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Abstract
The aim of this paper is to propose methods for learning from interactions between groups

in networks. We propose a proper extension of graphs, called hypernode graphs as a formal
tool able to model group interactions. A hypernode graph is a collection of weighted relations
between two disjoint groups of nodes. Weights quantify the individual participation of nodes
to a given relation. We define Laplacians and kernels for hypernode graphs and prove that
they strictly generalize over graph kernels and hypergraph kernels. We then proceed to
prove that hypernode graphs correspond to signed graphs such that the matrix D −W is
positive semi-definite. As a consequence, homophilic relations between groups may lead
to non homophilic relations between individuals. We also define the notion of connected
hypernode graphs and a resistance distance for connected hypernode graphs. Then, we
propose spectral learning algorithms on hypernode graphs allowing to infer node ratings or
node labelings. As a proof of concept, we model multiple players games with hypernode
graphs and we define skill rating algorithms competitive with specialized algorithms.

Keywords: Hypergraphs, Graph Laplacians, Graph Kernels, Spectral Learning, Semi-
supervised Learning, Skill Rating Algorithms.

1. Introduction

Networks are commonly modeled by graphs where nodes correspond to individual objects
and edges correspond to binary relationships between individuals. This is for instance
the case for social networks with friendships between users, or computer networks with
connections between machines. But in many situations, only interactions between groups are
observed without any information on individuals besides group membership. As an example,
in team sports and online games only outcomes of games between teams of multiple players
are filed. Also, group interactions are observed when dealing with clusters in computer
networks or communities in social networks. However in such contexts, the simultaneous
evaluation of functions on groups and on individuals play an important role for applications.
This is exactly the case for functions that measure CPU or cluster loads, individual players
or team skills, users or communities ratings. The two evaluation levels of functions on items
and functions on groups are however related by assuming an additive model. For instance,
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hblue = {{1, 2, 3}, {4, 5}}

hred = {{3}, {6}}

hgreen = {{4, 5}, {1, 6}}

Figure 1: A hypernode graph with three hyperedges. A hyperedge is represented by a
rectangle. Nodes in one of the two hypernodes are connected to the same side of
the rectangle.

in multiple player games, the team skill is assumed to be the weighted sum of player skills as
in Herbrich et al. (2006). A task that can be defined under these assumptions is to evaluate
the function values of all groups and individuals when only a few values are observed. In
the case of multiple player games, skills must be evaluated from a limited number of game
outcomes, thus allowing to predict game outcomes for new games or to do matchmaking
with well-balanced games.

In this paper, we propose a new model called hypernode graphs as a formal tool able to
model group interactions. Hypernode graphs allow to consider node valuation problems as
well as group valuation problems by assuming an additive model. We define a hypernode
graph to be a set of hyperedges. A hyperedge is a pair of disjoint hypernodes, where a
hypernode is a set of nodes. Every node of a hypernode is given a non negative real-valued
weight and weights in a hyperedge satisfy an equilibrium condition. Roughly speaking, a
hypernode models a group, a hyperedge models a relation between two groups, and individual
weights correspond to the contribution of each individual to the relation between the two
groups. An example of hypernode graph is shown in Figure 1. Hypernode graphs generalize
over graphs because there is a one to one correspondence between undirected graphs and
hypernode graphs in which all hypernodes are singleton sets.

Then, a learning task is to infer node function values over a hypernode graph. We
consider semi-supervised setting where function values are given for only a few nodes or
a few hypernodes. For semi-supervised learning on hypernode graphs, we assume that
connected hypernodes tend to have similar values. For real-valued node functions over
discrete structures, the gradient is a discrete derivative that allows to measure such a
similarity. Therefore, we define a gradient for hypernode graphs. If we denote by G the
gradient of a hypernode graph h, we define the Laplacian ∆ of h to be ∆ = GTG, and we
define the kernel ∆† to be the Moore-Penrose pseudo-inverse of the Laplacian ∆. Then, the
quantity fT∆f measures the smoothness of a real-valued node function f on the hypernode
graph h, i.e. fT∆f is small when connected hypernodes have close values. As the Laplacian
is positive semi-definite, (graph) spectral learning algorithms (see Von Luxburg, 2007; Zhou
et al., 2005; Zhu et al., 2003) can be applied for learning in hypernode graphs.

As a proof-of-concept, we consider the skill rating problem for multiple players games, i.e.
how to infer individual skills of players from game outcomes in multiple players games. We
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consider competitive games between two teams where each team is composed of an arbitrary
number of players. We model a set of games by a hypernode graph where hypernodes are
teams of players. A player skill rating function is thus a function on nodes of the hypernode
graph. Then, in order to model game outcomes, we add outcome nodes. An outcome node
is added to every losing team in a hyperedge for a game. Such an outcome node will be
given a positive value in order to model the relation between team skills given by the game
outcome. Thus, the inductive bias used to learn skill ratings is to choose a smooth function
on the hypernode graph such that outcome nodes values are fixed. Therefore, the skill rating
problem is equivalent to a semi-supervised learning problem over a hypernode graph. The
SSL problem can be solved by minimizing Ω(s) = sT∆s where ∆ is the Laplacian of the
hypernode graph and where function values for game outcome nodes are given. The inferred
skill rating function allows to compute team ratings and to predict game outcomes for new
games. We consider real datasets of multiple players games (double tennis and online games)
and apply our method in a batch setting. Experimental results show that we obtain very
competitive results compared to specialized algorithms such as Elo duelling (see Elo, 1978)
and TrueSkill (see Herbrich et al., 2006).

One question raised by the introduction of our new framework is whether or not problems
on hypernode graphs can be solved using graphs. Before answering this question, let us
consider the case of hypergraphs, a popular generalization of graphs where a hyperedge is a
set of nodes. Hypergraphs have been studied from a machine learning perspective and have
been used in many applications (see Klamt et al., 2009; Zhang et al., 1993; Cai and Strube,
2010). It has been proved in Agarwal et al. (2006) that the hypergraph Laplacians introduced
so far do not provide a strict gain of expressiveness with respect to graph Laplacians since
we can reduce any learning problem based on a hypergraph Laplacian to a learning problem
based on a graph Laplacian using an adequate graph construction. This is not true for
hypernode graphs. Indeed, we show that no graph construction allows to define a set of
smooth functions over the graph which coincides with the set of smooth functions over a
given hypernode graph. Thus, we state that hypernode graphs Laplacians strictly generalize
over graph Laplacians.

It can be noted that the class of hypernode graph Laplacians strictly contains the class
of graph Laplacians and also contains the class of graph kernels (a graph kernel is the Moore-
Penrose pseudo-inverse of a graph Laplacian). We can also observe that a convex linear
combination of graph kernels (used in multiple graph kernel learning as in Argyriou et al.
(2005)) is a hypernode graph kernel (i.e., the Moore-Penrose pseudo-inverse of a hypernode
graph Laplacian). We also show that, for every hypernode graph, we can construct a signed
graph with adjacency matrix W such that D −W is the Laplacian of the hypernode graph.
The fact that W potentially contains negative entries should be related to the strict gain of
expressiveness provided by our new framework. Let us recall that, for arbitrary signed graphs,
the matrix D−W can be indefinite. Thus, many works have studied the notion of Laplacian
for signed graphs. Herbster (2008) has considered the class of symmetric diagonally dominant
matrices with non negative diagonal entries. While others (see Hou, 2005; Goldberg et al.,
2007; Kunegis et al., 2010) have used a modified definition of the Laplacian to obtain a
positive semi-definite Laplacian. Last, Koren et al. (2002) have considered the class of signed
graphs such that D −W is positive semi-definite for the problem of drawing graphs. A
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signed graph in this class can therefore be represented by a hypernode graph with the same
Laplacian.

We finally study the definition of a distance between nodes in hypernode graphs. Indeed,
it has been shown that, for connected graphs, a resistance distance can be defined from
the graph kernel and that it can be expressed in term of the commute time distance in the
graph (see Klein and Randić, 1993; Chandra et al., 1996). We define a pseudo-distance
between nodes of a hypernode graph using the hypernode graph kernel. We show that it is
a distance for a well chosen notion of connected hypernode graphs. But, it should be noted
that we leave open the question of finding an algorithmic definition of connected components
in hypernode graphs. Also, we introduce a diffusion operator for hypernode graphs and we
show that the distance can be expressed from the differences of potentials. As a special case,
we get the result on the commute time distance for graphs. But, when the hypernode graph
is not a graph, the question of finding an interpretation of the distance between two nodes
with random walks is left open because negative terms are involved.

2. Hypernode Graphs

The following definition is our contribution to the modeling of binary relationships between
sets of entities.

Definition 1 A hypernode graph h = (V,H) is a set of nodes V and a set of hyperedges
H. Each hyperedge h ∈ H is an unordered pair {sh, th} of two non empty and disjoint
hypernodes (a hypernode is a subset of V ). Each hyperedge h ∈ H has a weight function wh
mapping every node i in sh ∪ th to a positive real number wh(i) (for i /∈ sh ∪ th, we define
wh(i) = 0). Each weight function wh of h = {sh, th} must satisfy the Equilibrium Condition
defined by ∑

i∈th

√
wh(i) =

∑
i∈sh

√
wh(i) .

In the following, we denote by n the number of nodes, we denote by p the number of
hyperedges, and we assume an ordering of the set of nodes and of the set of hyperedges. We
say that a node i belongs to a hyperedge h, that we denote by i ∈ h, if wh(i) 6= 0. We define the
degree of a node i by deg(i) =

∑
hwh(i). The degree of a node is positive when it belongs to at

least one hyperedge. We define the diagonal degree matrix by D = diag(deg(1), . . . ,deg(n))
and the volume of the hypernode graph by Vol(h) =

∑
i∈N deg(i) = Tr(D).

An example of hypernode graph is shown in Figure 1. The blue hyperedge hblue
links the sets {1, 2, 3} and {4, 5}. The weights of hblue satisfy the Equilibrium condition:√

1/2 +
√

1/2 +
√

2 =
√

2 +
√

2. The green hyperedge hgreen links the sets {4, 5} and {1, 6}
and the Equilibrium condition is obviously satisfied. The red hyperedge hred links the two
singleton sets {3} and {6} and the weights of hred are equal, thus the hyperedge hred can be
viewed as an edge with edge weight 1/3.

As noted in the previous example, when a hyperedge h is an unordered pair {{i}, {j}}
of two nodes i, j, the Equilibrium Condition states that the weights wh(i) and wh(j)
are equal. Therefore, every hypernode graph such that all hyperedges are unordered
pairs of singleton nodes can be viewed as a graph with adjacency matrix W defined by
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Wi,j = Wj,i = wh(i) = wh(j) for every hyperedge {{i}, {j}}, and 0 otherwise. Conversely, a
graph can be viewed as hypernode graph where every hypernode is a singleton set.

We are mainly interested in evaluating real-valued functions on nodes and on hypernodes.
We assume a weighted linear model such that any real-valued node function f can be
extended to a hypernode u of a hyperedge h by f(u) =

∑
i∈u f(i)

√
wh(i). Moreover, we will

consider an homophilic assumption stating that connected hypernodes tend to have similar
values. In order to implement this assumption, we introduce a gradient for hypernode graphs
by

Definition 2 Let h = (V,H) be a hypernode graph and f be a real-valued node function,
the (hypernode graph) unnormalized gradient of h is a linear application, denoted by grad,
that maps every real-valued node function f into a real-valued hyperedge function grad(f)
defined, for every h = {sh, th} in H, by

grad(f)(h) = f(th)− f(sh) =
∑
i∈th

f(i)
√
wh(i)−

∑
i∈sh

f(i)
√
wh(i) , (1)

where an arbitrary orientation of the hyperedges has been chosen. We denote by G ∈ Rp×n
the matrix of grad.

Because of the Equilibrium Condition, the gradient of every constant node function is the
zero-valued hyperedge function. The square n× n real valued matrix ∆ = GTG is defined
to be the unnormalized Laplacian of the hypernode graph h. When the hypernode graph is
a graph (all hypernodes are singleton sets), then the hypernode graph Laplacian is equal
to the unnormalized graph Laplacian. The Laplacian ∆ does not depend on the arbitrary
orientation of the hyperedges used for defining the gradient. By definition, the Laplacian ∆
is positive semi-definite. We define the smoothness of a real-valued node function f over
a hypernode graph h to be Ω(f) = fT∆f . Last, we define the hypernode graph kernel of
a hypernode graph h to be the Moore-Penrose pseudo-inverse ∆† of the hypernode graph
Laplacian ∆.

Because a hypernode graph Laplacian is positive semi-definite, we can leverage the
spectral learning algorithms defined in Von Luxburg (2007), Zhou et al. (2005), and Zhu
et al. (2003) from graphs to hypernode graphs. In the next section we show how to use
spectral learning algorithms over hypernode graphs for the skill rating problem in multiple
players games.

3. Skill Rating for Multiple player Games

We consider competitive games between two teams where each team is composed of an
arbitrary number of players. A first objective is to compute the skill ratings of individual
players from a batch of games with their outcomes. A second objective is to predict a game
outcome for a new game. In this section, we show how to model a batch of games by a
hypernode graph and we apply learning algorithms over the hypernode graph to infer player
skills that allow to predict game outcomes of new games.
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3.1 Multiplayer Games

Let us consider a set of players P = {1, . . . , n} and a set of games Γ together with their
respective game outcome. Each game is between two teams of an arbitrary number of
players. Let us also consider that a player i contributes to a game γ with a positive real
value c(i). Let us assume that each player has a skill s(i), we suppose an additive model as
in Herbrich et al. (2006) stating that the skill of a team is the weighted sum of the skills of
the players in the team. More formally, given two teams of players A = {a1, a2, . . . , a`} and
B = {b1, b2, . . . , bk} playing game γ, then A is predicted to be the winner if

∑̀
i=1

c(ai)s(ai) >
k∑
i=1

c(bi)s(bi) . (2)

Equivalently, one can rewrite this inequality by introducing a positive real number o on
the right hand side such that

∑̀
i=1

c(ai)s(ai) = o+
k∑
i=1

c(bi)s(bi) , (3)

where the real number o quantifies the game outcome. In the case of a draw, there is an
equality between the team skills, i.e. the game outcome o is set to 0. Given a set of games
with their respective outcome, the goal is to infer a skill rating function s ∈ Rn that respects
equations 3 as much as possible. We define the cost of a game γ with outcome o for a skill
function s by

Cγ(s) = ‖
∑̀
i=1

c(ai)s(ai)− (o+
k∑
i=1

c(bi)s(bi))‖2 .

Consequently, given a set of games Γ and the corresponding game outcomes, the goal is to
find a skill rating function s∗ that minimizes the sum of the different costs, i.e. search for

s∗ = arg min
s

∑
γ∈Γ

Cγ(s) . (4)

3.2 Modeling Games with Hypernode Graphs

We introduce the general construction by considering an example. Let us consider a game γ
between two teams A = {1, 2, 3} and B = {4, 5}. Let us also assume that all the players
contribute to the game with weight 1. Such a game can be modeled by a hyperedge
between sets of nodes {1, 2, 3} and {4, 5} with weights equal to 1. Now, let us suppose
that B wins the game, then the skill rating function s must satisfy Equation (3), that
is s(1) + s(2) + s(3) + o = s(4) + s(5) where o is positive. In order to model the game
outcome in the hyperedge, we introduce a virtual player that plays along with team A with
a contribution equal to 1. The virtual player is represented by a new node O, called outcome
node, with weight 1. For the outcome node, a skill rating function must satisfy s(O) = o.
Last, for the hyperedge to satisfy the equilibrium condition, we add a node Z, called lazy
node, to the hypernode corresponding to B. For the lazy node, a skill rating function must
satisfy s(Z) = 0. The construction is illustrated in Figure 2. If the game outcome is o = 2,
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Figure 2: Hyperedge h for a game A = {1, 2, 3} against B = {4, 5} where B wins. The
outcome node O is added to A (the loser). The lazy node is added to B (the
winner). All weights are set to 1 except the weight for Z chosen in order to ensure
the Equilibrium condition.

then the skills must satisfy s(1) + s(2) + s(3) + 2 is equal to s(4) + s(5). And, if we constraint
a skill function on the hyperedge to satisfy s(O) = 2 and s(Z) = 0, then the homophilic
assumption on the hyperedge states that s(1) + s(2) + s(3) + 2 must be close from s(4) + s(5)
which expresses the expected relations between player skills given the game outcome.

In the general case, let us consider a set of players P = {1, . . . , n} and a set of games Γ.
Each game γ is between two teams A and B of multiple players, the winning team is known
as well as the game outcome o. Let us also consider that a player i contributes to a game γ
with a non negative weight c(i). We can define, for every game γ a hyperedge h as follows

1. The players of A define one of the two hypernodes of h, the weight of a player node i
is defined to be c(i)2;

2. do the same construction for the second team B;

3. add a outcome node O to the set of player nodes corresponding to the losing team, its
weight is set to 1;

4. add a lazy node Z to the set of player nodes corresponding to the winning team, its
weight is chosen in order to ensure the Equilibrium condition for the hyperedge h.

We define the hypernode graph h = (V,H) as the set of all hyperedges h for all games γ
in Γ. Now, a skill rating function is the restriction to player nodes of a real-valued node
function over the hypernode graph. In order to model the game outcomes, we fix the skill
rating function values over the additional nodes. A skill function s over h modeling Γ must
satisfy: for every lazy node Z, the function value s(Z) must be 0, and, for every outcome
node O, the function value s(Z) must be the outcome value o. Let ∆ be the unnormalized
Laplacian of h, and let s be a real-valued node function on h. Then, it is easy to show that
the skill rating problem (4) is equivalent to find a real valued node function s over h solution
of

minimize
s

sT∆s

subject to for every outcome node O, s(O) = o; for every lazy node Z , s(Z) = 0
(5)
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3.3 Regularizing the hypernode graph

When the number of games is small, the number of hyperedges is small and some node
players belong to only one hyperedge. Thus, player skills can be defined independently while
satisfying the constraints and it will be irrelevant to compare them. In order to solve this
issue, we introduce in Equation (5) a regularization term based on the standard deviation
σ(sp) of players skills where sp = (s(1), . . . , s(n)). This allows us to reduce the spread of the
player skills and leads us to find a real valued node function s over h solution of

minimize
s

sT∆s+ µσ(sp)2

subject to for every outcome node O, s(O) = o; for every lazy node Z , s(Z) = 0
(6)

where µ is a regularization parameter. That is, we control the spread of sp avoiding extreme
values for players involved in a small number of games.

We show in Appendix A that the regularized optimization problem 6 can be rewritten
as find a real valued node function s over hµ solution of

minimize
s

sT∆µs

subject to for every outcome node O, s(O) = o; for every lazy node Z , s(Z) = 0
(7)

where ∆µ is the Laplacian of the hypernode graph hµ obtained from the hypernode graph h
by: add a regularizer node R; for every player node, add an hyperedge between the player
node and the regularizer node R and set the (node) weights to µ/n. The added hyperedges
can be viewed as edges with weight µ/n.

Note that, assuming unitary contributions and a Gaussian distribution for skill ratings,
we can prove that the value of µ/n should have the same order of magnitude than the average
number of games played by a player. Indeed, this will allow us to obtain similar expected
values for the two terms sT∆s and µσ(sp)2. We follow this guideline in the experiments
presented below.

3.4 Inferring Skill Ratings and Predicting Game Outcomes

The problem (7) can be viewed as a semi-supervised learning problem on the hypernode
graph hµ because the question is to predict player node values (skill ratings) from known
values for lazy nodes and outcome nodes. The Laplacian ∆µ is positive semi-definite because
it is a hypernode graph Laplacian. Therefore, we can use the semi-supervised learning
algorithm presented in Zhu et al. (2003). This algorithm was originally designed for graphs
and solves exactly the problem (7) by putting hard constraints on the outcome nodes and
on the lazy nodes. It should be noted that the algorithm is parameter free. We denote this
learning method by H-ZGL.

Another approach to solve the semi-supervised learning problem is to use a regression
algorithm. For this, we consider the hypernode graph kernel ∆†µ (defined as the Moore-
Penrose pseudo-inverse of the Laplacian ∆µ), we train a regression support vector machine
using outcome nodes values and lazy nodes values, and we predict node player values. The
main parameter is the soft margin parameter. We denote this method by H-SVR.

Using one of these two methods, we can infer players skills, then deduce teams skills,
and finally predict game outcomes for new games. For this, we suppose that we are given
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a training set of games Γl with known outcomes together with a test set of games Γu for
which game outcomes are hidden. The goal is to predict game outcomes for the test set Γu.
We use the following

Algorithm 1 Predicting game outcomes
Input: Training set of games Γl, set of testing games Γu

1: Build, as described in Sections 3.2 and 3.3, the regularized hypernode graph hµ from Γl
2: Compute an optimal skill rating s∗ using H-ZGL or H-SVR.
3: Compute the mean skill s̄ among players in Γl
4: for each game in Γu do
5: Assign skills given by s∗ to players involved in Γl, and s̄ otherwise
6: Evaluate the inequality (2) and predict the winner
7: end for

3.5 Experiments

In this section, we report experimental results for the inference of player skills and the
prediction of game outcomes for different datasets in the batch setting described above.
Note that other works have considered the online setting as in Herbrich et al. (2006) or Elo
(1978).

Tennis Doubles

We consider a dataset of tennis doubles collected between January 2009 and September 2011
from ATP tournaments (World Tour, Challengers and Futures). Tennis doubles are played
by two teams of two players. Each game has a winner (no draw is allowed). A game is
played in two or three winning sets. The final score corresponds to the number of sets won
by each team during the game. The dataset Γ consists in 10028 games with 1834 players.

Along the experimental process, given a proportion ρ, we draw randomly a training set
Γl of size ρ% of the number of games in Γ. The remaining games define the test set Γu. We
present in Figure 3 several statistics related to this process on the Tennis dataset. First, it
can be noticed that many players have played a small number of games. Second, when the
number of games in the training set is small, half of the players are involved in games in
the test set. Therefore, the skill rating problem and the game outcome prediction problem
become far more difficult to solve when few games are used for learning.

The experimental setting is defined as follows. Let ρ be a proportion varying from 10%
to 90% by 10%. For every value of ρ, we repeat ten times: draw a random training set Γl
of size ρ% of the number of games in Γ; let the remaining games define the test set Γu;
infer player skills and predict game outcomes following Algorithm 1. For the definition of
the hypergraph, we set all node player weights to 1 because we do not have information
on player contributions. The node outcome values o are set to be the difference between
the number of sets won by the two teams, thus the possible outcome node values are 1, 2
or 3. Therefore, there are 3 outcome nodes and one lazy node shared by all hyperedges.
The resulting hypernode graph has at most 1839 nodes: at most 1834 player nodes, 1 lazy
node, 3 outcome nodes, and 1 regularizer node. In order to complete the definition of the
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Figure 3: [left] Distribution of the number of players against the number of played games;
[right] Average percentage of players in Γu which are involved in some game in Γl

hypernode graph hµ, it remains to fix the regularization node weight µ/n. As announced
above, we choose the value of µ so that µ/n is close to the average number of games played
by a player in the training set. The experiments presented in this section use µ/n = 16.

We report in Figure 4 prediction results using: algorithm 1 and H-ZGL, algorithm 1 and
H-SVR, Elo Duelling, and Trueskill 1. It can be noted that Elo Duelling performs poorly but
Elo was designed for one against one games. It should be noted that we have done similar
experiments for tennis singles. The results are not reported here but they show that Elo
Duelling and True skill obtain similar results but are outperformed by H-ZGL and H-SVR.
For the dataset of tennis doubles, it must be noted that H-ZGL and H-SVR outperform
Trueskill for a small number of training games. Also, H-ZGL outperforms Trueskill whatever
is the number of training games. On this set of experiments H-ZGL outperforms H-SVR but
it should be noted that H-ZGL is parameter free and that we use H-SVR with the default
soft margin parameter value.

Xbox Title Halo2

The Halo2 dataset was generated by Bungie Studio during the beta testing of the XBox title
Halo2. It has been notably used in Herbrich et al. (2006) to evaluate the performance of
the Trueskill algorithm. We consider the Small Teams dataset with 4992 players and 27536
games opposing up to 12 players in two teams which can have a different size. Each game
can result in a draw or a win of one of the two teams. The proportion of draws is 22.8%. As
reported in Herbrich et al. (2006), the prediction of draws is challenging and it should be
noted that Trueskill and our algorithm fail to outperform a random guess for the prediction
of draw.

We consider the same experimental process. For the construction of the hypernode graph
in Algorithm 1, we fix all players contributions in games to 1 and we again set the parameter

1. TrueSkill and Elo implementations are from Hamilton (2012). Results were double-checked using Lee
(2013b) and Lee (2013a). Parameters of Elo and TrueSkill are the default parameters of Hamilton (2012)
(K = 32 for Elo, µ0 = 25, β = 12.5, σ = 8.33 and τ = 0.25 for TrueSkill).
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Figure 4: Predictive error for Double Tennis dataset
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Figure 5: Predictive error for Halo2 dataset

value µ/n to 16. In the optimization problem 7, the game outcomes o are set to 1 when
the game has a winner and 0 otherwise because game scores vary depending on the type of
game. Therefore in the hypernode graph there are one lazy node and two outcome nodes
(for 0 and 1) shared by all hyperedges. We again compare the skill rating algorithms H-ZGL,
H-SVR, Elo Duelling and Trueskill. The number of prediction errors over game outcomes
is computed assuming that a draw can be regarded as half a win, half a loss as in Lasek
et al. (2013). We present the experimental results in Figure 5. For a proportion of 10% of
games in the training set, H-ZGL, H-SVR and Trueskill give similar results while with larger
training sets, our hypernode graph learning algorithms outperform Trueskill. Contrary to
the previous experiment, H-SVR (with default parameter value) outperforms H-ZGL.
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4. Hypernode Graphs, Graphs and Signed Graphs

In this section, we study the class of hypernode graph Laplacians. In particular, we show
that any hypernode graph Laplacian can be seen as the Laplacian matrix of a signed graph
(i.e., a graph that potentially contains negative edge weights).

4.1 The Class of Hypernode Graphs Laplacians

Proposition 3 The class of hypernode graph Laplacians is the class of symmetric positive
semi-definite real-valued matrices M such that 1 ∈ Null(M), where Null(M) is the null
space of M .

Proof It is easy to verify from the Laplacian definition that a Laplacian M is a symmetric
positive semi-definite real-valued matrix such that 1 ∈ Null(M). Conversely, let us consider
the following algorithm

Algorithm 2 Construction of a hypernode graph
Input: M ∈ Rn×n symmetric positive semi-definite such that 1 ∈ Null(M)

1: Set V to {1, . . . , n}; set H to ∅
2: Compute a square root decomposition M = GTG
3: for each row r of G do
4: Create a new hyperedge h = {sh, th} with sh = th = ∅
5: for each node i ∈ V do
6: Define wh(i) = r(i)2

7: if r(i) < 0 then Add i to sh else if r(i) > 0 Add i to th end if
8: end for
9: Add h to H

10: end for
11: return The hypernode graph h = (V,H)

From a square root decomposition GTG of M , for each line of G, we define a hyperedge
h = {sh, th} where nodes in sh (respectively in th) have positive (respectively negative)
values in the line, and node weights are chosen to be squares of values in the line. Then, the
Equilibrium condition 1 is satisfied because 1 ∈ Null(M). And it is easy to check that G is
a gradient matrix of h and, consequently, that M = GTG is the Laplacian of h.

As a consequence of Proposition 3, the class of hypernode graph Laplacians

• is closed under convex linear combination,

• is closed under pseudo-inverse,

• and strictly contains the class of graph Laplacians and the class of graph kernels (a
graph kernel is the Moore-Penrose pseudo-inverse of a graph Laplacian).

Linear combinations of graph kernels have been used for semi-supervised learning (see
for instance Argyriou et al., 2005). Another consequence of Proposition 3 is that a convex
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linear combination of graph kernels is a hypernode graph kernel (also a hypernode graph
Laplacian). To conclude this section, we propose a conjecture

Conjecture 4 The class of hypernode graph Laplacians is the smallest class closed by
convex linear combinations which contains all graph kernels.

The difficult part is to prove that every hypernode graph Laplacian is a convex linear
combination of graph kernels. This is because a graph kernel, which is defined to be the
pseudo-inverse of a graph Laplacian, has no simple analytic form.

4.2 Hypernode Graph Laplacians Strictly Generalize Graph Laplacians

As said above, the class of hypernode graph Laplacians strictly contains the class of graph
Laplacians. But this does not allow us to claim that hypernode graph Laplacians provide a
gain of expressiveness over graph Laplacians. Indeed, it could be the case that through a well
chosen graph construction, the set of smooth functions defined on hypernode graphs could
be made to coincide exactly with the set of smooth functions defined on graphs. The class
of hypergraph Laplacians has been studied in that perspective of expressiveness. Indeed,
it has been shown in Agarwal et al. (2006) that all hypergraph Laplacians defined so far –
among them the Laplacians ∆B from Bolla (1993), ∆R from Rodŕıguez (2003) and ∆ZHS
from Zhou et al. (2007) – can be defined as (restrictions of) graph Laplacians using a graph
construction such as the clique expansion (where each hyperedge is replaced by a clique
graph with uniform weights) or the star expansion (where, for every hyperedge, a new node
is added and is linked with all the nodes in the hyperedge).

While one can think of similar constructions for the case of hypernode graphs, we prove
that there does not exist a (finite) graph expansion of a hypernode graph which defines the
same set of smooth functions over the original set of nodes. The proof is based on the very
simple hypernode graph h shown in Figure 6. Note that a function is smooth over h if and
only if it satisfies

(f(1) + f(2)− f(3)− f(4))2 = 0 (C)

We show by contradiction in Appendix B that there does not exist a finite graph g whose
node set contains {1, 2, 3, 4} and that satisfies the following conditions:

1. Every smooth function over g satisfies (C)
2. Every function satisfying (C) can be extended into a smooth function over g.

The first condition ensures that smooth functions on g are related to smooth functions over
the original hypernode graph h. The second condition ensures that smooth functions on
the original hypernode graph can be defined from smooth functions over extended finite
graphs. The combination of these two conditions ensure that the problem of finding smooth
functions on h can be rephrased as a graph problem (finding the smooth functions on g
and compute their restrictions to {1, 2, 3, 4}). The fact that no graph g can satisfy both
conditions at the same time for a simple hypernode graph h shows that the smoothness
conditions defined by the hypernode graphs can not be defined with undirected extended
graphs.
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Figure 6: Hypernode graph h and a candidate star expansion.
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Figure 7: two L-equivalent hypernode graphs with their respective gradient which are square
root of the Laplacian ∆ shown in Figure 8.

4.3 L-equivalent Hypernode Graphs and Signed Graphs

Let us consider a symmetric positive semi-definite real-valued matrix M such that 1 ∈
Null(M), M is the Laplacian of a hypernode graph by Proposition 3. But, as the square root
decomposition is not unique, there are several hypernode graphs with the same Laplacian that
we called L-equivalent. Examples of L-equivalent hypernode graphs are given in Figure 7. In
order to study the L-equivalent relation and to obtain results showing whether a hypernode
graph is L-equivalent to a graph, we first show that hypernode graphs are related to signed
graphs.

It is known that the Laplacian matrix ∆ of a graph can be written D −W where W
is the adjacency matrix of the graph and D is the corresponding degree matrix. Let us
consider a hypernode graph h with Laplacian ∆, we define the pairwise weight matrix W of
h by Wi,j = −∆i,j if i 6= j, and 0 otherwise. Note that the pairwise weight matrix coincides
with the classic adjacency matrix when the hypernode graph is a graph. Let us define the
degree of a node i to be deg(i) =

∑
j∈V Wi,j and let us denote by D the diagonal matrix

of all deg(i). Then, because of the property 1 ∈ Null(M) in Proposition 3, it is immediate
that, for every i, ∆i,i =

∑
j∈V Wi,j . As a consequence, we have

Proposition 5 Let h = (V,H) be a hypernode graph, let W be the pairwise weight matrix
of h, and let D be the diagonal degree matrix of h. Then, the Laplacian of h is ∆ = D−W .

An example is shown in Figure 8. As a consequence of the above proposition, we can
leverage the pairwise weight matrix to characterize L-equivalent hypernode graphs by

Proposition 6 Two hypernode graphs are L-equivalent if and only if they have the same
pairwise weight matrix. Two L-equivalent hypernode graphs have the same degree matrix.
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∆ =


1 1 −1 −1
1 1 −1 −1
−1 −1 2 0
−1 −1 0 2

 ; W =


0 −1 1 1
−1 0 1 1
1 1 0 0
1 1 0 0

 ; D =


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

.

Figure 8: Laplacian matrix, pairwise weight matrix, and degree matrix for the two L-
equivalent hypernode graphs shown in Figure 7.
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Figure 9: The reduced signed graph with adjacency matrix W of Figure 8 of the two
L-equivalent hypernode graphs shown in Figure 7.

The pairwise weight matrix W contains in general negative weights and can be thus
interpreted as the adjacency matrix of a signed graph. Therefore, we define the reduced
signed graph of a hypernode graph h to be the signed graph g̃ with adjacency matrix W .
An example is shown in Figure 9. Then, we can show that

• the reduced signed graph of a graph g (viewed as a hypernode graph) is the graph g,

• a hypernode graph h is L-equivalent to a graph if and only if its reduced signed graph
is a graph,

• a signed graph with adjacency matrix W is the reduced signed graph of a hypernode
graph if and only if the matrix D −W is positive semi-definite.

The definition of the pairwise weight matrix may seem ad hoc to mimic the definition of
the Laplacian in the graph case. But, we can show that the pairwise weight matrix can be
defined directly from the hypernode graph using the following formula

∀i 6= j, Wi,j =
∑
h∈H

P (h, i, j)
√
wh(i)

√
wh(j) , (8)

where P (h, i, j) = 1 if i and j belongs to two different ends of h, P (h, i, j) = −1 if i and
j belongs to the same end of h, and 0 otherwise. And the formula can be interpreted as
follows. The pairwise weight Wi,j is computed as a sum over all the hyperedges, then it can
be understood as an aggregation of all the information over hyperedges involving the nodes i
and j. For every term in the sum, the quantity

√
wh(i) can be viewed as the cost of entering

the hyperedge h at node i, the quantity
√
wh(j) as the cost of exiting the hyperedge h at

node j, and P (h, i, j) as a sign depending whether i and j are in the same end or in different
ends of the hyperedge.
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5. Resistance Distance and Random Walks in Hypernode Graphs

In this section, we study whether a distance can be defined between nodes of a hypernode
graph and how such a distance can be interpreted in the hypernode graph. Throughout the
section, we consider a hypernode graph h = (V,H) with Laplacian ∆.

5.1 Defining a distance in Hypernode Graphs

Let ∆† be the Moore-Penrose pseudo-inverse of ∆, let us define d by, for every i, j in V ,

d(i, j) =
(√

∆†i,i + ∆†j,j − 2∆†i,j
)

. (9)

Because ∆† is symmetric positive semi-definite, we have

Proposition 7 d defines a pseudo-metric on h, i.e., it is positive, symmetric and satisfies
the triangle inequality (for all i, j, k the inequality d(i, j) ≤ d(i, k) + d(k, j) holds).

For the pseudo-metric d to be a distance, d should satisfy also the coincidence axiom:
d(i, j) = 0 ⇒ i = j. This is not true in general as d(1, 2) = 0 for the hypernode graph in
Figure 6. The intuition is that the nodes 1 and 2 can not be distinguished because the
smoothness condition is on the sum f(1) + f(2). Nevertheless we can show that

Proposition 8 When Null(∆) = Span(1), d defines a metric (or distance) on h.

Let us recall that, in the graph case, Proposition 7 holds and that Proposition 8 holds when
the graph is connected. By analogy with the case of graphs, the condition Null(∆) = Span(1)
can be viewed as an algebraic definition of a connected hypergraph. So far, we have not
found an alternative algorithmic definition of connected components in hypernode graphs.

Finally, let us note that, in the graph case, for connected graphs, both d and d2 are
metrics while, for hypernode graphs, d2 does not satisfy the triangle inequality even if
Null(∆) = Span(1).

5.2 Resistance Distance and Diffusion in Hypernode Graphs

Let us suppose that h satisfies Null(∆) = Span(1). Our goal is to study whether d2 can be
written in terms of a diffusion function in the hypernode graph. First, let us consider the
Poisson equation ∆f = In that models the diffusion of an input charge In through a system
associated with the Laplacian operator ∆. Let us consider a node j called sink node, we
consider the input function Inj defined by Inj(j) = deg(j)−Vol(h) and Inj(i) = deg(i) if
i 6= j. We can prove that

Lemma 9 The solutions of ∆f = Inj are the functions f = µ1 + ∆†In where µ ∈ R.

The compete proof is presented in Appendix C. It is based on properties of pseudo-
inverse matrices and on the hypothesis Null(∆) = Span(1). Then, for every pair of nodes
(k, `) in V , we define Vj(k, `) as the difference of potential between k and `, i.e., we define
Vj(k, `) = f(k)− f(`) where f is a solution of the Poisson equation ∆f = Inj . Lemma 9

16



Learning with Hypernode Graphs

allows to show that the definition of Vj(k, `) does not depend on the choice of the solution
of the Poisson equation and that an equivalent definition is

Vj(k, `) = (ek − e`)T∆†Inj ,

where ei is the unit vector with 1 in component i. We can now relate the distance d2 and
the diffusion potential Vj by

Proposition 10 For every i, j in V , we have Vol(h)d2(i, j) = Vj(i, j) + Vi(j, i), where
Vj(i, i) = 0, and for i 6= j,

Vj(i, j) =
∑
h|i∈h

wh(i)
deg(i)

1 +
∑

k∈h,k 6=i
P (h, i, k)

√
wh(k)
wh(i) Vj(k, j)

 . (10)

The proof is given in Appendix D.

5.3 Resistance Distance and Random Walks in Hypernode Graphs

Proposition 10 provides an expression of d2 in terms of diffusion potentials. We first show
that the proposition generalizes the result of Klein and Randić (1993); Chandra et al. (1996)
relating the resistance distance and random walks in graphs.

Indeed, let us consider a hypernode graph h where all hypernodes are singleton sets.
The hypernode graph can be viewed as a graph and every hyperedge h that contains a node
i is an edge {{i}, {k}} with k ∈ N . Thus, we have wh(i) = wh(k) = Wi,k and Equation (10)
can be rewritten as

Vj(i, j) =
∑
k∈N

Wi,k

deg(i)(1 + Vj(k, j)) .

Thus, Vj(i, j) can be interpreted as the hitting-time distance from i to j (average number
of steps needed by a random walker to travel from i to j). Consequently, Proposition 10
states that, when h is a graph, the distance d2(i, j) between two nodes i and j is equal to
the commute-time distance between i and j divided by the overall volume, which is the
expression found in Klein and Randić (1993); Chandra et al. (1996).

Now, let us consider the general case where the hypernode graph is not a graph. Let us
define p(h|i) = wh(i)

deg(i) and p(k|h, i) = P (h, i, k)
√

wh(k)
wh(i) . Then, we can rewrite Equation (10)

as

Vj(i, j) =
∑
h|i∈h

p(h|i)

1 +
∑

k∈h,k 6=i
p(k|h, i)Vj(k, j)

 .

The term p(h|i) can be interpreted as a jumping probability from node i to the hyperedge
h because p(h|i) is non-negative and

∑
h p(h|i) = 1. Let us now consider the term p(k|h, i),

it can be shown that
∑
k p(k|h, i) = 1. But the term p(k|h, i) is negative when i and k

belong to the same end of h. Consequently, the quantity p(k|h, i) can not be interpreted
as a jumping probability from node i to node k with the hyperedge h. Therefore, there is
no easy interpretation of d2 in terms of random walks in the hypernode graph because of
possible negative values in the expression of d2(i, j).
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6. Conclusion

We have introduced hypernode graphs for learning from binary relations between groups
in networks. We have defined a spectral theory allowing to model homophilic relations
between groups. Properties of Laplacians and kernels have allowed us to define learning
algorithms and an application to skill rating for multiple players games has been presented.
This paper opens many research problems. From a machine learning perspective, we hope
that the model will open the way to solving new learning problems in networks. From a
fundamental perspective, many questions must be investigated. For instance, we have seen
that connectivity properties and random walks in hypernode graphs need more research.
Also, the definition of cuts in hypernode graphs and the generalization of the Max-Flow
Min-Cut theorem are open questions.

References

Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher Order Learning with Graphs.
In Proceedings of the 23rd International conference on Machine learning (ICML-06), pages
17–24, 2006.

Andreas Argyriou, Mark Herbster, and Massimiliano Pontil. Combining Graph Laplacians
for Semi-Supervised Learning. In Proceedings of the 19th Annual Conference on Neural
Information Processing Systems (NIPS-05), pages 67–74, 2005.

Marianna Bolla. Spectra, euclidean representations and clusterings of hypergraphs. Discrete
Mathematics, 117(1):19–39, 1993.

Jie Cai and Michael Strube. End-to-end coreference resolution via hypergraph partitioning. In
Proceedings of the 23rd International Conference on Computational Linguistics (COLING-
10), pages 143–151, 2010.

Ashok K. Chandra, Prabhakar Raghavan, Walter L. Ruzzo, Roman Smolensky, and Prasoon
Tiwari. The electrical resistance of a graph captures its commute and cover times.
Computational Complexity, 1996.

Arpad Emrick Elo. The Rating of Chess Players, Past and Present. Arco Publishing, 1978.

Andrew B Goldberg, Xiaojin Zhu, and Stephen J Wright. Dissimilarity in graph-based
semi-supervised classification. In International Conference on Artificial Intelligence and
Statistics, pages 155–162, 2007.

Scott Hamilton. PythonSkills: Implementation of the TrueSkill, Glicko and Elo Ranking
Algorithms. https://pypi.python.org/pypi/skills, 2012.

Ralf Herbrich, Tom Minka, and Thore Graepel. TrueSkillTM: A Bayesian Skill Rating
System. In Proceedings of the 20th Annual Conference on Neural Information Processing
Systems (NIPS-06), pages 569–576, 2006.

Mark Herbster. Exploiting cluster-structure to predict the labeling of a graph. In Proceedings
of the 19th International Conference on Algorithmic Learning Theory (ALT-08), pages
54–69, 2008.

18



Learning with Hypernode Graphs

Yao Ping Hou. Bounds for the least Laplacian eigenvalue of a signed graph. Acta Mathematica
Sinica, 21(4):955–960, 2005.

Steffen Klamt, Utz-Uwe Haus, and Fabian Theis. Hypergraphs and Cellular Networks. PLoS
Computational Biology, 5(5), May 2009.
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JA Rodŕıguez. On the Laplacian spectrum and walk-regular hypergraphs. Linear and
Multilinear Algebra, 51(3):285–297, 2003.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):
395–416, 2007.

Shujun Zhang, Geoffrey D. Sullivan, and Keith D. Baker. The automatic construction of
a view-independent relational model for 3-D object recognition. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 15(6):531–544, 1993.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning from labeled and
unlabeled data on a directed graph. In Proceedings of the 22nd International conference
on Machine learning (ICML-05), pages 1036–1043, 2005.

Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs:
Clustering, classification, and embedding. In Proceedings of the 20th Annual Conference
on Neural Information Processing Systems (NIPS-06), pages 1601–1608, 2007.

19



Ricatte et al

Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised learning using
gaussian fields and harmonic functions. In Proceedings of the 20th International conference
on Machine learning (ICML-03), pages 912–919, 2003.

Appendix A. Regularized Hypernode Graph for Skill Rating

Formally, we assume a numbering of V such that V = {1, . . . , N} where N is the total
number of nodes, the first n nodes are the player nodes followed by the t lazy nodes, then
followed by the outcome nodes, that is, V = {1, . . . , n}∪{n+1, . . . , n+t}∪{n+t+1, . . . , N}.
Let ∆ be the unnormalized Laplacian of h, and let s be a real-valued node function on h,
s can be seen as a real vector in RN where the first n entries represent the skills of the n
players. Then, Problem 6 can be rewritten as

minimize
s∈RN

sT∆s+ µσ(sp)2

subject to ∀n+ 1 ≤ j ≤ n+ t, s(j) = 0 (for lazy nodes)
∀n+ t+ 1 ≤ j ≤ N, s(j) = oj (for outcome nodes),

(11)

where µ is a regularization parameter and sp denotes the vector of player skills (s(1), . . . , s(n)).
In order to apply graph-based semi-supervised learning algorithms using hypernode graph
Laplacians, we now show that the regularized optimization problem can be rewritten as an
optimization problem for some hypernode graph Laplacian. For this, we will show that it
suffices to add a regularizer node in the hypernode graph h. First, let us recall that if s is
the mean of the player skills vector sp = (s(0), . . . , s(n)), then, for all q ∈ R, we have

σ(sp)2 = 1
n

n∑
i=1

(s(i)− s)2 ≤ 1
n

n∑
i=1

(s(i)− q)2 .

Thus, in the problem 6, we can instead minimize sT∆s+ µ
n

∑n
i=1(s(i)− q)2 over s and

q. We now show that this can be written as the minimization of rT∆µr for some vector r
and well chosen hypernode graph Laplacian ∆µ. For this, let us consider the p×N gradient
matrix G of the hypernode graph h associated with the set of games Γ, and let us define the
(p+ n)× (N + 1) matrix Gµ by

Gµ =

0

0




G

√
µ
nB

,

where B is the n× (N + 1) matrix defined by, for every 1 ≤ i ≤ n, Bi,i = −1, Bi,N+1 = 1,
and 0 otherwise.

The matrix Gµ is the gradient of the hypernode graph hµ obtained from the hypernode
graph h by: add a regularizer node N + 1; add, for every player node, a new hyperedge
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between the player node and the regularizer node N + 1 with node weights µ/n. Note that
such a hyperedge can be viewed as an edge with edge weight µ/n.

Let us denote by r the vector (s(0), . . . , s(N), q), then since ∆ = GTG, we can write
rTGTµGµr = sT∆s+ µ

nrB
TBr. As rBTBr =

∑
i(si − q)2, if we denote by ∆µ = GTµGµ the

(N + 1)× (N + 1) unnormalized Laplacian of the hypernode graph hµ, we can finally rewrite
the regularized problem (11) as

minimize
r∈RN+1

rT∆µr

subject to ∀n+ 1 ≤ j ≤ n+ t, r(j) = 0 (for lazy nodes)
∀n+ t+ 1 ≤ j ≤ N, r(j) = oj (for outcome nodes)

(12)

Appendix B. Expressiveness of the hypernode graph Laplacian

Let us consider the simple hypernode graph h first introduced in Figure 6 and recalled in
Figure 10 below.

1

2

3

4

1

1

1

1
∆ =


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1


Figure 10: Hypernode graph h and corresponding Laplacian ∆

As stated in Section 4.2, a function is smooth on h if and only if it satisfies

(f(1) + f(2)− f(3)− f(4))2 = 0 (C)

Proposition 11 There do not exist a finite graph g whose node set contains {1, 2, 3, 4} and
that satisfies the conditions:

1. All the smooth functions on g satisfy (C).
2. Any function that satisfies (C) can be extended to a smooth function on g.

Proof Let us define S = {1, 3} and denote by ∆ the Laplacian matrix of h. The indicator
vector 1S is in Null(∆) and, thus, define a smooth function on h. Let us consider a graph
ge = (Ne, Ee) whose nodeset Ne contains the nodeset N = {1, 2, 3, 4} and that satisfies the
two conditions presented in Proposition 11. We denote by ∆e the Laplacian matrix of ge.
Because of the first condition, the function 1S can be extended to a smooth function fe on
ge.

Since ge is a graph, we know that Null(∆e) is spanned by the indicator vectors of the
connected components of ge (see for instance Von Luxburg (2007)). Since fe(1) = 1S(1) 6=
fe(2) = 1S(2), 1 and 2 must be in different components in ge. Note that the same holds
with fe(1) 6= fe(4), fe(3) 6= fe(2) and fe(3) 6= fe(4). By following a similar reasoning with
S = {1, 4}, we eventually deduce that the four original nodes 1, 2, 3 and 4 must be in
distinct components in ge.
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Let us now consider the component C of ge that contains the node 1. The indicator
function 1C is smooth on ge but we have

(1C(1) + 1C(2)− 1C(3)− 1C(4))2 = (1 + 0− 0− 0)2 6= 0 .

Consequently, 1C does not satisfy (C), which violates the second condition and concludes
the proof.

Appendix C. Proof of Lemma 9

Proof
Let us consider a hypergraph h with Laplacian ∆ such that Null(∆) = Span(1). There-

fore, Rn is the direct sum of the space Span(1) and of the space Null(∆)⊥. Let us
consider f ∈ Rn, it can be written f = µ1 + g where g ∈ Null(∆)⊥. Thus, we have
∆f = ∆(µ1 + g) = ∆g.

Let us suppose that f satisfies ∆f = Inj , we deduce that ∆g = Inj . As seen above,
we know that the operator ∆†∆ is the orthogonal projector operator on Null(∆)⊥. Since
g ∈ Null(∆)⊥, we have g = ∆†∆g = ∆†Inj . Hence we can write f under the form µ1+∆†Inj .

Conversely, let us consider f = µ1+∆†Inj with µ ∈ R. We have ∆f = ∆
(
µ1 + ∆†Inj

)
=

µ∆1 + ∆∆†Inj . From the definition of Inj , we deduce that Inj ∈ Null(∆)⊥. Since ∆ is
symmetric, ∆∆† is also the orthogonal projector on Null(∆)⊥ and thus ∆∆†Inj = Inj .
Since ∆1 = 0, we get ∆f = Inj which concludes the proof.

Appendix D. Proof of Proposition 10

Proof First, we show that Ω(i, j) = Vj(i,j)+Vi(j,i)
Vol(h) . For that, let us develop the expression

of Vj(i, j) obtained above

Vj(i, j) =(ei − ej)T∆†Inj
=
∑
k 6=j

d(k)(∆†k,i −∆†k,j)− (Vol(h)− d(j))(∆†i,j −∆†j,j)

=
∑
k 6=i,j

d(k)(∆†k,i −∆†k,j) + d(i)(∆†i,i −∆†i,j) + (Vol(h)− d(j))(∆†j,j −∆†i,j)

= Vol(h)(∆†j,j −∆†i,j) +R(j, i) ,

where

Rj(j, i) =
∑
k 6=i,j

d(k)(∆†k,i −∆†k,j) + d(i)(∆†i,i −∆†i,j)− d(j)(∆†j,j −∆†i,j) .

We can observe that, for every node i and j in N , we have Ri(i, j) +Rj(j, i) = 0. Thus,
we can write
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Vj(i, j) + Vi(j, i) = Vol(h)(∆†i,i + ∆†j,j −∆†i,j −∆†j,i)

= Vol(h)(∆†i,i + ∆†j,j − 2∆†i,j)
= Vol(h)d2(i, j) ,

which concludes the first part of the proof.
It remains to show that Vj satisfies Equation (10). By definition of Vj , we get that, for

every node i, Vj(i, i) = 0. Let us now consider i 6= j and let us consider f in Sj , i.e., a solution
of ∆f = Inj . As i 6= j, we have d(i) = eTi Inj . Since f ∈ Sj , we have Inj = ∆f = GTGf so
we can rewrite the previous equality as d(i) = eTi GTGf = (Gei)T (Gf). Now, because of
(1), we have G1 = 0, thus Gf = G(f − f(j)1). This leads to

d(i) = (Gei)T (G(f − f(j)1) =
∑
h

(Gei) (h) · (G(f − f(j)1) (h) (13)

For any oriented hyperedge h = (sh, th), we define εh(i) to be equal to 1 if i ∈ th and −1
if i ∈ sh (0 if the node i. does not belong to the hyperedge). We can observe that we always
have

P (h, i, j) = −εh(i)εh(j) . (14)

Using this notation, we can develop the expression of d(i) from Equation (13) and write

d(i) =
∑
h

(√
wh(i)εh(i)

)
·

∑
k∈h

√
wh(k)εh(k)(f(k)− f(j))


=
∑
h|i∈h

√
wh(i)

∑
k∈h

(−P (h, k, i))
√
wh(k)(f(k)− f(j))

 (see Equation (14))

=
∑
h|i∈h

√
wh(i)

∑
k∈h

(−P (h, k, i))
√
wh(k)Vj(k, j)


= Vj(i, j)

∑
h|i∈h

wh(i)(−P (h, i, i)) +
∑
h|i∈h

√
wh(i)

 ∑
k∈h,k 6=i

(−P (h, k, i))
√
wh(k)V(k, j)

 .

We have for all i, P (h, i, i) = −1 and
∑
hwh(i) = d(i) so the previous equality can be

rewritten under the form

d(i) = Vj(i, j)d(i) +
∑
h|i∈h

√
wh(i)

 ∑
k∈h,k 6=i

(−P (h, k, i))
√
wh(k)Vj(k, j)

 .

Hence, we get the linear system
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Vj(i, j) = 1 +
∑
h|i∈h

√
wh(i)
d(i)

 ∑
k∈h,k 6=i

P (h, k, i)
√
wh(k)Vj(k, j)


=
∑
h|i∈h

wh(i)
d(i)

1 +
∑

k∈h,k 6=i
P (h, k, i)

√
wh(k)
wh(i) Vj(k, j)

 ,

which concludes the proof.
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