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Abstract—In the context of radiolocation in Wireless Body
Area Networks (WBANSs), nodes positions can be estimated
through time-based ranging algorithms. For instance, the dis-
tance separating a couple of nodes can be estimated accurately
by measuring the Round Trip Time of Flight of an Impulse
Radio Ultra Wideband (IR-UWB) link. This measure usually
relies on two or three messages transactions. Such exchanges take
time and a rapid mobility of the nodes can reduce the ranging
accuracy and consequently impact nodes localization process. In
this paper, we quantify this localization error by confronting
two broadcast-based optimized implementations of the three-way
ranging algorithm with real mobility traces, acquired through a
motion capture system. We then evaluate, in the same scenarios,
the impact of the MAC-level scheduling of the packets within a
TDMA frame localization accuracy. The results, obtained with
the WSNet simulator, show that MAC scheduling can be utilized
to mitigate the effect of nodes mobility.

Index Terms—Body Area Networks, Mobility, positioning,
Ranging, Ultra Wideband, Scheduling, Motion Capture

I. INTRODUCTION

Wireless Body Area Networks (WBANs) are emerging
as a key technology in many application domains, such as
medicine, sports, civil security, and entertainment [1], [2].
These networks are capable of collecting and transmitting
information on the activity of a person, based on the analysis
of the body movement.

In the context of radiolocation applications, the Impulse
Radio Ultra Wideband (IR-UWB) achieves a very good perfor-
mance due to its high temporal and fine multipath resolution
capabilities. It provides a high precision estimation of the
Time-Of-Arrival (TOA) of transmitted signal [3]. The TOA is
used by several ranging protocol like the 3-Way Ranging (3-
WR) which consists in estimating the distance between a node
and one of its neighbors using an exchange of three different
packets: one request followed by two responses. However,
depending on the wearer’s movement speed, the positions of
the mobile nodes may have changed before this exchange is
complete, as illustrated by Figure 1. Positioning a node in a
three dimensions space requires at least to measure distances
with four of it neighbors. Estimation errors on all these links
can easily accumulate, yielding to a coarse estimate of the
node’s position [4].
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Fig. 1. Ranging error estimation between static node and mobile node
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When the 3-WR procedure needs to be realized for each
couple of nodes in the network, the traffic sent over the
wireless medium increases rapidly with the number of nodes.
In order to reduce this volume of traffic, the authors of [5]
propose an algorithm called Aggregated and Broadcast (A&B)
to limit the number of required handshake transactions. Each
node that wants to acquire or refresh its position initiates
the transaction by broadcasting a request packet to all its
neighbors instead of querying a single node. After receiving
multiple request packets, a node broadcasts a packet, which
can contain multiple responses, and even a request. Compared
to the classical peer-to-peer ranging (P2P) approach, A&B
reduces the number of transmitted packets, and the delay be-
tween the acquisition of the four required distances. However,
it can lead to a lower performance in presence of packet
losses. An intermediate solution, peer-to-peer ranging with
request broadcasting (P2P-B), which consists in broadcasting
requests and transmitting responses one by one, constitutes a
compromise between P2P and A&B.

This paper studies the impact of nodes mobility on the
localization estimation and focuses on the MAC layer. We
evaluate the impact of mobility on these various strategies
using the WSNet discrete event simulator [6]. The nodes
mobility pattern is defined by traces acquired through an
experimental measurement campaign using a Vicon motion
capture system. We also compare the effect on each algo-
rithm’s accuracy of the MAC-level scheduling of time slots
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within a TDMA frame, which defines when requests and the
corresponding responses are transmitted.

The remainder of the paper is organized as follows. In
Section II, we present the system model and the mobility
scenario. Section III describes localization strategies and the
MAC scheduling we evaluate. Section IV presents and dis-
cusses simulation results.

II. SYSTEM MODEL
A. Network Topology

We consider a single human body evolving in an indoor
environment with a set of wireless devices attached to the
chest, wrists, ankles and head of a body, as illustrated on
Fig. 3(b). These nodes communicate through an IR-UWB
physical layer. These devices operate with a single-channel
frequency and are able to communicate with each other at
one hop (mesh topology). We distinguish two categories of
nodes. The first category regroups the anchors nodes, which
are placed at the most static positions on the body (e.g. on
the chest or on the back). Anchors define a Local Coordinate
System (LCS). Note that the LCS is mobile and generally
misaligned relatively to any Global Coordinate System (GCS).
The second set of nodes comprises simple on-body nodes,
whose positions are unknown and that need to be localized at
least within the LCS. Localization is realized by estimating the
distance between each anchors and the mobile node. In this
paper, we denote by d\ij(t) the measured distance between
node 7 and the anchor j at time ¢ and by Pl(t) the estimated
position of node 3.

B. Ranging Estimation based on 3-WR

In this paper, the distance estimation is derived from the
Time-Of-Arrival (TOA) measured for each involved packet
and the 3-WR handshake protocol transactions. Figure 2
illustrates this classical exchange. The mobile node i, to be
located, starts by sending a Request packet (Q);;) to the anchor
7 at time T7. After receiving this request at time 75, the anchor
J answers with a first Response packet (I21;;) at time 753. Node
1 receives this response packet at time 7}.
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Fig. 2. Three Way Ranging Protocol

Note that, at this stage, the estimated ranging can be given
through 2-WR as follows:

dij(t) = 1c[((Ty — Th) — (T3 — T»)), where c is the speed
of radio waves (i.e. ¢ = 3x10%m/s). Given the time resolution
of this process, the clock drift, which denotes the difference
between the speed of a clock circuit and the absolute time,
has impact on the time of flight estimation and consequently
on the ranging accuracy. Indeed, clock drifts are not identical
for each circuit and two nodes will not measure exactly the
same time interval between two moments. To compensate this
effect, the responding node j sends a second response packet
at time 75, which will be received by node ¢ at time 7g. The
resulting ranging estimate is computed as follows:

d”(t) = %C [((T4 — Tl) — Atl) — ((T6 — T4) — At2)] 5 (1)

where Atl and At2 are respectively equal to (73 — T») and
(T5 — T5).

C. Mobility Model

To evaluate the effect of mobility on localization accuracy,
we confronted the A&B and P2P-B algorithms to real mobility
traces. These traces were obtained during a measurement
campaign realized by the CORMORAN project carried out in
June 2014 at the M2S laboratory of ENS Cachan, Bretagne,
France.

The Vicon motion capture system [7], shown in action
on Fig. 3(a), utilizes 16 high frequency (100Hz) cameras
surrounding a 10m x 6m scene to record the position of
multiple visual markers. We placed 41 markers on a human
subject and 25 markers directly on the communication sensors
carried by the subject, which allows us to acquire a very fine-
grained history of the subject movements.

In this paper, we selected two particular scenarios to evalu-
ate the impact of mobility on localization. In the first scenario,
called Yoga activity, the subject realizes a series of static
positions in the same place, mimicking Yoga postures (e.g. put
both feet together and hands at the sides of the body, elongate
the spine and fold forward from hips with knees, etc.). In
the second mobility scenario, called pedestrian walking, the
subject starts moving from the middle of the scene. Then,
he walks at moderate speed along a rectangular trajectory
centered on the starting point. Each capture lasts 100s. More
information on this campaign is available in [8].

III. PROPOSED MAC STRATEGIES

Localization of the nodes placed on a body can easily suffer
from the nodes mobility. Indeed, as nodes move constantly,
their position evolves while estimating all required distances.

In this work, we only focus on the impact of nodes mobility
on the localization accuracy. We therefore assume that the
channel is perfect and we ignore the effect of shadowing and
body obstruction. We consider, in the rest of the paper, a
network composed of 8 devices, as represented on Fig. 3(b).
Four fixed devices are positioned on the right of the chest (A1),
the left of the chest (A2), the left hip (A3) and on the back
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Fig. 3. (a) Subject camera recording for scenario of Yoga (b) Multi-cylinder
Body reconstruction - the red (resp. blue) points refer to the mobile nodes
(resp. anchors). (c) Pedestrian walking along a rectangular trajectory. (d)
Decomposition of Mobility Model with PyLayers

(A4) and will play the role of anchors. Four mobile nodes are
further positioned on the right arm (/Vs), the left arm (Ng),
the right foot (/V7) and the head (NNVg).

A. Scheduling strategies based on 3-WR handshakes

To capture the body’s movement accurately, the nodes
positions should be refreshed at a frequency that corresponds
to the movement speed. However, a basic and sequential
implementation of the three-way ranging would require a
request followed by two responses per link. The resulting
control traffic can increase rapidly. Besides, when evaluated
consecutively, the obtained distances will not refer to the same
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position, leading to positioning uncertainty. It is possible to
reduce these impacts by grouping requests and responses in
the same packet. Two such strategies are illustrated on Fig. 4:

o Nodes are localized individually (P2P-B): a node i
broadcasts a single request packet (); to all anchors.
Each anchor then sends both responses (R1;) and (R2;;)
consecutively, one anchor at a time. Broadcasting the
requests has the effect to increase, the Atl delay for
some anchors. Besides, this delay is not uniform across
the anchors.

Aggregated and Broadcast (A&B): in a first phase, all
requests packets (; are transmitted in broadcast. Then,
each anchor j sends an aggregated response (R1;) to
all nodes, followed by the second response ([72;). A&B
allows reducing the volume of traffic and hence the size
of the TDMA frame, but also results in an increase of
the Atl delay. However, in noisy environment with high
packet-loss, its performance can be deteriorated.

One may note that the P2P-B favors the Atl delay (indi-
vidual distance estimation), while A&B permits to obtain the
four distances as fast as possible.

For these two strategies, we can derive the TDMA frame
duration at the MAC layer. As depicted by Figure 5, P2P-
B presents higher frame duration compared to A&B, which
increases linearly with the number of nodes. This difference is
explained by the number of packets sent by each protocol be-
tween m anchors and n mobile nodes. In A&B (resp. P2P-B),
the nodes send n Request packets in Broadcast to the anchors.
Then, the anchor nodes answer with m (resp. n.m) Response
1 packets and m (resp. n.m) Response 2 packets. Thus, we
have T4 = n+ 2.m and IIpop_p = n.(2m + 1) packets
for A&B and P2P-B, respectively. Thus, in our scenario of 4
anchors and 4 mobile nodes, P2P-B presents a TDMA frame
length of ~ 54 ms against ~ 18 ms for A&B. This means that
for the duration of one P2P-B movement acquisition round,
A&B can perform three times more the motion capture, and
hence should reduce the impact of nodes mobility.

B. MAC-level slots scheduling

The strategies A&B and P2P-B both reduce the overall
positioning time and save bandwidth, but delay the reception
of the responses. It is however possible to play with the
MAC-level scheduling (i.e. which slot of the TDMA frame is
allocated to which emitter) to reduce the positioning error. The
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Fig. 5. Comparison of frame duration between P2P-B and A&B

MAC layer should therefore strive to reduce the At1l and A¢2
delays as much as possible, as shown in [9]. For the present
scenario, involving 4 anchor nodes (A; to A4) and 4 mobile
nodes (N5 to Ng), we evaluate and compare four MAC-level
scheduling strategies, i.e. four different permutations of the
slots allocated to each mobile node in the TDMA frame:

o NS1 (IV5, Ng, N7, Ng), where nodes with highest (resp.
lowest) mobility are positioned at the beginning (resp.
end) of the TDMA frame,

e NS2 (Ng, N5, Ng, N7), where nodes with highest mo-
bility are positioned in the middle of the TDMA frame,

o NS3 (N7, Ng, N5, Ng), where nodes with highest (resp.
lowest) mobility are at the end (resp. beginning) of the
TDMA frame and

o NS4 (Ng, N7, Ng, N5), where nodes with lowest mobility
are positioned in the middle of the TDMA frame.

IV. SIMULATION AND RESULTS
A. Simulation environment

We compare the different algorithms and MAC-level
scheduling strategies using the WSNet discrete-event simu-
lator [6], which we modified to include simulation models
that correspond to our scenarios. We implemented in WSNet
a physical layer based on IEEE802.15.6 UWB [10] in default
mode (OOK modulation and 0.4875 Mb/s). At the MAC, layer
we implemented a TDMA-based medium access protocol, as
well as the different algorithms and scheduling approaches,
detailed in Section III. Finally, we implemented a mobility
model that let us exploit the mobility traces acquired during
the CORMORAN project, as detailed in section II-C.

Let us consider a mobile node ¢ that performs ~ localization
operations throughout the simulation. At every localization
attempt happening at date ¢, ¢+ computes an estimate position,
R(t) that can be compared to the reference position, which
can be the position occupied by the node the beginning of the
3-WR exchange (Pgey, (1)), at its end ((Prey,(t))), or at the
end of the TDMA frame (Pyfinq(t)), as illustrated on Fig. 4.
The accuracy of the localization process with respect to a
given reference position is given by the root mean squared

error (RMSE) of its estimate over the x ranging operations
realized throughout the simulation, expressed as follows for
the reference position Ref, € {refi,refs, final}:

> (Pres, ()~ 2.9

RMSE(i,ref.) =\ = - (2)

B. Impact of MAC-level scheduling on P2P-B accuracy

Let us first evaluate the impact of MAC-level slots schedul-
ing of the different nodes on the localization accuracy. For this
study, we evaluate the different parameters under a controlled
scenario (e.g. Yoga) that we gradually accelerate by multiply-
ing the speed of each on-body node multiplied by a factor 1
to 10 (1 corresponds to the real scenario).

Figure 6 shows the variation of the RMSE of the positions
estimation according to the speed factor for each node MAC-
level scheduling strategy presented in Section III-B with
respect to the three references positions (Pgreys,, Prey, and
Prinat). As expected, the RMSE increases quasi-linearly with
the speed factor. The distance covered during 3WR transaction
increases with the node mobility, inducing more errors in the
distance estimation and hence in the localization accuracy.

Figure 6(a) shows that the NS1 scheduling strategy yields
to the best position estimation based on Pg.y,. As nodes
with higher mobility are placed at the beginning of the
TDMA frame, their position is estimated at a moment closer
to the reference instant. More static nodes, positioned later,
will have moved less, which mechanically leads to a better
RMSE. Similarly, NS3 scheduling, in which mobile nodes are
scheduled at the end of the TDMA frame better estimates
positions reached by the nodes at the end of the TDMA
frame (Pfina1), as shown on Fig. 6(b). Fig 6(c) represents the
positioning RMSE compared to the second reference positions,
which corresponds to the end of the 3-WR exchange for each
node. The different MAC scheduling strategies do not show
much difference. Pr.y, is therefore less sensitive to the MAC-
level scheduling and should be a good candidate when no
information on the individual nodes mobility is assumed.

C. Comparison of the MAC scheduling impact between P2P-B
and A&B

Let us then compare the reaction of P2P-B and A&B
algorithms presented in Section III-A to the slot scheduling
strategy. This study relies on the same Yoga scenario as before.
Estimations realized by the P2P-B and A&B are compared
with the same reference positions.

Figure 7 compares the distribution of RMSE for all the
allocation strategies for P2P-B and A&B. In Figure 7(a), we
observe a significant gap between the different slot schedul-
ing schemes with P2P-B when evaluating Prey, or Pripa,.
However, we can note that Pg.y, remains the best estimated
position, independently of the MAC scheduling. In the case
of A&B, Figure 7(b) shows that the RMSE also presents a
quasi-linear increase with the movement speed. Moreover, if
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Fig. 7. Comparison of slots allocation strategies with (a) P2P-B and (b) A&B
according to the estimation of the different reference positions

we compare the results between P2P-B and A&B (Fig. 7(b)),
we observe that the impact of the MAC scheduling is limited
for all reference positions. Pr.y, becomes the best estimated
position because Atl is considerably reduced. Therefore,
A&B therefore tolerates more freedom with respect to the
MAC scheduling.

On the basis of these results we identify the two extreme
scenarios concerning the combination of the selection of the
reference position and of the MAC scheduling strategy: i) the

best case, where A&B (resp. P2P-B) performs the localization
estimation according to Pgcy, (resp. Pgrcy,) independently on
the node slot strategy and ii) the worst case, where A&B
and P2P-B perform the localization estimation with respect
to Pyinq with mobile nodes scheduled at the very beginning
of the TDMA frame NSI1.

Finally, one can note that except for Pr.y,, A&B permits to
reduce the average error by a factor 2. Thus, the consistency
in the 4 used distances is more important than the accuracy
of each individual distances.

D. Quantification of position-related errors using P2P-B and
A&B under different scenarios

In the two previous sections, we examined how the aver-
age positioning error evolved in function of the MAC-level
scheduling and of the aggregation algorithm. Let us now
look more closely at the distribution of the positioning error
under the Yoga scenario as well as under the walking scenario
detailed in section II-C.

Figure 8 presents the cumulative distribution function (CDF)
of the on-body nodes position estimation error under both mo-
bility scenarios. As expected, the positioning error distribution
is dependent on the mobility scenario and on the handshake
transaction protocol. The Yoga scenario (characterized by a
low mobility) naturally presents a lower positioning error
than the pedestrian walk scenario (characterized with a higher
mobility). The level of improvement obtained by using the
A&B protocol in place of the P2P-B protocol depends on the
considered mobility scenarios: the gap between P2P-B and
A&B in the case of walk scenario is bigger than the Yoga
scenario. The performance of the “raw” P2P algorithm, which
does not aggregate requests in a single broadcasted packet, is
very close to the performance of P2P-B, which shows that a
higher gain results from grouping answers rather than requests.

In the Yoga scenario, we observe that the difference between
P2P-B and A&B is small. For the worst case (Fig. 8(a)), 90 %
of positioning errors are smaller than 10 mm (resp. 20 mm) for
A&B (resp. P2P-B) with an intersection point at ~ 4 mm for
70 % of errors. In the best case (Fig. 8(b)), 90 % of positioning
errors are smaller than 5 mm (resp. 6 mm) for A&B (resp. P2P-
B) with an intersection point at ~ 4 mm for 80 % of errors.
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Fig. 8. Cumulative Distribution Function of the position error between P2P-B
and A&B, considering a topology of 4 anchors and 4 nodes under the walking
and yoga scenarios for the worst (a) and best (b) reference strategies

In the walking scenario, we notice a bigger gap between
P2P-B and A&B. We observe that for the worst case (Fig. 8(a))
90% of error estimations are smaller than 15mm (resp.
35mm) for A&B (resp. P2P-B) with an intersection point
at =~ 3mm for 40% of estimated errors. In the best case
(Fig. 8(b)), 90 % of positioning errors are smaller than 8 mm
(resp. 10mm) for A&B (resp. P2P-B) with an intersection
point at =~ 1mm for 40 % of errors.

Table I reports the average positioning error in all situations.
We can observe than A&B presents a gain of ~ 50% on the
position estimation for the worst case under both mobility
scenarios and a gain of 63% (resp. 90 %) for the best case
under the walking (resp. Yoga) scenario.

V. CONCLUSION

In this work we have quantified the impact of mobility
on the positioning estimation with based on real and precise
mobility traces. We have compared different strategies of slots
allocation and we have shown that when anchors answer to
the nodes individually (P2P-B strategy), it is more efficient to

M E ( ) Worst Case Best Case
can Brror imm) =555 8 T A&B | P2P-B | A&B
Yoga 6.6 34 |28 25
Walk 102 | 48 |41 2.6
TABLE 1

AVERAGE POSITION ESTIMATION ERROR IN THE WORST AND BEST CASES

allocate the slots in the middle of the TDMA frame to estimate
the instantaneous position. Moreover, A&B yields to a better
performance than P2P-B in terms of latency and accuracy,
with a better estimation of the position held by the sensor
when the positioning request is sent. On the other hand, we
have demonstrated that the Aggregated and Broadcast (A&
B) mechanism reduces the impact of the slots allocation,
which allows greater flexibility in the deployment of sensors
on the body, and in potentially observable movements. These
results are planned to be confirmed over a realistic propagation
channel. We are also extending this study to other dynamic
scenarios (e.g. running) and to the context multi-BAN for
group navigation.
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