different values of the threshold. These sequences are then normalized to 1.
The optimal threshold is chosen to be the point where the two normalized sequences intersect.
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Figure 1. Training set of the USPS database (20 images per digit—inverse video).

Figure 2. Estimated templates with varying numbers of control points: 4 (left), 9 (middle), and 16 (right)
with either fixed (top) or estimated (bottom) control points positions.

6. Experiments.

6.1. Handwritten digit experiments. Our first experiments are run on the United States
Postal Service (USPS) handwritten digit database which is a traditional benchmark for quan-
titative performance evaluation of template estimation. Twenty images of each digit are used
as the training sample which is presented in Figure 1. This sample shows a large geometric and
photometric variability. We consider the model with random control points presented in (3.4)
as well as its simplified version where the control points are fixed. The number of control points
is chosen equal to 4, 9, or 16 depending on the experiments. We infer the atlas of each digit in-
dependently using our stochastic estimation algorithm for the two models. Note that the values
of the hyperparameters, namely, the parameters of the interpolation kernels and prior distribu-
tions on the parameters are chosen as in [2]. In addition ag = 0.5 in the following experiments.

We present the estimated templates obtained with both models and varying numbers of
control points in Figure 2. The first row shows the template images estimated with fixed
control points. The second one provides the estimated templates together with the estimated
control point positions.
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Figure 3. Synthetic samples from the generative model with estimated control point positions: 4 (top) and
9 (bottom) control points for digit 8.

Figure 4. Synthetic samples from the generative model with either fixed (top) or estimated (bottom) control
point positions for digit 6.

As expected, the contours in the template image become sharper in both cases as the
number of control points increases. Moreover, the number of control points being fixed, the
sharpness of the estimated template is improved by allowing the control points to move toward
optimized positions. We can also note that the estimated control points are informative as
they tend to move toward the contours of the digits, and, in particular, toward those that
correspond to the regions of highest variability among samples. It is particularly noticeable
on digits 5 and 6, for example.

Note that we checked empirically the identifiability of the control point positions by run-
ning several times the same experiment with different random initializations.

In Figure 3, we compare the geometry captured with 4 (top) and 9 (bottom) estimated
control points for digit 8. As shown in Figure 2, the contours of the template image with
only 4 control points is less sharp particularly in its upper part than the one with 9 control
points. For the 4 point model, there are only two close control points in the lower part of
the shape, whereas there are three of them spread around the loop with 9 control points.
These additional degrees of freedom make the deformation model more flexible as highlighted
in Figure 3. Not only the template looks better with an increasing number of control points
but the captured geometric variability is also improved.

We evaluate the relevance of the estimated covariance matrix via the generation of syn-
thetic samples. In Figure 4, we compare the geometry captured with 9 control points using
fixed (top) and estimated (bottom) control point models. Although the template of the digit
6 looks similar in both cases, this experiment shows that the geometric variabilities captured
by the models are rather different. The model with equidistributed fixed control points gen-
erates an unrealistic shape of the digit 6 and therefore does not reflect well the geometric
variability observed in the training set. Optimizing for control point positions enables us to
retrieve a much more natural geometric variability. This optimization increases the number
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Figure 5. Evolution of the classification score for varying numbers of control points either fixed (blue) or
estimated (red).

of hidden variables to sample, although the dimension of the covariance matrix remains the
same, namely, dkg × dkg. Updates in control point positions optimize the subgroup of diffeo-
morphisms of fixed dimension that is the most adapted to describe the variability of a given
data set.

Nonetheless, one can notice that beyond a certain number of control points, the improve-
ment is less obvious (see Figure 2). This suggests that there may be an intrinsic dimension of
the deformation space that is optimal (neither too small nor too redundant) for the description
of the variability of a given data set. This is also highlighted by the following classification
experiment. To perform the classification, we use the test set available in the USPS database.
It contains 2007 digit images. The allocated class for a test image is calculated as follows: we
approximate the posterior distribution q(c|y; θc) of the class c given this image y using

(6.1) q(c|y; θc) � Cq(y|(α∗
0)c, (c̄0)c, θc)q((α

∗
0)c|θc)q((c̄0)c|θc)q(θc) ,

where (c̄0)c is the estimated vector of control points for the class c and

(α∗
0)c = argmax

α0

q(α0|y, (c̄0)c, θc) .

This approximation has already been used in [2].
Classification results are presented in Figure 5 for 4, 9, 16, 25, 36, 49, and 64 control points

using both fixed (blue) and random (red) control point models. The scale of the Gaussian
interpolation kernel Kg is fixed such that considering 36 control points leads to one point
every kernel scale.

With no control point, the model classifies according to the L2 similarity with the gray
level average image. This mean image, though very fuzzy, is still informative and leads
to a classification score of about 85%. If the number of control points is increased, the
model incorporates deformations. The template images become less fuzzy (see Figure 2),
deformations explain part of the shape variability in an interpretable way (see Figure 4),
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Figure 6. Five training images from the mouse mandibles.

Figure 7. Estimated templates of the mouse mandible images obtained with 260 fixed control points (left),
with 117 (middle), and 70 (right) estimated control points.

and the classification scores increase (see Figure 5). Near the maximal classification score,
models with estimated control points perform better. As already noted, the slight increase
in classification score goes with a much more realistic and interpretable representation of the
variability (see Figures 3 and 4). If the number of control points is drastically increased, overall
classification scores drop down, as we fall typically into an overfitting situation. Allowing
control point positions to be optimized further increases the dimension of parameters. In
this case, the deformation model becomes so flexible that it can accommodate for any small
differences in shapes, and does not generalize well.

The best performances are reached for in-between numbers of control points. In this
region, estimating the positions of these control points allows us to reach higher classification
scores. This confirms the idea of the existence of an intrinsic dimension of the deformation
space. How to find such dimension is the purpose of the sparse extended model presented in
section 5 and experimented on in section 6.3.

6.2. Mouse mandible experiment. We consider a second training set composed of 36 X-
ray scans of mouse mandibles. Five of them are presented in Figure 6. The estimated template
images resulting from three different experiments are shown in Figure 7. The image on the left
shows the template estimated using 260 fixed equidistributed control points. The image on
the middle (resp., right) shows the estimated template using 117 (resp., 70) estimated control
points. These templates look similar, thus showing that the same photometric invariants have
been captured in each experiment. These invariants include the main bones of the mandibles
(i.e., the brightest areas in the image). The decrease in number of control points is balanced
by the optimization of their optimal positions. Control points in the right image are noticeably
located on the edges of the shape in order to drive the dilation, contraction, and opening of
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Figure 8. Synthetic training sample: 10 examplars among the 20 regular base and the outlier on the right
end.

Figure 9. Estimated templates. Left: template estimated with the deterministic gradient descent of [20] for
the data set including the outlier. The colored arrows represent the initial momenta for different subjects (in
different colors) which are given as output of the algorithm. Middle and right: templates estimated with the
stochastic algorithm for the 20 regular images (middle) and the 20 regular images plus the outlier (right).

the mandible. Depending on the desired precision of the atlas, we can reduce even more the
number of control points. This enables a faster estimation task at the cost of providing less
information about the data.

6.3. Toward sparse representation.

6.3.1. Efficiency of control point selection. We test our estimation procedure for the
sparse constrained model on a toy example in order to exhibit the stability of the estimated
geometry with respect to outliers. We compare these results to the atlas estimation given by
the procedure in [20] where the selection of control points is based on individual contributions.
Note that the same deformation model is used in both approaches. We create a data set of 20
images which are composed of vertical translations and vertical dilations of a given rectangle.
An outlier image is then introduced into this database. This outlier has an excrescence on
its left border (see Figure 8). We run first our algorithm with the 20 regular training images.
Then we run our algorithm and the one proposed in [20] with these 20 images together with
the outlier. The three estimated templates with their respective optimized control point posi-
tions are shown in Figure 9. The gray level differences are negligible. Runing our estimation
procedure for the training images with or without the outlier leads to very similar estimates
of the control point positions, thus showing the robustness of our estimate with respect to
outliers. Samples generated from both estimated models are presented in Figure 10. They
show only vertical deformations up to the isotropy of the Gaussian interpolation kernel. This
confirms the ability of the threshold process to limit the effect of the outlier in the data set.
By contrast, the method proposed in [20], run on the same data set including the outlier,
exhibits a very different result. On the left border of the shape, two control points, with
momenta magnitude of the same order as the other ones, play an important role in this model
although only explaining the variability of the outlier.
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Figure 10. Estimated geometry: samples generated from the 20 regular image estimated model (top) and
from the 20 regular images plus the outlier estimated model (bottom).

Figure 11. Evolution of the estimated templates and of their number of active control points with respect
to the threshold parameter. From left to right: λ equals 0.3, 0.45, 0.6, 0.75, and 0.8.

6.3.2. Results on the USPS database. We then run the estimation algorithm presented
above with the extension described in section 5 and the threshold rule (5.5) on the USPS
database presented above. We conduct different experiments with different thresholds λ be-
tween 0.3 and 0.8 in order to see the evolution of the sparsity with respect to this parameter
and also to capture the most interesting one (depending on the training digit). The initial
number of control points is set to 16. The results of these experiments are presented in
Figures 11 and 12.

As expected, increasing the threshold λ decreases the final number of selected control
points, whose effects on template sharpness and description of variability have been presented
in Figures 2, 3, and 4. Using the modified prior given in (5.4) to enforce sparsity allows us
to automatically select a subset of control points leading to estimation results of the same
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Figure 12. Synthetic samples of digit 2 from the generative model using the estimated parameters for
thresholds 0.3 (top), 0.6 (middle), and 0.8 (bottom).

accuracy (see Figures 11 and 12). Contrary to the L1 prior used in [20], our sparsity prior
selects a small number of control points without penalizing the magnitude of the momenta.
Hence the variability of the model is not underestimated. In this respect, our thresholding
process has an effect which is closer to the expected L0 norm than its surrogate L1 norm.

Furthermore, considering the optimal threshold, we compare the estimated geometry of
our model with the posterior geometry deduced from the estimated momenta of [20]. Indeed,
whereas we estimate the matrix Γg along with the template, it is a fixed parameter in [20].
In order to evaluate the accuracy of the momenta, the authors used the posterior empirical
matrix to generate a synthetic sample (see [20, Fig. 9]). This compares with our Figure 12.
Learning Γg enables us to better catch the geometric variability of the sample. Moreover it
also allows us to reduce the optimal number of control points to better fit the data.

Independently of the threshold λ, control points move in areas where the shape is the most
variable. This can be noticed in the loop of the digit 2 which is highly variable, especially in
contrast to the loop of the digit 6 which is much more stable in shape across observations.
This can be seen by a fastest decrease in number of control points when the threshold λ is
increased for the digit 6 compared to digit 2. It is also interesting to notice how our model
deals with a mixture of 2 that could be written with or without a loop. Such variability vio-
lates the hypothesis of our model, which assumes that observations derive from diffeomorphic
deformations of the template image. In this situation, the model estimates a template image
that is fuzzy in the region of the loop: the nondiffeomorphic variability has been interpreted
as a photometric variation. To overcome this problem, one may investigate the use of several
template images in the atlas along the lines of [4].

The optimal threshold is chosen applying the criterion described in section 5. Figure 13
shows the estimated templates with their control points corresponding to the optimal thresh-
old. The number of control points reflects the variability of the digits. In particular, very
constrained shapes (see digits 1 and 9) require fewer control points than very complex irreg-
ular forms (see digits 3 and 8). Note that in most of the cases (nine digits out of ten) the
selection criterion enables us to select thresholds between 50 and 60%.

6.4. 3D experiments on murine dendrite spines. We run our stochastic algorithm on a
set of murine dendrite spine images (see [1, 14, 15]). The data set consists of 30 binary images
of microscopic structures, tiny protuberances found on many types of neurons termed dendrite



LDDMM-BME ATLAS ESTIMATION 1389

Figure 13. Estimated templates with their optimal numbers and positions of control points.

Figure 14. 3D views of 8 examples of the 30 elements of the dendrite spine database.

spines. The images are from control mice and knockout mice which have been genetically
modified to mimic human neurological pathologies like Parkinson’s disease. The acquisition
process consisted of electron microscopy after injection of Lucifer yellow and subsequent photo-
oxidation. The shapes were then manually segmented on the tomographic reconstruction of
the neurons. A representative set of these images are presented in Figure 14. Each image is a
binary (background = 0, object = 2) cubic volume of size 283. We can notice here the large
geometrical variability of this population of images.

The estimated template is presented in Figure 15. This average shape is similar to the one
presented in [5] and [3] and captures well the geometrical invariance present in the training
set. In order to visualize the estimated geometry, we have drawn synthetic samples thanks
to the generative model with the estimated parameters. Eight of these samples are shown in
Figure 16. As expected, the geometry which is captured by the diffeomorphic deformation
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Figure 15. Estimated template using the proposed algorithm with 30 training examples of the database.

Figure 16. 3D synthetic samples sampled with the generative model using the estimated parameters.

model is more constrained than the one with the linearized deformation model (see Figure 4
in [5]). Although this generates smoother shapes, it looks realistic with regard to the training
samples. The selection of control points has been performed in the same way as for the USPS
database. This reduces the number of geometrical control points to 8 out of 153.

Another great advantage of this estimation process is its computational performance.
Compared to the stochastic estimation algorithm using the Gibbs sampler in the linearized
deformation model, it runs about 15 times faster. The finite parametrization of the LDDMM
deformations enables to reduce the computation time although it now involves costly gradient
and shooting steps. This allows us to compute an estimated atlas in 36 h for this data set.

7. Conclusion and perspectives. In this paper, we presented a generalization of the BME
template model, in which a diffeomorphic constraint has been added on the deformations.
Moreover, a finite-dimensional parametrization of these deformations via control points has
been used, which enabled us to include the positions of these points as parameters of the
model. The AMALA-SAEM algorithm appears to be particularly well suited to estimate the
parameters of such models, especially in comparison with the Gibbs-SAEM. This opened up
the possibility to root the usual atlas estimation using large diffeomorphic deformations into a
rigorous statistical framework, and to propose a tractable stochastic algorithm to estimate its
parameters. The results on handwritten digits, mouse mandibles, and murine dendrite spine
images show the interest of this model. Moreover, the issue of the optimal number of control
points has been addressed including a selection step to only keep the most informative points.
We proposed an empirical criterion to optimize the threshold leading to a model selection.
This choice is usually done by cross validation, which requires a large training database and
is computationally costly.
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A natural extension is to consider the mixture model introduced in [4] using the same
LDDMM formulation with estimated control points. This model can easily be proposed,
however, the difficulty stands in adapting the stochastic algorithm with the AMALA sampler
so that it remains tractable.

Another remark concerns the choice of a Gaussian distribution for the momenta. In the
linearized deformation model, this looks reasonable; indeed, in a flat manifold, the mean of the
deformation (and thus the equivalent of the momentum α) starting from the ideal template
to all the data should be close to 0. The global behaviors can be well approximated by some
Gaussian behavior. But as soon as you consider large deformations, you are no longer in a
flat manifold and the curvature has to be taken into account. In this manifold, matching
one point (the template) to two close points (two different targets) will not necessarily imply
that the two corresponding momenta are close to each other. This leads us to think that the
Gaussian model should be changed to some other which would take the curvature of points
(images) into account.

Finally, looking at the analytical expression of the observed log-likelihood, we recognize
the terms coming from the Gaussian distributions on the observations and on the initial
momenta as the two terms of a LDDMM registration energy (resp., data attachment and L2

penalty terms). For this reason, it would be coherent with this setting to use the metric Γg

both in the penalty term and the definition of the velocity field using interpolation matrix
Kg. One further interest of this generalization will be to include a correlation between these
two matrices, but this is not straightforward.

8. Appendix.

8.1. Proof of the existence of the MAP estimator. From (3.4) we have that for any
θ = (w, σ2,Γg, c̄0) ∈ Θ

(8.1)

q(y|α0, c0,w, σ
2)q(α0|Γg)q(c0|c̄0)

≤ (2πσ2)−|Λ|/2(2π)−kg |det(Γg)|−1/2 exp

(
−1

2
αt

0Γ
−1
g α0

)

× (2πac)
−dkg/2 exp

(
− 1

2ac
‖c0 − c̄0‖2

)

so that integrating over α0 and c0 and adding the priors on each parameter, we get

log(q(θ|y)) ≤ −ag
2
〈Rg,Σg〉F +

ag
2

log(|det(Rg)|)− apσ
2
0

2σ2
− n|Λ|+ ap

2
log(σ2)

−1

2
wtΣ−1

p w − 1

2
(c̄0 − μc)

tΣ−1
c (c̄0 − μc) + C,

where Rg = Γ−1
g , and C does not depend on the parameters. If we denote by η0g the smallest

eigenvalue of Σg and by ‖ · ‖ the operator norm, we get

〈Rg,Σg〉F ≥ η0g‖Rg‖ and log(|det(Rg)|) ≤ (2kg − 1) log(|det(Rg)|)− log(‖Γg‖)
so that

lim
‖Rg‖+‖Γg‖→∞

−ag
2
〈Rg,Σg〉F +

ag
2

log(|det(Rg)|) = −∞ .
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Similarly, we can show

lim
σ2+σ−2→∞

−apσ
2
0

2σ2
− n|Λ|+ ap

2
log(σ2) = −∞ ,

lim
‖w‖→∞

−1

2
wtΣ−1

p w = −∞ ,

and

lim
‖c̄0‖→∞

−1

2
(c̄0 − μc)

tΓ−1
c (c̄0 − μc) = −∞ .

Now considering the Alexandrov one point compactification Θ ∪ {∞} of Θ, we have

lim
θ→∞

log q(θ|y) → −∞ .

Since θ → log q(θ|y) is smooth on Θ, we get the result.

8.2. Description of the stochastic approximation, projection, and maximization steps
of the algorithm. We detail here these three steps of the algorithm. The generalized large
deformation BME template model belongs to the curved exponential family. Indeed, the
log-likelihood is written

(8.2)

log q(y, c0,α0, θ)

=

n∑
i=1

(
−|Λ|

2
log(2πσ2)− 1

2σ2
‖yi −K

(c0,αi
0)

p w‖2
)

+

n∑
i=1

(
−dkg

2
log(2π)− 1

2
log(|det(Γg)|)− 1

2
(αi

0)
tΓ−1

g αi
0

)
− 1

2ac
‖c0 − c̄0‖2

+ ag

(
−1

2
〈Γ−1

g ,Σg〉F − 1

2
log(|det(Γg)|)

)
+ ap

(
− σ2

0

2σ2
− 1

2
log(σ2)

)

− 1

2
wtΣ−1

p w − 1

2
(c̄0 − μc)

tΣ−1
c (c̄0 − μc) + C ,

where for all u ∈ Λ, K
(c0,αi

0)
p w(ru) =

∑kp
k=1Kp((φ

c0,αi
0

1 )−1(ru), bk)wk.
This enables us to exhibit the following sufficient statistics:

(8.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0(z) = c0 ,

S1(z) =
∑

1≤i≤n

(
K

(c0,αi
0)

p

)t
yi ,

S2(z) =
∑

1≤i≤n

(
K

(c0,αi
0)

p

)t (
K

(c0,αi
0)

p

)
,

S3(z) =
∑

1≤i≤n
(αi

0)
tαi

0 .

For simplicity, we denote S(z) = (S0(z), S1(z), S2(z), S3(z)) for any z = (c0,α0) ∈ R
(n+1)dkg .

We define the corresponding sufficient statistic space

S =
{
(s0, s1, s2, s3)|s0 ∈ R

dkg , s1 ∈ R
kp , s2 + σ2

0Σ
−1
p ∈ Σ+

kp,∗(R), s3 + agΣg ∈ Σ+
2kg,∗(R)

}
.
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Identifying in what follows s2 and s3 with their lower triangular part, the set S can be viewed

as an open convex set of Rns with ns = dkg + kp +
kp(kp+1)

2 + kg(2kg + 1).
We carry out a stochastic approximation on the sufficient statistics of the model as follows:

s̄ = sk−1 +Δk−1(S(z̄)− sk−1),

where (Δk)k∈N is a decreasing positive step size sequence and z̄ is the output of the simulation
step.

Since we are not dealing with hidden variables with compact support, we introduce a usual
projection of the sufficient statistics on random boundaries. Let (Kq)q≥0 be an increasing
sequence of compact subsets of S such as ∪q≥0Kq = S and Kq ⊂ int(Kq+1) for all q ≥ 0.
Let (εk)k≥0 be a monotone nonincreasing sequence of positive numbers and R

nz , where nz =
(n + 1)dkg a subset of Rns . We construct the sequence ((sk, zk))k≥0 as follows. As long as
the stochastic approximation does not fall out of the current compact set and is not too far
from its previous value, we run the AMALA-SAEM algorithm. If one of the two previous
conditions is no longer satisfied, we reinitialize the sequences of s and z using a projection
(s̃, z̃) ∈ K0 ×K (for more details, see [8]).

Moreover, there exists a function θ̂ satisfying

(8.4) ∀θ ∈ Θ,∀s ∈ S, L(s; θ̂(s)) ≥ L(s; θ) ,

which yields a very simple maximization step given the sufficient statistics s of the model:

(8.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŵ(s) =
(
s2 + σ̂(s)2(Σp)

−1
)−1

s1,

σ̂2(s) = 1
n|Λ|+ap

(‖y‖2 + ŵ(s)ts2ŵ(s)− 2ŵ(s)ts1 + apσ
2
0

)
,

Γ̂g(s) =
1

n+ag
(s3 + agΣg) ,

ˆ̄c0(s) = s0 .

REFERENCES

[1] G.M. Aldridge, J.T. Ratnanather, M.E. Martone, M. Terada, M.F. Beg, L. Fong, E. Cey-

han, A.E. Kolasny, T.J.A. Brown, E.L. Cochran, S.J. Tang, D.V. Pisano, M. Vaillant,

M.K. Hurdal, J.D Churchill, W.T. Greenough, M. I. Miller, and M.H. Ellisman, Semi-
automated Shape Analysis of Dendrite Spines from Animal Models of Fragilex and Parkinson’s Disease
using Large Deformation Diffeomorphic Metric Mapping, in Society for Neuroscience Annual Meeting,
Washington DC, 2005.
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[39] A. Trouvé, Diffeomorphism groups and pattern matching in image analysis, Int. J. Comput. Vision, 28
(1998), pp. 213–221.
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